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Abstract
Sleep is critical for hippocampus-dependent memory consolidation. However, the underly-

ing mechanisms of synaptic plasticity are poorly understood. The central controversy is on

whether long-term potentiation (LTP) takes a role during sleep and which would be its spe-

cific effect on memory. To address this question, we used immunohistochemistry to mea-

sure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat

hippocampus immediately after specific sleep-wake states were interrupted. Control ani-

mals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels

across the sleep-wake cycle, but animals exposed to novel objects showed a decrease dur-

ing subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement

sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles

near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on

a network of fully connected excitatory neurons fed with spikes recorded from the rat hippo-

campus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights

to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM

transition led to marked swaps in synaptic weight ranking. To better understand the interac-

tion between rescaling and restructuring during sleep, we implemented synaptic homeosta-

sis and embossing in a detailed hippocampal-cortical model with both excitatory and

inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation

and strengthening depression, while synaptic embossing was simulated by evoking LTP

on selected synapses. We observed that synaptic homeostasis facilitates controlled

synaptic restructuring. The results imply a mechanism for a cognitive synergy between

SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the ef-

fect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic

restructuring.
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Author Summary

Sleep is important for long lasting memories. There exists, however, a controversy regard-
ing the mechanisms by which sleep modifies synapses to consolidate enduring memories.
One theory posits that sleep weakens synapses, leading to the forgetting of all but the
strongest memories. The alternative theory proposes that sleep promotes both weakening
and strengthening of different connections, the latter through a process known as long-
term potentiation (LTP). Here we measured the levels of a phosphorylated protein related
to LTP during the sleep cycle of rats and used the data to build models of sleep-dependent
synaptic plasticity. By feeding one model with spikes recorded from the rat hippocampus,
we observed that LTP during sleep not merely strengthens certain connections, but actual-
ly reorganizes how these connections are ranked in strength, leading to substantial changes
of the overall pattern. A more detailed model of hippocampus and cortex showed that the
interaction of the mechanisms predicted by the competing theories promotes a more effi-
cient control of which memories are stored. Our results provide a step forward in the un-
derstanding of the cognitive role of sleep by indicating that the current competing theories
are not mutually exclusive. Instead, each constitutes an important stage of
memory consolidation.

Introduction
In the hippocampus, slow-wave sleep (SWS) is characterized by large amplitude, low-frequency
oscillations of the local field potential (LFP), concomitant with a phasic regime of neuronal fir-
ing, with relatively low mean firing rates and intermittent synchronization [1–4]. In contrast,
rapid-eye-movement sleep (REM) displays small amplitude, high-frequency oscillations that
underlie a tonic firing regime, with relatively high mean firing rates and decreased synchrony
[1–4]. Both sleep states play a role in the consolidation of hippocampus-dependent memories
[5, 6], but the mechanisms remain poorly understood.

Two theories are in dispute. The synaptic homeostasis hypothesis (SHY) proposes that SWS
causes generalized synaptic weakening [7–9], leading to the down-selection of weak synapses
[10]. The notion that synaptic depression is determinant for off-line memory processing de-
parts from the conventional Hebbian learning rule, by which connections among simulta-
neously firing neurons are reinforced [11]. On the other hand, the synaptic embossing
hypothesis postulates the combination of non-Hebbian rescaling and Hebbian potentiation of
synaptic weights in complementary circuits during REM [6, 12, 13]. The core of the dispute is
the controversy on whether long-term potentiation (LTP) occurs during sleep. Empirical stud-
ies diverge considerably, with molecular, electrophysiological and morphological evidence for
[14–22] and against [4, 7, 23–25] it.

The theories also differ on the roles of the different sleep states in memory consolidation.
SHY only considers SWS and does not propose any role for REM [4, 26], while the embossing
theory encompasses both states [6, 12, 13]. The substantial differences in the firing and correla-
tion regimes of SWS and REM suggest that the two states should be separately and sequentially
modeled [6, 12, 27]. One study has suggested that SWS leads to general memory reinforcement
while REM leads to forgetting of all but the strongest memories traces [28]. LTP during SWS
has been proposed to amplify the synaptic changes acquired during WK [29], with further pro-
cessing of the resulting synaptic weights during REM [30, 31]. In fact, plasticity factors such as
protein kinases and transcription factors encoded by immediate-early genes are up-regulated
during REM [14–16, 20, 32, 33]. Therefore, it is possible that a complete sleep cycle traversing
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SWS and REM leads to important perturbations in the pattern of synaptic weights [6, 12, 27],
rather than to the simple weight convergence observed during SWS alone [4].

To address this debate, we first assessed phosphorylated Ca2+/calmodulin-dependent pro-
tein kinase II (pCaMKIIα) in the hippocampus of rats exposed (or not) to novel objects, and
killed immediately after subsequent WK, SWS or REM (S1 Fig). CaMKIIα phosphorylation is
one of the earliest mechanisms with a critical role in LTP, memory and learning [34, 35]. CaM-
KIIα undergoes conformational changes towards the active form within seconds after the be-
ginning of synaptic stimulation [36], triggering later events that include the up-regulation of
immediate-early genes required for long-term synaptic remodeling, such as Zif-268 [37]. Given
the very fast kinetics of CaMKIIα phosphorylation [36] in comparison with Zif-268 [38],
pCaMKIIα levels were hypothesized to show experience-dependent changes immediately after
SWS and/or REM, while Zif-268 protein levels were expected to be invariant immediately after
any given state. The protein levels of total CaMKIIα and Actin were also assessed as negative
controls expected to show invariant levels across groups, given their much slower transcrip-
tional and translational regulation. To gain insight in the state dependency of pCaMKIIα regu-
lation, we also investigated the relationship between pCaMKIIα levels and electrophysiological
markers of SWS (delta oscillations), REM (theta oscillations) or the SWS/REM transition (neo-
cortical spindles) [39].

Since both SHY and the synaptic embossing theory have empirical support, computational
work may be particularly insightful. SHY has been modeled at the single neuron and network
levels, but without real neurophysiological inputs [4, 10]. A recent SHY model found deleteri-
ous effects for memory when instantaneous potentiation was switched on during sleep [10],
but the synaptic embossing hypothesis is yet to be simulated with realistic LTP onset and dy-
namics. To that end, we computationally investigated the network consequences of LTP trig-
gered during sleep, by feeding simulated neurons with action potentials recorded from the rat
hippocampus across the sleep-wake cycle. LTP was applied at REM onset as constrained by the
empirical results. Synchronization-based LTP was calculated from coincident spiking during
SWS only or SWS+REM, while an alternative model captured the notion that short-term
changes in pCaMKIIα levels determine long-term increases in synaptic weights. Finally, we in-
vestigated the interaction of synaptic homeostasis and embossing mechanisms by simulating
the dynamics of memory formation during a sleep cycle in a canonical hippocampo-cortical
model.

Materials and Methods

Ethics Statement
For quantification of pCaMKIIα and Zif-268 levels, adult male Wistar rats (n = 27, 300–350 g)
were housed, surgically implanted and recorded according to National Institutes of Health
(NIH) guidelines and Edmond and Lily Safra International Institute of Neuroscience of Natal
(ELS-IINN) Committee for Ethics in Animal Experimentation (permit # 05/2007). Implanted
animals were housed in individual home cages with food and water ad libitum, and were kept
on a 12h light/dark schedule with lights on at 06:00. At the end of the experiment, rats were
anesthetized with isoflurane 5%, and decapitated.

Experimental Protocol
Implants and electrophysiological recordings. For the LFP recordings, rats were im-

planted with monopolar LFP electrodes for cortical and reference leads, and microwires in the
dentate gyrus. LFPs were recorded with a 32-channel multichannel acquisition processor, syn-
chronized with video recordings and animal tracking (Plexon, USA). See S1 Text. Real spike

Homeostasis and Restructuring during Sleep

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004241 May 28, 2015 3 / 29



data, used as inputs to the fully connected excitatory network, were previously obtained by
chronic extracellular multi-electrode recordings from hippocampal CA1 field (n = 6 rats; same
data as in [20, 40]).

Novel object exploration. Animals were transferred to the recording box at 07:00 pm.
After cycling freely across sleep-wake states for 2h, 4 different novel objects were placed in the
box corners for 10 min [31] (S1A Fig). Controls were not exposed to novel objects (S1B Fig).

State sorting with spectral maps. Precise determination of sleep-wake states was obtained
by real time spectral analysis of LFP. Customized Matlab routine was used to build a 2D spec-
tral map that sorts WK, SWS and REM in real time [20, 39]. On experiment day, 6 groups were
defined by prior experience (with or without exploration of novel objects) and state displayed
immediately before killing (WK, SWS or REM). See S1 Fig and S2 Text. Following object explo-
ration, rats were kept awake by gently tapping the recording box every time they approached
SWS on the online spectral map. This mild sleep deprivation was used to temporally disambig-
uate the changes induced by novel object exploration from the subsequent sleep-dependent
changes in pCaMKIIα levels. By keeping all the animals awake for 3h, overall behavioral experi-
ence was equalized across groups and therefore the specific sleep-wake state achieved immedi-
ately before killing became the key variable to consider. We have successfully employed this
procedure in the past for the assessment of other plasticity factors during post-learning sleep
[14, 20, 32, 41].

Group assignment. After 3h the animals were randomly assigned to the WK, SWS or
REM groups (S1 Fig). SWS animals were killed immediately after 10 min of uninterrupted
SWS; REM animals were killed immediately after 2 min of uninterrupted REM; WK animals
were kept awake for additional 10 min before killing. Group assignment was identically per-
formed for unexposed controls.

Quantification of protein levels. Labeling specificity of the immunohistochemistry for
pCaMKIIα, total CaMKIIα, Actin and Zif-268 (S2A Fig) was confirmed by Western blots (S2B
Fig). Quantification of the immunohistochemistry comprised 2 sections per animal, with all
sections processed as a single batch (n = 5 for groups exposed to objects, n = 4 for control
groups). See S3 and S4 Text.

Spindle quantification. Customized Matlab routines were used to quantify spectral power
in the delta (0.5 to 4.5 Hz) and theta (4.5 to 12 Hz) bands, and to detect and quantify spindles,
7–14 Hz oscillations that last from 0.5 to 4 seconds [42]. As expected [39], spindles were de-
tected during SWS and during the intermediate sleep (IS) state that separates SWS from REM
[43]. See S5 Text.

Fully Connected Excitatory Network Model (Model 1)
The network was implemented as a modified Boltzmann machine [44]. The total synaptic cur-

rent for each neuron i is defined as IiðtÞ ¼ wieeiðtÞ þ 1
N�1

PN
j¼1 wijvjðtÞ where N is the number of

neurons, ei(t) is an external input and vj(t) is the state of pre-synaptic neuron j; wie and wij are
the corresponding synaptic weights. The neuron state is binary (0 or 1) and stochastically up-
dated by the adjusted sigmoid function PðviðtÞ ¼ 1Þ ¼ 1

1þeðKt�KsIiÞ, where Kt = 6 and Ks = 11 are

constants; with these values the mean firing rate of the spontaneous network activity (when wie

= 0) is around 0.5 and 1Hz (S9 Fig). During all simulations, we used wie = 0.5 and pre-synaptic
weights wij were randomly initiated following a uniform distribution between 0 and 1, except
when i = j, in which case the synaptic weight is set to 0 throughout the simulation.

The network was exposed to 2 types external inputs (ei(t)): Real spike data and Poisson
spike trains with same mean firing rates as those observed during WK, SWS and REM (S4A
Fig). When Poisson spike trains were used as inputs, the network was composed of 150
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neurons. When real spike data were used, the network was composed by the same number of
neurons as recorded in each animal (Rat1 = 45, Rat2 = 39, Rat3 = 39, Rat4 = 34, Rat5 = 22 and
Rat6 = 13). Despite the lack of inhibitory neurons, this simplified network replicates the synap-
tic rescaling dynamics (see below) of a more complex network with both excitatory and inhibi-
tory processing units [4].

Instantaneous synaptic plasticity. Instantaneous plasticity was adapted from the stable
Hebb's rule for synchronous firing [45]. Discrete synaptic potentiation (when the pre- and
post- synaptic neurons fire synchronously) is described as:

wijðt þ DtÞ ¼ wijðtÞ þ Cp JðwijðtÞÞviðtÞvjðtÞD t ð1Þ

JðxÞ ¼ e�x � e�1 ð2Þ

where Δt = 0.004s and Cp = 6.25s-1; notice that Jmakes the potentiation larger for weak than
strong synapses [46–48]. The synaptic weakening (when the pre-synaptic neuron fires and the
post-synaptic neuron does not fire) is described as:

wijðt þ DtÞ ¼ wijðtÞ þ CdðviðtÞ � yÞvjðtÞDt ð3Þ

where θ = 1 and Cd = 0.021s-1.
LTP models during sleep. In order to model LTP during sleep, we added a Gaussian

curve to Eq 1 [48, 49], which is a function of time with the following parameters: tT, the mo-
ment the Gaussian is triggered (30s after the beginning of the selected REM sleep) (S8 Fig); μ,
the peak time (30 min); and σ the variance. The synaptic potentiation is thus defined as:

wijðt þ DtÞ ¼ wijðtÞ þ CpJðwijðtÞÞviðtÞvjðtÞDt þ
Ciegij
s

ffiffiffiffiffiffi
2p

p e
�ðt�ðtTþmÞÞ2

2s2

� �
ð4Þ

where Ciegij models the effect of immediate-early genes by modulating the amplitude of the
Gaussian gain. Ciegij was calculated in 2 ways: based on spike synchronization (LTP1) and on
the trajectory of synaptic weights (LTP2). In LTP1, Ciegij is the ratio of presynaptic spikes that
occurred synchronously with postsynaptic spikes during specific sleep stages (S10A Fig).
Three variations of LTP1 were implemented depending on which epoch Ciegij was computed
for: using the entire SWS prior to the REM stage (LTP1 full SWS); the last 30s of SWS prior to
REM (LTP1 30s SWS end); and the last 30s of SWS and the first 30s of REM (LTP1 60s SWS/
REM). In LTP2, synaptic connections were selected based on the angle βij formed by wij(t) at
the SWS/REM transition; βij was obtained from the linear fit of wij(t) values 30s before and
after the transition (S10B and S10C Fig). Two variations of LTP2 were implemented: selecting
for potentiation in all wij(t) trajectories with a positive REM slope, with βij smaller than 3π/2
(LTP2 permissive 60s SWS/REM) (S10B Fig, left panel, dark blue dots, cases 1, 2 and 3); and
selecting only trajectories with βij smaller than π (LTP2 restrictive 60s SWS/REM) (S10B Fig,
left panel, light blue dots, cases 1 and 2).

Net synaptic weight changes. Net synaptic weight changes (MΔw) was calculated as the
mean of the differences (element by element) between the synaptic weight values at time t1 and

t2 (t2>t1):MDw ¼
XN

i

XN

j
ðwijðt2Þ � wijðt1ÞÞ

.
NðN � 1Þ. Since wii = 0, N(N-1) is the number

of connections among neurons. Global synaptic downscale is defined asMΔw <0; global synap-
tic upscale occurs whenMΔw>0.

Steady-state. The network was considered to reach the convergence point when the abso-
lute variation over time (slope) of every synaptic connection value reached a negligible value,
i.e. when |dwij/dt|< = ε, ε = 0.00025 for 8i and 8j.
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Canonical Hippocampal-Cortical Model (Model 2)
We built a network of 45 leaky integrate-and-fire neurons with network feedback inhibition
[50–52] (S6 Text). Each neuron received synaptic connections from 200 input units and was
not directly connected to other neuron. Half of the input units were assigned to memory A
(MA = [1 . . . 100]) and the other half to memory B (MB = [101 . . . 200]). Input unit i emitted
actions potentials (S[t] = 1 if there is a spike at time t, S[t] = 0, otherwise) following a Poisson
distribution with mean frequency factive = 20 Hz when in an active state and finactive = 10 Hz
when in an inactive state. Input pattern was determined in 125 ms windows by randomly se-
lecting one memory to be in an active state. Each cell gets selective to a specific memory
through the synaptic weight dynamics driven by the plasticity mechanisms described below.

Synaptic plasticity in the canonical network. Input-neuron synapse conductance, Wij[t],
between input unit j and neuron i was subject to modification according to spike-timing de-
pendent plasticity (STDP) and LTP effects. STDP was based on the relation, dtij½t� ¼ tipos � tjpre,

between the time of the last presynaptic spike, tjpre where S
j
pre½tjpre� ¼ 1, and the time of the last

postsynaptic spike, tipos where S
i
pos½tipos� ¼ 1. Potentiation,Wij

P ½t�, occurred when δtij > 0 and de-

pression,Wij
D½t�, when δtij < 0, and are described by:

Wij
P ½t� ¼ Sipos½t�ðCp þ vWij½t�Þe

�dtij=tSTDP ð5Þ

Wij
D½t� ¼ Sjpre½t�ðð�Cd þ vÞWij½t�Þe

dtij=tSTDP ð6Þ

Where τSTDP = 20 ms, Cp = 3.2 nS, Cd = 0.03 and v is a stochastic factor with zero mean and σ =
0.015.

LTP,Wij
LTP½t�, was implemented as a Gaussian function with peak at tpeakLTP , standard deviation

of tstdLTP = 45 s.Wij
LTP½t� is modulated by a gain factor specific for each synapse, yijLTP½t�, and a mag-

nitude parameter κsleep:

Wij
LTP½t� ¼ ksleepy

ij
LTP½t�Ae

�ðt�t
peak
LTP

Þ2
.

2ðtstd
LTP

Þ2 ð7Þ

Where A is such that the integral of Ae
�ðt�t

peak
LTP

Þ2
.

2ðtstd
LTP

Þ2
equals 0.05 nS.

The sum of all plastic events, DWij½t� ¼ Wij
P ½t� þWij

D ½t� þWij
LTP½t�, updated the weight val-

ues,Wij[t + 1]. To ensure weight stability, the sum of all weights was kept stable with a mean
value of ω = 0.25 nS:

Wij½t þ 1� ¼ Wij½t� þ DWij½t�
m�1

Pm
k¼1ðWik½t� þ DWik½t�Þ

� o ð8Þ

Simulation of sleep. Sleep was implemented through three mechanisms: 1) reduction of
input frequency; 2) modulation of STDP and 3) modulation of LTP. Sleep simulation started at
tsleep = 315 s and ended at twake = 585 s.

During sleep the frequency of presynaptic spikes was reduced:

f sleepactive ¼ 0:5factive; f sleepinactive ¼ 0:5finactive; ð9Þ
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STDP was modified during sleep through the modulation of the constant factors Cp and Cd

by a factor γsleep:

Csleep
P ¼ Cp

gsleep
; Csleep

d ¼ Cdgsleep; ð10Þ

LTP was triggered during sleep by setting tpeakLTP = 405 s. LTP was used to influence memory
selectivity of each neuron. The intended selectivity pattern in the network was a permutation

of the original pattern prior to sleep. Specifically, the gain factor, yijLTP½t�, depends on the nor-
malized synaptic weight between input j and a randomly picked neuron k 6¼ i before tsleep:

yijLTP½t� ¼
Wkj½tsleep � 1�

m�1
Pm

x¼1 Wkx½tsleep � 1�Hðt � tsleepÞ ð11Þ

whereH(�) is a Heaviside function.
Memory analysis. The memory selectivity of a given neuron i at time t, Seli[t], was set as 1

for memory A, -1 for memory B and 0 if there is no memory selectivity:

Seli½t� ¼
1 if

P
j2MA

Wij½t� >
P

j2MB
Wij½t�

�1 if
P

j2MA
Wij½t� <

P
j2MB

Wij½t�
0 if

P
j2MA

Wij½t� ¼
P

j2MB
Wij½t�

ð12Þ

8>><
>>:

The memory selectivity of neuron i was considered to switch during sleep when Seli[tsleep]�
Seli[1] = −1 and was considered stable when Seli[tsleep]�Seli[1] = 1. The proportion of switches
in the memory selectivity,TS, was measured as:

TS ¼
P45

i¼1ð�Seli½tsleep�Seli½1�ÞHð�Seli½tsleep�Seli½1�Þ
45

ð13Þ

The memory selectivity imposed by LTP to neuron i, Selyi ½t�, was set such that:

Selyi ½t� ¼
1 if

P
j2MA

yij
LTP½t� >

P
j2MB

yijLTP½t�
�1 if

P
j2MA

yij
LTP½t� <

P
j2MB

yijLTP½t�
0 if

P
j2MA

yij
LTP½t� ¼

P
j2MB

yijLTP½t�
ð14Þ

8>>><
>>>:

For each neuron i, we call an “LTP hit” when Sely
i
½tsleep� � Seli½1� ¼ 1. The proportion of LTP

hits, TH, was measured as:

TH ¼
P45

t¼1ðSelyi ½tsleep�Seli½1�ÞHðSelyi ½tsleep�Seli½1�Þ
45

ð15Þ

The significance of TS and TH was assessed using a normal fit to the distribution of 200 sur-
rogate values obtained from shuffling of the memory selectivity pattern in the network
after sleep.

Results

Experience-Dependent CaMKIIα Phosphorylation During REM Is
Proportional to Spindle Counts at the SWS/REM Transition
Six groups were defined based on prior experience (with or without exploration of novel ob-
jects), and on the state immediately before killing (WK, SWS or REM) (S1 Fig). In unexposed
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control groups, no significant differences in hippocampal pCaMKIIα levels were detected
across states (Fig 1A; Kruskal-Wallis p = 0.2958, Dunn’s test for consecutive states, adjusted p
values: WK vs. SWS p>0.9999; SWS vs. REM p = 0.5615). However, in animals previously ex-
posed to novel objects, hippocampal CaMKIIα phosphorylation significantly increased from
SWS to REM (Fig 1A; Kruskal-Wallis p = 0.0396, Dunn’s test, adjusted p values: WK vs. SWS
p = 0.0954; SWS vs. REM p = 0.0473). The number of cells with pCaMKIIα somatic labeling
was counted to determine whether the densitometric changes observed could be attributed to a
sheer increase on the total number of cells engaged in the pCaMKIIα response during REM.
No significant differences were detected when labeled cells were counted. This indicates that
the changes observed from SWS to REM in exposed animals did not reflect increased numbers
of responsive neurons, but rather increased pCaMKIIα levels in the neuropil and soma.

To control for potential a priori inter-group differences in baseline CaMKIIα phosphoryla-
tion levels, we assessed the protein levels of total CaMKIIα, Actin and Zif-268 in adjacent brain
sections. The rationale for this comparison was the fact that the regulation of these proteins is
downstream of CaMKIIα phosphorylation, with much slower kinetics [48, 49, 53]. Since killing
occurred immediately after specific sleep-wake states, we did not expect the levels of total CaM-
KIIα, Zif-268 or Actin to be differentially modulated across groups, unless there were spurious
inter-group differences unrelated to states. We found no significant differences across groups
for these proteins, irrespective of previous exposure to novel objects (Fig 1A; Kruskal-Wallis:
Zif-268 Exposed p = 0.5387, Zif-268 Control p = 0.8775; total CaMKIIα Exposed p = 0.8270,
total CaMKIIα Control p = 0.6505; Actin Exposed p = 0.6907; Actin Control p = 0.8781). The
even distribution of the levels of total CaMKIIα, Zif-268 or Actin across groups indicated that
the increase in CaMKIIα phosphorylation from SWS to REM was not an artifact of
group sorting.

It is clear that the significant increase of CaMKIIα phosphorylation from SWS to REM
could only occur because of a reduction fromWK to SWS, which nevertheless only reached a
near-significant trend (p = 0.0954). To grasp this effect, we calculated quadratic fits of the data
across wake-sleep states (Fig 1A, red curves, curvatures indicated by numbers in the bottom).
The pCaMKIIα data show a “U” effect in the exposed group but not in the control group, while
no such effect was observed for total CaMKIIα, Actin or Zif-268. Schematic pCaMKIIα profiles
predicted by the synaptic homeostatic hypothesis (monotonic decrease), the synaptic emboss-
ing hypothesis (“U”shape) and the null hypothesis (stable levels) are shown in Fig 1B. The data
fit the picture of homeostatic rescaling during SWS (decrease in pCaMKIIα levels) followed by
experience-dependent LTP during REM (increase in pCaMKII levels).

To investigate the electrophysiological correlates of CaMKIIα phosphorylation during
REM, we assessed the correlation of pCaMKIIα levels with LFP power in the delta (0.5 to 4.5
Hz) and theta (4.5 to 12 Hz) bands during the last 15 min before killing. Neither frequency
band showed significant correlations with pCaMKIIα levels (for theta, SWS group: R2 =
0.05322 and p = 0.5504, REM group: R2 = 0.02431 and p = 0.6888; for delta, SWS group: R2 =
0.002432 and p = 0.8997, REM group: R2 = 0.1463 and p = 0.3097).

Next we calculated the correlation of CaMKIIα phosphorilation with cortical spindle counts
during the last 15 min before killing (Fig 2A and 2B). Spindle occurrence in the SWS and
REM groups was assessed on spectral ratio maps (Fig 2C and 2D). While animals in the SWS
group did not show any significant correlation (Fig 2E left panel), animals allowed to enter
REM showed a positive correlation between spindle counts and pCaMKIIα levels (Fig 2E right
panel). Interestingly, while pCaMKIIα levels were correlated to the sum of all spindles that oc-
curred in the transition from SWS to REM (Fig 2E right panel, black dots and regression, R2 =
0.484, p = 0.0375), no correlations were observed for spindles occurring exclusively within
SWS (Fig 2E right panels, blue dots and regression, R2 = 0.116, p = 0.369), nor for spindles
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sampled only from the IS state immediately before REM (Fig 2E right panels, magenta dots
and regression, R2 = 0.007, p = 0.825).

S3A Fig shows that REM animals spent significantly more time in IS than SWS animals.
REM animals did not have significantly more spindles than SWS animals (S3B Fig), but spin-
dles lasted longer in IS than in SWS (S3C Fig). Altogether, more IS time in REM animals and
longer spindles in IS explain why SWS animals displayed significantly less time with spindle
occurrence (S3D Fig).

Modeling Sleep-Dependent LTP in a Computational Network Fed with
Hippocampal Spikes
The results above support the notion that LTP is triggered at the SWS/REM transition. To
model the consequences of this phenomenon, we first investigated how state-dependent varia-
tions in firing regimes affect the synaptic weights of a fully-connected network comprising an
excitatory population of stochastic binary units (see Materials and Methods). The synaptic
weights were initialized with a random uniform distribution, and therefore with maximum en-
tropy. A stable Hebbian learning rule based on pairwise synchrony was used to update synaptic

Fig 1. Experience-dependent CaMKIIα phosphorylation in the hippocampus during REM. (A)
Normalized hippocampal levels of pCaMKIIα, total CaMKIIα, Zif-268 and Actin (mean densitometric levels,
one datapoint per animal). Kruskal-Wallis followed by Dunn’s test between consecutive states revealed a
significant increase from SWS to REM (*p<0.05). Normalized levels of total CaMKIIα, Zif-268 and Actin in the
hippocampus were not significantly different across states. This was expected because of the slower
regulation kinetics of these proteins, in comparison with pCaMKIIα. Numbers on the bottom indicate the
curvatures of the quadratic fits in red. (B) Schematic representation of the theoretical predictions for levels of
plasticity markers across wake-sleep states. Compare with the quadratic fits on panel A.

doi:10.1371/journal.pcbi.1004241.g001
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Fig 2. Cortical spindles at the SWS/REM transition correlate with CaMKII phosphorylation in the hippocampus. (A) Raw LFP recordings of
representative SWS animal (top trace) classified according to state (colored hypnogram). Cortical spindles before (middle trace) and after band-pass filtering
in the spindle range (bottom trace). (B) Same as (A) for representative REM animal. (C) Spectral map of representative SWS animal, depicting sleep-wake
cycle with state clusters and borders. Cortical spindles marked as circles of size proportional to duration, color-coded by hypnogram. (D) Same as (C) for
representative REM animal. (E) Cortical spindle counts and hippocampal pCaMKIIαwere significantly correlated in the REM group when all spindles were
considered (R2 = 0.484, p = 0.0375), i.e. pooled from SWS and IS. No correlation was observed during SWS only (R2 = 0.116, p = 0.369) or IS only (R2 =
0.007, p = 0.825). No correlation was observed in the SWS group for SWS+IS (R2 = 0.00003, p = 0.999), SWS only (R2 = 0.006, p = 0.849) or IS only (R2 =
0.052, p = 0.5560). Plots include both exposed and control animals. See also S1, S2 Figs.

doi:10.1371/journal.pcbi.1004241.g002
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weights over time [45]. Synchrony was evaluated in 4-ms bins, well within the interval of maxi-
mum STDP [47], and lack of synchrony led to a fixed amount of synaptic weight weakening.
The simulations were generated by feeding the network with 2 kinds of external inputs (S1
Table; representative example): Poisson spike trains at various rates; and actual spike trains re-
corded from the rat hippocampal field CA1 during WK, SWS and REM [20].

The data statistics conformed to the expected state-dependent changes across the sleep-
wake cycle [1–3]: SWS featured low mean firing rates (Fig 3A; representative example) and de-
creased firing synchronization (Fig 3B; representative example) compared with WK. REM was
characterized by mean firing rates in between those of WK and SWS (Fig 3A), with very low
firing synchronization (Fig 3B). For data from 5 other rats see S4 Fig. Fig 3C depicts the dura-
tions of intervals separating consecutive SWS/REM transitions (left panel; n = 6), and a cumu-
lative plot showing that 91,6% of these intervals are shorter than 30 min (right panel).

Fig 3. Statistics of real spikes from the hippocampal CA1 field duringWK, SWS or REM. (A) Probability
distributions of spike rates across states, with mean population values represented by dashed lines (left
panel). Mean and variance of spike rates recorded during each state (right panel). (B) Square matrix of
Pearson's linear correlation coefficient for spiking of 45 neurons duringWK, SWS or REM (left panel), and the
corresponding mean and variance (left panel). Significant differences of the Pearson's coefficient distribution
were found betweenWK and SWS (Kolmogorov-Smirnov (KS), p = 6.9607e-023), WK and REM (KS,
p = 1.0890e-023), and SWS and REM (p = 4.0259e-017). (C) Distribution of durations for intervals separating
consecutive REM episodes (left panel, n = 6 rats; 28.8 hours of recordings). Cumulative plot of the REM-to-
REM interval durations (right panel). Note that 91.6% of the intervals are shorter than 30 min (dashed line).
More examples in S4 Fig; see also S1 Table.

doi:10.1371/journal.pcbi.1004241.g003
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Two major scenarios were implemented, with and without LTP during sleep. For statistical
robustness, all simulations were independently repeated 25 times. The dynamics of the synaptic
weight patterns were quantified using 2 metrics: the Similarity Index measured the sum of ab-
solute differences between a given synaptic weight pattern and a reference pattern, while the
Spearman´s correlation quantified ranking changes among synaptic weights compared to the
reference pattern. Altogether, these metrics allowed us to estimate the rescaling and restructur-
ing of the synaptic weight patterns over time. Rescaling was indicated by a reduction in the
Similarity Index without major changes in Spearman´s correlation. Restructuring was indicat-
ed by a reduction in the Similarity Index accompanied by a reduction of Spearman´s
correlation.

Feeding the Network with Poisson Data
We began by characterizing the rate-dependency of synaptic weight dynamics during a regime
of non-correlated external inputs. The network was fed Poisson surrogated spike trains with
mean rates between 5 and 10 Hz, which represent the real data range (Figs 3A and S4A). The
distribution of synaptic weights was rescaled over time to a narrow range of values (S5A and
S6A Figs), exactly as observed previously for a single cell model [45], as well as a network
model with both excitatory and inhibitory units [4]. The mean synaptic weight at the conver-
gence time point (S5A Fig, dashed black lines) depended on the mean firing rate of the inputs
(S6B Fig, blue curve). By the same token, the time required for the synaptic pattern to converge
was inversely proportional to the input rate (S6B Fig, red curve).

For simulations with low rate inputs typical of SWS (Figs 3 and S4A), mean synaptic
weights at the time of convergence were smaller than 0.5, resulting in net weakening (Mw<0,
see Material and Methods) of the synaptic weights (S5A and S6A Figs, distributions for 3, 5
and 7Hz). However, synaptic weights that were initially below the mean at the time of conver-
gence became strengthened (S5A Fig, bottom panels). Therefore, net weakening of synaptic
weights does not imply that all synaptic weights decay over time, since weak synaptic connec-
tions are potentiated. Conversely, for simulations in which inputs had higher rates typical of
REM or WK (>7Hz), synaptic weights at the time of convergence were larger than 0.5, result-
ing in net potentiation of synaptic weights (S5A Fig, for 10Hz and its corresponding gray dis-
tribution in S5C and S6A Figs, distributions for 12, 20 and 40Hz). Yet, synaptic weight values
initially above the convergence range were reduced over time (S5A Fig, bottom panels). In
summary, when the network was fed with non-correlated Poisson inputs, the wide range of
synaptic weights used to initialize the network converged to a narrow and stable distribution,
producing net weakening or net potentiation of the synapses for low and high firing
rates, respectively.

Feeding the Network with Real Spike Trains
To further characterize the state-dependency of synaptic weights, we fed the network with
spike data from concatenated WK, SWS or REM episodes (S5B Fig). The simulations con-
firmed that the mean firing rates of the external inputs determine the mean value reached over
time by the distribution of synaptic weights P(w), as shown for Poisson data in previous work
[45] and in the preceding section. Periods of increased spike rate and synchronization, such as
WK, resulted in a smaller standard deviation of the synaptic weights when the network reached
steady state, in comparison with periods of reduced spike rate and correlation, such as SWS or
REM (S1 Table and S5B and S5C Figs, green distributions). Note that the standard deviations
at steady state were even smaller for non-correlated Poisson data of identical mean rates, and
also obeyed the relationship WK<REM<SWS (S1 Table and S5C Fig, gray distributions).
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Next we investigated how external inputs with the real dynamics of state alternation affected
the distribution of synaptic weights. Fig 4 shows results when the network inputs were real
spike data recorded over 5 hours from one rat (Rat1) cycling freely through the sleep-wake

Fig 4. LTP during sleep leads to marked changes in synaptic weight trajectories. (A) Hypnogram of
representative recording (top panel) and corresponding population spike rate activity over time (bottom
panel). Three different simulations were run using real spike data: (B) without LTP; (C) with LTP 1 full SWS
model, modulated by the amount of synchronized spikes observed during the SWS episode that preceded
the 4th REM period (duration of SWS episode = 658s), and (D) with LTP 2 permissive model, related to the
changes in synaptic weight trajectories at the SWS/REM transition. Black arrow indicates the time point at the
SWS/REM transition when the LTP Gaussian was triggered (~10,500s; 30s were elapsed for LTP evaluation
before bonuses was applied). To focus on the sleep period, the (C) and (D) simulations are plotted from
8,000s to 16,200s. The initial synaptic weight values were uniformly distributed in the range [0..1];
consequently, colors (from dark blue to dark red) are also homogeneously distributed for wij values in [0..1].
Initial color maintained for each synaptic weight trajectory during entire simulation. In (B), bottom panel
indicates the period during which the Gaussian curve affected the synaptic values to simulate LTP (blue
curve). See also S7 and S8 Figs.

doi:10.1371/journal.pcbi.1004241.g004
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cycle, i.e. containing the natural alternation of WK, SWS and REM (Fig 4A, hypnogram). As
expected, population firing rates were markedly state-dependent throughout the recording
(Fig 4A, Pop. rate). The model displayed net potentiation during WK and net weakening dur-
ing sleep (Fig 4B). We also observed that most synaptic connections did not reach extreme val-
ues (close to 0 or to 1) but converged to the middle range of possible values (Fig 4B).

Modeling LTP during Sleep
Two alternative LTP models triggered near the SWS/REM transition were investigated. Since
LTP is tightly associated with firing synchrony [11, 47, 54], one model attempted to capture
the notion that SWS causes LTP through firing synchronization [55–57] and enhanced calcium
influx [19, 30, 58], leading to calcium accumulation during SWS that would then lead to in-
creased pCaMKIIα levels at REM onset. To simulate this scenario, LTP1 full SWS model ap-
plied a long-term bonus to each synapse starting at the SWS/REM transition, but according to
the amount of pairwise synchrony observed throughout an entire SWS episode (87.06 ± 47.47,
mean ±SEM in seconds, n = 6 rats).

The second model (LTP2) simulated short-term changes in pCaMKIIα levels as short-term
increases in synaptic weights at the SWS/REM transition, and then used these short-term in-
creases to determine long-term increases in synaptic weights. This model is compatible with
the empirical data (Figs 1 and 2), and with the evidence of REM-dependent upregulation of
plasticity factors [14–16, 20]. For each synaptic weight, LTP2 model coupled short-term
changes at the SWS/REM transition to a gradual long-term bonus. The rationale for this cou-
pling was the fact that the balance between high and low calcium influx in the millisecond scale
is reflected in the balance between kinase and phosphatase activation in the seconds range, in
particular CamKIIα, and determines the subsequent activation for over 30 min of Rho GTPases
such as cdc42, and consequently to changes in gene regulation and protein synthesis in the
hours scale [59–63].

To simulate this scenario, short-term changes in synaptic weights assessed for 60s at the
transition from SWS (30s) to REM (30s) determined long-term bonuses applied for 30 min to
the synaptic weights (see Material and Methods). Specifically, the angle formed by the synaptic
weight trajectory at the transition from SWS to REM determined a long-term bonus. To com-
ply with the notion that LTP requires positive calcium transients, LTP was applied exclusively
to synaptic weights whose trajectory showed a positive slope during REM (LTP2 permissive
60s SWS/REM).

The long-term bonus applied in both models consisted of a Gaussian curve with onset at a
reference SWS/REM boundary and peak value at 30 min, to match the duration of the spine-
specific signaling cascade Ca2+–CaMKIIα–Cdc42 [64].

LTP during Sleep May Lead to Pattern Restructuring
The evolution of synaptic weight patterns varied according to the LTP model employed. When
LTP1 full SWS model was fed real data as inputs (Fig 4C), about 85% of the synapses under-
went potentiation, in comparison with 21% in the No-LTP control. This resulted in a marked
modulation of synaptic weight values (S7D Fig, 1st and 2nd panels), with a substantial net in-
crease of the mean weight (S7A Fig, top panel, red curve) and increased spreading towards
high synaptic weight values (S7C Fig, red with black edge distribution). Only 8% of the synap-
ses underwent weakening, in comparison with 64% in the No-LTP control (S6A Fig, 1st and
2nd panels). The selection obeyed a uniform distribution across the synaptic weight range, so
that even weak synaptic connections had a 16% chance of being potentiated. Overall, LTP
model 1 led to a net potentiation of synaptic weights across their entire range (S7D Fig, middle
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panel), greatly exceeding that observed without LTP (S7B Fig, top panel, red curve). The distri-
butions of synaptic weight changes (ΔWij) showed a marked upward shift, with a concavity
change on the quadratic fit of LTP1 full SWS model, in comparison with the fit for the No-LTP
model (compare red and black curves in S7E Fig).

When LTP2 permissive model was fed real data (Fig 4D), about 48% of the synapses were
recruited to undergo LTP (S7D Fig, right panel, red bar), substantially less than in the case of
LTP1 full SWS model. LTP2 permissive model also led to net synaptic potentiation across the
entire range of weights, but many more connections were de-potentiated in comparison with
LTP1 full SWS model (compare with middle panel). The distributions of differences between
final and initial synaptic weight values (S7E Fig, blue) show an upward shift without concavity
change in which most changes affect weak connections, i.e. the shift was largest for the lowest
initial synaptic weights, and decreased gradually for larger initial weights.

The different consequences of the LTP models (LTP1 full SWS and LTP2 permissive) are
shown in Fig 5, which depicts the temporal evolution of a fully connected network of 16 neu-
rons under Poisson (Fig 5A) or real data regimes (Fig 5B). The initial synaptic weight pattern
(Fig 5A, 1st column) was quickly erased when Poisson-distributed data were used as inputs
(Fig 5A, 2nd and 3rd columns). LTP1 full SWS model uniformly enhanced all synaptic weights,
while LTP2 permissive model embossed a new pattern (Fig 5A, 4th and 5th columns).

Real data allowed for a much longer persistence of the initial pattern, which evolved in dis-
tinct ways for LTP1 full SWS and LTP2 permissive. While the pattern changed monotonically
over time in LTP1 full SWS model (Fig 5B, 2nd row), LTP2 restrictive model caused a major re-
vamp of synaptic weights (Fig 5B, 3rd row), so that the pattern that emerged at the end of the
simulation was very different from the initial pattern.

Were the differences between LTP1 and LTP2 models related to the different durations of
the inputs, to the role assigned to the SWS/REM transition, or to intrinsic mechanistic differ-
ences between the models? To address these questions, we futher simulated LTP1 using not an
entire SWS episode, but either a limited 30s SWS period immediately before REM (LTP1 - 30s
SWS end), or that 30s SWS period plus the following 30s of REM (LTP1 - 60s SWS/REM). We
found that short sleep periods near the SWS/REM transition produced less net synaptic poten-
tiation for LTP1 than full SWS episodes (Fig 6A and 6B). They also produced more pattern re-
structuring than full SWS episodes (i.e. decrease in Spearman´s correlations, Fig 6C), partially
replicating the results of LTP2 permissive model. Next we compared LTP2 permissive model
with an alternative in which LTP2 was applied only when the REM slope was positive and larg-
er than the SWS slope (LTP2 restrictive) (see Material and Methods). This more restrictive ver-
sion of LTP2 led to less potentiation (Fig 6A, last two panels; Fig 6B, right panel), and less
pattern restructuring (Fig 6C), than the original, more permissive LTP2.

Of note, the case presented so far is representative of 5 other animals, despite the high vari-
ability of the spike datasets used as inputs, which resulted from traversing quite different real
sleep-wake cycles (S8 Fig). Spearman´s correlations and mean synaptic weights (Fig 7), used
respectively to characterize restructuring and rescaling, confirm across animals that LTP dur-
ing sleep leads to pattern restructuring, especially when assessed at the SWS/REM transition.

Fig 5. Synaptic patterns are downscaled during sleep without LTP, but undergo restructuring after sleep-dependent LTP. Fully connected network
of 16 neurons with synapses (cylinders); strength indicated by cylinder radius and colors spanning blue for weak, red for strong. For comparison, all
simulations were initialized with the same random uniform distribution of synaptic weights (column t = 1s). (A) Simulations with Poisson inputs. (B)
Simulations with real inputs. The rows in each panel represent the No LTPmodel, LTP1 full SWSmodel and LTP2 permissive model (top to bottom). The
columns represent 5 simulation time-points; Spearman´s correlation values (bottom right) with reference pattern t = 8,000s.

doi:10.1371/journal.pcbi.1004241.g005
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Fig 6. LTPmodel variations show that evaluation around the SWS/REM transition leads to pattern
restructuring. (A) Initial and final synaptic weight values across the time interval of LTP simulation (11,000–
14,000s) for variations of the LTP 1 and LTP 2 models. Red, green and blue lines represent positive, near-
zero and negative slopes, with corresponding percentages indicated by the color bar. 1st panel for LTP 1
model evaluated over an entire SWS episode; 2nd panel for LTP 1 model evaluated only during the last 30s of
SWS immediately before REM; 3rd panel for LTP 1 model evaluated using the last 30s SWS period plus the
following 30s of REM; 4th panel for LTP 2 model using all positive REM slopes (permissive); 5th panel for LTP
2 model using only positive REM slopes that were also larger than the SWS slope (restrictive). For details of
restrictive and permissive LTP 2 models, see S10 Fig. (B) Initial synaptic weight values (x axis) versus
difference between initial and last time-points of LTP simulation (ΔWij, y axis). The curves are quadratic fits.
Left and right panels for the variations of LTP 1 and LTP 2 models, respectively. (C) Spearman´s correlations
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Synaptic Rescaling Favors Synaptic Restructuring
Since both SHY and the synaptic embossing hypothesis have empirical support, it is possible
that the use of both mechanisms is synergistic. To clarify this point, we used a network model
based on a canonical hippocampal-cortical circuit capable of developing specificity in response
to concurrent inputs [50–52] (Fig 8). The model was adapted by implementing plasticity mech-
anisms analogous to SHY and the synaptic embossing hypothesis (see Material and Methods).
The effect of sleep on memory was studied by comparing the patterns of synaptic weights post-
sleep with pre-sleep (to assess the level of memory restructuring) and with the pattern rein-
forced by sleep-dependent LTP (to assess the influence of the SWS/REM transition pattern
over the established memory).

Synaptic homeostasis was implemented by modulating the STDP rule [47, 54] during sleep
through weakening of potentiation and strengthening of depression [4]. As observed in our
empirical data, the rate of the input units was reduced during sleep. The effect of sleep on syn-
aptic restructuring was measured by assessing the number of neurons whose pattern selectivity
was either stable or switched. We observed that an increase in STDP modulation led to a num-
ber of stable memories, as expected by a random permutation of the pattern selectivity (Fig
9A). Although this experiment demonstrates that synaptic homeostasis shuffles synaptic
weights, there is no mechanism to determine the output synaptic structure, i.e., SHY allows an
acquired memory to be erased, but it cannot promote a specific pattern into the
synaptic weights.

over time for variations of LTP 1 and LTP 2 models, comparing the distribution of wij(t) values at the time t with
the initial distribution of wij(0). Dashed lines indicate the time range [10,500s to 14,100s] when the LTP
Gaussian was applied (boundaries of LTP simulation).

doi:10.1371/journal.pcbi.1004241.g006

Fig 7. Group data (n = 6) show pattern restructuring when LTP is evaluated near the SWS/REM transition. (A) LTP Gaussian triggered near the SWS/
REM transition. (B) Mean Spearman´s correlations (red lines) and mean synaptic weight values (black lines ±SEM as shaded area) during the time period of
Gaussian curve application (~3,600s). Note the quasi-monotonic decay of Spearman’s correlations from left to right panels, corresponding to the 5 LTP
models studied (bottom row; See S10 Fig).

doi:10.1371/journal.pcbi.1004241.g007
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Fig 8. Canonical hippocampal-cortical model. (A) Network model with an input layer, a principal neurons layer and an interneurons layer. (B) Input spikes
shown for two different input cycles (top). Alternated memories are active in each cycle. Cells #1 to #100 belong to memory A and cells #101 to #200 belong
to memory B. Postsynaptic spikes and Inhibitory Postsynaptic Potentials (IPSP) release shown following the above input (bottom). (C) Conductance of all
synapses of two representative neurons during a full simulation run: one neuron whose memory selectivity remains stable after a sleep cycle (left); and one
neuron whose memory selectivity is switched following the sleep cycle (right). (D) Population activity for all cycles with a specific memory on shown for two
conditions of STDPmodulation: (top) noCp/Cdmodulation during sleep leads to no change in the response pattern of the population; (bottom) high Cp/Cd

modulation leads to complete restructuring of the response pattern of the population.

doi:10.1371/journal.pcbi.1004241.g008

Homeostasis and Restructuring during Sleep

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004241 May 28, 2015 19 / 29



Embossing was implemented by evoking LTP on selected synapses during sleep. The LTP
pattern was set proportional to the synaptic weights of another neuron selected randomly at a
time previous to sleep onset. LTP control over the synaptic organization could be measured by
comparing the memory of the neuron after sleep with the memory of the neuron selected as
reference for LTP just before sleep onset. We observed that an increase of the intensity of LTP
modulation led to a full control of the memory by the evoked LTP (Fig 9B).

We then implemented both hypotheses and observed the development of synaptic reorgani-
zation in the model. We simulated sleep cycles for a range of values of STDP modulation and
LTP intensity and observed the number of memory hits between the pattern following the
sleep cycle and the reference pattern with evoked LTP (Fig 9C). With an increasing level of
STDP modulation, a lower LTP intensity was required to enhance LTP control, although some
level of LTP was still needed to ensure LTP control over the synaptic organization. This result
indicates that synaptic homeostasis facilitates controlled synaptic restructuring during
synaptic embossing.

Discussion
The experience-dependent increase of pCaMKIIα levels in hippocampal cell layers from SWS
to REM indicates that the latter triggers synaptic potentiation within circuits selected by wak-
ing experience. Our data also show that CaMKIIα phosphorylation during sleep was propor-
tional not to slow-wave or theta oscillations, respectively markers of SWS or REM [39], but
rather to the amount of cortical spindles that occur at the SWS/REM transition. Spindles are
7–14 Hz oscillations that occur during sleep [39, 42], are abundant at the transition from SWS
to REM [43], gate hippocampo-cortical communication [65], and correlate strongly with
sleep-dependent learning [66–68]. Cortical spindles have been proposed to play an important
role in calcium-dependent plasticity [30], perhaps by coupling the changes in memory traces
produced by SWS to REM-triggered gene expression required for long-term storage [20].

The tight relationship between spindle counts and hippocampal pCaMKIIα levels likely re-
flects the key role played by spindles in firing synchronization across the hippocampo-cortical

Fig 9. Functional relationship between the synaptic homeostasis and embossing hypotheses. (A) Proportion of neurons with stable memory
selectivity after sleep (TS) as a function of STDPmodulation factor (γsleep) (mean, n = 50). Colored interval denotes the range by which the measure is not
significantly (p>0.05) different from random trials. (B) Proportion of LTP hits (TH) as a function of overall LTP gain (κsleep) (mean, n = 50). Colored interval
denotes the range in which the measure is not significantly (p>0.05) different from random trials. (C) Color coded plot of previous metric as a function of both
STDPmodulation factor (γsleep) and overall LTP gain (κsleep). Yellow to red shades are values with significant number of memory hits. Blue shades cannot be
distinguished from random runs.

doi:10.1371/journal.pcbi.1004241.g009
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axis [65, 69]. Neither SWS or IS alone showed correlation between spindle count and pCaM-
KIIα levels, which suggests that cortical spindles spanning SWS and IS are critical for the cou-
pling of the neuronal changes produced during SWS to hippocampal CaMKIIα
phosphorylation at REM onset. A similar relationship between LFP power in the spindle range
and Zif-268 mRNA expression 30 min after REM [20] supports a causal chain linking spindles,
CaMKIIα phosphorylation and Zif-268 induction. Non-REM sleep has recently been implicat-
ed with learning-related formation of dendritic spines [21], but REM deprivation in this study
was only partial (about 80% of the total), and spared SWS/REM transitions. Determination of
the precise role of these transitions for sleep-dependent plasticity requires further investigation.
Overall, our results are compatible with the notion that sleep spindles “open the molecular
gates to plasticity” [30].

Based on the empirical data, we simulated a homeostatic excitatory network fed with spike
data from the hippocampus of behaving rats to compare alternative theories regarding plastici-
ty during sleep. In the 1st scenario, which did not include sleep-dependent LTP and was com-
patible with SHY, synaptic weights inexorably converged to the center of the distribution. In
the 2nd scenario, which included sleep-dependent LTP, synaptic weights showed marked
changes compatible with either orderly synaptic up-scaling (for synchronization-based LTP
computed over entire SWS episodes) or with disorderly synaptic embossing (for LTP triggered
at the SWS/REM transition).

Rescaling in the Absence of LTP during Sleep
Rescaling occurred in the absence of LTP during sleep, and was most pronounced when non-
correlated Poisson inputs were used (Figs 4A and S4A). Synaptic weights quickly converged to
a narrow range of values as previously described for different networks that reach an equilibri-
um state through a homeostatic process [7], including a network with inhibitory inputs [4].
Net weakening or potentiation depended on how low or high was the external activity. Non-
correlated Poisson activity with high rate caused a faster decrease in the diversity of synaptic
weight values than correlated spiking at lower rates (S4A Fig). Similarly, REM-only inputs
were more effective in rescaling than SWS-only inputs (S4B and S4C Fig), which contradicts
SHY [7] but agrees with the empirical findings of decreased firing rates after REM [25].

When the network received correlated real data inputs, the resulting synaptic weight
distributions were much wider but still converged to the center (S4B Fig), with a tight relation-
ship between input rates and the mean synaptic weight at the end of the simulation. These
results conform to the notion that a network that goes through sleep without LTP remains sta-
ble, avoiding extremely weak or strong synaptic weights [45]. Synaptic weight convergence
was orderly, preserving synaptic weight ranks as indicated by the relatively stable values of
Spearman´s correlations over time (S6A Fig, bottom panel, black curve, 10,000s to 14,500s in-
terval). While synaptic weight ranks were preserved in the absence of LTP, mean synaptic
weights progressively decreased (S6A Fig, top panel, black curve), reaching the lowest value
during sleep. The same occurred for the Similarity Index (S6A Fig, middle panel, black curve).
Without LTP during sleep, net synaptic weights were downscaled, and the initial pattern was
rescaled.

Restructuring Due to Sleep-Dependent LTP
When LTP was modulated by the spike synchrony exhibited during an entire SWS episode,
synapses were uniformly selected for potentiation (LTP1 full SWS model). When synapses
were potentiated based on the angle formed by the synaptic weight trajectories at the SWS/
REM transition (LTP2 model), synaptic recruitment was also quite uniform but the magnitude

Homeostasis and Restructuring during Sleep

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004241 May 28, 2015 21 / 29



of potentiation was stronger for weights that were initially low (S6E Fig, blue curve). In both
models, synaptic weight values were scattered away from the convergence range (Figs 4C,
4Dand S6Cmiddle, right panel, distribution with black edges).

Real neuronal activity imposes network relations that do not exist for Poisson inputs, in-
cluding inhomogeneous firing rate variability and synchronous firing among neurons. These
conditions determine that specific connections undergo markedly different dynamics under
LTP1 and LTP2 models. The most interesting cases are those in which synaptic weights under-
go opposite changes. About 85% of the connections undergo potentiation under LTP1 full
SWS model but no modulation or weakening under LTP2 permissive model (S6E Fig, trian-
gles). In contrast, only 8% of the connections undergo no modulation or weakening under
LTP1 model, but show potentiation under LTP2 model (S6E Fig, squares). Interestingly, the
results produced by LTP1 and LTP2 models converged when the former was evaluated around
the SWS/REM transition; or when the latter was more restrictive (Fig 6).

The results support the notion that LTP during sleep allows weaker synaptic connections to
also play a role in mnemonic processing [70]. Weight-dependent plasticity of hippocampal
neurons, favoring weak over strong synapses, has been shown in vitro [45, 47]. Here, the com-
bination of real hippocampal inputs and LTP during sleep triggered long-term changes in the
synaptic weights that were specific of the particular LTP mechanism simulated. The conse-
quences of LTP1 model during sleep were overall synaptic potentiation, increased similarity
with the initial pattern and preservation of synaptic weight ranks. For LTP1 and LTP2 models
evaluated at the SWS/REM transition, sleep gave rise to new synaptic weight patterns, as indi-
cated the low Spearman´s correlation values (Fig 5B, last row, from 10,000s to 14,000s). Given
that the typical period of the sleep cycle in rats is below 2 min (Fig 3C, left panel), with 91,6%
of the episodes under the 30 min LTP Gaussian peak (Fig 3C, right panel), the sleep-dependent
synaptic weight changes introduced by LTP models are prone to stagger from cycle to cycle,
leading to progressively different patterns over time.

SHY does not seem to account for all the cognitive effects of sleep, which not only protects
memories passively from retroactive interference, but can actively enhance specific memories
in detriment of others, and lead to novel insights [71–79]. A simplified integrate-and-fire SHY
model exclusively composed of excitatory neurons was recently used to simulate gist extraction
and integration of new with old memories without the need of LTP during sleep [10,80]. These
properties derive directly from the down-selection of weak synapses and protection of strong
synapses, which end up eliminating weak memories (supposedly “spurious” information) and
therefore increasing the signal-to-noise ratio of memory retrieval. However, by the same token,
such mechanisms are not bound to explain the additional information content that arises from
memory restructuring during sleep [71–79]. For instance, a recent study of perceptual learning
in humans found that REM rescues memories from interference, preferentially strengthening
weak memories [81].

In contrast, the results presented here for Model 1 show that LTP calculated over short peri-
ods near the SWS/REM transition lead to pattern restructuring compatible with the synaptic
embossing theory. Furthermore, the more realistic hippocampal-cortical architecture with
both excitatory and inhibitory synapses (Model 2) showed that the restructuring of synaptic
patterns due to LTP was enhanced by homeostasis, which could explain the sleep-dependent
enhancement of specific memories. These results highlight the importance of the SWS/REM
coupling, providing strong support for the sequential hypothesis of mnemonic processing dur-
ing sleep [6, 12, 27]. The joint occurrence of Hebbian and non-Hebbian plasticity during sleep,
which leads to new synaptic patterns embossed over a background of homeostatically rescaled
synaptic weights, may ultimately explain the positive role of sleep in the cognition.
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Supporting Information
S1 Text. Implants and electrophysiological recordings.
(DOCX)

S2 Text. Sorting of sleep-wake states with spectral maps and behavior.
(DOCX)

S3 Text. Immunohistochemistry.
(DOCX)

S4 Text. Quantification of protein levels.
(DOCX)

S5 Text. Electrophysiological quantification.
(DOCX)

S6 Text. Canonical hippocampal-cortical network (Model 2).
(DOCX)

S1 Fig. Experimental design. All animals showed intense exploratory activity during exposure
to the novel objects (40–90% of the time spent in active exploration, mean 70%). Following
novel object exploration (A) or not (B), rats were kept awake for 3 hours and were then allowed
to sleep. After one criterion episode of WK, SWS or REM, rats were immediately killed, the
brains were frozen and processed for immunohistochemistry. IS represents the intermediate
sleep state that separates SWS from REM [43]. Drawings adapted from [20].
(TIF)

S2 Fig. Immunohistochemical labeling patterns and antibody specificity. (A) Labeling pat-
terns in the dorsal CA1 field of the hippocampus for pCaMKIIα, total CaMKIIα, Zif-268 and
Actin. The anti-pCaMKIIα antibody led to cytoplasmic labeling, marking both the soma and
the neuropil (arrows in top center panels). The anti-Zif-268 antibody produced nuclear label-
ing (arrows in bottom center panels). (B) Antibody specificity was confirmed in immunoblots
using hippocampus extracts.
(TIF)

S3 Fig. Statistical features of IS and spindles in the SWS and REM groups. (A) REM animals
spent significantly more time in IS than SWS animals. (B) REM animals did not show a signifi-
cantly greater count of spindles than SWS animals. (C) In the REM group, spindles lasted sig-
nificantly longer in IS than in SWS. (D) Overall, animals in the REM group spent significantly
more time with spindle activity than animals in the SWS group. All results for data collected
from the parietal lead (� p< 0.05, ��� p< 0.01, unpaired t test).
(TIF)

S4 Fig. Statistical features of real spike data recorded from 5 other rats. (A) Spike rates and
(B) Pearson's linear correlation mean and variance for spiking during WK, SWS or REM. Data
recorded from the CA1 field of the hippocampus of 5 rats (columns A2—A6).
(TIF)

S5 Fig. Without sleep-dependent LTP, both Poisson and real spike inputs lead to fast, rate-
proportional, convergent rescaling of network synaptic weights. (A) Synaptic weight varia-
tion over time (w(t)) when the network is exposed to Poisson inputs at 5Hz, 7Hz, or 10Hz (col-
umns). First row: colored areas represent the dynamics of the synaptic weight values. Second
row: synaptic weight trajectories over time allow for a better visualization of the convergence
points in the vertical axes. (B) Simulations run for separate sleep states. Real episodes of WK,
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SWS and REM were concatenated, and their corresponding spike activity was used to feed the
network. Dynamics of the synaptic weight values in the first column, synaptic weight trajecto-
ries in the second column. In (A) and (B) simulations, the initial synaptic weight values were
uniformly distributed in the range [0. . .1], and the colors attributed for each wij values change
over time, reflecting synaptic weight changes. (C) Final synaptic weight distributions (green
area) obtained at the convergence time point (dash black line in panel B) for each stage (WK,
SWS and REM, from left to right panels). The corresponding final distributions for Poisson in-
puts are also displayed (gray area, same mean firing rate as in panel A).
(TIF)

S6 Fig. Input rates are proportional to final mean weights and inversely proportional to
time of convergence. (A) Weight distributions at the convergence time point for every Poisson
inputs rate simulated. Firing rates� 7Hz or>7Hz caused net synaptic downscaling (Mw<0)
or up-scaling (Mw>0), respectively. (B) As external rates increase, convergence time decreases
exponentially (red), and the mean weight achieved at the time of convergence increases loga-
rithmically (blue).
(TIF)

S7 Fig. Evolution of synaptic weights with and without LTP during sleep. (A) Top LTP1 full
SWS model panel shows mean synaptic weights for simulations without LTP (black), with syn-
chronization-based LTP during SWS (red), and with LTP based on synaptic trajectories at the
SWS/REM transition (blue). The middle panels show the similarity index over time, comparing
the current distribution of wij(t) values at the time t with the initial distribution of wij(0). The
bottom panel shows Spearman´s correlations over time, comparing the distribution of wij(t)
with wij(0). (B) Subtractions of mean weights (ΔMean) between LTP and non-LTP models. For
A and B panels, dashed lines indicate the time range [10,500s to 14,100s] during which the
LTP Gaussian was applied, i.e. boundaries of LTP simulation. (C) Synaptic weight distributions
before (9,200s, light colors) and after LTP during sleep (14,000s, dark colors). (D) Changes in
synaptic weight values for the initial (11,000s) and last (14,000s) time-points of LTP simula-
tion. Red, green and blue lines represent positive, near-zero and negative slopes, with corre-
sponding percentages indicated by the color bar on the right. (E) Initial synaptic weight values
(x axis) versus difference between initial and last time-points of LTP simulation (ΔWij, y axis).
Compare the results of the non-LTP model (black) with LTP models 1 and 2 (red and blue, re-
spectively). The curves are quadratic fits. Less of the weak synaptic connections were selected
for potentiation in LTP model 2 than in the case of LTP model 1 (10% and 16%, respectively).
Notwithstanding, the former were more potentiated overall (S7E Fig, blue curve). There was a
net increase in mean synaptic weight value (S7A Fig, top panel, blue curve), and increased
spreading towards high synaptic weight values, but with a preservation of low synaptic weights
as well (S7C Fig, blue with black edge distribution). A total of 36% of the synapses underwent
down-scaling (S7D Fig, right panel, blue bar). Net up-scaling of synaptic weights also occurred
for LTP model 2 (S7A and S7B Fig, top panels, blue curves), although with a lesser magnitude
than for LTP model 1 (compare red and blue curves in S7A Fig). A subtraction of mean
weights (ΔMean) between the two models shows that weights under LTP model 2 rise faster
but not as much as in the case of LTP model 1, so the initial positive difference is soon followed
by a negative ΔMean deflection (S7B Fig, top panel, green curve). LTP model 1 during SWS
led to an increase in the similarity between the initial synaptic weight pattern and the patterns
evolving over time, in comparison with non-LTP simulations. This occurred because LTP re-
stored synaptic weights that would have been downscaled without LTP, bringing them closer
to the initial conditions (S7A and S7B Fig, top panels). On the other hand, Spearman’s correla-
tions were very similar between LTP model 1 and non-LTP simulations (S7A Fig, bottom
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panel, compare the red and black curves). This indicates that the synaptic up-scaling promoted
by synchronization-based LTP is highly orderly, and does not lead to changes in synaptic
weight ranking, i.e. does not cause pattern restructuring. The dynamics of the Spearman´s cor-
relation when patterns with and without LTP model 1 are compared shows a stable trajectory
near 1.0, indicating high-fidelity preservation of synaptic weight ranks (S7B Fig, bottom panel,
red trace). A very different picture emerged for LTP model 2. While the similarity between the
initial synaptic weight pattern and the patterns evolving over time was not markedly different
among LTP models (S7A Fig, middle panel), LTP model 2 caused a major redistribution of
synaptic weights, indicated by a marked decrease of Spearman’s correlations (S7A Fig, bottom
panel), with a corresponding increase of the synaptic weight span (S7C Fig, blue distributions).
S8 Fig Hypnograms of additional 5 rats, with indication of LTP onset.
(TIF)

S8 Fig. Hypnograms of additional 5 rats, with indication of LTP onset. LTP Gaussian curve
profiles over real sleep-wake cycles (hypnograms). Black arrows indicates the LTP onsets; n = 5
rats, rows Rat2—Rat6.
(TIF)

S9 Fig. Example of spontaneous network activity (Model 1). (A) Spike rastergram and its
corresponding average population firing rate (network size = 100 neurons). (B) Adjusted sig-
moid function used as the probability (P) to update neuron state (see Material and Methods)
(TIF)

S10 Fig. Ways to calculate Ciegij for simulations with LTP (Model 1). (A) LTP1 was based
on spike synchronization during SWS. We counted the spikes when the pre (j) and post (i) syn-
aptic neurons fired simultaneously (represented by Spij) over the amount of spikes of the pre-
synaptic neuron j (represented by Spj). This was calculated during a period of SWS previous to
the REM stage. (B) In LTP2, Ciegij varied linearly according to the angle β formed by theWij(t)
values at the SWS➔REM transition. The left panel shows a contingency table of the possible
changes in synaptic trajectory slopes at the SWS➔REM transition. The right panel shows two
variations of the model, based on different relations between β and Cieg. The most permissive
model (dark blue line) applied LTP to all positive slopes during REM, irrespective of the SWS
slope (cases 1, 2 and 3). The more restrictive model (light blue) applied LTP only when the
REM slope was both positive and larger than the SWS slope (β<π; cases 1 and 2 but not 3). (C)
Schematic representation of LTP2, showing the relationship between short-term changes in
synaptic trajectory at the SWS➔REM transition and the long-term changes in synaptic weights
(LTP), which followed a Gaussian curve triggered at time tT with peak at tT+ 1,800s.
(TIF)

S1 Table. External inputs and synaptic weights at convergence time points for rat A1.
(XLSX)
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