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Abstract 

The rheological properties of basaltic lavas from Etna, Hawai'i and Vesuvius have been 

investigated at temperatures between ~500 and 1150 °C using a small strain oscillatory shear. 

The viscoelastic response of the lavas to small, forced, sinusoidal torques (<10-3 N m) at 

frequencies between 0.002 and 20 Hz was measured. A purely viscous regime was only 

approached during experiments with Hawai'i samples. These experiments indicated that at 

temperatures between ~1070 and 1130 °C, strain rate independent viscosities (>109 Pa s) 

could be measured at strain rates less than ~10-2 to 10-1 s-1. At 800 °C, temporal variations in 

complex shear modulus and internal friction suggest that, over durations of up to 120 hours, 

structural adjustments were occurring within some of the samples. This time-varying 

behaviour of lava samples may be attributed to the slow closing (healing) of microcracks and 

small pore spaces resulting in the apparent stiffening of lava samples under annealing. Thus, 

those parts of lava flows that undergo slow cooling will have more elastic properties. Regions 

which cool faster possess smaller shear moduli and higher internal friction due to thermal 

microcracking and less cohesion between crystals and the bulk glassy matrix. 

Key words: basalt lava, Etna, Vesuvius, Hawai'i, shear modulus, shear viscosity, oscillatory 

rheology 

 

1. Introduction 

The rheological properties of basaltic lava are critical parameters in determining the 

advance rates, morphology and final dimensions of basaltic flows. Rheology is controlled by 

a number of factors, the most important of which are composition, temperature, crystallinity 

and bubble content. The effects of these factors on the viscosity of lavas between eruption and 

solidification have been analysed by previous workers (Shaw et al., 1968; Sparks and 

Pinkerton, 1978; Marsh, 1981; Ryerson et al., 1988; Pinkerton and Stevenson, 1992; 

Pinkerton and Norton, 1995; Richet et al., 1996; Dingwell et al. 1998). At temperatures below 
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their eruption temperature, lavas display viscoelastic behaviour and, at temperatures below 

the glass transition temperature, Tg, of their glass matrix, they are anelastic (Sakuma, 1953; 

Bagdassarov, 2000). Field measurements carried out at high stresses (~103 Pa) and typical 

eruption temperatures indicate that basaltic lavas have a rather moderate viscosity (>102 Pa s) 

and an appreciable static yield-strength (~102 to 103 Pa) (Shaw et al., 1968; Pinkerton and 

Sparks, 1978; Pinkerton and Norton, 1995; Norton and Pinkerton, 1997).  

The stiffness of solidifying lava, the temperature range over which solidification and 

the anelastic transformation occurs and the kinetics of fracturing and fracture healing 

processes are important parameters for lava flow modelling. Quantification of these processes 

may be important, for example,  in the prediction of lava flow carapace generation or break 

up. Here, we present the results of viscoelastic measurements carried out on samples of basalt 

lava flows taken from Etna, Hawai'i and Vesuvius at temperatures in the range ~500 to 1150 

°C. These reveal the importance of cooling rate of lava flows on the strength of lavas. 

Experiments designed to characterise the high temperature anelastic and viscoelastic 

behaviours of glassy, crystalline and partially molten rocks are based on measurements of 

elastic modulus (G*) and internal friction (Q-1). Traditionally, these measurements are 

performed using an inverted torsional pendulum (e.g. Day and Rindone, 1961; Gueguen et al., 

1981; Weiner et al., 1987; Versteeg and Kohlstedt, 1994) or by forced torsional oscillation 

(Beckhemer et al., 1982; Jackson and Paterson, 1987; Bagdassarov and Dingwell, 1993; 

Gribb and Cooper, 1998). The forced torsional oscillation method used in this work has 

previously been used to study the behaviour of both rocks (Berckhemer et al., 1982; Jackson 

and Paterson 1987; Gribb and Cooper, 1998; Bagdassarov and Dorfman, 1998) and glasses 

(Bagdassarov and Dingwell, 1993; Bagdassarov et al., 1993,1994). This technique allows the 

magnitude of the complex shear modulus and angle of internal friction to be measured over a 

range of temperatures and frequencies. 
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2. Apparatus 

The experimental method consists of exerting small strain oscillatory torsion 

deformation on cylindrical samples. The equipment (described in detail previously 

(Berckhemer et al., 1982; Kampfmann and Berckhemer, 1985, Bagdassarov and Dingwell, 

1993)) exerts a small sinusoidal torque (of amplitude ~10-3 N m) to the end of a cylindrical 

sample (8 mm in diameter, ~20 to 30 mm in length). A simple schematic of the device is 

shown in Fig. 1a. The sinusoidal torque applied to the sample is generated using a pair of 

electromagnets (two microphone-type coils) connected to a synthesiser via a power amplifier. 

The sample is fixed between two aligned alumina rods, onto which two sets of light 

aluminium wings are also attached. The angular deformation across the sample is measured 

by pairs of capacitive pick-ups which respond to the movement of pure iron plates located at 

the ends of the aluminium wings. The capacitive signal is detected and amplified using a 5 

kHz-frequency bridge which is sampled using a PC. Calibration of the equipment has been 

described previously (Bagdassarov, 2000), with shear modulus measurements being accurate 

to 3 to 5 % (due to thermal drift of the calibration at high temperatures). 

 Although the mechanical design of the equipment has not changed from that used 

during previous work, the data acquisition hardware and processing software have been 

significantly improved. For each measurement, data are collected over two periods of the 

torsional oscillation (Fig. 1b). Data are sampled at up to 10 kHz, allowing 1000 samples per 

channel to be acquired at the highest frequency used during experiments (20 Hz). At torsional 

oscillation frequencies of 2 Hz or lower the number of samples per channel is limited to 

10,000. Sinusoids are automatically fitted to the collected data using a Levenberg-Marquardt 

algorithm, and the shear modulus and phase difference between the applied torque and the 

angular displacement across the sample are calculated from the phase and amplitude 

parameters of the fitted curves. 
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Experiments were carried out over the frequency range 0.002 to 20 Hz (at 

approximately 0.3 log intervals) and at temperatures between ~500 and 1150 °C. At high 

temperatures, low frequency measurements were prevented by the onset of non-linear sample 

response. This was revealed by Fourier analysis of the data indicating the presence of 

harmonics of the torsional driving frequency. Automation of sampling and processing allows 

repeated measurements and at high frequencies an average of twenty measurements was used 

for most temperature-frequency points. At low frequencies, individual measurements take up 

to 17 minutes, so fewer experiments were averaged. 

During experiments the furnace was purged with a flow of Ar gas (5 cm³ s-1). 

Inspection of the samples after experiments showed that oxidation (as indicated by growth of 

Fe-(Ti)-oxides) had taken place only on the surfaces of the samples. Temperatures were 

recorded using Pt-PtRd (S-type) or Ni-NiCr (K-type) thermocouples. Direct measurements of 

the temperature field inside the furnace indicated that temperatures were reduced by up to 15 

°C at distances of 10 mm from the hottest point. Although this spatial sensitivity implies that 

recorded values were only accurate to ~15 °C as indicators of the sample temperature, relative 

temperature changes within any one experiment are much better constrained (±3 °C at 1000 

°C). 

 The data collected at each temperature-frequency point allowed calculation of the 

magnitude of the complex shear modulus G*(ω, T), and the phase shift ϕ(ω,T) between the 

applied torque and the resultant angular strain of the sample, where ω is the angular velocity 

(equal to 2π multiplied by the applied frequency). From these results, the real, G', and the 

imaginary, G'', parts of the complex shear modulus, the internal friction, Q-1, and the complex 

shear viscosity, η, can be calculated from 
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(Marin, 1998). 

2.1 Sample bonding 

During experiments it is essential that each end of the sample is securely bonded to the 

alumina rods. In order to do this efficiently small conical grips (angle ~1°, length 4 mm) were 

machined at both flat ends of the sample with a diamond tool. Complementary mating grips 

were produced in the alumina rods and samples were cemented between the rods with a high 

temperature cement (Polytec®). The assembly was placed in the torsion apparatus and the 

sample was then sintered to the rods for 2 hours at 150 °C and then for 24 hours at 500 °C, 

under an axial load of ~8 N (e.g. Berckhemer et al., 1982). Measurements carried out using a 

dummy sample of Al2O3 have demonstrated that the effect of the cement on phase delay 

measurements was less than 10-3 rad. (Bagdassarov and Dorfman, 1998). 

 

2.2 Size and shape factors 

 When temperatures increased during experiments, thermal expansion of the sample 

and the alumina ceramic rods was accommodated by a spring located at one end of the 

apparatus. At temperatures sufficiently high for the sample to deform, some of the 
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accumulated stress dissipates by flow shortening of the sample. Changes in sample length 

were calculated from micrometer readings taking at the spring (to a precision of ~0.02 mm) 

and the correspondingly changed sample diameter (calculated by assuming conservation of 

sample volume) were then used to calculate the material properties. However, samples 

recovered after experiments have shown that flow deformation was not continuously 

distributed through the samples but was concentrated in the centre, producing distorted, 

barrel-shaped, cylinders. This is a consequence of temperature gradients across the sample 

and due to it being supported at both ends. Thus, despite efforts to account for changes in the 

sample shape, the deviation from a cylindrical form introduced errors (<2 %) in the assumed 

diameter of the sample, once sample shortening has started. 

  

2.3 Sample description  

The experiments were carried out on samples of basaltic lavas collected from three 

different volcanoes, Etna, Hawai'i and Vesuvius. 

a. Etna. Two samples from Etna were collected from lava erupted in 1992 which had 

ponded after overflowing from a skylight in the Valle del Bove. One of these samples was 

from the top surface and one was taken from the base (~10 cm down from the surface) and 

thus represent samples with different cooling regimes. Digital images of polished sections 

were obtained through an optical microscope and computer analysed, omitting corrections for 

3D effects. The surface sample has smaller vesicles (~0.2 to 0.5 mm, 15 to 20 vol.%) and 

smaller crystal content (~20 to 30 vol.%) than the basal sample (~20 vol.% of 1 to 2 mm 

vesicles and ~30 vol.% phenocrysts. Images of polished thin sections are shown in Fig. 2. A 

further sample was collected from near the south east cone in 1999. This sample was taken 

from the least vesicular area found in a recently emplaced flow near hornito H3 (Calvari and 

Pinkerton, 2002) at the top of the active flow field. 
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b. Hawai'i. The Hawai'ian basalt was sampled in the east rift eruption zone of Kilauea, 

Hawai'i from a lava flow from a pahoehoe toe in September, 1984 (eruption temperature 

~1147 °C). This pahoehoe lava flow corresponds to the episode 25 of the eruption Pu'u 'O'o of 

Kilauea Volcano. Its bulk chemical composition has been presented elsewhere (Garcia et al., 

1992). The chemical composition of the groundmass glass obtained by microprobe analysis 

differs from the bulk rock composition in SiO2 (52.3 wt%) and CaO (9.2%) content 

(Bagdassarov, 2000). The vesicularity estimated from 2-D image analysis varies from 46.8 to 

57.6 vol.%, or ~50 vol.% when calculated on the “dry” density rock basis. The sample has 

about ~10 vol.% of olivine quenched from magma during sampling and a few percent of other 

phenocrysts.  

c. Vesuvius. The Vesuvius samples were collected from the 1834 flow at Cava Ranieri 

in the national protected area of Terzigno approximately 6.3 km ESE of the central cone of 

Vesuvius by the group from University College of London. Chemical analysis of the samples 

is given in Belkin et al. (1993). The same sample was also used by Rocchi et al. (2002) in 

experiments to determine Young’s modulus and tensile strength.  

 

3. Results 

 The shear modulus and internal friction results for the samples are given in Fig. 

3 to 6. The 1992 Etna samples (Fig. 3) show marked differences in shear modulus and internal 

friction between the rapidly cooled crustal sample and the more slowly cooled basal sample. 

As a result of its smaller volume fraction of vesicles, the crustal sample has a shear modulus 

~1.5 to 2 times greater than that of the basal sample at high temperatures (>1050 °C), 

increasing to ~6 times at low temperatures (~500 °C). The internal friction of the crustal 

sample shows a relatively low dependency on frequency at high temperatures (>800 °C). At 

temperatures between ~600 and 800 °C (Fig. 3c) a small, wide peak in internal friction 

suggests a complicated behaviour at temperatures corresponding to that of the glass transition 
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for basaltic glass (Ryan and Sammis, 1981). For Pu'u 'O'o paheohoe lavas, the glass transition 

and melting temperatures are 655°C and 1149°C respectively (Burkhard, 2001). In contrast, at 

temperatures below 1000 °C, the internal friction of the basal sample (Fig. 3d) is a strong 

power law of frequency, Q-1 ∝ ω -0.35. The response of a purely elastic material would be 

independent of frequency, and this frequency dependence indicates a partially viscous 

response even at ~600 °C. 

 Similar experiments carried out on cores cut from the 1999 Etna sample not only 

reproduced the internal friction peak at low temperatures (~700 °C ) but demonstrated 

considerable temporal variations in the results (Fig 4). Over periods of up to ~120 hours, the 

measured shear modulus increased and internal friction decreased. After annealing, the 1999 

samples produced similar shear modulus and internal friction results (Fig. 4c, d) to those of 

the 1992 Etna crustal material. At temperatures >1100 °C, Etna samples demonstrated an 

increase of fluidity of several orders of magnitude and it was not possible to maintain them in 

the torsion apparatus. 

 The experiments carried out on the Hawai'i sample were extended to higher 

temperatures because of the higher temperature of the sample’s softening point. Similar 

temporal variations to those observed with the Etna lavas were found and are shown in Fig. 5 

at a temperature of 1102 °C. The results are broadly similar to those of the Etna samples with 

shear moduli of ~18 GPa decreasing to ~0.2 GPa as sample fluidity starts to rapidly increase.  

The results from the experiments carried out on the Vesuvius sample are given in Fig. 

6. During sample annealing the shear modulus increased but to a lesser extent than in Etna 

samples. An increase in tensile strength and Young’s modulus after annealing was also 

reported during bending experiments (Rocchi et al., 2002). At the highest temperature 

attained during experiments (1132 °C) the shear modulus was less than 0.5 GPa and 

practically frequency independent. With a further increase of temperature the sample became 

too fluid for it to be held within the torsion apparatus. 
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4. Discussion 

Measurements of the complex shear modulus (G*) and internal friction (Q-1) of lava 

samples from Etna, Vesuvius and Hawai'i show that they possess an appreciable shear 

modulus (>0.5 GPa) and an internal friction generally less than 1, at temperatures where field 

measurements indicate viscosities of ~103 Pa s. For comparison, polycrstalline rocks at room 

temperature have typical values of unrelaxed shear modulus, G∞, of about 50 GPa (Jackson, 

1993) and 25 GPa is representative for silicate glasses (Bagdassarov et al., 1993). Between 

room and high temperatures prior to the onset of melting, values of Q-1 vary between ~10-3 

and 10-1 (Manghnani et al., 1981; Weiner et al., 1987; Jackson, 1993; Bagdassarov, 2002). 

Natural silicate melts and glasses show a linear viscoelastic behaviour in the glass 

transition temperature range (e.g. Bagdassarov and Dingwell, 1993; Bagdassarov et al., 1993). 

With increasing temperature and decreasing strain-rate, one expects progressively decreasing 

shear modulus and increasing internal friction. However, the viscoelastic behaviour of lavas is 

often controlled by the presence of deformable (vesicles) and non-deformable (crystals) 

heterogeneities. Viscosity increases with increasing crystal content but decreases with 

increasing vesicle content (Bagdassarov and Dingwell, 1992) and the presence of these 

macroscale obstacles extend the shear stress relaxation spectrum towards longer relaxation 

times. Shear modulus relaxation can be extended over several hundred °C above the Tg of a 

basaltic groundmass glass (~655 °C) up to ~1100 to 1150 °C. Over the same range, the 

frequency dependence of shear modulus and internal friction becomes weaker, for example, in 

lavas Q-1 ∝ ω-0.35, compared to ω-0.5 for silicate melts. 

The shear modulus and internal friction of our lava samples varied significantly with 

annealing time with, at temperatures between ~500 and 1000 °C, some samples becoming 

increasingly stiff and elastic (Fig. 4). Similar temporal variation of elastic modulus and 

internal friction have been previously observed in thermally cycled quartzite, granite, dunite 
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and sandstones (Johnson and Toksöz, 1980; Jackson, 1993; Lu and Jackson, 1998) and is 

thought to be due to the presence and healing of microcracks and pores. For example, rapid 

thermal cycling of granite and diabase samples from room temperature to ~800 °C results in 

order of magnitude increases in crack porosity and a factor of 2 increase in Q-1 due to the 

thermal production of cracks (Johnson and Toksöz, 1980). Jackson (1993) interpreted the 

observed increase in shear modulus and decrease in internal friction with the increasing 

annealing time to be a result of the reduction of porosity and increase of the grain boundary 

cohesion by a sintering processes. Progressive decreases in Q-1 have been associated with a 

decrease of centres of stress concentration. Thus, we interpret our data, which indicate an 

increasingly elastic response with time, as demonstrating the effects of healing microcracks 

and thermally produced pore space (not vesicles) in the samples. It is likely that the 

microcracks were originally created due to thermal stresses during rapid cooling of the lava 

flows, however, we cannot exclude the possibility that they could have been produced during 

sample preparation or the subsequent heating. In thin sections, microcracks within crystals 

and between crystals and the groundmass can be observed to have undergone some healing 

after annealing (Fig. 7). 

The production of microcracks suggests that rocks which have undergone slow 

cooling will possess higher shear moduli and have higher strengths than rocks which cooled 

more rapidly. Thus, before annealing, samples taken from the centre of a cooled flow would 

be expected to be more elastic than samples taken from the top of a flow. Under annealing at 

high temperature, the crack healing process consists of cracks pinching off and healing to a 

pore-like shape before subsequent decreasing of the pore diameter (Atkinson, 1984). During 

this period, the shear modulus may significantly increase and the internal friction decrease. 

The time dependence of changes in crack lengths can be described as an Arrhenius function 

of temperature and, as a first approximation, a linear dependence between shear modulus and 

a crack density parameter may be assumed (O'Connel and Budiansky, 1974). In Fig. 8a the 
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results of annealing on the complex shear modulus of the 1999 Etna lava sample are presented 

as a function of time, t. By fitting these data with an exponential time-dependence, 

  ( ) )0(1)0(* GeGGG
t

+
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⎪
⎨
⎧

−−=
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⎞
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⎝

⎛−

∞
τ   (5), 

where G∞ is the stable shear modulus at any temperature, G(0) is the shear modulus at t=0, the 

characteristic time, τ, of the crack healing process may be estimated. The results of the fitting 

are presented in Fig. 8b in the form of an Arrhenian dependence of τ, yielding an activation 

energy of 150 ± 20 kJ mol-1. According to Atkinson (1984) this value should relate to the 

activation energy of the effective diffusion coefficient on grain boundaries of species 

participating in the pinching process at microcrack tips. For example, the activation energy of 

crack healing in dry quartz at T< 600 °C is about 80 to 85 kJ mol-1 (Atkinson and Meredith, 

1987), corresponding to the activation energy of water diffusion in quartz (~60 kJ mol-1, 

Dersch et al. (1997) or ~100 kJ mol-1, Brady (1995)). At high temperatures, crystal lattice 

diffusion is the rate controlling mechanism of grain boundary diffusion. Thus, the observed 

activation energy for the time dependence of shear modulus may be associated with an inter-

diffusion of Ca, Mg and alkaline species between olivine, clinopyroxene and plagioclase 

crystals and basalt glass, with activation energies between 130 and 180 kJ mol-1 (Brady, 

1995). Alternatively, our results are also consistent with a self-diffusion of Si and O, network 

formers in basaltic glass, with an activation energy of 170 kJ mol-1 (Lesher et al., 1996). 

Alternative mechanisms which could contribute to the increase of shear modulus 

during annealing of samples are redox and re-crystallisation processes in the basalt 

groundmass glass. Progressive volatile loss could also be responsible for strengthening the 

samples, however this cannot explain the power law frequency dependence of internal friction 

in the 1992 Etna samples at low temperatures. A contribution to shear modulus increase from 

sample oxidation would be due to the production of interface-controlled intergrowths of 

pyroxene dendrites and Fe-(Ti)-oxides between 850 and 940 °C (Burkhard, 2001). However, 
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the activation energy of this process is ~100 kJ mol-1, which is less than that observed from 

the time variation curves of shear modulus. The oxidation kinetics of basaltic glass are 

determined primarily by the diffusion of divalent cations Ca2+ and Mg2+ to the surface of the 

sample, which is charged compensated by the inward flux of electron holes (Cooper et al., 

1996). The activation energy of this process at temperatures below Tg is 210 kJ mol-1. The 

calculated maximum depth (~1 µm at 600 °C and ~20 µm at 800 °C) of surface oxidation by 

using the average divalent cation diffusion coefficient (Cooper et al., 1996) is small compared 

with the size of lava samples used in torsion experiments and is in agreement with 

observations made from thin sections of the samples. It should also be noted that these rates 

relate to initially non-oxidised basalt glass samples and the lava samples should be considered 

as slow cooled, partially crystallised glasses, with long oxidation histories.  

At T> 920 °C, the bulk crystallisation of basaltic glass and growth of plagioclase 

crystals may also contribute to the increase of stiffness of annealed lava samples, but the 

timescales required are generally much longer than those of the observed changes in shear 

modulus. For example, a noticeable growth of plagioclase and Fe-Ti-oxides has been 

observed at 850-934 °C after >200 h of annealing basalt glass (Burkhard, 2001) and this 

process is likely to have continued for an order of magnitude longer time. In contrast, shear 

modulus changes occurred much more rapidly in our experiments and generally ceased on a 

timescale of <100 hours. Thus, neither redox or re-crystallisation processes are believed to 

significantly contribute to the measured changes in the rheological properties of the samples. 

Converting the shear modulus and internal friction data into viscosity (Eq. 3) shows 

that both the Vesuvius and Etna samples maintained a frequency dependent real component of 

their viscosity (η') up to the highest temperatures attainable during the experiments (Fig. 9). 

Therefore, no “Newtonian” viscosity can be given for these temperatures at low strain rates. 

In contrast, the Hawaiian sample demonstrated marked decreases in the frequency 

dependence of η' at high temperatures and low frequencies (Fig. 10a). The main difference 
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between the low strain rate behaviour of, on the one side, Etna and Vesuvius basalts, and on 

the other, that from Hawai'i, lies in the relative proportion of crystals and vesicles. The small 

strain-rate and small stress viscosity, η0, measured for the Hawaiian sample represents a 

creep-type mechanism underlying the Bingham yield stress which is expressed under 

conditions of slow, small scale deformation, where the internal structure of the lava sample 

remains intact. The presence of non-deformable crystals results in increases of this effective 

viscosity, but also increases the Bingham yield stress (Bagdassarov et al., 1994). Higher ratios 

of crystals to vesicles in Etna and Vesuvius lavas increase the Bingham creep-viscosity, η0, 

and shift it toward smaller strain-rates which were unattainable in our torsion experiments. In 

contrast, the Hawai'ian lava sample, with a smaller crystals to vesicles ratio, possessed a 

smaller Bingham creep-viscosity which was observable at the lower strain rates of the torsion 

apparatus (10-3 s-1). 

If a material has a strain rate dependent rheology then two different viscosities can be 

assigned, η0 and η∞, which relate to the low and high strain rate limits respectively. The Cross 

model then gives the viscosity as 

 m

K ⎟
⎠
⎞

⎜
⎝
⎛ ⋅+

−
+= ∞

∞ .

0

1 γ

ηη
ηη  (6), 

where m and K are empirical constants and 
.

γ  is strain rate (e.g. Barnes, 1999), with m 

characterising a stretching parameter for shear stress relaxation during the viscoelastic 

transition. For a Maxwell body rheology, m=2. In the operational window of the oscillatory 

shear apparatus, only η0 can be measured. The high strain rate viscosity, η∞,  is interpreted as 

the effective viscosity of a fluid at high strain-rates or stresses. In the case of lavas, it 

corresponds to the results of field or laboratory experiments in which high strains induced by 

the measurement disrupt the internal structure of the lava.  
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The high temperature data in Fig. 10a have been fitted with Cross curves (assuming 

that η0 >> η∞, and using m=1) and the values of η0 obtained are plotted in Fig. 10b along with 

other viscosity measurements made with a parallel plate viscometer (a Bähr® high 

temperature dilatometer, University Bayreuth (Bagdassarov, 2000)) and rotational 

viscometers (Shaw, 1968, 1969; Ryan and Blevins, 1987; Ryerson et al., 1988; Pinkerton et 

al., 1995). The parallel plate viscometer uses shear rates of 10-5 to 10-7 s-1, compared with 

equivalents of ~10-2 to 102 s-1 for the torsion apparatus. The activation energy for viscous flow 

obtained by the dilatometer and torsion experiments (given by the gradient of the dashed lines 

in Fig. 10b) is ~950 ± 5 kJ mol-1. The small offset (0.67 log units) between the two lines is 

due to the effect of the volume (or bulk) viscosity of a porous sample, ηv, which affects the 

parallel plate deformation results of the dilatometer experiments. The pure shear deformation 

used in the dilatometer gives a compressional viscosity, ηc, which is usually related to the 

shear viscosity by ηc/3. However, this is valid only for incompressible samples (which have 

an infinite volume viscosity), and is therefore not applicable to material with ~50 % porosity, 

which will have a finite volume viscosity. For high porosity materials, the relationship 

 svc ηηη 3
4+=  (7) 

is appropriate (e.g. Bagdassarov and Dingwell, 1992). Thus measured values should be 

corrected for a finite volume viscosity, the value of which is unknown. From Fig. 10b the 

compressional viscosity data from the dilatometer experiments are related to the simple shear 

viscosity results of the torsion experiments, ηs, by ηc ≈3×100.67ηs, or 101.15ηs. Applying Eq. 7 

thus gives ηv ≈ 12.7ηs (at ~50 % porosity). The theoretical dependence of the volume 

viscosity as function of porosity has been considered elsewhere (Prud’homme and Bird, 1978; 

Aksel, 1995), with the classical formula  
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being derived for small concentrations of vesicles in a fluid, where ρ0 is the density of fluid, ρ 

is the density of the suspension and ηs
0 is the viscosity of the fluid without vesicles. 

Converting ηs
0 to ηs

 by ηs
0 ≈ 0.2ηs (for ~50 % porosity, Fig. 5, Rust and Manga 2002), gives 

the theoretical relation of ηv ≈ 3.3ηs. The discrepancy between our result and this theoretical 

estimation may be easily attributed to experimental errors in viscositiy as well as the non-

spherical shape of some vesicles and their non-uniform size distribution in the lava samples. 

Alternatives to the Cross model were reviewed by Yue and Brückner (1994) who 

suggested a strain rate dependent viscosity model depending on three phenomenological 

constants. Their model is appropriate for parallel plate viscometry in which significant strain 

increases during experiments can produce thermal effects and violations of non-slip boundary 

conditions. However, in the torsion experiments the maximum torque was 10-3 N m, and 

maximum angle deformation 10-5 rad, resulting in a negligible heat production (<10-7 J s-1) 

even at the highest strain rates used. 

Field measurements, corrected to unit strain rate, have reported significantly smaller 

shear viscosities for Hawaiian basalts. Shaw et al. (1968) measured plastic viscosities of 650 

to 750 Pa s at 1130 °C and Pinkerton et al. (1995) measured viscosities of 234 to 548 Pa s at 

1146 °C (Fig. 8b). Unit shear rate results from the torsion experiments (as given by the fitted 

Cross models) are five orders of magnitude greater than these field measurements. For Mount 

St. Helens dacite, Pinkerton and Stevenson (1992) demonstrated that a combination of factors 

was responsible for a 10 order of magnitude variation within measured and calculated 

apparent viscosities at sub-liquidus temperatures. For Hawaiian basalt, although differences in 

volatile content, crystallinity and vesicularity exist between the experimental and the 

fieldwork samples, the main difference in the results (Fig. 10b) is due to the magnitude of the 

strain used, with rotational viscometry producing high strains and torsion and dilatometer 

experiments producing small strains. 
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When magmas or lavas are subjected to small strains, the rheology is influenced by the 

deformation of gas bubbles and by the rotation, interaction and small displacement of crystals 

suspended in the viscous melt matrix. In this case, the rheology is controlled by the 

“structure” of the material and is consequently relatively high (see Fig. 10b, torsion and 

dilatometric experiments). For rotational viscometry (either in the field or in laboratory 

experiments) the strains are much higher and, with time, the material “structure” becomes 

disrupted. The increasingly “unstructured” nature of the material results in a viscous shear 

thinning response (Barnes, 1997), producing decreased apparent viscosities. 

The small stress and strain rate experiments carried out in torsion and dilatometer 

equipment demonstrate a second, relatively high viscosity (creep-type rheology), plateau in 

the viscosity-strain rate dependence (Barnes, 1999) which cannot be observed with high stress 

or strain rate measurements. However, at temperatures above ~1145 to 1150 °C the 

groundmass of lava becomes so fluid that the viscosity decreases a few orders of magnitude 

(Fig. 10b) and the high viscosity plateau is no longer present. Fig. 10b demonstrates the 

difference between the ηo  (creep-type) and η∞ (viscoplastic) viscosities. In the small strain and 

small stress torsion equipment, the internal structure of lava sample is not destroyed, and the 

measured viscosity is of a creep-type. This type of viscosity may be expressed in lava dome 

growth or relaxation processes. In experiments with rotational viscometers where strains and 

stresses are considerable, the internal structure of the lava is destroyed and the apparent 

viscosity is several magnitudes smaller. This type of viscosity will control lava flows over 

steep topography. Thus, at the same temperature, lavas may possess two viscosities depending 

on a stress-strain scale and numerical modelling of lava flows should consider the high 

viscosity and viscoelasticity of lavas when strain rates are below unity. 
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5. Conclusions 

1. The oscillatory torsional apparatus allows low strain investigations of shear modulus and 

internal friction. Experiments carried out on lavas over a range of temperatures (~500 to 

1150 °C) and frequencies (20 to 0.002 Hz) demonstrate that in general the complex shear 

modulus of lavas decreases with decreasing frequency and increasing temperature. 

Internal friction is usually <1. 

2. At temperatures close to their eruption temperature (~1080 to 1100 °C) no purely viscous 

regime was detected for the Etna and Vesuvius samples and their measured creep-type 

viscosity remained frequency dependent over the range 20 to 0.002 Hz. However, results 

for the Hawai'i sample indicate a shear rate independent regime for low shear rates at 

temperatures between ~1070 and 1130 °C, with viscosities >109 Pa s. 

3. The samples from Etna and Vesuvius exhibited extended anelastic behaviour at 

temperatures  within the “glass transition” temperature of the groundmass, and that may 

be attributable to the bad cohesion between crystal grains and the groundmass glass. 

Annealed lava at ~900 to 950°C possesses a shear modulus about 15 to 20 GPa. Below 

~800 °C, but still within basalt glass transition temperature range, when the dilatometric 

effect of between groundmass glass and crystals are significant, intensive microcracking 

may be expected and can decrease the shear modulus to 7 to 10 GPa. By reheating 

between 700 and 950°C the characteristic time-constant of the lava hardening process 

may be on a scale of several to a hundred hours.  
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Fig. 1. (a) Schematic of the torsion oscillation apparatus (redrawn from Berckhemer et al., 

1982). Capacitive pickups detect the motion of the iron plates at the ends of the aluminium 

wings providing two data channels which can be calibrated to provide angular deflection and 

the applied torque. (b) An example of two periods of data collected in order to measure 

internal friction (from the phase shift) and magnitude of the complex shear modulus (from the 

relative amplitudes of the curves). Further details are given in Bagdassarov (2000). 

 

Fig. 2. (a) Thin section of the crustal sample from Etna, 1992. The lava contains ~15 to 20 

vol.% of vesicles (mean diameter between ~0.2 to 0.5 mm) and ~20 to 25 vol.% of 

plagioclase, olivine and magnetite phenocrysts. (b) Thin section of the 1992 Etna sample 

which was collected from the base of an overflow. This sample contains ~20 vol.% of 

vesicles with a mean diameter of 1 to 2 mm and about 30 vol.% of crystal (from analysis of 

polished thin sections without corrections for 3D effects). 

 

Fig. 3. Shear modulus (a, b) and internal friction (c, d) results from the 1992 Etna lavas. The 

crustal sample (a, c) shows a higher shear modulus than the basal sample, and neither sample 

has an internal friction approaching 1 over the conditions investigated. 

 

Fig. 4. In (a) and (b), temporal variations in shear modulus and internal friction are given for 

the 1999 Etna sample. After annealing for 118 hours at 800 °C the sample had attained a 

greater shear modulus than it originally possessed at 700 °C. The increasing shear modulus 

and decreasing internal friction with time indicate the sample was becoming increasingly 

elastic and less viscous. The shear modulus and internal friction results collected after 

annealing are given in (c) and (d). 
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Fig. 5. Time dependent shear modulus (a) and internal friction (b) during annealing 

experiments on the Hawai'i sample. Numbers in the legend indicate annealing time in hours. 

 

Fig. 6. Shear modulus (a) and internal friction (b) results from the Vesuvius lava. 

Fig. 7. Thin sections of Etna (a and b) and Vesuvius (c and d) lava samples (each image 

represents 1250 × 950 µm). (a) and (b) are starting material and show microcracks between 

crystals and groundmass glass as well as in the interior of phenocrysts. (b) shows the Etna 

sample after being annealed at 812 °C for 118 hours and (d) shows the Vesuvius sample after 

being annealed at 1102 °C for 96 hours. The reduction in the number of microcracks 

demonstrates that healing has occurred both within the groundmass and the phenocrysts. 

 

Fig. 8. (a) The complex shear modulus of 1999 Etna lava measured at 20 Hz and different 

temperatures. The temporal change at each temperature is modelled using a curve of 

characteristic time-constant which is believed to represent the characteristic time for crack 

healing (see text). In (b), these characteristic times are plotted against absolute reciprocal 

temperature. The straight line fit represents an Arrhenian dependence with an activation 

energy of 150 ± 20 kJ mol-1. 

 

Fig. 9. Dynamic viscosity as given by G''(ω)/ω (see Eq. 4) for the Vesuvius (a) and Etna (b) 

samples. At the highest temperatures and lowest frequencies used these samples maintained a 

frequency dependent rheology.  

 

Fig. 10. Dynamic viscosity of the Hawai'i sample. In (a), the high temperature values of 

G''(ω)/ω are given, demonstrating the decreasing dependence on frequency at low 

frequencies. The curves show the results of using a Cross model in order to extract the zero-

shear viscosity (see text). Fitting parameter of Eq 5 m= 1 at all temperatures, K=1.6 log(ηo Pa 
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s)= 9.23 at 1126°c, 3.7 and 9.7 at 1100°, 30 and 10.65 at 1072°. In (b), the zero-shear 

viscosity values ηo obtained for the Hawai'i lava sample are compared with those given by 

dilatometer (Bagdassarov, 2000) and rotational viscometer (Shaw, 1968, 1969; Ryerson et al., 

1988; Ryan and Blevins, 1974; Pinkerton et al. 1995) experiments on Hawai'ian basalt lavas. 

There is good agreement between the dilatometer and the torsional results, with the slightly 

greater values from the dilatometer being expected due to the effect of compression viscosity 

on extracting shear viscosity values from the pure shear experiments (Bagdassarov and 

Dingwell, 1992). The gradient of the dashed best fit lines represents an activation energy for 

viscous flow of ~950 kJ mol-1. The plot demonstrates the ~3 order of magnitude change in 

viscosity which occurs around 7.0×10-4 K-1 (~1155 °C) and separates the high temperature, 

Newtonian region from the lower temperature, viscoplastic region. The 1 s-1 line indicates the 

torsion results at unit shear rates which are more applicable for comparison with the rotational 

viscometer measurements. High values of ηo obtained in torsion and dilatometer, small strain- 

stress experiments relate to the creep-type rheology displayed by lava when its internal 

structure is not destroyed by the measurements. Field experiments carried out at high stresses 

and strains show η∞, or a viscoplastic viscosity, expressed when the internal structure (the 

organisation of vesicles and crystals) of the lava is altered by the viscometer or the flow itself.  
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Fig. 9. (a) The complex shear 
modulus of Etna lava measured at 
20 Hz and different temperatures. 
The temporal change at each 
temperature is modelled using a 
curve of characteristic time-
constant which is believed to 
represent the characteristic time for 
crack healing (see text). In (b), 
these characteristic times are 
plotted against absolute reciprocal 
temperature. The straight line fit 
represents an Arrhenian 
dependence with an activation 
energy of 150 ± 20 kJ mol-1.¶
¶
Fig. 10. Thin sections of Etna (A 
and B) and Vesuvius (C and D) 
lava samples. Photos 1250 x 950 
µm. A and C is starting material. 
The contacts between crystals and 
groundmass glass as well as the 
interior of phenocrystals are 
marked by microcracks. B is Etna 
sample annealed over 118 h at 
812°C. D is Vesuv sample 
annealed over 96 h at 1102°C. The 
contacts between groundmass glass 
and crystals as well as the interior 
of phenocrysts are healed.¶
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At T> 920 °C, the bulk crystallisation of basaltic glass and growth of 

plagioclase crystals may also contribute to the increase of stiffness of annealed lava 

samples. Analysis of thin sections of samples after experiments revealed the textural 

changes only in thin surface layer (few µm) and not in the bulk of samples. A 

noticeable growth of plagioclase and Fe-Ti-oxides was observed at 850-934°C after 

>200 h of annealing (Burkhard, 2001) that is longer that the duration of torsion 

annealing experiments. The end of these processes must take 10 times longer time, 

despite the constant steady state values of shear modulus were observed after <100 h. 
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incompressible and possesses an infinite volume viscosity. It is not true for a sample 
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 This heat production cannot result in a significant temperature effect. 

Transient flow in oscillatory shear does not play any significant role, amplitude and 

phase of the angle deformation were calculated from sinusoidal signals after a many 

repeated oscillations. 
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In torsion experiments the viscosity results from the Hawai'i sample 

demonstrate the effect of a large volume percentage of deformable vesicles. Only with 

the Hawai'i sample (~50 vol.% of vesicles) were our experiments close to a shear rate 

independent viscosity. For the Etna and Vesuvius samples (<10 vol.% of vesicles) a 

frequency independent viscosity was not detected, even at temperatures well above 

the glass transition temperature of basalt glass (~820 to 850 °C). This is in agreement 

with previous measurements (on partially molten rocks and melt-crystal suspensions) 

which indicate that a frequency independent shear viscosity is unobtainable at low 

strains and stresses for samples with a melt phase <40 vol.% (Bagdassarov et al., 

1994; Bagdassarov and Dorfman, 1998).  
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At temperatures about their glass transition point, lavas exhibit viscoelastic 

behaviour which can be of importance in problems such as dome growth and collapse 

and the slow development of lava flow fronts. Numerical modelling of lava flows 
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