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Abstract – The need to manage the production in different in-

dustrial sectors creates a strong demand for process informa-

tion. Information is generated and presented by a supervisory 

system, by collecting and treating raw data from the processes.  

Data can arrive from different physical processes and through 

different communication protocols and/or access media. This 

paper proposes an acquisition methodology to allow the super-

visory system to access data independently of these characteris-

tics of the process and of the communication channel. 
 

I. INTRODUCTION 

 

Supervisory systems for industrial processes are also 

known as SCADA (Supervisory Control and Data Acquisi-

tion) systems [1]. A SCADA system must be able to process 

information and make it available to the operator of the proc-

ess or any other user of the supervision software [2]. It can 

also work in the supervisory control level to directly act on 

the process [3], sometimes including a certain degree of 

machine intelligence. 

A supervisory system in an automated industrial environ-

ment is essentially composed of four elements [4]: 

 

1) Physical Process: it is the object of the supervision and 

the main element of the overall system. 

2) Control Hardware: it is used in the physical interface 

and to control the process. 

3) Supervision Software: it acquires, treats and distributes 

process data. 

4) Communication Network: it is the responsible for the 

traffic of information. 

 

An industry can have several different physical processes 

in its production environment. The monitoring of these proc-

esses is done in a specific way for each kind of process. 

However, information needed by the management about all 

the processes should be presented in a unified way. We call 

this kind of environment an environment of heterogeneous 

processes. 

The process control hardware is basically composed of 

sensors, actuators and controllers. A controller has the impor-

tant role of maintaining the process working and stable. Be-

sides, it must also provide a physical interface to access 

process data.  

Many times, in industrial environments, several kinds of 

controllers are used. Each controller can have a specific way 

to access and store process data. This implies a variety of 

communication methods. This kind of industrial environment 

will be called an environment of heterogeneous devices. 

In this paper we call heterogeneous systems those systems 

inserted into industrial environments of heterogeneous proc-

esses and/or heterogeneous devices. We call an automation 

subsystem each distinct pair formed by one physical process 

and its corresponding control hardware. 

The supervision software (called supervisor, for short) 

must access the field devices to obtain process data. Data 

must be treated to become useful information. Another im-

portant role of the supervisor is to provide data to higher-

level management software. The usual situation in many 

heterogeneous systems is to use a distinct supervisor for each 

different automation subsystem. 

The communication network is in charge of the informa-

tion traffic and is used by the supervisory system while ac-

quiring process data. Usually, it is composed of two subnet-

works: the field network and the supervision local network. 

Field networks permit data exchange between controllers 

and sensors/actuators by means of point-to-point connections 

carrying input/output signals [5]. To achieve a deterministic 

communication, the majority of field networks are based on a 

master-slave architecture. In this kind of network, slave con-

trollers never initiate a communication. These controllers 

only respond to requests made by the master controller. 

Some of the more usual implementations of the master-slave 

architecture in industrial environments are the modbus [6] 

and profibus [7] networks. 

The supervision local network almost always uses LANs 

(Local Area Network) based on Ethernet TCP/IP [8,9]. This 

LAN provides the communication medium needed to share 

process information. The supervisors usually use supervision 

local networks based on the client-server architecture to 

share this information [10,11]. 

In several heterogeneous industrial systems, data acquisi-

tion and information presentation is a very specific procedure 

for each automation subsystem. In this context, many of the 

current supervisors can be used with one and only one sub-

system. Consequently, data integration for information man-

agement is a more difficult task.  

This work proposes a methodology to acquire data from 

heterogeneous systems in a homogeneous way.  This ap-

proach allows to collect process data and to deliver informa-

tion to management systems, independently of the nature of 

the supervised processes and of their control and connection 

devices. 
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II. PROPOSED SOLUTION 

 

Each subsystem of a heterogeneous SCADA is composed 

of one or more clients, a single server and one or more mas-

ters accessing the processes. This paper proposes virtually 

grouping the several supervision subsystems into a single 

system, according to the schema in Fig. 1. The supervision 

system must be able to use the existing supervision and field 

networks and must allow several simultaneous clients. 

For that, this system must have a standardized communica-

tion interface between the new server and the clients of all 

subsystems. In the same way, we have to standardize com-

munication between the server and the masters of all subsys-

tems. The communication standards between the clients and 

the server and between the server and the masters will be 

called CCP (Client Communication Protocol) e MCP (Master 

Communication Protocol), respectively (see Fig. 2). 
 

A. Clients 

 

Clients translate requests from the users into CCP func-

tions. These functions, when possible, are independent from 

the physical process. The CCP function is sent to the server 

with the request id and the virtual address of the physical 

process. When the server sends back the corresponding reply, 

the client exhibits it to the user. 

B. Server 

 

The server receives CCP requests from the clients. The vir-

tual address of the process is used to determine the corre-

sponding master and the physical address of the actual proc-

ess. After verifying the validity and syntax of the CCP func-

tion, it is translated into one or more MCP functions. The 

MCP functions are then sequentially sent to the appropriate 

master. When the MCP requests are received, they are even-

tually combined, translated and sent to the clients. 

 

C. Masters 

 

 The masters are in charge of communication with the 

physical processes through the control hardware. In this case, 

the controllers are the slave stations in the field network. 

Masters receive the MCP functions from the server and trans-

late them into native functions of the controllers. The an-

swers of the controllers are sent to the server. 

 
III. IMPLEMENTATION 

 

This section presents one possible computational imple-

mentation of the proposed architecture. The implementation 

is divided into three applications: client, master and server. 
 

 A. Client Application 

 

The client application sends requests to the server and 

treats the replies it sends back. For this, three concurrent 

processes have been used. The first process, Client Process 1 

(CP1), waits for a solicitation from the user, generates a 

request, sends it to the server and inserts the request into a 

buffer of requests without answer, Client Buffer 1 (CB1). 

The second process, Client Process 2 (CP2), waits for replies 

from the server, withdraws the corresponding request from 

CB1 and exhibits the result to the user. The third process, 

Client Process 3 (CP3), generates timeouts by periodically 

inspecting the CB1 buffer to assess the elapsed time since 

each request was sent. Fig. 3 illustrates that architecture.  
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Fig. 1.  Supervision by grouping the automation subsystems. 
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Fig. 3.  The client application. 
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Fig. 2.  Proposed supervision architecture 



 

 
B. Server Application 

 

The server is divided into two sub-applications: the transla-

tor and the router, as in Fig. 4. The former translates CCP 

functions to MCP functions. The latter routes the MCP func-

tions to the appropriate master. 

The translator has two concurrent processes: Translator 

Process 1 (TP1) and Translator Process 2 (TP2). TP1 re-

ceives a request from a client, maps the CCP function into a 

set of MCP functions, insert them into a buffer of mapped 

functions, Server Buffer 1 (SB1), and sends them to the 

router. TP2 waits for replies from the router and, when one of 

them arrives, verifies if all the MCP requests corresponding 

to one CCP request have already been executed. If yes, it 

sends the CCP reply to the client and eliminates all the set 

from the SB1 buffer. If no, the status of the MCP request in 

the SB1 buffer is changed to already executed. 

The router is formed by three processes: Router Process 1 

(RP1), Router Process 2 (RP2) and Router Process 3 (RP3). 

RP1 receives the requests MCP from the translator, routes 

them to the appropriate masters and inserts them into the 

buffer of requests waiting for replies, Server Buffer 2 (SB2). 

RP2 waits for answers from the masters and, when they ar-

rive, removes the corresponding requests from SBS and 

sends the reply to the translator. The RP3 process cyclically 

examines the SB2 buffer looking for timeouts: when one is 

found the request is withdrawn from the buffer and the trans-

lator is notified. 

 
C. Master Application 

 

The master is the simplest element of the SCADA soft-

ware. Its main function is responding to server’s requests by 

communicating with the physical process. To execute this 

function it uses three concurrent processes. The first process, 

Master Process 1 (MP1), receives MCP requisition from the 

server and converts them to the language understood by the 

actual controller connected to the process (modbus, profibus, 

etc.). This requisition is then inserted into an execution 

queue, Master Buffer 1 (MB1). A second process, Master 

Process 2 (MP2), cyclically executes the first request in the 

MB1 queue, sends the answer to the server and removes the 

requisition from the queue. The third process, Master Process 

3 (MP3) periodically inspects the MB1 queue to detect time-

outs.  The overall operation of the master is showed in Fig. 5. 

 

IV. APPLICATION AND RESULTS 

 

This section shows an application of the implemented ar-

chitecture: a SCADA software to be used in the automation 

of oil wells. This application is a result of a partnership be-

tween the UFRN and the Brazilian petroleum company 

Petrobras. 

The system to be supervised is a very heterogeneous one, 

mainly because the region where the supervisor will be used 

is large and has more than 3,000 wells. The existing field 

network that connects the controllers of the wells to the mas-

ter computer is based on low-band (9600bps) radio links. The 

wells use different methods of oil elevation and different 

controllers: each pair (elevation method x controller) can 

adopt a different communication protocol and used to be 

monitored by specific supervision softwares. 

The main methods of artificial elevation currently used in 

oil industry [12] are: 

• Gas-lift (GL) – compressed gas is injected into 

the well to elevate the oil to the surface. 

• Electrical Submersible Pumping (ESP) – a cable 

transmits energy to an electric motor, coupled 

with a submerged centrifugal pump that generates 

pressure to elevate the oil. 

• Sucker Rod Pumping (SRP) – The rotation move-

ment of a motor is converted into an up and down 

movement of a rod. A pump at the end of the rod 

uses the up and down movement to produce a cy-

clic pumping of the oil to the surface. 

• Progressive Cavity Pumping (PCP) – a progres-

sive cavity pump is immersed in the oil well. The 
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Fig. 4.  The server application. 
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Fig. 5.  The master application. 



 

geometry of the pump creates a set of hermetical 

cavities. When the pump’s rotor turns, the cavities 

progressively move along the pump’s axis and 

push the oil towards the surface. 

Each one of these artificial elevation methods has its own 

variables to be monitored, characterizing a heterogeneous 

processes environment. Besides, because of the particulari-

ties of each process and its monitored signals, several auto-

mation companies have developed specific controllers, char-

acterizing an environment of heterogeneous devices. Fig. 6 

illustrates a heterogeneous system with four possible automa-

tion subsystems: two methods of artificial elevation (GL and 

SRP) and two distinct control equipments (C1 and C2). 

Because of their particularities, the automation subsystems 

we can observe in Fig. 6 are normally automated by different 

enterprises. Fig. 7 shows a situation where users need infor-

mation from different wells in two distinct automation sub-

systems: the users shall interact with different SCADA soft-

wares. Using the architecture proposed in this paper, a single 

client interface can obtain information from all wells, creat-

ing the situation represented in Fig. 1. 

Our first supervision system using the proposed architec-

ture is being used to monitor nine wells using the Gas-Lift 

elevation method and ZAP-500 controllers made by the HI 

Tecnologia Brazilian enterprise. Currently, new automation 

subsystems are being added to the system to allow monitor-

ing thousands of Sucker Rod Pumping wells with different 

controllers.  The first prototype of the new version is moni-

toring two of these wells. Fig. 8 presents the main screen of 

the implemented client application. 

The field network uses the previously existing structure 

composed of master computers and radio links with trans-

mission rate of 9,600 bps and a mix of proprietary and mod-

bus protocols. The private communication network (intranet) 

of Petrobras is used as the supervision local network. 

An illustrative (and simplified) step-by-step example of 

what happens inside the system is the following: 

 

1) The client periodically generates GET-INFO requests. 

GET-INFO is a CCP function to obtain several general 

parameters of a well; these parameters are presented in 

the main screen of the client application (Fig. 8). At a 

given instant, a GET-INFO 9624 request is generated, 

where 9624 is the virtual address of one of the wells be-

ing presented in the main screen. 

2) The GET-INFO 9624 request is stored into the CB1 

buffer and sent to the server, using the local network. 

3) The server analyses the request and the database to 

conclude that the 9624 well is a Gas-Lift well with a 

certain controller. Using this information, the GET-

INFO request is decomposed into several MCP requests 

(GET-GASPRESSURE, GET-FLOW, etc.) by the 

server’s translator. These requests are stored into the 

 

 
 

Fig. 8.  Main screen of the implemented client application. 
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Fig. 6.  Heterogeneous system for oil artificial elevation with four 

possible automation subsystems. 
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Fig. 7.  Supervision of oil wells inserted into distinct automation 

subsystems. 



 

SB1 buffer and communicated to the router. 

4) The server’s router uses database information to con-

clude that the well’s physical address is 39 and that the 

well number 39 is connected to the master number 3. 

Using this information, the MCP requests GET-

GASPRESSURE 39, GET-FLOW 39 and so on are 

stored into the SB2 buffer and sent to the master. 

5) The master receives the MCP requests and stores them 

into the MB1 buffer. 

6) The master broadcasts by radio a modbus GET-

GASPRESSURE 39 request, addressed to the control-

ler of the well number 39.  This request was chosen be-

cause it was the first one in the MB1 buffer. 

7) The well controller responds to the modbus request with 

a GET-GASPRESSURE 44.5 reply using the link ra-

dio of the field network.  The number 44.5 is the cur-

rent gas pressure value in the well number 39. 

8) The master receives the modbus reply from the control-

ler and sends a MCP GET-GASPRESSURE 44.5 re-

ply to the server. The corresponding request is removed 

from the MB1 buffer and the next request in the buffer 

(GET-FLOW) is sent to the well’s controller (step 6). 

9) In parallel, the server’s router receives the MCP reply. 

The corresponding request is removed from the SB2 

buffer and the arrival is communicated to the translator. 

10) The GET-GASPRESSURE request is marked as already 

executed in the SB1 buffer by the server’s translator. 

Then it verifies if all the MCP requests mapped from the 

CCP GET-INFO request were attended. This is not the 

case, because the GET-FLOW request and others have 

not yet been executed, so the server waits. 

11) The steps from 6 to 10 are repeated with the other MCP 

requests (GET-FLOW, etc.). 

12) When all the MCP requests are executed, these requests 

are removed from the SB1 buffer and the server’s trans-

lator sends a CCP GET-INFO reply to the client. This 

reply contains the current gas pressure value (44.5), the 

current flow of oil and so on. 

13) The client removes the corresponding CCP request from 

CB1 and shows the results to the final user. A new 

GET-INFO request can be generated concerning the 

next well in the list. 

 

The low band of the radio links between the well’s control-

ler and the master computer can introduce severe delays in 

the system when multiple clients are monitoring wells con-

nected to the same master. 

To minimize this problem, a buffering procedure was in-

troduced in the master application. All requested information 

is stored before being sent to the server. If another client 

requests the same piece of information and the buffered one 

is recent, the already available value is immediately sent to 

the server and a new use of the link radio is avoided. We also 

introduced a pooling procedure: when the link radio is not 

being used, the master autonomously requests information 

from the controllers, to update the buffered values. 

 

V. CONCLUSIONS 

 

The implementation of the prototype showed that is possi-

ble to evolve from several mono-user master-slave subsys-

tems to one multi-user client-server supervisor software. 

One advantage of this architecture is its applicability to 

heterogeneous systems. Any user with access to the supervi-

sion network can remotely access information about a proc-

ess, no matter which automation subsystem the process is 

based on. Only the server (not the clients) needs to know 

details about communication with the slave stations. Changes 

in the control hardware of processes are transparent to  users. 

As communication between clients and the server is based 

on a standard protocol, different human-machine interfaces 

(dedicated applications, web-based interfaces, etc.) can be 

implemented and simultaneously used. 
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