

A Proposal to the Supervision of Processes in an Industrial Environment with

Heterogeneous Systems

Rodrigo B

SOUZA

Adelardo A D

MEDEIROS

João M A

NASCIMENTO

Heitor P

GOMES

André L

MAITELLI

UFRN - Universidade Federal do Rio Grande do Norte
UFRN-CT-DCA / Campus Universitário / 59072-970 Natal – RN – Brazil

rbsouza@dca.ufrn.br adelardo@dca.ufrn.br joao@dca.ufrn.br heitor@dca.ufrn.br maitelli@dca.ufrn.br

Abstract – The need to manage the production in different in-

dustrial sectors creates a strong demand for process informa-

tion. Information is generated and presented by a supervisory

system, by collecting and treating raw data from the processes.

Data can arrive from different physical processes and through

different communication protocols and/or access media. This

paper proposes an acquisition methodology to allow the super-

visory system to access data independently of these characteris-

tics of the process and of the communication channel.

I. INTRODUCTION

Supervisory systems for industrial processes are also

known as SCADA (Supervisory Control and Data Acquisi-

tion) systems [1]. A SCADA system must be able to process

information and make it available to the operator of the proc-

ess or any other user of the supervision software [2]. It can

also work in the supervisory control level to directly act on

the process [3], sometimes including a certain degree of

machine intelligence.

A supervisory system in an automated industrial environ-

ment is essentially composed of four elements [4]:

1) Physical Process: it is the object of the supervision and

the main element of the overall system.

2) Control Hardware: it is used in the physical interface

and to control the process.

3) Supervision Software: it acquires, treats and distributes

process data.

4) Communication Network: it is the responsible for the

traffic of information.

An industry can have several different physical processes

in its production environment. The monitoring of these proc-

esses is done in a specific way for each kind of process.

However, information needed by the management about all

the processes should be presented in a unified way. We call

this kind of environment an environment of heterogeneous

processes.

The process control hardware is basically composed of

sensors, actuators and controllers. A controller has the impor-

tant role of maintaining the process working and stable. Be-

sides, it must also provide a physical interface to access

process data.

Many times, in industrial environments, several kinds of

controllers are used. Each controller can have a specific way

to access and store process data. This implies a variety of

communication methods. This kind of industrial environment

will be called an environment of heterogeneous devices.

In this paper we call heterogeneous systems those systems

inserted into industrial environments of heterogeneous proc-

esses and/or heterogeneous devices. We call an automation

subsystem each distinct pair formed by one physical process

and its corresponding control hardware.

The supervision software (called supervisor, for short)

must access the field devices to obtain process data. Data

must be treated to become useful information. Another im-

portant role of the supervisor is to provide data to higher-

level management software. The usual situation in many

heterogeneous systems is to use a distinct supervisor for each

different automation subsystem.

The communication network is in charge of the informa-

tion traffic and is used by the supervisory system while ac-

quiring process data. Usually, it is composed of two subnet-

works: the field network and the supervision local network.

Field networks permit data exchange between controllers

and sensors/actuators by means of point-to-point connections

carrying input/output signals [5]. To achieve a deterministic

communication, the majority of field networks are based on a

master-slave architecture. In this kind of network, slave con-

trollers never initiate a communication. These controllers

only respond to requests made by the master controller.

Some of the more usual implementations of the master-slave

architecture in industrial environments are the modbus [6]

and profibus [7] networks.

The supervision local network almost always uses LANs

(Local Area Network) based on Ethernet TCP/IP [8,9]. This

LAN provides the communication medium needed to share

process information. The supervisors usually use supervision

local networks based on the client-server architecture to

share this information [10,11].

In several heterogeneous industrial systems, data acquisi-

tion and information presentation is a very specific procedure

for each automation subsystem. In this context, many of the

current supervisors can be used with one and only one sub-

system. Consequently, data integration for information man-

agement is a more difficult task.

This work proposes a methodology to acquire data from

heterogeneous systems in a homogeneous way. This ap-

proach allows to collect process data and to deliver informa-

tion to management systems, independently of the nature of

the supervised processes and of their control and connection

devices.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade Federal do Rio Grande do Norte

https://core.ac.uk/display/71358954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. PROPOSED SOLUTION

Each subsystem of a heterogeneous SCADA is composed

of one or more clients, a single server and one or more mas-

ters accessing the processes. This paper proposes virtually

grouping the several supervision subsystems into a single

system, according to the schema in Fig. 1. The supervision

system must be able to use the existing supervision and field

networks and must allow several simultaneous clients.

For that, this system must have a standardized communica-

tion interface between the new server and the clients of all

subsystems. In the same way, we have to standardize com-

munication between the server and the masters of all subsys-

tems. The communication standards between the clients and

the server and between the server and the masters will be

called CCP (Client Communication Protocol) e MCP (Master

Communication Protocol), respectively (see Fig. 2).

A. Clients

Clients translate requests from the users into CCP func-

tions. These functions, when possible, are independent from

the physical process. The CCP function is sent to the server

with the request id and the virtual address of the physical

process. When the server sends back the corresponding reply,

the client exhibits it to the user.

B. Server

The server receives CCP requests from the clients. The vir-

tual address of the process is used to determine the corre-

sponding master and the physical address of the actual proc-

ess. After verifying the validity and syntax of the CCP func-

tion, it is translated into one or more MCP functions. The

MCP functions are then sequentially sent to the appropriate

master. When the MCP requests are received, they are even-

tually combined, translated and sent to the clients.

C. Masters

 The masters are in charge of communication with the

physical processes through the control hardware. In this case,

the controllers are the slave stations in the field network.

Masters receive the MCP functions from the server and trans-

late them into native functions of the controllers. The an-

swers of the controllers are sent to the server.

III. IMPLEMENTATION

This section presents one possible computational imple-

mentation of the proposed architecture. The implementation

is divided into three applications: client, master and server.

 A. Client Application

The client application sends requests to the server and

treats the replies it sends back. For this, three concurrent

processes have been used. The first process, Client Process 1

(CP1), waits for a solicitation from the user, generates a

request, sends it to the server and inserts the request into a

buffer of requests without answer, Client Buffer 1 (CB1).

The second process, Client Process 2 (CP2), waits for replies

from the server, withdraws the corresponding request from

CB1 and exhibits the result to the user. The third process,

Client Process 3 (CP3), generates timeouts by periodically

inspecting the CB1 buffer to assess the elapsed time since

each request was sent. Fig. 3 illustrates that architecture.

SCADA SOFTWARE

SCADA

USERS PROCESS

PROCESS 1

PROCESS 2

SCADA SOFTWARE SCADA SOFTWARE

SCADA

USERS PROCESS

PROCESS 1

PROCESS 2

Fig. 1. Supervision by grouping the automation subsystems.

CLIENT

USER

CP1

CP3

CP2

SERVER

CB1

REQUEST

REPLY

RESULT

CLIENT

USER

CP1CP1

CP3CP3

CP2CP2

SERVER

CB1

REQUEST

REPLY

RESULT

Fig. 3. The client application.

SCADA SOFTWAREUSERS

CLIENT

CLIENT

CLIENT

SERVER

CCP

MASTER

MASTER

MCP

PROCESS 1

PROCESS 2

SCADA SOFTWARESCADA SOFTWAREUSERS

CLIENTCLIENT

CLIENTCLIENT

CLIENTCLIENT

SERVER

CCP

MASTERMASTER

MASTERMASTER

MCP

PROCESS 1

PROCESS 2

Fig. 2. Proposed supervision architecture

B. Server Application

The server is divided into two sub-applications: the transla-

tor and the router, as in Fig. 4. The former translates CCP

functions to MCP functions. The latter routes the MCP func-

tions to the appropriate master.

The translator has two concurrent processes: Translator

Process 1 (TP1) and Translator Process 2 (TP2). TP1 re-

ceives a request from a client, maps the CCP function into a

set of MCP functions, insert them into a buffer of mapped

functions, Server Buffer 1 (SB1), and sends them to the

router. TP2 waits for replies from the router and, when one of

them arrives, verifies if all the MCP requests corresponding

to one CCP request have already been executed. If yes, it

sends the CCP reply to the client and eliminates all the set

from the SB1 buffer. If no, the status of the MCP request in

the SB1 buffer is changed to already executed.

The router is formed by three processes: Router Process 1

(RP1), Router Process 2 (RP2) and Router Process 3 (RP3).

RP1 receives the requests MCP from the translator, routes

them to the appropriate masters and inserts them into the

buffer of requests waiting for replies, Server Buffer 2 (SB2).

RP2 waits for answers from the masters and, when they ar-

rive, removes the corresponding requests from SBS and

sends the reply to the translator. The RP3 process cyclically

examines the SB2 buffer looking for timeouts: when one is

found the request is withdrawn from the buffer and the trans-

lator is notified.

C. Master Application

The master is the simplest element of the SCADA soft-

ware. Its main function is responding to server’s requests by

communicating with the physical process. To execute this

function it uses three concurrent processes. The first process,

Master Process 1 (MP1), receives MCP requisition from the

server and converts them to the language understood by the

actual controller connected to the process (modbus, profibus,

etc.). This requisition is then inserted into an execution

queue, Master Buffer 1 (MB1). A second process, Master

Process 2 (MP2), cyclically executes the first request in the

MB1 queue, sends the answer to the server and removes the

requisition from the queue. The third process, Master Process

3 (MP3) periodically inspects the MB1 queue to detect time-

outs. The overall operation of the master is showed in Fig. 5.

IV. APPLICATION AND RESULTS

This section shows an application of the implemented ar-

chitecture: a SCADA software to be used in the automation

of oil wells. This application is a result of a partnership be-

tween the UFRN and the Brazilian petroleum company

Petrobras.

The system to be supervised is a very heterogeneous one,

mainly because the region where the supervisor will be used

is large and has more than 3,000 wells. The existing field

network that connects the controllers of the wells to the mas-

ter computer is based on low-band (9600bps) radio links. The

wells use different methods of oil elevation and different

controllers: each pair (elevation method x controller) can

adopt a different communication protocol and used to be

monitored by specific supervision softwares.

The main methods of artificial elevation currently used in

oil industry [12] are:

• Gas-lift (GL) – compressed gas is injected into

the well to elevate the oil to the surface.

• Electrical Submersible Pumping (ESP) – a cable

transmits energy to an electric motor, coupled

with a submerged centrifugal pump that generates

pressure to elevate the oil.

• Sucker Rod Pumping (SRP) – The rotation move-

ment of a motor is converted into an up and down

movement of a rod. A pump at the end of the rod

uses the up and down movement to produce a cy-

clic pumping of the oil to the surface.

• Progressive Cavity Pumping (PCP) – a progres-

sive cavity pump is immersed in the oil well. The

TRANSLATOR

CLIENT

TP1 TP2

SB1

REQUEST

REPLY

REPLY

ROUTER

REQUEST

ROUTER

RP1 RP2

SB2

REQUEST

REPLY

REPLY

MASTER

REQUEST

RP3

TRANSLATOR

TRANSLATOR

CLIENT

TP1 TP2

SB1

REQUEST

REPLY

REPLY

ROUTER

REQUEST

TRANSLATOR

CLIENTCLIENT

TP1TP1 TP2TP2

SB1SB1

REQUEST

REPLY

REPLY

ROUTER

REQUEST

ROUTER

RP1RP1 RP2RP2

SB2SB2

REQUEST

REPLY

REPLY

MASTER

REQUEST

RP3RP3

TRANSLATOR

Fig. 4. The server application.

MASTER

MP1 MP2

SERVER

MB1

REQUEST

REPLY

REPLY

REQUEST

MP3

TIMEOUT

PROCESS

MASTER

MP1MP1 MP2MP2

SERVER

MB1

REQUEST

REPLY

REPLY

REQUEST

MP3MP3

TIMEOUT

PROCESS

Fig. 5. The master application.

geometry of the pump creates a set of hermetical

cavities. When the pump’s rotor turns, the cavities

progressively move along the pump’s axis and

push the oil towards the surface.

Each one of these artificial elevation methods has its own

variables to be monitored, characterizing a heterogeneous

processes environment. Besides, because of the particulari-

ties of each process and its monitored signals, several auto-

mation companies have developed specific controllers, char-

acterizing an environment of heterogeneous devices. Fig. 6

illustrates a heterogeneous system with four possible automa-

tion subsystems: two methods of artificial elevation (GL and

SRP) and two distinct control equipments (C1 and C2).

Because of their particularities, the automation subsystems

we can observe in Fig. 6 are normally automated by different

enterprises. Fig. 7 shows a situation where users need infor-

mation from different wells in two distinct automation sub-

systems: the users shall interact with different SCADA soft-

wares. Using the architecture proposed in this paper, a single

client interface can obtain information from all wells, creat-

ing the situation represented in Fig. 1.

Our first supervision system using the proposed architec-

ture is being used to monitor nine wells using the Gas-Lift

elevation method and ZAP-500 controllers made by the HI

Tecnologia Brazilian enterprise. Currently, new automation

subsystems are being added to the system to allow monitor-

ing thousands of Sucker Rod Pumping wells with different

controllers. The first prototype of the new version is moni-

toring two of these wells. Fig. 8 presents the main screen of

the implemented client application.

The field network uses the previously existing structure

composed of master computers and radio links with trans-

mission rate of 9,600 bps and a mix of proprietary and mod-

bus protocols. The private communication network (intranet)

of Petrobras is used as the supervision local network.

An illustrative (and simplified) step-by-step example of

what happens inside the system is the following:

1) The client periodically generates GET-INFO requests.

GET-INFO is a CCP function to obtain several general

parameters of a well; these parameters are presented in

the main screen of the client application (Fig. 8). At a

given instant, a GET-INFO 9624 request is generated,

where 9624 is the virtual address of one of the wells be-

ing presented in the main screen.

2) The GET-INFO 9624 request is stored into the CB1

buffer and sent to the server, using the local network.

3) The server analyses the request and the database to

conclude that the 9624 well is a Gas-Lift well with a

certain controller. Using this information, the GET-

INFO request is decomposed into several MCP requests

(GET-GASPRESSURE, GET-FLOW, etc.) by the

server’s translator. These requests are stored into the

Fig. 8. Main screen of the implemented client application.

SCADA

C2 C1

C1 C2

SCADA SCADA

C2 C2 C1 C1

C1 C1 C2 C2

Fig. 6. Heterogeneous system for oil artificial elevation with four

possible automation subsystems.

SCADA SOFTWARE 1

SCADA SOFTWARE 2

SCADA

USERS PROCESS

SCADA SOFTWARE 1

SCADA SOFTWARE 2

SCADA

USERS

SCADA SOFTWARE 1SCADA SOFTWARE 1

SCADA SOFTWARE 2SCADA SOFTWARE 2

SCADA

USERS PROCESS

Fig. 7. Supervision of oil wells inserted into distinct automation

subsystems.

SB1 buffer and communicated to the router.

4) The server’s router uses database information to con-

clude that the well’s physical address is 39 and that the

well number 39 is connected to the master number 3.

Using this information, the MCP requests GET-

GASPRESSURE 39, GET-FLOW 39 and so on are

stored into the SB2 buffer and sent to the master.

5) The master receives the MCP requests and stores them

into the MB1 buffer.

6) The master broadcasts by radio a modbus GET-

GASPRESSURE 39 request, addressed to the control-

ler of the well number 39. This request was chosen be-

cause it was the first one in the MB1 buffer.

7) The well controller responds to the modbus request with

a GET-GASPRESSURE 44.5 reply using the link ra-

dio of the field network. The number 44.5 is the cur-

rent gas pressure value in the well number 39.

8) The master receives the modbus reply from the control-

ler and sends a MCP GET-GASPRESSURE 44.5 re-

ply to the server. The corresponding request is removed

from the MB1 buffer and the next request in the buffer

(GET-FLOW) is sent to the well’s controller (step 6).

9) In parallel, the server’s router receives the MCP reply.

The corresponding request is removed from the SB2

buffer and the arrival is communicated to the translator.

10) The GET-GASPRESSURE request is marked as already

executed in the SB1 buffer by the server’s translator.

Then it verifies if all the MCP requests mapped from the

CCP GET-INFO request were attended. This is not the

case, because the GET-FLOW request and others have

not yet been executed, so the server waits.

11) The steps from 6 to 10 are repeated with the other MCP

requests (GET-FLOW, etc.).

12) When all the MCP requests are executed, these requests

are removed from the SB1 buffer and the server’s trans-

lator sends a CCP GET-INFO reply to the client. This

reply contains the current gas pressure value (44.5), the

current flow of oil and so on.

13) The client removes the corresponding CCP request from

CB1 and shows the results to the final user. A new

GET-INFO request can be generated concerning the

next well in the list.

The low band of the radio links between the well’s control-

ler and the master computer can introduce severe delays in

the system when multiple clients are monitoring wells con-

nected to the same master.

To minimize this problem, a buffering procedure was in-

troduced in the master application. All requested information

is stored before being sent to the server. If another client

requests the same piece of information and the buffered one

is recent, the already available value is immediately sent to

the server and a new use of the link radio is avoided. We also

introduced a pooling procedure: when the link radio is not

being used, the master autonomously requests information

from the controllers, to update the buffered values.

V. CONCLUSIONS

The implementation of the prototype showed that is possi-

ble to evolve from several mono-user master-slave subsys-

tems to one multi-user client-server supervisor software.

One advantage of this architecture is its applicability to

heterogeneous systems. Any user with access to the supervi-

sion network can remotely access information about a proc-

ess, no matter which automation subsystem the process is

based on. Only the server (not the clients) needs to know

details about communication with the slave stations. Changes

in the control hardware of processes are transparent to users.

As communication between clients and the server is based

on a standard protocol, different human-machine interfaces

(dedicated applications, web-based interfaces, etc.) can be

implemented and simultaneously used.

REFERENCES

[1] J. Melendez, J. Colomer and J. L. Rosa, “Expert super-

vision based on cases,” 8º IEEE International Confer-

ence on Emerging Technologies and Factory Automa-

tion, 2001.

[2] L. B. Becker, W. Pardi Jr and C. E. Pereira, “Proposal of

an integrated object-oriented environment for the design

of supervisory software for real-time industrial automa-

tion systems,” Fourth International Workshop on Ob-

ject-Oriented Real-Time Dependable Systems, 1999.

[3] E. Ozdemir and M. Karacor, “Run time position estima-

tion with basic sensors in real time SCADA applica-

tions,” 7º International Workshop on Advanced Motion

Control, 2002.

[4] A. Daneels and W. Salter, “What is SCADA?,” 7º Inter-

national Conference on Accelerator and Large Experi-

mental Physics Control Systems, 1999.

[5] S. Viturri and D. Miorandi, “Hybrid Ethernet/IEEE

802.11 networks for real-time industrial communica-

tions,” 10º IEE International Conference on Emerging

Technologies and Factory Automation, 2005.

[6] Modicon Industrial Automation Systems, Modbus Pro-

tocol Reference http://www.eecs. um-

ich.edu/~modbus, 2004

[7] PROFIBUS, Descrition Técnica Profibus,

http://www.profibus .org.br, 2002

[8] A. S. Tanenbaum, Redes de Computadores, Editora

Campus, 1997

[9] J. Jasperneite and J. Feld, “PROFINET: An integration

plataform for heterogeneous industrial communication

systems,” 10º IEE International Conference on Emerg-

ing Technologies and Factory Automation, 2005.

[10] G. Bucci and C. Landi, “A distributed measurement

architecture for industrial applications,” IEEE Transac-

tions on Instrumentation and Measurement, 2003

[11] L. Zhi and Z. Hao, “The study and realization of

SCADA system in manufacturing enterprises,”

[12] J. E. Thomas, Fundamentos de Engenharia de Petróleo,

Editora Interciência, 2001.

