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Abstract
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analytically and numerically show that, under model misspecification, the use of statistically robust
estimates instead of the widely used classical sample mean and covariance is highly beneficial for
the stability properties of the mean-variance optimal portfolios. Moreover, we perform simulations
leading to the conclusion that, under classical estimation, model risk bias dominates estimation risk
bias. Finally, we suggest a diagnostic tool to warn the analyst of the presence of extreme returns that
have an abnormally large influence on the optimization results.
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1 Introduction

The seminal work by Markowitz (1952, 1959) opened the era of modern finance, and the

mean-variance framework is the root of modern investment theory. As Britten-Jones (1999)

notes: “Mean-variance analysis is important for both practitioners and researchers in finance.

For practitioners, theory suggests that mean-variance efficient portfolios can play an impor-

tant role in portfolio management applications. For researchers in finance, mean-variance

analysis is central to many asset pricing theories as well as to empirical tests of those theories;

however, practitioners have reported difficulties in implementing mean-variance analysis. For

example, Black and Litterman (1992) note that, ‘when investors have tried to use quantita-

tive models to help optimize the critical allocation decision, the unreasonable nature of the

results has often thwarted their efforts’ (p.28).”

To compute the mean-variance efficient frontier and use the information it provides to

select the unique optimal portfolio for a given level of risk (or return), we have to know the

stochastic mechanism generating the returns for a given set of securities. In its standard

formulation, the mean-variance efficient frontier (MVEF) model makes the assumption that

the securities’ returns are independently and identically distributed (i.i.d.) as a multivariate

normal distribution N(µ,Σ), where µ is the vector of the securities’ mean returns and Σ is

the covariance matrix of the securities’ returns.1 However, the uniqueness of the MVEF

solution (i.e. the uniqueness of the optimal weights of the securities in the portfolio given a

specific level of risk or return) depends on the implicit assumption that the inputs µ and

Σ are known, whereas they must be estimated and therefore are subject to statistical error.

1 The stochastic process generating the data can also include serial dependence, see e.g. Merton (1969,
1971). In practice however, the multivariate normal i.i.d. model is widely used.
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The MVEF is computed after estimating the model (estimating µ and Σ), and the resulting

optimal portfolios might then be heavily biased by this statistical error occurring during the

estimation process.

This type of error is called estimation risk (see for instance Michaud (1989)). It can

be shown that if we construct, by means of simulations, a confidence region of statistically

equivalent portfolios for each optimal portfolio on the efficient frontier, these statistically

equivalent portfolios may have significantly (and even radically) different structures in terms

of the weights of the different securities. Moreover, on average, the Sharpe ratios2 of the

selected portfolios are not only significantly below the true Sharpe ratio, but also below the

Sharpe ratio of an arbitrarily-chosen portfolio, for instance an equally weighted portfolio (see

Jobson and Korkie (1981)). To solve this particular problem, Jorion (1986) suggested the

use of Stein’s (1956) Bayes-Stein shrinkage estimator for the mean return. Other authors

have also studied estimation risk in the context of portfolio selection and suggested several

types of correction.3

There is however another type of statistical error, which is concerned with the distribution

of the data generating the model. As it is assumed that the observed returns are realizations

of a multivariate normal distribution, what happens if this assumption is slightly violated,

for instance when one or more of the securities have unexpected (non-normal) high or low

returns? This model deviation called model risk was already addressed in the context of

the MVEF model by Victoria-Feser (2000). More recently Cavadini, Sbuelz, and Trojani

2 The Sharpe ratio is calculated as the difference between the portfolio’s mean return and the relevant
risk-free rate mean, divided by the standard deviation of the portfolio’s returns.

3 See for instance Barry (1974), Bawa, Brown, and Klein (1979), Alexander and Resnick (1985), Chopra
and Ziemba (1993), and more recently ter Horst, de Roon, and Werker (2002).
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(2002) have considered model risk and estimation risk simultaneously in the same context of

portfolio choices, showing that model risk generates greater bias than estimation risk.

In the statistical literature this problem of model risk is referred to as a problem of

statistical robustness. Robustness is concerned with the stability of estimators of parameters

from a given model when model misspecification exists, and in particular in the presence of

outlying observations.4 Robust estimators have been extensively developed in statistics since

the pioneering work of Huber (1964) and Hampel (1968).

A fundamental tool used for studying statistical robustness is the influence function

proposed by Hampel (1968, 1974). The influence function is useful to determine analytically

and numerically the stability properties of an estimator in case of model misspecification.

In this paper, the influence function is used for studying the behavior of the estimator of

the optimal portfolio weights, as well as for building a diagnostic tool to detect outlying

returns. We also investigate by means of real market data and simulations how the violation

of the multivariate normal assumption can seriously affect the optimality characteristics of

the solution of the MVEF model when computed with sample mean and sample covariance

estimators.

The contributions of this paper to the literature are therefore twofold. First, we show

analytically that the necessary and sufficient condition for the mean-variance portfolio opti-

mizer to be robust to local nonparametric departures from multivariate normality is that the

estimators of the model’s parameters µ and Σ be robust with bounded influence functions.

We suggest such robust estimators and show their remarkable behavior in the presence of

4 Outlying observations can be defined as data points that have an infinitesimal probability of being
generated by the model generating the rest of the data.
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outlying observations in a simulation study. Second, we present a diagnostic tool based on

the influence function for detecting the outlying data from the sample that have an abnor-

mally large influence on the optimization process. This tool assesses the quality of the data

before their use in the optimizer, and is of particular interest to the analyst.

The paper is organized as follows. In section 2, we present two examples of mean-

variance optimization applied to real market data. We show that a robust optimizer can

lead to optimal portfolios that are different from the ones given by a classical (non-robust)

optimizer, and that this difference is often due to only a few outlying returns from the

sample (i.e. under slight model deviations). Section 3 contains the theoretical aspects of this

paper. We first present the basic concepts of robust statistics and then use them to study

the robustness properties of a portfolio optimizer. In particular, we show analytically that

if the model parameters are not robustly estimated, the resulting optimizer can be seriously

biased, leading to sub-optimal portfolio choices. We also develop a diagnostic tool based

on the influence function for detecting influential returns from the sample. In section 4, a

simulation study is performed to investigate the stability properties of the robust optimizer

when compared with its classical counterpart. Section 5 concludes.

2 Market data examples

2.1 Diversified portfolio

This example replicates the kinds of security that investors may hold in their portfolios. The

data set is composed of series of returns on bonds, stocks and alternatives (hedge funds)

represented by the following indices.5 For the bonds, we use a Merrill Lynch index available

5 Even if series of returns from the financial reality may exhibit autocorrelation, this case is of interest and
raises a few important questions.
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on Bloomberg (IND H355 <GO>). This index includes government and corporate bonds

with ratings ranging from AAA to A, focuses on maturities between 1 and 10 years and is

diversified across the following markets: United States, Canada, United Kingdom, Euroland,

Switzerland, Denmark, Sweden, Japan and Australia. The well-known Morgan Stanley Cap-

ital International (MSCI) world developed market index is used for the stocks, and its data

are collected from Datastream. The two above-mentioned indices are total-return indices

(i.e. including reinvestment of coupons/dividends). The alternative investment part of the

portfolio is represented by the Credit Suisse First Boston (CSFB) / Tremont hedge fund

index, and data come from their web site (www.hedgeindex.com). For the three above-

mentioned asset classes, monthly returns span January 1997 to December 2002, for a total

of 72 observations.6 The currency of all indices is the unhedged US dollar (USD).

The returns of these three series are presented in Figure 1. We notice that some returns

of the stocks are extreme, for instance data point 20, with a very low return, and a few

data points between observations 50 and 70. On the other hand, data points 7, 36 and 38

exhibit three rather high returns for the alternatives. These extreme returns heavily bias

the sample mean, sample covariance and sample correlation estimators, and this bias can

be seen by comparing the results of the above estimators, which we characterize as classical

estimators, with those of robust estimators for the mean, covariance and correlation of the

return series. We suggest the use of the translated-biweight S-estimator (TBS estimator)

proposed by Rocke (1996) as robust estimator (for details, see section 3). All calculations

are done with S-Plus and its numerical optimizer NUOPT.

6 In the following of this paper, logarithmic returns are used for calculation.
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Figure 1. Diversified portfolio: serial plot of return series. This figure shows the (unhedged)

USD logarithmic monthly returns of the three series used to build the diversified portfolio. Obser-

vations span January 1997 to December 2002 for a total of 72 indexed data. The 9 vertical lines

correspond to the 9 most influential returns detected by the gross error sensitivity (see later).

The comparison between the classically estimated correlation matrix and its robust coun-

terpart is presented in Figure 2, in which the ellipses represent the correlations of the (as-

sumed) bivariate normal distribution between the different pairs of return series. The corre-

sponding values of the correlations between the securities are shown in the lower triangular

part of the Figure. Classical correlations are the numbers below, robust correlations are

the ones above. Correlations in terms of numbers are different between the robust and

the classical estimates, especially in the case of bonds and alternatives. Moreover, tak-

ing into account the differences in classical and robust mean return estimates (for bonds,

stocks and alternative investments respectively), we find µ̂cla = (0.31%, 0.09%, 0.77%) and

µ̂rob = (0.30%,−0.12%, 0.68%). It can be seen that the estimated mean returns differ sub-

stantially for the stocks. The vectors of standard deviation of returns also exhibit differences:
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Figure 2. Diversified portfolio: correlation structure. This figure shows a double compari-

son between the results of classical and robust estimation. On the lower triangular part, classical

correlations estimated by means of the sample correlation estimator (below) are compared with ro-

bust correlations estimated by means of the TBS estimator (above). On the upper triangular part,

a comparison of the correlation structure is shown where the classical and robust ellipses represent

the correlations of the (assumed) bivariate normal distribution between the different pairs of return

series.

classical standard deviations are (2.03%, 4.95%, 2.53%), and robust standard deviations are

(2.07%, 5.25%, 1.70%) for bonds, stocks and alternatives respectively.

To assess the effect of these differences in estimation on the results of the portfolio opti-

mizer, the classical (calculated with the classically estimated µ̂cla and Σ̂cla) and the robust

(calculated with the robustly estimated µ̂rob and Σ̂rob) mean-variance efficient frontiers7 are

presented in Figure 3.

Classically and robustly estimated efficient frontiers give an important insight into the

statistical properties of the data. The two efficient frontiers are distinct from each other,

7 Calculation in this example has been done without allowing for short selling, as is mainly the case in
managed portfolios. This restriction is lifted in section 4.
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Figure 3. Diversified portfolio: classically and robustly estimated efficient frontiers. This

figure shows the classical mean-variance efficient frontier (MVEF) when the mean and covariance of

returns are estimated using the sample mean and sample covariance estimators, as well as the robust

MVEF when the mean and covariance of returns are estimated using the TBS estimator. Short selling

is not allowed.

meaning that the influential data points that affect classical estimation are treated by robust

estimation, so that their influence is kept under control. The robust efficient frontier being

higher and more to the left than the classical one clearly indicates a reduction in the volatility

structure of the inputs due to their robust estimation. Other interesting information is given

by the composition of the so-called minimum variance portfolios, which are the portfolios

characterized by the minimum risk on the two efficient frontiers. The classical and robust

weights of the three assets (bonds, stocks and alternatives respectively) in these particular

portfolios are p̂cla = (0.59, 0, 0.41) and p̂rob = (0.41, 0, 0.59). The fact that the weights of

bonds and alternatives are the exact reverse of each other is due to chance, but more worrying

is that portfolio compositions that should represent the same reality (i.e. minimum risk) are
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quite different from each other. Stocks are obviously given a zero weight by the optimizer

for such a low-risk portfolio, due to their high standard deviation of returns over the period.

A further step in the analysis is to check which observations are considered outliers and

responsible for this shift of the efficient frontier. To do so, we use a diagnostic tool called gross

error sensitivity, which we present in section 3. Briefly, the gross error sensitivity applied

to our case is a tool to detect outlying returns that have an abnormally high influence on

the estimator of the optimal portfolio weights. The gross error sensitivity for the diversified

portfolio data set is given in Figure 4. The 9 returns that appear the most influential
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Figure 4. Diversified portfolio: gross error sensitivity. This figure shows the relative influence

of each of the 72 returns on the estimator of the optimal portfolio weights as detected by means of the

gross error sensitivity diagnostic tool. As this measure relates to a specific portfolio on the classical

mean-variance efficient frontier, the level of standard deviation of returns has been set to 1.5%.

(compared with the majority) have also been highlighted in the time series plot of Figure 1 by

means of vertical lines. The striking feature is that these 9 returns do not always correspond

to the most extreme returns of the different series, and that makes them difficult to find by
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simple visual inspection. For example, when looking at Figure 1, data point 20 (composed

of the three series) seems more statistically outlying than data point 36, which is not true

when looking at Figure 4. In fact, the power of the gross error sensitivity is that it takes into

account the multivariate structure of the model and highlights the influential data points

according to the specific estimator used.

In short, we have found that a few outlying observations in the data have a strong

influence on the composition of the resulting optimal portfolios.8

2.2 Low volatility hedge fund portfolio

Let’s now turn to another example in which we remain in the same asset class.9 We suggest

building a portfolio composed only of alternatives (hedge funds) and we decide to include

the three hedge fund strategies that exhibit the lowest standard deviation of returns over a

defined past period. To do so, we use the CSFB/Tremont hedge fund index family, which

is composed of a main index (used in the previous example) and 9 major sub-indices each

reflecting a specific hedge fund strategy.10

When using the full available return history in (unhedged) USD from January 1994 to

December 2002, the three hedge fund strategies with lowest standard deviation of returns

are convertible arbitrage (CA), event-driven (ED) and fixed income arbitrage (FIA) with

respective monthly standard deviation of returns of (1.41%,1.86%,1.20%). We refer the

reader to Lhabitant (2002) for specific details and characteristics of these strategies.

8 These 9 outlying points represent 12.5% of the data.

9 As in the previous case, no direct conclusion can be drawn from this specific example as returns may
exhibit serial dependence. However, a few interesting questions can be raised.

10 Due to the particularity of hedge fund investing (low liquidity, lock-up periods, etc.), monthly portfolio
re-balancing implicitly underlying the MVEF model estimated on monthly data might sometimes be difficult
to achieve.
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The returns of these three strategies are presented in Figure 5. Compared with the
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Figure 5. Low volatility hedge fund portfolio: serial plot of return series. This figure shows

the (unhedged) USD logarithmic monthly returns of the three series used to build the low volatility

hedge fund portfolio. Observations span January 1994 to December 2002 for a total of 108 indexed

data. The 2 vertical lines correspond to the 2 most influential returns detected by the gross error

sensitivity (see later).

preceding example, data seem more stable, with the notable exception of a few data points

just before point 60, which correspond to the Russian financial crisis of August 1998.

Presented in Figure 6 is a comparison of the correlation structure under classical and

robust estimation. Again, there are differences between classical and robust correlation

estimates. The same is true for the classical and robust mean vectors (for convertible ar-

bitrage, event-driven and fixed income arbitrage strategies respectively) which are µ̂cla =

(0.81%, 0.83%, 0.54%) and µ̂rob = (1.14%, 1.26%, 0.85%): major differences exist between

the classical and robust mean vectors. Hence, even with series exhibiting low standard de-

viation of returns, classical and robust estimations do not give the same results, and this
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Figure 6. Low volatility hedge fund portfolio: correlation structure. This figure shows a

double comparison between the results of classical and robust estimation. On the lower triangular

part, classical correlations estimated by means of the sample correlation estimator (below) are com-

pared with robust correlations estimated by means of the TBS estimator (above). On the upper

triangular part, a comparison of the correlation structure is shown where the classical and robust el-

lipses represent the correlations of the (assumed) bivariate normal distribution between the different

pairs of return series.

difference is further evidenced by classical and robust efficient frontiers11 shown in Figure 7.

As in the previous example, the robust efficient frontier is located higher than and to the

left of the classical one, indicating the presence of outlying data points. Looking at the com-

position of the minimum variance portfolios, the classical and robust weights (for convertible

arbitrage, event-driven and fixed income strategies respectively) are p̂cla = (0.26, 0.09, 0.65)

and p̂rob = (0.31, 0, 0.69). As can be seen, the difference in weights is mainly concentrated

on the first two hedge fund strategies. There again, it is interesting to identify the outly-

11 Calculation has been done without allowing for short selling
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Figure 7. Low volatility hedge fund portfolio: classically and robustly estimated efficient

frontiers. This figure shows the classical mean-variance efficient frontier (MVEF) when the mean

and covariance of returns are estimated using the sample mean and covariance estimators, as well as

the robust MVEF when the mean and covariance of returns are estimated using the TBS estimator.

Short selling is not allowed.

ing returns responsible for such a change, and we make use of the gross error sensitivity

whose results are reported in Figure 8. The 2 most influential return points have also been

highlighted in the serial plot of Figure 5 by means of vertical lines.

Data points 56 and 57 correspond to the very low returns recorded during the Russian

financial crisis, and they are detected as having a very strong relative influence on the classical

estimates of the optimal portfolio weights.

In short, in this case of series exhibiting rather low standard deviation of returns, the

influence of just a few outlying data points from the sample can be very strong on the

classical estimates needed to calculate the efficient frontier and thus lead to different portfolio
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Figure 8. Low volatility hedge fund portfolio: gross error sensitivity. This figure shows

the relative influence of each of the 108 returns on the estimator of the optimal portfolio weights as

detected by means of the gross error sensitivity diagnostic tool. As this measure relates to a specific

portfolio on the classical mean-variance efficient frontier, the level of standard deviation of returns

has been set to 1.3%.

choices.12

At this point, we may still wonder what would be a strong enough reason for choosing a

robust portfolio composition rather than a classical one, as both kinds of optimal portfolio

could be considered acceptable. In fact, the reason for preferring a robust portfolio composi-

tion will become obvious in section 4, and will be strongly motivated by the sensitivity of the

sample mean and covariance estimated MVEF model to the data as shown by a simulation

study.

In the next section we review the basic concepts of robust statistics and apply them to

the MVEF model.

12 These 2 strongly outlying observations represent 1.85% of the total 108 observations.
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3 Robustness properties of the MVEF model

3.1 Basic concepts of robust statistics

The pioneering work of Huber (1964) and Hampel (1968) has laid the ground for the theory

of robust statistics. In short, as a generalization of classical theory, robust statistics takes

into account the possibility of model misspecification (i.e. model deviation). This theory and

its results are valid at the model as well as in a neighborhood of the model,13 which is not

the case for classical statistics, which is only valid at the model.

Let’s denote

{Gε|Gε = (1 − ε)Fθ + εW} , (1)

with W an arbitrary distribution and ε ∈ [0, 1], the set of all distributions defining a neigh-

borhood of the parametric model Fθ. This neighborhood includes all possible misspecified

distributions around Fθ. Gε can be considered a mixture distribution between Fθ and the

contamination distribution W , and one particular case is when W = ∆z, the distribution

that gives a probability of one to a point z chosen arbitrarily.14 In this case, the neighborhood

of the model featuring all local nonparametric departures from Fθ is given by

{Fε|Fε = (1 − ε)Fθ + ε∆z} . (2)

Hence Fε generates observations from Fθ with probability (1 − ε) and observations equal to

an arbitrary point z with probability ε.

One way of assessing the robustness properties of an estimator θ̂ of θ is to study its

(asymptotic) stability properties in a neighborhood of the model considering a distribution

13 In the presence of outlying observations acting as local nonparametric departures from the model, the
distributional assumptions are violated and we therefore end up in a neighborhood of the model.

14 z can be a scalar or a vector.
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of type Gε, and there is no loss of generality in focusing on the particular case of Fε since

Hampel et al. (1986) showed that the maximal bias on θ̂ is precisely obtained at W = ∆z.

Considering the case when ε tends towards zero,15 we get the so-called influence function

(IF) suggested by Hampel (1968, 1974) and further developed by Hampel et al. (1986). The

IF gives the influence of an infinitesimal amount of contamination z on the value of the

estimator viewed as a function of the underlying distribution. The influence function is then

defined as

IF(z, θ̂, Fθ) = lim
ε↓0

[
θ̂(Fε) − θ̂(Fθ)

ε

]
,

and, when the derivative exists, as

IF(z, θ̂, Fθ) =
∂

∂ε
θ̂(Fε)

∣∣∣∣
ε=0

. (3)

The IF is the directional derivative of the estimator θ̂ in a single point contamination direction

∆z. Depending on the situation, this directional derivative can be scalar, vector or matrix

valued.

The IF is a powerful tool for assessing the robustness properties of estimators. Indeed,

Hampel et al. (1986) show that only the IF is needed to fully describe the asymptotic bias

of an estimator caused by a contamination, implying that an estimator with a bounded IF

has automatically a bounded asymptotic bias. Therefore, an estimator with a bounded IF is

robust in a general neighborhood of the parametric model defined by (1).

The IF can also be used as a diagnostic tool to detect observations that have a large

influence on the estimator θ̂. The gross error sensitivity (GES) is such a tool. It is defined

15 We consider an infinitesimal amount of contamination, and therefore remain striclty in a close neighbor-
hood of the model.
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as the Euclidean norm of the influence function defined under (3) as

GES(x, θ̂) =
(
IF(x, θ̂, Fθ)

′
IF(x, θ̂, Fθ)

)1/2
. (4)

An observation x with a large GES is then considered an influential observation. To compute

the GES, the true parameter value θ has to be known, which is seldom the case in practice.

The value of θ has then to be estimated in a robust way so as to ensure that this diagnostic

tool is not biased by the outlying observations it is supposed to detect.

3.2 Classical MVEF model estimation

Let’s suppose that there are N securities to choose from and let p = (p1, . . . , pN )
′

be the

vector of portfolio weights, such that
∑N

i=1 pi = 1. Recalling that µ is the vector of size N

containing the mean returns of the securities, and that Σ is the (N × N) covariance matrix

of the returns of the securities, the portfolio mean can be written as

R(p) = µ
′
p,

and the portfolio variance as

S(p) = p
′
Σp.

For a given value of the risk aversion parameter λ, the mean-variance optimization selects

the portfolio p∗ which maximizes in p

R(p) − λ

2
S(p),

subject to

e
′
Np = 1,
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where eN of size (N×1) is a vector of ones. The set of optimal portfolios for all possible values

of the risk aversion parameter λ defines the mean-variance efficient frontier. Depending on

the situation, the constraint of no short selling (p ≥ 0) might be added as well as other

constraints.

In the unconstrained case, the solution is explicit and it is well known that the optimal

portfolio weights for a given value of λ are given by

p∗ =
1
λ
Σ−1 (µ − ηeN ) , (5)

with

η =
(
e
′
NΣ−1µ − λ

)/
e
′
NΣ−1eN . (6)

As can be seen, p∗ depends directly on µ and Σ, implying that the resulting estimated

optimal portfolio weights are directly affected by potential estimation bias in the mean and

covariance of returns. This is reflected in the following theorem, where we demonstrate that

the influence function of the estimator of the optimal portfolio weights depends directly on

the influence functions of both the estimators of µ and Σ.

Theorem 1. The (asymptotic) bias of the resulting estimator p̂∗ of the optimal portfolio
weights only depends on the (asymptotic) bias of the estimators of µ and Σ.

Proof. We make use of the IF to describe the behavior of the asymptotic bias of p̂∗ in a
neighborhood of the model.
Let’s first write p̂∗ = p̂∗(µ̂, Σ̂), as the estimated optimal portfolio weights given by (5) jointly
with (6) make p̂∗ depends on both µ̂ and Σ̂. Equation (5) then becomes

p̂∗(µ̂,Σ̂) =
1
λ
Σ̂−1

[
µ̂ −

(
e
′
N Σ̂−1µ̂ − λ

)
eN

/
e
′
NΣ̂−1eN

]
, (7)

and, under local nonparametric departures from the model as in (2), we have

p̂∗(µ̂,Σ̂) =
1
λ
Σ̂(Fε)−1

[
µ̂(Fε) −

(
e
′
N Σ̂(Fε)−1µ̂(Fε) − λ

)
eN

/
e
′
NΣ̂(Fε)−1eN

]
. (8)
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Taking the derivative of (8) with respect to ε in ε = 0 to derive the IF of p̂∗ for the mean-
variance optimal portfolio for a given value of λ, we get

IF(z, p̂∗, Fθ) = −Σ−1IF(z, Σ̂, Fθ)p∗ +
1
λ
Σ−1

{
IF(z, µ̂, Fθ) +

[
e
′
NΣ−1IF(z, Σ̂, Fθ)Σ−1µ −

e
′
NΣ−1IF(z, µ̂, Fθ)

]
eN

/
e
′
NΣ−1eN −

[
e
′
NΣ−1IF(z, Σ̂, Fθ)Σ−1eN

] (
e
′
NΣ−1µ − λ

)
eN

/ (
e
′
NΣ−1eN

)2
}

. (9)

Hence, the IF of p̂∗ depends directly on the IFs of both µ̂ and Σ̂. This means that the
estimator of the optimal portfolio weights directly inherits the stability properties of the
estimator of µ and Σ.

Therefore, unless the mean vector and covariance matrix are robustly estimated, the mean-

variance optimizer can lead to portfolio compositions heavily influenced by just a few outlying

observations from the sample.

The mean and covariance of the returns are in practice often estimated by their sample

counterpart, i.e. by the maximum likelihood (ML) estimator under the multivariate normal

model. In this case, the estimator of µ can be explicitely expressed as

µ̂
′
ML =

1
T

e
′
TY,

where Y is the (T × N) matrix containing the returns of each security (columnwise) for T

periods, and given by

Y =




y
′
1

...

y
′
T




= [y1 . . . yN ] =




y11 . . . y1N

...
. . .

...

yT1 . . . yTN




.

Moreover, the ML estimator of the covariance matrix Σ is calculated as

Σ̂ML =
1
T

(
Y − eT µ̂

′
ML

)′ (
Y − eT µ̂

′
ML

)
,
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where eT of size (T × 1) is a vector of ones. Under normality, the maximum likelihood

estimators are the most efficient. However, in the presence of outlying observations, how can

they cope with model deviation and what kind of influence have outlying data on them?

To answer this central question we make use of the influence function. As shown in

Hampel et al. (1986), the respective IF for µ̂ML and Σ̂ML are given by

IF(z, µ̂ML, Fθ) = −µ + z, (10)

and

IF(z, Σ̂ML, Fθ) = −Σ + (z − µ)(z − µ)
′
. (11)

We can easily see that both IFs for the maximum likelihood estimators of µ and Σ are

unbounded: for an infinite number of data points z, both IFs may become arbitrarily large.

Making use of the above results, the following theorem derives the explicit influence

function of the estimator of the optimal portfolio weights when ML estimation is used for µ

and Σ.

Theorem 2. When sample mean and covariance are used to estimate the mean vector µ
and covariance matrix Σ, the (asymptotic) bias on the resulting estimator p̂∗ of the optimal
portfolio weights can be infinite under infinitesimal departures from multivariate normality.

Proof. The explicit expression for the IF of p̂∗ is given by replacing in (9) the influence
functions of the respective ML estimators reported in (10) and (11), and we find

IF(z, p̂∗, Fθ) = (I− A(z)Σ)p∗ +
1
λ
Σ−1

[
z − µ+

1
b

(d(z) − c(z)) eN − 1
b2

(k(z) − b) (l − λ) eN

]
, (12)

where

A(z) = Σ−1(z − µ)(z − µ)
′
Σ−1,

b = e
′
NΣ−1eN ,

c(z) = e
′
NΣ−1z,

d(z) = e
′
NA(z)µ,

20



k(z) = e
′
NA(z)eN ,

l = e
′
NΣ−1µ.

The IF of p̂∗ under ML estimation is clearly unbounded in z, which means that the asymptotic
bias of the estimated optimal portfolio weights can become arbitrarily large under model
deviation.

In short, the ML-estimated mean-variance optimizer is not robust to model risk. It is therefore

of interest to identify, before estimating the model, the returns from the sample that will

have an abnormally large influence on the optimization results under maximum likelihood

estimation. However, it is difficult to visually identify these specific returns, due to the

multivariate structure of the model and the statistical properties of the ML estimator. To

address this issue, we suggest using as a diagnostic tool the gross error sensitivity given in

(4) in conjunction with the influence function given in (12), recalling that µ and Σ have to

be estimated in a robust way for the reason already mentioned above. This produces graphs

like those in Figures 4 or 8, and influential data points are then easy to identify. However,

it should be stressed that there are an infinite number of IF (and then of GES) since there

are an infinite number of optimal portfolio weighting schemes. The value of the risk aversion

parameter λ has to be fixed so as to characterize the portfolio weighting scheme of interest,

and to be able to compute the GES.16

3.3 Robust MVEF model estimation

As demonstrated above, the estimator used for the mean vector and the covariance matrix

determines the robustness properties of the estimator of the optimal portfolio weights in the

16 We found however that the choice of the value for λ doesn’t have a decisive impact on the detection of
outlying returns.
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optimizer. We should then choose a robust estimator with a bounded influence function to

estimate µ and Σ.17

We suggest using Rocke’s (1996) translated biweight S-estimator (TBS estimator), which

belongs to the class of S-estimators (see Rousseeuw and Leroy (1987)). The TBS estimator

has the advantage of being quite efficient compared with other robust estimators. Moreover,

its robustness against relatively large quantities of outlying data can be controlled (see below).

The TBS estimator is defined as the solution in µ and Σ of

1
n

n∑

i=1

wµ
i (yi − µ) = 0,

1
n

n∑

i=1

wδ
i Σ− wη

i (yi − µ)(yi − µ)′ = 0,

where the weights wµ
i , wδ

i and wη
i depend on two control parameters (see again Rocke (1996)).

The first control parameter is the breakdown point ε∗, and the second is the asymptotic

rejection probability (ARP) α. The breakdown point of an estimator is the maximal amount

of model deviation (or model risk) it can withstand before it breaks down, i.e. before it can

take arbitrary values under model deviations such as in (2) (see Hampel et al. (1986)). The

ARP can be interpreted as the probability for an estimator, in large samples and under a

reference distribution, to give a null (or nearly null) weight to extreme observations.

The TBS estimator is a consistent estimator of mean and covariance. However, compared

with the classical ML estimator, the TBS estimator is less efficient at the model. This loss

of efficiency is the price to pay for its robust behavior in a neighborhood of the model and

for its property of safeguarding the estimators of µ and Σ against the influence of model

17 See for instance Victoria-Feser (2000) for a review and discussion of the desirable properties of such a
robust estimator.
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deviations. A robust mean-variance portfolio optimizer is then obtained by estimating µ and

Σ by means of the TBS estimator, and by using the resulting estimates in (7).

In the next section, a simulation study is performed to investigate the behavior of mean-

variance optimal portfolios when classical and robust estimates of µ and Σ are used in the

presence of contaminated data.

4 Simulation study

We here extend the example of the low volatility hedge fund portfolio by means of a simulation

study.

Let the population of returns be i.i.d. and generated by a multivariate normal distribution

N(µ,Σ). To do so, we consider the robust TBS estimators (µ̂TBS and Σ̂TBS) computed on

the original low volatility hedge fund portfolio data set as being the parameters of this new

trivariate normal population of returns for the convertible arbitrage, event-driven and fixed

income arbitrage strategies.18 We later refer to this new population as the true model.

From this population, we simulate 20 samples of size 120 representing 10 years of trivariate

normal monthly returns.19 These 20 uncontaminated samples remain the same and are used

throughout the following study.

As the aim of performing this simulation study is to assess the stability properties of the

results of the MVEF model when data departs from normality, we work with uncontaminated

18 Taking as population parameters the classical µ̂ML and Σ̂ML estimators is another option which leads
to the same conclusion. However, by working with their robust counterparts we can highlight an interesting
point related to model risk and estimation risk.

19 20 samples ensure clarity in subsequent graphics, as we found that a larger number of samples leads to
similar results. The size of 120 has been chosen to reflect an average of what is commonly seen in practice.
Due to the lack of history on many indices or securities, it is indeed questionable to expect that portfolio
optimization carried out in the financial reality could be based, on average, on much more data.
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and contaminated samples. The contaminated samples are constructed by applying transfor-

mation to the returns of the uncontaminated samples. Four types of return contaminations

have been studied.

1. Substitutive contamination: random replacement of a given percentage of the 120 re-

turns by a specific value. This value is the sum of the true mean of the series and of a

positive or negative multiple of the true standard deviation of the series.

2. Additive contamination: random addition of a specific value to a given percentage of

the 120 returns. This value is a positive or negative multiple of the true standard

deviation of the series.

3. Multiplicative contamination: random multiplication of a given percentage of the 120

returns by a specific value.

4. Point mass multiplicative contamination: random multiplication of a given percentage

of the 120 returns by a specific value. The contamination occurs for each of the three

series on the same data point(s).

The percentage of data contaminated and the multiplicative coefficients used in the four types

of contamination above may vary from one series to another.20 It should be emphasized that

these contaminations are carried over independently on each of the 3 series except in the

point mass multiplicative contamination case.

We suggest contaminating 3% of the returns in each of the three return series making

20 All above-described contamination types are based on transformation of specific returns. Other types of

contamination including direct transformation on the parameters µ̂ and Σ̂ have not been considered as they
seem less relevant for replicating the contamination possibly occurring in real market data.
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the total contamination on each sample add up to 9%. We also choose 5 as the value for

the multiplicative coefficient used for all series. As the fourth type of contamination is

considered later, alternately applying each of the first three types of contamination to the

20 uncontaminated samples, we end up with 60 contaminated samples.

In what follows, classical estimation always refers to the use of the ML estimator, whereas

robust estimation refers to the use of the TBS estimator (with breakdown point ε∗ = 0.35

and asymptotic rejection probability α = 0.001).21 Classical and robust estimation of the

parameters are performed to allow computation of the so-called classical and robust effi-

cient frontiers (i.e. the frontiers calculated by means of the classically or robustly estimated

parameters µ and Σ).

4.1 Behavior of efficient frontiers

First, let’s compute the 20 classical and 20 robust efficient frontiers on the 20 normal uncon-

taminated simulated samples. The results are shown in Figure 9.22

The classical and robust efficient frontiers computed on the original data set are the

same as the ones in Figure 7, and are reported as reference. As anticipated, the classical

and robust simulation results are very similar, as no contamination is present in the data.23

The dispersion of both the 20 classical and 20 robust efficient frontiers indicates that even

when the distributional normality assumption is not violated, sampling variability (even with

series with rather low standard deviation of returns) is enough to make efficient frontiers move

21 A breakdown point of 35% and an asymptotic rejection probability of 0.1% strike a good balance between
robustness and efficiency.

22 The efficient frontiers of Figure 9 have been computed with the constraint of no short selling.

23 The population parameters being the robust mean and covariance estimates (µ̂TBS and Σ̂TBS), classical
and robust efficient frontiers calculated on normal uncontaminated simulated samples cluster around the true
robust mean-variance efficient frontier reported in bold.
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Figure 9. Classical and robust uncontaminated efficient frontiers. This figure shows 20

classical and 20 robust efficient frontiers computed on the same 20 normal uncontaminated simulated

samples. Short selling is not allowed. The size of each sample is 120. The classical and robust MVEF

computed on the original data set are reported as reference.

around the true one, making this situation an illustration of estimation risk. This implies

that, for a given level of standard deviation of returns, the impact in terms of performance

is far from being negligible when considering portfolios alternately located on each of the

simulated efficient frontiers. However, this sampling variability is far smaller than the bias

between classical and robust estimation on the original data represented by the classical and

robust MVEF in Figure 9 .

Let’s now turn on to the results when classical and robust estimation is carried over to

contaminated samples. The plot of Figure 10 shows the particular results of the substitutive

contamination type with independent contamination of 3% and a multiplicative coefficient

of 5 applied to each series. As in Figure 9, classical and robust efficient frontiers computed

on the original data set are reported as reference. The striking feature of Figure 10 is that
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Figure 10. Substitutive contamination: classical and robust efficient frontiers. This figure

shows 20 classical and 20 robust efficient frontiers computed on the same 20 contaminated simulated

samples. Short selling is not allowed. The size of each sample is 120. Substitutive contamination is

applied with an independent contamination of 3% on each series and a multiplicative coefficient of 5.

The classical and robust MVEF computed on the original data set are reported as reference.

the 20 robust efficient frontiers are at the same position as in the previous (uncontaminated)

case, while the 20 classical efficient frontiers have all been clearly shifted higher and to the

right. They no longer cluster around the true efficient frontier.

This type of contamination indeed implies a lateral shift due to variance increase in the

sample, and a vertical shift due to the positive multiplicative value of 5 increasing the prob-

ability of replacing returns by higher ones as each of the three original return series exhibits

a positive mean. Hence, for a fixed level of return, standard deviation is overestimated. This

illustrates the possibly misleading results obtained when using classical estimation to com-

pute efficient frontiers, as the position of the latter in Figure 10 wrongly suggests a change

in the true model. In fact, this bias is only caused by the bad influence of the 9% of outlying
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data on the estimation process.

Similar results are obtained with substitutive, additive and multiplicative contamination

with the parameters mentioned above. When the multiplicative coefficient is negative, we

found that efficient frontiers shift lower. And when a mix of positive and negative coefficients

are used, we found that the vertical shift almost disappears and only a horizontal shift

remains. In all cases however, the horizontal shift occurs to the right as the variance of the

data increases due to the contamination.

The above results have been obtained with independent contamination of 3% on each

series and with a multiplicative coefficient of 5. However, we may argue that this type of

contamination is too high or too low, or that the choice of the multiplicative coefficient is

inadequate compared with data contamination encoutered in financial reality. That’s why

we suggest looking again at the original data set and specifically at the plot of Figure 8

showing the gross error sensitivity for the low volatility hedge fund portfolio. As already

mentioned, the gross error sensitivity clearly identifies two (trivariate) returns as having a

heavy influence on the estimates of the optimal portfolio weights, namely data points 56 and

57, corresponding to the Russian financial crisis of late Summer 1998. These two data points

represent 1.85% of the whole sample. We compute the median of each of the three series of

returns (i.e. convertible arbitrage, event-driven and fixed income arbitrage strategies) over

the whole period, as well as the median (in this case equal to the arithmetic mean) of each

of the three series for these two outlying returns.24 The ratio of the medians (by series)

equals (−4,−7,−3), for the convertible arbitrage, event-driven and fixed income arbitrage

24 The median is preferred to the mean for its robustness properties.

28



strategies respectively. This means for instance, in the case of event-driven strategies, that

the median monthly return of the two outlying data points is seven times larger (in absolute

terms) than the median monthly return on the whole period.25

We are now able to artificially reproduce part of the contamination present in the original

data set of the low volatility hedge fund portfolio, and we use the above-mentioned point

mass multiplicative contamination to study the behavior of the efficient frontiers in that

specific case. The contamination is set at 2.5% and the multiplicative coefficients are set at

(−4,−7,−3) for the respective strategies.26 From now on, only this contaminated sample

and the uncontaminated sample are used in the study.

The results displayed in Figure 11 are disturbing: while, as in the previous (contaminated)

case, the 20 robust efficient frontiers seem unaffected by contamination, the 20 classical

efficient frontiers shift sharply lower and extend to the right, to the point that they even

overlap the classical efficient frontier computed on the original data set. In this case, when

using classical estimation, model risk clearly dominates estimation risk, and the danger when

making portfolio choices is of ending up on an efficient frontier strongly influenced by the

characteristics of just a few outlying observations. Needless to say, portfolio choices made in

this context may lead to sub-optimal decisions. On the other hand, robust efficient frontiers

show no apparent bias, and thus more accurately represent the statistical properties of the

non-outlying 97.5% of data of the 20 samples.

This case of point mass multiplicative contamination illustrates an interesting point,

25 This shows that the previously used value of 5 was (in absolute term) a realistic choice for the multi-
plicative coefficient.

26 The contamination of 2.5% is chosen to obtain exactly 3 contaminated data points among the 120 data
points of each sample. It should be noticed that this contamination is smaller than that used before.

29



Standard deviation of return (%)

M
ea

n 
re

tu
rn

 (
%

)

0.5 1.0 1.5 2.0 2.5

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Classical MVEF
Robust MVEF
Classical (simulated)
Robust (simulated)

Figure 11. Point mass multiplicative contamination: classical and robust efficient fron-

tiers. This figure shows 20 classical and 20 robust efficient frontiers computed on the same 20

contaminated simulated samples. Short selling is not allowed. The size of each sample is 120. Point

mass multiplicative contamination is applied with a contamination of 2.5% and respective multiplica-

tive coefficients equal to (−4,−7,−3). The classical and robust MVEF computed on the original data

set are reported as reference.

namely the non-continuous behavior of classical estimators in the presence of outlying data.

Here, a mere 2.5% of outlying data has a far greater impact on the results than the previous

9% of contaminated data.

As shifts in efficient frontiers imply changes at the level of the underlying portfolios in

terms of mean return, standard deviation and optimal weights of the different securities, a

closer look at the portfolios themselves is also of interest.

4.2 Behavior of portfolios

Until now, we have considered portfolio optimization with a constraint of no short selling for

better visual identification of shifts of efficient frontiers, and replicate what is often done in
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practice. We suggest lifting this restriction to be fully in line with the results of section 3,

derived in the unconstrained case, and when the solution for the optimal portfolio weights is

an explicit expression. We now focus on the behavior of minimum variance portfolios, but

we found similar results in the case of portfolios with a given level of standard deviation of

returns.

Figure 12 shows the boxplots of standard deviation of returns for minimum variance

portfolios. Black diamonds represent the standard deviation of returns of the true minimum
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Figure 12. Minimum variance portfolios: boxplots of standard deviation of returns. This

figure presents the boxplots of standard deviation of returns when classical and robust efficient fron-

tiers are alternately computed on uncontaminated and contaminated samples. Short selling is allowed.

The size of each sample is 120. Point mass multiplicative contamination is applied with a contam-

ination of 2.5% and respective multiplicative coefficients equal to (−4,−7,−3). Starting from the

left, boxplots 1 and 2 show the variability in standard deviation of returns of the minimum variance

portfolios when (classical) ML estimation, respectively (robust) TBS estimation is used on 20 uncon-

taminated samples. Boxplots 3 and 4 show the same information when estimation is carried over to

20 contaminated samples.
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variance portfolio located on the true robust MVEF. The two boxplots on the left show

that the characteristics of the standard deviation of returns for minimum variance portfo-

lios resulting from 20 classical and 20 robust estimations on uncontaminated samples are

very similar, with the exception of a little loss of efficiency for the robust estimation. On

the contrary, under contamination, the 20 classical estimations of efficient frontiers lead to

minimum variance portfolios with a large bias in standard deviation of returns (see boxplot

3), whereas the 20 robust estimations of efficient frontiers exhibit similar minimum variance

portfolio characteristics (see boxplot 4) to those found in the uncontaminated case.27 This

sensitivity of results shows again the lack of robustness of the classical ML-estimated MVEF

model. Just a few outlying data (here 2.5%) are enough to heavily bias the estimation and

make the optimization process give misleading results.

Another way of looking at this problem is to focus on the composition of the minimum

variance portfolios by examining the vector p̂ of estimated optimal portfolios weights. The

boxplots of the minimum variance portfolio weights for the 3 hedge fund strategies under

classical estimation are shown in Figure 13. While classical estimation on the 20 uncontami-

nated samples (from the left, boxplots 1, 3, and 5) leads to boxplots only reflecting sampling

variability (i.e. estimation risk), classical estimation on the 20 contaminated samples (from

the left, boxplots 2, 4 and 6) shows very significant variability (i.e. model risk) of the optimal

weights within these minimum variance portfolios. Moreover, in the case of event-driven

(ED) and fixed income arbitrage (FIA) strategies, the central 50% of the boxplots does not

even overlap with the true weights represented by the black diamonds. Portfolio weights are

27 We found similar results for the behavior of the mean return of minimum variance portfolios.
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Figure 13. Minimum variance portfolio: composition under classical estimation. This

figure presents the boxplots of the weights for minimum variance portfolios under classical estimation

on uncontaminated and contaminated samples. Short selling is allowed. The size of each sample is

120. Point mass multiplicative contamination is applied with a contamination of 2.5% and respective

multiplicative coefficients equal to (−4,−7,−3). Starting from the left, boxplots 1 and 2 are each

based on the 20 optimal weights of the convertible arbitrage (CA) strategy within the minimum

variance portfolios located on classically estimated efficient frontiers computed on uncontaminated

and contaminated samples. Boxplots 3 and 4 show the same kind of information for the event-driven

(ED) strategy. Boxplots 5 and 6 do the same for the fixed income arbitrage (FIA) strategy.

heavily biased, due to the extreme sensitivity of the model to only a few outlying data when

estimated in a classical way. Once again, model risk dominates estimation risk.

In the case of robust estimation, results are far more stable, as shown in Figure 14.

Uncontaminated and contaminated boxplots look very similar and show the definitive ad-

vantage of using robust estimation in the case of the MVEF model. Even if both estimations

may lead to portfolios behaving in a specific way according to given market conditions, the

use of robust estimation makes the results of the model less sensitive to a few outlying ob-
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Figure 14. Minimum variance portfolio: composition under robust estimation. This figure

presents the boxplots of the weights for minimum variance portfolios under robust estimation on

uncontaminated and contaminated samples. Short selling is allowed. The size of each sample is

120. Point mass multiplicative contamination is applied with a contamination of 2.5% and respective

multiplicative coefficients equal to (−4,−7,−3). Starting from the left, boxplots 1 and 2 are each

based on the 20 optimal weights of the convertible arbitrage (CA) strategy within the minimum

variance portfolios located on robustly estimated efficient frontiers computed on uncontaminated and

contaminated samples. Boxplots 3 and 4 show the same kind of information for the event-driven (ED)

strategy. Boxplots 5 and 6 do the same for the fixed income arbitrage (FIA) strategy.

servations: model risk is kept under control. This feature is of particular importance when

analyzing real data, since the presence (or absence) of just a small percentage of data from

the sample shouldn’t have a decisive impact on optimal portfolio choices.

5 Conclusion

We investigated the properties of the maximum likelihood estimated mean-variance portfolio

optimizer and found that this model is not robust to deviations from the assumption of

multivariate normality. We showed analytically that the influence function of the estimator
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of the optimal portfolio weights, when computed with the maximum likelihood estimator as

is often the case, is unbounded, meaning that even a single outlier may take these weights

beyond any predefined value.

We introduced the gross error sensitivity as a powerful diagnostic tool for detecting the

specific returns from the sample that bias estimation of the optimal portfolio weights. We

also highlighted that outlying observations may be characterized otherwise than by extreme

returns, making them difficult to find without using this diagnostic tool. Moreover, to address

the problem of non-robustness of the classical maximum likelihood estimator, we suggested

replacing it by the translated-biweight S-estimator. This estimator is robust to local depar-

tures from normality and ensures that the resulting mean-variance optimal portfolios truly

reflects the statistical properties of the majority of the data.

The simulation study makes clear that the classically estimated mean-variance efficient

frontier model suffers from model risk when data underlying its computation are not exactly

generated by a multivariate normal distribution, and that model risk dominates estimation

risk.

Finally, it should be stressed that although we have here considered the multivariate

normal stochastic process as generating the (majority of the) independently and identically

distributed data, the same concepts of statistical robustness can be applied to more sophis-

ticated models.

As normality is the exception rather than the rule in the financial reality, the use of

robust statistics in quantitative portfolio management opens the way to fruitful research.
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