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A NEW ALGEBRAIC APPROACH TO REPRESENTATION THEOREMS FOR 
(CO)INTEGRATED PROCESSES UP TO THE SECOND ORDER 

                                                       Maria Grazia Zoia*
               Istituto di Econometria e Matematica, Università Cattolica, Milano, Italy. 

ABSTRACT

The paper establishes a unified representation theorem for (co)integrated processes up to the second 
order which provides a compact and informative insight into the solution of VAR models with unit 
roots, and sheds light on the cointegration features of the engendered processes. The theorem is 
primarily stated by taking a one-lag specification as a reference frame, and it is afterwards extended 
to cover the case of an arbitrary number of lags via a companion-form based approach. All proofs 
are obtained by resorting to an innovative and powerful algebraic apparatus tailored to the 
derivation of the intended results. 

KEY WORDS AND PHRASES

Unified representation theorem. Cointegration. Orthogonal-complement algebra. Laurent expansion 
in matrix form.

§ 1 - INTRODUCTION

In the wake of Granger’s original representation theorem, published in the Eighties (Engle and 
Granger, 1987), the analysis of vector autoregressive – VAR – models with unit roots has risen to a 
major branch of modern econometrics, whose track bears the mark of Johansen’s contributions 
(Johansen 1992, 1996, 1997). 
Representation theorems offer a time-series mirror image of the final form of structural models, 
insofar as they provide closed-forms solution to VAR systems, link the integration order of the 
engendered solution to the parameter space of the parent model, and bring to the foreground the 
cointegration relationships inherent in the system. 
The development of representation theorems from Granger’s seminal work has followed two major 
directions. The former, aimed at extending the original approach beyond first-order integrated – I(1)
– processes, has eventually led to Johansen’s well-known results (ibid.) and more recently to Faliva 
and Zoia’s I(2) and unified representation theorems (2003, 2006). The latter has addressed the issue 
of solving VAR systems with unit roots by resorting to ad hoc and tailor-made algebraic tooling, 
such as the Smith-McMillan form (Engle and You 1991, Haldrup and Salmon 1998, Hansen 2005), 
Jordan and companion forms (Archontachis 1998, Gregoir 1999), partitioned inversion and Laurent 
expansion about a pole of a matrix-polynomial inverse (Faliva and Zoia 2002 a,b). 
This paper fits in with the aforementioned framework inasmuch as an overall insight into VAR-
model solutions and their (co)integration features is obtained from an innovative formulation of a 
general representation theorem, via a tailor-made analytical apparatus centred on orthogonal-
complement algebra, a noteworthy matrix decomposition, and ad hoc matrix-polynomial inversion 
formulas about a pole.
The aim of the paper is to provide a unified representation theorem for I() processes with =1,2 
capable of  shedding  light  on  the  integration and cointegration characteristics  of  the  solutions 
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of VAR systems via the closed-form expressions of the parameter matrices involved. A simple-lag 
VAR  model – which can be neatly  solved  resorting to the algebraic toolkit of Section 3 – is
first investigated; reached conclusions are then extended to the case of an arbitrary number of lags 
by a companion-form based approach. 
The article develops as follows: an overall glance at the outcomes of the paper is cast in Section 2;
Section 4 establishes a unified representation theorem of new conception for cointegrated processes;
proofs rest on an effective algebraic apparatus as devised in Section 3.

§ 2 –REFERENCE MODEL AND BASIC RESULTS ON VAR SOLUTIONS.

Let us consider an n-dimensional vector autoregressive (VAR) model specified as follows

     
( )      
, ,1 ,1

t tL
n n n n

A y  (1)

where tε  is a white-noise process and

  1 = LLA I A ,  1A 0   (2)

is a monic polynomial in the lag operator L, whose total effect matrix 

                                                               1A I A                                                                       (3)
has index   2, and whose characteristic polynomial detA(z) has a possibly multiple unit-root with
all other roots outside the unit circle.
Solving (1) yields

                              1
1 0

( )-1 j
t j jt j j

j= j

t +  L


y N ω N η ω M




                                   (4)

where the Mj’s are coefficient matrices with exponentially decreasing entries, 1ω and 2ω  denote 

arbitrary vectors,     

                                         1t η
t


 
    , 2 1t

t


 
 η η                                                                (5)

are first  and second order random walks respectively,

                                                   1  N N N                                                                        (6)

                                         1
( ) 2

1

if

if

N I A
N

0
  

   
                                             (7)                                             

                                       1' 'N C B C B


    ,                                                                 (8)  

B  and Cdenote orthogonal complements of full column-rank matrices B  and C  obtained 

by a rank factorization of A , that is

                                       'A B C
   ,      r( A ) = r( B ) = r(C )                                            (9)       

The solution ty  is an integrated (I) process, namely

ty    ~   I      (10)

Indeed the said solution turns out to exhibit a multi-fold integration and cointegration (CI) structure,
whose core features are

                                              ' (0) ( , ) , ( ),t t~I ~CI cr r C y y A                               (11)
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                    ' (1)t ~IB y (2,1) , ( ),t ~CI cr n r  y A under 2                        (12)

where cr stands for cointegration rank and B is a full column-rank matrix obtained by a rank 
factorization of A, that is 
                                      ', ( ) ( ) ( )r r r  A BC A B C                                                         (13)

Should we look at (1) as a companion-form reparametrization of an isomorphic q-lag m-
dimensional VAR model

                                              
( ,1

t
m )
y +

1

q

k t k
k

P y 

 =

( 1)
t

m,
ε                                                          (14)

and solve, we would obtain

                              1
1 0

( )-1 j
t j jt j j

j= j

t +  L



   y N ω N η ω M     


                                      (15)

Here the M j’s are coefficient matrices with exponentially decreasing entries, 1 2andω ω   denote 

arbitrary vectors,

                                     1t η
t


 
   , 2 1t

t


 
 η η                                                                     (16)

are first and second order random walks, respectively, and

                                                     1  N N N                                                                         (17)

                                     1
( ) ' 2

1

if

if
  

   

JN I A J
N

0
                                                       (18)

                                                             'N JNJ                                                                         (19)  

                                                          , ( 1)m m m qJ I 0                                                            (20)

Likewise ty , the process ty is characterized by integration and cointegration properties, namely

                                                           ~t Iy    (21)

   ( ) ' ~ 0 ~ ,t tI CIJC y y     (22)

   ~ -1 ~ , -1 , 2t tI CI under  'B Py y            (23)

where 
1

q

k
k

k


 P P  and B is a full column-rank matrix obtained by a rank factorization of 

1

q

j
j

P I P


   , that is 

                                      ', ( ) ( ) ( )r r r  P BC P B C                                                            (24)

In Section 4 the results claimed above will be proved on a sound basis, whose algebraic core is set 
forth in the next section. 

§ 3 – ORTHOGONAL COMPLEMENTS, CORE-NILPOTENT DECOMPOSITION AND MATRIX 

POLYNOMIAL INVERSION.

We start by giving two definitions
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DEFINITION 1 

Let C be an n-row matrix of full column-rank. An n-row matrix C  of full column-rank is said to 

be an orthogonal complement of C if 

   '    ,    r n rC C C C   0        (1)

Obviously C  is not unique and trivially a choice of ( C )  is C itself. 

Note also that C is reduced to an empty matrix when C is square (see, e.g., Faliva and Zoia

p.131, 2006).
We shall henceforth write 
                                                        C K                                                                                      (2)

to indicate that K is one choice of C .

DEFINITION 2
Let A be a square matrix. The index of A, written ind(A),  is the least non-negative integer  for 
which 

   1r rA A  (3)

Should A be non-singular then ind(A)=0, whereas when A is a null matrix then ind(A)=1
(Campbell and Meyer p.121,1979).

We shall now establish two theorems which will play a crucial role in the next section.

THEOREM 3.1

Let A be a non-null square matrix of order n and index 2  and let 

                                       '
 A B C  ,      r( A ) = r( B ) = r( C )                                            (4)       

                                              ', ( ) ( ) ( )r r r  A BC A B C                                                   (5)

                                         ' ', ( ' ) ( ) ( )r r r  C B FG C B F G                                              (6)

                                    ' '', ( ) ( ) ( )r r r     B C RS B C R S                                            (7)

be rank factorizations of A , A, 'C B and 'B C   respectively, where B , C , B, C, F, G, R
and S are full column-rank matrices. 
Then the following hold

(a) 2 '( ) ( ) ( ) ( )r r r rA A C B C                                                                                         (8)

(b) 2( ) ( )r r ifB S A 0                                                                                                         (9)

(c) det( '
 C B )  0   , det( '

 B C  ) 0                                                                                       (10)

(d)   1' '
   N C B C B                                                                                                  (11)  

is invariant for any choice of B and C .

(e) if  N I A 0                                                                                                                                    

Further, the following hold for =2 and 2 A 0
i)det ( ' ) 0G F ,     det '( ) 0  F G                                                                                             (12) 

ii)G B C S
        ,       F C B R

                                                                             (13)
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where 1( ' ) 'B B B B  and 1( ' ) 'C C C C  denote the Moore-Penrose inverses of B and 
C, respectively.

iii) 2 [ , ]rC C A C S
    ,                                                                                                         (14)

where 

                                                  ( ')rA C B   ,                                                                          (15)

is a reflexive generalized inverse of A and ( ')C is an arbitrary right-inverse of 'C

iv) 2( ) ( )C C B C S
                                                                                                         (16)                                                                                                

v) ( ) ( )BG C S                                                                                                                  (17)

                      = 2[ ,( ) ]B C                                                                                                         (18)

vi) 2N ' 1 '( ) '
    BG F G F C                                                                                                   (19)

          = ' ' 1 ' '( ) 
       C S R B A C S R B                                                                             (20)

where 2  N NA , 

vii) 2 1,N N = 2C                                                                                                            (21)

where 1 2 N N N  and   is a full row- rank matrix.

PROOF       

Proof of (a). Resorting to Theorem 19 of Marsaglia and Styan (1974) and bearing in mind the 
identities (see, e.g., Rao and Mitra p. 156, 1971)

                             ' '( )BB B B I 
   ,           ' '( )CC C C I 

                                   (22)

the twin rank equalities
' '[ , ] ( ) (( ) ) ( ) ( ) ( ) ( )r r r r r r rB C B I BB C B B C A B C

                      (23)

[ , ]r B C
' '( ) ([ ( ) ] )r rC I C C B

     2( ) ( ' ) ( ) ( )r r r rC C B C A              (24)

are easily established. Equating the right-hand sides of (23) and (24) yields (8).

Proof of  (b). Under 2A 0 , equality (8) takes the form

                        '( ) ( ) ( )r r rA C B C                                                                                     (25)

whence (9) follows upon reminding (5) and (7) and noting that 

                     ( )r C  '( )r  B C = ( )r C  r(S) = ( )r S                                                  (26)

Proof of  (c). As ( ) 1ind A  , bearing in mind (4) and restating (8) with A  as an argument,
the following prove true 

                            ' ' '( ) ( )r r      B C B C B C det '( ) C B 0                                              (27)

     2 '( ) ( ) 0 ( ) ( ) 0r r r r 
  A A C B C        '( ) 0det  B C                    

Proof of  (d). In order to prove the claimed invariance, reference can be made to Theorem 5, p.5, in 
Faliva and Zoia (2006).

Proof of (e). Should A be a null matrix then B and C would be empty matrices, and 

B and C  would be arbitrary non-singular matrices (see, e.g., Faliva and Zoia p. 131, 2006;

Chipman and Rao, 1964), whence the equality N = I would follow as a by-product. 
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Proof of  i). As ind(A)=2 then ind ( ' ) 1G F , and (10) applies accordingly with F and G in place 

of B and C . 

Proof of  ii). Reminding (6), (7) and (22) and upon noting that F F I  , it is easy to check that 

                            ' '[ ( ) ]BB C S I B B C S C S 
                                                        (28)  

        ' ' 'G B C S F FG B C S F C'BB C S F C C S 0     
          

whence the conclusions that 

                ( ) ( ) ( ) ( )r r r rB C S BB C S C S S 
                                                     (29)

               [ , ] ( ) ( )r r rG B C S G S
                                                                                    (30)

are easily drawn.
Further, observe that the following hold as =2

                    2( ) ( ' ) ( )r r rA C B G  ,      2( ) ( ) ( )r r rA A G                                         (31)                   

which in turn entails the  equality      
                                     ( )r G ( )r S                                                                                      (32)

in light of (8) and (26).
Since both the orthogonality and the rank conditions of Definition 1 are satisfied,

B C S
  provides one choice of G . The same conclusion about C B R

  with respect to 

F is drawn likewise.

Proof of iii). As 2 C CG ,  Theorem 6 p. 7 in Faliva and Zoia (2006) applies, yielding

                                        2C  =[ ,( ') ]
 C C G                                                                        (33)

which in turn leads to (14) by resorting to (13) and (15).
Proof of iv). Formula (16) follows from backward application to (14) of the said Faliva and Zoia’s
theorem,  by keeping in mind (15).
Proof of v). Result (17) is easily established on the basis of (13) and (28).
Moving to (18), observe first that applying Theorem 6 p. 7 in Faliva and Zoia (2006), to the matrix 
( )BG   yields

                       ( ) [ , ( ') ( ) ]BG B B G
                                                                          (34)

Premultiplying the latter block in the right-hand side by 'CB and resorting to (13) and (16), leads to 

                  [ , ( ) ]B C G    [ , ( ) ] [ ,
    B C B C S B 2( ) C ]  

which proves to be a choice of ( )BG   in light of the results below, 

' ' '

' ' '
2 2 2 2

' ' ' 2
2 2

2 2

'[ , ( ) ] [ , ' ( ) ] [ , '( ) ] [ , ]

([ ,( ) ]) ( ) ( ) ( ) ([ , ( ') ]

( ) ( ) ( ( ') ) ( ) ( ) ( ) ) ( ) ( )

( ) ( ) ( ) (

r r r r r

r r r r r r r r r

r r r r

         


          


     



  

   

        

   

G B B C G 0 G B C G 0 G GF G 0 0

B C C C B C B C B C G

C R R B C G C S F G (A S G

A S S A 2) ( ) ( ) ( ) ( ) ( )r r n r n r r         C A A G BG
                   
The rank equalities above have been obtained by making use of (7), (12) ,(13), (14), (31), (32) and

(33), by choosing ( ')C  as a generalized inverse of 'C , by reminding the noteworthy equality 

( ')A C B   , and by resorting twice to the usual Marsaglia and Styan’s theorem.

Proof of vi). By making use of  the identity
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                         1 ' 1 '( ' ) ' ( )D V D V V D V D I 
                                                           (35)

where D and V are full column-rank matrices such that [ D, V ] is non-singular (see, e.g., Faliva 

and Zoia p.9, 2006), by bearing in mind that 2B =BF and  2 C CG , and by  resorting to (6) , 

(11), (12), (13) and (22), check that

  1 ' 1 '
2 2 2 2 2 2 2 2 2[ ( ) ]

 
       ' 'N = NA = C B C B A I B C B C A

1 2( ' ( ' ' ) ' ' ') ( ' ( ' ) ' ' ')      BC BF G C BF G C BC BC BF G F G FG C
1 ' 1 ' ' ' 1 ' '[ ( ' ) '] ' ( ) ' ( )   

                 B I F G F G C BG F G F C C S R B A C S R B

Proof of vii). Upon noting that  2 1,N N = , ( ) NA N I A and that the block matrix 

 , ( ) A I A is of full row-rank, the conclusion that 

                                   2 1( , ) ( )r rN N N                                                                  

is easily drawn and the factorization (21) follows accordingly, in light of (11) by taking =2 and 

  1' '
2 2 2 [ , ].Φ B C B A I A


    

                                                                                                                                                         �  
THEOREM 3.2
Let A be a square matrix of order n and index υ ≤ 2 partitioned as follows

           

1 2 3

11 12

( , ) 21 22

m q

m m

m mn n

m m

+

-

-

-

I P P P .. P

I I 0 0 0Λ Λ
A 0 I I 0 0Λ Λ

.. .. .. .. ..

0 0 0 I I

    











 
 
 

          
 
  

                                  (36)

where n = mq , 1P  , 2P ,..., qP are square matrices of order m, and let P denote the Schur 

complement of  22Λ , namely

                                          1
11 12 22 21 1 2 ... qP Λ Λ Λ Λ I P P P                                  (37)       

Further let A , A and 'B C  be factorized as in Theorem 3.1, and 

                                        'P BC    ,    r(P) = r( B ) = r(C )                                                     (38) 

                                    ' ' , ( ' ) ( ) ( )r r r  C B FG C B F G                                                   (39)

                                     ' '', ( ) ( ) ( )r r r     B PC RS R S B PC                                             (40)

be rank factorizations of P, 'C B  and '
 B PC  respectively, where 

                                                              
1

q

k
k

k


 P P                                                                        (41)

Besides, put

                                                    , ( 1)m m m qJ I 0                                                                  (42)
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Then the following hold
(a) a reflexive generalized inverse of A is given by

                 

1
12 22

1 1 1 1
22 21 22 22 21 12 22

r

  


     

 
  
   

P P Λ Λ
A

Λ Λ P Λ Λ Λ P Λ Λ
                                             (43) 

where 

                                                      ( ')  P C B                                                                        (44)                                                                                                                             

is the Moore- Penrose inverse of P ,

(b)   C = qu C     ,   JC C                                                                                          (45)                    

     ' ' ' ' '
2 3 3, ( ... ), ( ... ), ...,q q qB B B P P P B P P B P   

               ,  JB B   (46)          

where qu is a q x1 vector of 1’s and  denotes the Kronecker product.

Further, the following hold under =2

i) ( ')rA C S C B C S  
                                                                                                      (47)

ii) 2 ,JC C P PC S  
                                                                                                  (48)

iii) 2( ) ( )JC C B PC S   
         provided   r ( )B PC S  

  = r ( )S                           (49)                                                   

iv)  ( ) ( )JBG C S 
       in general                                                                               (50)

     = 2[ ' , ( ) ]P B JC 
   if  r( ' '( )R B PP PC S    

    = r ( )S and ( ' ) ( )r rP B B  
     (51)                 

v)    ' 1 '
2 ( ) 'JN JBG F G F C

                                                                                             (52)                                                                                             

vi)     2 1,J N N = 2JC                                                                                               (53)

where 2N , 1N and  are defined as in Theorem 3.1.

vi) ( ) ( )r r B S if   2( )r A (q -1)m                                                                                        (54)

PROOF

Proof of (a). The proof of (43) follows along the same line of reasoning as in Theorem 15 p. 232    

in Faliva (1974). The reflexivity property r r r

  A AA A  is easily checked.

Proof of (b). To prove (45) and (46) observe that by inspection of (5), the conclusion that 'B  and 

C  are full rank solutions of the homogeneous equations 

                                                        ' Ξ A 0                                                                                (55)
                                                        AX = 0                                                                                  (56)
respectively, is easily drawn.
Besides, upon noticing that A can be factorized as follows

         A =    
1

12 22

21 22

P 0I Λ Λ
Λ Λ0 I

   
   
    

=  
12

1
22 22 21

I 0P Λ

0 Λ Λ Λ I

  
  
    

                                 (57)     

equations (55) and (56)  can be more conveniently rewritten in partitioned form as                                                  

                                    ' ' 12
1 2

22

'
, ', '

       

BC Λ
Ξ Ξ 0 0

0 Λ


                                                        (58)



9

                                               
1

221 22

' X 0BC 0

X 0Λ Λ

     
     
   

                                                         (59)

Solving (58) yields
' '
1

Ξ B ,   '
2Ξ

' ' '
2 3 3( ... ), ( ... ), ...,q q q          B P P P B P P B P           (60)

 whereas solving (59) yields  

                            1 X C ,   2 X 1qu C                                                                      (61)

as simple computations show.
Proof of i). First of all observe that by making use of (37), (41), (45) and (46), some computations 
give

          ' ' '
2 3 3( ... ... ... )q q qB C B C B P P P P P P C  

             

' 'B C B 
   

2

( 1)
q

k
k

k 


 P C = ' '

1 1

( )
q q

k k
k k

kB C B P P C  
   

 
     ' ( )B P P C 

     

'B PC 
                                                                                                                                    (62)

Thus any rank factorization of 'B C   is also a rank factorization of 'B PC 
   and vice-versa, 

which entails in particular that 

                                   S S ,             S S                                                                              (63)

Then, keeping in mind (36), (37), (41), (43) and (45), notice that

          1
12 22Λ 

1 2 3( ) [ , ,..., ]
...

q q

I 0 ... 0 C

I I ... 0 C
u C P P P

... ... ... ...

I I I I C











 



  
  
   
  
  

   

= 
2 2 2 1 1

( 1) ( ) ( ) ( )
q q q q q

k k k k k
k k k k k

k k k   
    

           P C P P C P P C P P I C      

( )  P I C                                                                                                                                  (64)
' 1 '( ) ( ) ( )  

             I PP PC S I BB PC S B B B B PC S 0             

1
12 22

11

( )
.

( )r
qq

 

 
C SPP I PP Λ Λ

AA C S
u C S0 I

  
 

 
  

   
         

1 1

( )( ) ( )

( ) ( )q q

     

   
PP C S I PP P I C S PP I PP C S

u C S u C S

   
     

     

       
    

       
( )q

 u C S C S                                                                                                                   (65)    

( ') ( ') 'r r rC B AA C C A A                                                                                                 (66)

for some ( ')C  in view of Lemma 2.5.2  p.28, in Rao and Mitra (1971). 

Hence, equality (47) ensues from (65) and (66) via premultiplication of the former by ( ') C B .                                          

Proof of ii). Resorting to (43), (45), (63), (64) and (14) premultiplying the latter by J , yields
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2JC   [ , ]r


  JC JA C S

= 1
12 22

1
[ , , ].

( )q m

   


  

       

C S
C P P Λ Λ

u I C S

 


   =[ , ( ) ]C P I P I C S  
   

=[ , ]C P PC S  
                                                                                                                      

Proof of iii). Result (49) can be obtained from (48) following the same line of reasoning used to 
deduce (16) from (14) in Theorem 3.1, by making use of (44). The rank condition is required for

( )B PC S  
   to be a meaningful expression.

Proof of iv). Result (50), which is the mirror image of (17), is easily established upon noting that 

                          JBG JBB C S JC S C S 
                                                               (67)

in light of (13), (28), (45) and (63). 
Bearing in mind (67), the proof of (51) rests essentially on the same line of arguments set forth to 
prove (18). The rank conditions are needed  for the columns of the matrix in the right-hand side to
provide a basis for the row kernel of JBG .                        

Proof of v) and vi). Results (52) and  (53) follow from  (19) and (21) respectively, through 
premultiplication by J.  
Proof of vii). Keeping in mind (8), (45) and (62) we can write 

                  2( ) ( )r rA A  ( )r C  '( )r  B C = ( )r C  '( ) ( )r r  B PC S                (68)

Further, resorting to the rank equality 
                                                  ( )r A = r( 22 ) + r(P),                                                               

noting that 

                                        r( 22) ( 1)m q Λ    ,     ( ) ( )r rP B                                                   

and substituting into (68), we eventually get the equality

                                               2( ) ( 1) ( ) ( )r m q r rB A S
                                                (69)

By inspection of (69) it follows that

                                         2( ) ( ) ( ) ( 1)r r r m qB S A
                                               

                                                                                                                                                           �

We will now present a useful decomposition of a square matrix into a component of index one, 
known as core component  (Campbell and Meyer  p. 127,  1979), and a nilpotent term.

THEOREM 3.3
A square matrix A with index  has a unique decomposition 

A K H  (70)
with the properties
i)   1ind K (71)

ii) H = 0 (72)
iii) HK KH 0  (73)

iv)         ,   1,  2,  ...k kr r r kA H K   (74)

v) A K  (75)
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vi)       
1

1' ' ''C B C B C B C B




      
 

  
 

 (76)

where B ,C are as defined in (4) and andB C  are full column-rank matrices obtained by a rank

factorization of K, that is

                         'K BC   ,   r(K) = r( B ) = r(C )                                                                    (77)                         

PROOF

For a proof of i)- v) see Rao and Mitra p. 93, (1971) and Campbell and Meyer p. 121, (1979). For 
what concerns vi) observe first that

    1' ' ' '    BC B C B C B C
 

   (78)

because of (75) and (77).  Hence B  and C turn out to play the role of orthogonal complements 

of B  and C  and equality (76) ensues from Theorem 5 p.5 in Faliva and Zoia (2006).

                                                                                                                                                          �
                    
The lemma and the theorem below provide useful matrix-function inversion formulas about a pole 
on the basis of the core-nilpotent decomposition above.  

LEMMA 3.4
Consider the matrix functions

                                                     
1

1
z

z
 


H I H                                                              (79)

                                                   1z zK I K K                               (80)

                                                   1( ) H I H H                                                                      (81)   

where H and K are as in the foregoing theorem, and det  zK has all its roots outside the unit 

circle, except for a possibly multiple unit-root.

The following Laurent expansions hold for  zH  and  zK  in a deleted neighbourhood of 

z =1

      i)                                   
 

1
1

1

( 1)

1

i

ii
z

z







  


iH I H                                                          (82)

      ii)      1

1
z z

z
K N M  


(83)

where                          

1
''N C B C B



  
 

  
 

                                                               (84)

                                           
0

i
i

i
z z




 M M   (85)

                                          2' '(1)  M B C B C


 (86)

and the iM ’s are  matrices with exponentially decreasing entries.
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PROOF

To prove i), observe that H and  1( )I H  commute, the matrix H  enjoys the same nilpotency 

property as H as a by-product and the expansion in the right-hand side of (82) holds accordingly. 
The proof of ii) can be obtained resorting to the Theorem 1 p. 37 in Faliva and Zoia (2006), upon 
noting that 

  ' '   ,K K I B K C B C 
                (87)

                                         ind(K)=1      det( '
 B C )  0                                                            (88)

where the dot stands for derivatives and reference is made to (10). Results (83) (84) and (85) hold 
accordingly. Finally, formula (86) proves true in light of the said theorem upon noting that 

                                         K 0                                                                                                    (89) 
and resorting to identity (35). 
                                                                                                                                                                                                       �
THEOREM 3.5

Consider the matrix polynomial 

                           1z z z  A I A, A = H + K                                                             (90)

which can be factorized as 

                                              ( )z z z A I H H K                                                              (91)          

where the symbols have the same meaning as in the previous lemma.
Then, the following Laurent expansion                                                   

                                    
 

1

1 0

1

1

i
i iii i

z z
z




 
 


A N M                                                    (92)

holds in a deleted neighbourhood of  z =1.
The following closed-form expressions hold for the coefficient matrices N  and -1N ,

                                        1 1( 1) 
 N = NH                                                                    (93)                             

                                   2 2 2 1
-1 ( 1) ( 1) ( 1)   

     N NH NH                            (94)  

adopting the convention that 0 H I .      
PROOF

The proof of (92) is straightforward upon noting that 

                                      1 1 1 1( ) ( )( )z z z    A K H I H                                                   (95)

and by replacing the inverses of the matrix functions appearing in the right-hand sides with their 
Laurent expansions given by formulae (82) and (83) of Lemma 3.4.
Formulas (93) and (94) follow from (82), (83) and (86) by making use of the first matrix coefficient 

M (1) in the expansion of ( )zM about z = 1. Indeed simple computations yield

                                      1 1( 1) ( )  
  N = NH I H                                                        (96)

              2 2 1 1 1
-1 ( 1) ( ) ( 1) (1) ( )     

      N NH I H M H I H               (97)

Now, applying the binomial theorem to ( ) I H and 1( )  I H , formulas (96) and (97) 

simplify into formulas (93) and (94), bearing in mind the nilpotency of H and that

                                                (1) M H 0                                                                                    (98)
in light of formulas (86) and (73).
                                                                                                                                                           �
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§4 A UNIFIED REPRESENTATION THEOREM

We will now  establish the main result, namely a unified representation theorem for (co)integrated 
processes up to the second order, whose outcomes have been anticipated in Section 2. The basic 
theorem takes a one-lag VAR model with unit roots as a reference frame, and the extension to a 
multi-lag specification is developed as a corollary.
THEOREM 4.1

Consider an n-dimensional VAR model specified as follows

 
     ,1 ,1,

t t
n nn n

LA y ε (1)

where

  1 1   ,    L L  A I A A 0 (2)

is a monic polynomial in the lag operator L and tε  is a white noise process.

Let the roots of the characteristic polynomial det  zA  lie outside the unit circle except for a 

possibly multiple unit-root, and let the total effect matrix

1 A I A (3)

be of index   2.
Further, let B C , B, C, R and S be full column-rank matrices defined as in Theorem 3.1.

Then the following closed-form representation holds for the solution of equation (1)

                                 1
1

1 0

( )-
t j jt j j t j

j= j

t +  









   y N ω N η ω M ε                               (4)

where the 'jM s are coefficient matrices with exponentially decreasing entries, 1 2andω ω  denote 

arbitrary vectors,

                               1t η
t


 
 ,    2 1t

t


 
 η η                                                                           (5)

are first and second order random walks respectively, 
                                                   1  N N N                                                                          (6)

                                        1
( ) 2

1

if

if

N I A
N

0
  

   
                                              (7)

                                       1' 'N C B C B


                                                                       (8)  

The vector ty  given by (4) is an integrated (I) as well as cointegrated (CI) process, for which the 

following statements hold true

(a)  ~t Iy  (9)

(b)      '( ) ~ 0 ~ , ,  t tI CI cr rC y y A
      (10)

where  cr stands for cointegration rank. Trivially C is one choice of the cointegrating matrix 

( ) C , which can more conveniently be specified as follows

                      ( ) ( )C C B C S
     if 2  and 2 ,A 0                                               (11)
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                     ( )C  is an empty matrix if 2  and 2 ,A 0                                                (12)

                      ( )C C   if 1                                                                                              (13)

(c)      ~ -1 ~ , -1 , ,  t tI CI cr n r'B y y A       under 2       (14)

PROOF

The VAR model (1) is nothing but a constant-coefficient linear difference equation.  Its solution 
consists  – transient components apart – of a particular solution of the  complete equation and of the 
complementary solution ascribable to unit roots (see, e.g., Faliva and Zoia p. 26, 2006).
In operator form a particular solution of (1) is given by

                                                   1( )t tLy A ε                                                                            (15)

where

                                      1

1
( ) ( )j

j
j

L L
 


  A N M                                                              (16)   

The latter result ensues from Theorem 3.5, thanks to the isomorphism between polynomial algebras 
of complex variables and lag operator (see, e.g., Drymes p.23, 1971), and to the sum calculus 
identities

                  
2

1

( )I L
= 2

t 



  
     , 

1

( )I L
= 1 =

t

 

                                           (17)

Resorting to the said theorem – by taking =1and =2 in turn – it yields the expressions of 

1N and N .This eventually leads to the following expression for ty

                                              ty =
1 0

j jt j t j
j= j






 N η M ε


                                                   (18)

where the 'jN s are as specified in (6) and (7).

Likewise, the complementary solution is expressible as 

                                                         ty  1( )LA 0                                                                     (19)

and, resorting to Theorem 3 p. 27 in Faliva and Zoia (2006), the following closed-form expression 
can be established for its permanent component

                                            1
1

1
t j j

j
t

 





 y N ω N ω                                                              (20)

Adding ty and ty  gives the solution (4).

As far as results (a)- (c) are concerned, their proofs rest on the following considerations.

Result (a)- By inspection of (4) we deduce that under  =2, ty  is the resultant of a drift component 
2

1
j j

j
 N ω ,of a deterministic linear trend component 2 1tN ω , of both a first and a second-order 

stochastic trend components, 1N
t
 

 
and 2

t
N 

  
 


respectively, and of a VMA() 

component in the white noise argument t .  As a result the solution is an integrated process of 

order 2. 
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On the other hand, under =1, ty  is the resultant of a drift component 1 1N ω , of  a first order 

stochastic trend component, 1
t


 
N , and of a VMA() component in the white noise argument 

t . As a result the solution is an integrated process of order 1.This proves (9). 

Result (b)- First of all observe that , under =2,  the solution (4) can be expressed as follows

                                    
2 1 2

2 1
1 1

[ , ] t
t

t

t  
   

η ω ω
y Ν Ν

η ω 0
j t j

j





 M ε                                    (21)

It is clear from statement vii) of Theorem 3.1 that the columns of 2( ) C span the row-kernel of 

2 1[ , ]Ν Ν . This in turn entails that, by premultiplying both sides of (21) by '
2( ) C , the term

containing non-stationary components – namely stochastic and deterministic trends –, disappears
and the following 

          ' ' '
2 2 2

0

( ) ( ) ( ) (0) (2,2)t j t j t t
j

I CIC y C M ε C y y� �


      


                       (22)

holds accordingly. The cointegration rank, i.e. the rank of the cointegration matrix  2( ) C , turns 

out to be equal to  2r A  in light of (4) of Theorem 3.1, upon noting that 2C is trivially a choice of 

2( ) C . Statement (11) is established by choosing 2( ) C = ( )C B C S
    according to (16) of 

Theorem 3.1, and result (12) ensues from statement (b) of the said theorem, upon noting that if 

B C S
   is a square non-singular matrix, its orthogonal complement collapses into an empty 

matrix (see, e.g., Faliva and Zoia p.131, 2006) . Should it be the case, the cointegration relationships 
recovering stationarity would no longer exist insofar as the cointegration rank would drop to zero. 
Passing now to the case υ=1, observe that the solution (4) can be rewritten as 

                                          1 1 1
0

( 2 )t t j t j
j

y N η ω M ε





                                                       (23)

where                                      1' '
1


    N N C B C B                                                         (24)

in light of (6) and (7), upon keeping in mind that 
                                                     1 C C                                                                                      (25)

under υ=1.
It is therefore clear that the columns of ( ) C span the row kernel of 1N . Premultiplication of 

both sides of (23) by '( ) C leads to annihilate the term containing the non stationary component –

namely the stochastic trend –  and the following 

                ' ' '

0

( ) ( ) ( ) ~ (0) ~ (1,1)t j t j t t
j

I CIC y C M ε C y y


      


                       (26)

holds accordingly. The cointegration rank is equal to r(A) in light of (5) of Theorem 3.1, upon 
noting that C is trivially a choice of ( ) C . This argument establishes (13) as well. The proof is 

now complete. 
Result (c) – First of all observe that, under υ=2, (4) can be rewritten as follows 
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                2 2 1 2 1 1 1( ) ( )t t tt     y Ν η ω ω Ν η ω
0

j t j
j





 M ε                                        (27)

Then observe that in light of (19) of Theorem 3.1, the columns of  BG   span the row kernel of 

2 and one choice of  BG   is the partitioned matrix 2[ ,( ) ]B C   as per formula (18) of 

the said theorem. The columns of the latter block span the row kernel of 2 1[ , ]   (see proof of 

Result (b)), and the columns of the former block span the subspace of the row kernel of 2  not 

intersecting with the row-kernel of 2 1[ , ]  , respectively.

Hence, by premultiplying both sides of (27) by '
B , the non- stationarities due to second-order 

random walks and deterministic trend are removed whereas the non-stationarity due to first-order 
random walks is not, and the following 

            ' ' '
1 1 1

0
( )t t j t j

j
B y B Ν η ω B M ε



   


    → ' ~ (1) ~ (2,1)t tI CIB y y          (28)

holds  accordingly. The cointegration rank  is equal to n- r(A) in light of (5) of Theorem 3.1. The 
proof is now complete.
                                                                                                                                                             �
So far we have considered one-lag VAR models; however multi-lag dynamic specifications happen 
to be the rule in econometric modelling, whence a stimulus to bridge the gap between simple and 
multi-lag analysis. In this connection a companion-form representation of a multi-lag model ( see, 
e.g., Banerjee, Dolado, Galbraith and Hendry p. 143, 1993) turns out to provide the way-out to 
tailor the foregoing analysis to general dynamic models along the guidelines drawn below.

Consider to this end a one-lag n-dimensional VAR model, satisfying the hypothesis of Theorem 4.1, 
specified as follows

                                                      1 1
( , )( ,1) ( ,1)

t t t
n nn n

y A y ε                                                            (29)

and let the coefficient matrix 1A  and the vector ty  be partitioned as 

                               

1 2 3

1
( ,1)

q

n

-

-

-

P P P .. P

I 0 0 0 0
A 0 I 0 0 0

.. .. .. .. ..

0 0 0 I 0

    











 
 
 
   
 
 
  

                                                             (30)                                              

                                                     
1

( ,1)

1

t

t
t

n

t q



 

 
 
 
 
 
 

y

y
y

y









                                                                     (31)     

where the  2q  blocks of 1A are square matrices of order m, the q blocks of ty are m x1 vectors and 

n equals mq. 
Further, let the right-hand side vector tε be specified as 
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                                                         t = ' tJ ε                                                                                (32)

where ( )t m~WNε and 

                                                    , , ... ,J I 0 0                                                               (33)

is a selection matrix whose q blocks are square matrices of order m.
By premultiplying both sides of (29) by J and by resorting to the companion-form matrix (30), (31) 
and (32), an isomorphic q-lag model 

                                              
( ,1)

t
m
y +

( 1)1

q

k t k t
m,k




 P y ε                                                               (34)

arises from the parent one-lag model (29) as simple computations show.
Then, the solution of equation (34) can be recovered from that of equation (29), and cointegration 
analysis can be run by spanning the row-kernels of the matrices 1[ , ] J N N  and JN  as the 

following corollary shows.  

COROLLARY 4.1.1
Consider an m-dimensional q-lag VAR model specified as 

                                              
( ,

t
m 1)
y +

1

q

k t k
k

P y 

 =

( )
t

m,1
ε                                                            (35)

and its companion-form reparametrization 
                                             1 1t t ty A y                                                                                (36)

for which the hypotheses of Theorem 4.1 are maintained. Here 1A , ty and t are as defined in 

(30),(31) and (32), respectively.
The following closed-form representation holds for the solution of equation (35)                                        

                              1
1

1 0

( )- j
t j jt j j

j= j

t +  L







   y N ω N η ω M                                        (37)

where the jM ’s are coefficient matrices with exponentially decreasing entries, 1 2andω ω   denote 

arbitrary vectors,

                                     1t η
t


 
   , 2 1t

t


 
 η η                                                                     (38)

are first and second order random walks, respectively, 

                                                     1  N N N                                                                         (39)

                                     1
( ) ' 2

1

if

if
  

   

JN I A J
N

0
                                                      (40)

                                                             'N JNJ                                                                         (41)  

1A I A  and N is the matrix (8) of Theorem 4.1

The vector ty  given by (37) is an integrated (I) as well as cointegrated (CI) process, for which the 

following statements hold 

(a)                                                           ~t Iy    (42)

(b)    '( ) ~ 0 ~ ,t tI CIC y y       (43)
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where C is written for JC and the rank qualification r ( )B PC S  
  = r ( )S  is adopted 

for 2  . Trivially C   is one choice of   ( ) C  , which can be more conveniently specified 

as follows   

                     ( ) ( )
     C C B PC S     if 2  and   2( )r A  ( 1) ,q m                     (44)

                      ( ) C is an empty matrix if 2  and   2( )r A  ( 1)q m                              (45)

                     ( )  C C  if 1                                                                                                 (46)

(c)    ~ -1 ~ , -1 ,t tI CI'B Py y        under  2                  (47)

Insofar as the rank assumptions

                r ' '( )R B PP PC S    
    = r ( )S and ( ' ) ( )r rP B B  

                                       (48)

are adopted, propositions (b) and (c) provide a full characterization of the cointegration properties 
of the solution. 

PROOF

To prove (37) observe that 
(i) a particular solution of (35) can be obtained from that of (36) – namely ty of formula 

(18) – by premultiplication by J, that is 

   t ty Jy  =
0 0

' 'j jt j t j j jt j t j
j=1 j j=1 j

 

 
 

     JN η JM ε JN J η JM J ε 
 

=
0

j jt j t j
j=1 j






 N η M ε  


                                                                                                   (49)

keeping in mind (32) and its by-product
                                    jtη = ' jtJ η

(ii)      The permanent component of the complementary solution, namely 

                                      1
1

1
t j j

j
t

 





 y N ω N ω                                                                (50)

can be obtained likewise from formula (20). 
By adding (49) and (50) we get (37).
For what concerns Result (a) the proof is the same as in Theorem 4.1. 
Proofs of subsequent results develop along the same lines as in Theorem 4.1, with Theorem 3.2 
providing the algebraic support once offered by Theorem 3.1.

Indeed, the row kernels of N , for =1, and of 2 1[ , ]Ν Ν  and 2Ν , for =2 under the rank 

conditions (45), turn out to be spanned by the columns of the matrices C , and 

                            2( ) C ( )
   C B PC S                                                                           (51)

                            2( ) ' , ( )JBG P B C 
                                                                         (52)

respectively, according to (49) and (51) of Theorem 3.2 bearing in mind (52) and (53) of the said

theorem. As a by-product, under =2, the columns of 'P B 
  turn out to span the subspace of the 

row kernel of 2Ν  not intersecting with that of  2 1[ , ]Ν Ν  .
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Hence, by resorting to the same line of reasoning set forth in the proof of Theorem 4.1, the way is 
paved to prove (43), (44), (46) and (47), as well as (45), with (54) of Theorem 3.2 playing the same 
role formerly played by (9) of Theorem 3.1. 

Should either the rank qualification r ( )B PC S  
  = r ( )S   or the rank assumptions (48) fail to 

hold, then the prevoius arguments should be restated accordingly. The way would be paved, should 
we resort to the  analytical set-up formerly devised by Faliva and Zoia (2003, 2006). This is 
nevertheless beyond the scope of the present paper.   

                                                                                                                                                       �
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