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1 Introduction

The traditional literature on cointegration and error correction models consid-
ers adjustment to long-run equilibrium as a continuous process. More recently,
the joint analysis of nonlinearity and nonstationarity, introduced in economics
by Balke and Fomby (1997), has been an area of intense research especially
during the past decade. Indeed, there are many economic situations for which
adjustment toward equilibrium is not continuous. For example, transaction
costs in financial assets markets may lead to changing speeds of convergence to
equilibrium of rates of return. This nonlinearity in the error correction mecha-
nism can also be due to institutional constraints such as policy interventions in
exchange rate or interest rates management in a given monetary context. Thus,
central banks may manipulate two different interest rates so that the spread
does not exceed a given fluctuation band. Similarly, for exchange rates, non-
linearities may arise in adjustment to equilibrium when monetary authorities
use target zones device to apply an exchange rate policy. Indeed, such a target
zone model was introduced by Krugman (1991) in which the long-run parity
relationship is inactive within a given range of disequilibria while it becomes
active when the system crosses the boundaries of allowed fluctuations.

These stylized facts have generated a wide interest in the use of specifi-
cations such as Threshold Autoregressive (TAR) models introduced by Tong
(1983). An interesting application was proposed by Balke and Fomby (1997)
who extend the definition of error correction representation provided by Engle
and Granger (1987) to a threshold context.

Since the early paper of Balke and Fomby on threshold cointegration, most
of the studies focus on asymmetric adjustment in the error correction mecha-
nism described as a stationary system where the speed of adjustment differs
according to the regime. For example, Enders and Siklos (2001) propose a
testing procedure to detect an asymmetric adjustment effect in the equilibrium
error, while Hansen and Seo (2002) and Gonzalo and Pitarakis (2006) provide
statistics and asymptotic theory for testing the existence of a threshold but
without testing for cointegration. More recently, Seo (2004) presents a com-
plete theoretical investigation of the test of no cointegration against threshold
cointegration in the particular case when the lagged disequilibrium error is the
threshold variable. However, few papers focus on threshold cointegrated sys-
tems with unit root in one of the regimes as was initially considered by Balke
and Fomby (1997). Following the terminology of Caner and Hansen (2001)
who investigate the presence of unit root in a simple threshold autoregressive
model,1 we propose to call this case as one of partial cointegration. The reason
for this lack could probably be traced back to Balke and Fomby (1997) itself
where the authors mention the difficulties that partial cointegration gives rise
to in its statistical inference, in particular when one wishes to test the no-
cointegration hypothesis against threshold cointegration. Indeed, two pitfalls

1Caner and Hansen (2001) called such a TAR process, a partial unit root process.
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are combined: in addition to the well known issue of the non-identification
of the threshold parameter under the null hypothesis (i.e. linear adjustment)
inherent in TAR models, the process is nonstationary under the null (corre-
sponding to the no cointegration hypothesis) and locally nonstationary under
the alternative of threshold cointegration with unit root in one regime. How-
ever, recent studies provide routes for testing unit root in a simple TAR model
(see Caner and Hansen, 2001, Kapetanios and Shin, 2002) which may be used
in threshold cointegration analysis. The aim of this paper is therefore to pro-
pose a testing procedure able to test no cointegration and at the same time
discriminate under the alternative, between partial cointegration and cointe-
gration with asymmetric adjustment in the error correction mechanism.

For this purpose, we consider a two-regime threshold long-run equilibrium
model for which the transition variable is an appropriate stationary variable.
We derive the error correction representation and consider the test for which
the null hypothesis is no-cointegration against two alternatives. The first one
corresponds to the traditional threshold cointegration hypothesis where the
speed of adjustment differs according to the regime, and the other one covers
the partial cointegration hypothesis. The difficulty of this test type is twofold
(Hansen and Seo, 2002, Seo 2004, Gonzalo and Pitarakis, 2006). First, both
the threshold parameter and the cointegrating vector are not identified under
the null of no-threshold and no-cointegration. Secondly, as mentioned above,
nonstationarity appears both in the null hypothesis and in the alternative when
the we focus on the partial cointegration hypothesis.

Our contribution attempts to fill the gap in the existing literature on test-
ing for threshold cointegration. In particular, it completes the investigation of
Balke and Fomby (1997) by providing an asymptotic test theory and an em-
pirical illustration. In addition to testing the no cointegration hypothesis, we
will show that our testing procedure allows to discriminate partial cointegration
from threshold cointegration.

The paper is organized as follows. In Section 2, threshold cointegration is
briefly reviewed, partial cointegration is formally defined and error correction
representation is derived for a two-regime model. Section 3 presents the test
statistics and the testing procedure. Section 4 derives the asymptotic distrib-
utions both when the cointegrating vector is known and when it is estimated.
Section 5 is devoted to Monte-Carlo experiments. In Section 6, we present an
empirical application of the proposed procedure to the term structure of inter-
est rates. The last section summarizes and concludes. Proofs of the theorems
are presented in the appendix.

The following general notation is used. We denote by D [0, 1] the space
of cadlag functions (i.e. the function which are left continuous and have right
limits) on the unit interval [0, 1] , and Dn [0, 1] , the product space of n-copies of
D [0, 1] . A (n× n) identity matrix is denoted by In and the projection matrices
by PA = A (A′A)−1 A′. We will use I (1) and I (0) to signify time series that are
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integrated of order 1 and 0, respectively. Throughout the paper, the integrals
are taken over the unit interval unless indicated otherwise and we use “=⇒”
to denote the weak convergence of the associated probability measures as the
sample size T tends to infinity.

2 Threshold cointegration

2.1 Asymmetric adjustment to long-run equilibrium

In order to introduce the threshold cointegration concept, we begin by studying
the following n-dimensional cointegrated system, y′t = (y1t, y′2t) , with only one
cointegrated relationship:

y1t = β′y2t + zt (1)
∆y2t = ηt

where y1t is an univariate integrated process I (1) and y2t, a m-vector inte-
grated process, and where ut = (zt , ηt)

′ is a n-vector (n = 1 + m) white-noise
disturbance which satisfies the following assumption.

Assumption 1. (i) E (ut) = 0 for all t; (ii) supt E
(
|ukt|δ

)
< ∞ for δ > 2

and k = 1, ..., n; (iii) E (utu
′
t) = Ψ > 0; (iv) ukt, are strongly mixing, with

mixing coefficients {αki} such that
∑∞

i=1 α
1−2/δ
ki < ∞, for k = k = 1, ..., n.

The first assumption ensures that all drawings of ut have the same mean.
The second one is a sufficient condition to ensure the existence of the variance
and a higher non-integer moment of ukt, ∀t. The third, is a convergence con-
dition on the average variance of the partial sum ST =

∑t
τ ukτ , and the last

assumption controls the extent of the temporal dependence in the processes ukt

(See Phillips (1987) for details).

Phillips (1987) has shown that under conditions (i) to (iv) , the suitably
normalised process BT (r) = T−1/2S[Tr] (where [x] denotes the largest integer
which does not exceed x), such that BT ∈ Dn [0, 1] , converges weakly to a
bivariate Brownian motion B with covariance matrix Ψ : BT (r) =⇒ B (r) . The
continuous mapping theorem (Billingsley, 1968) states that if BT (r) =⇒ B (r)
and g is any continuous function on D [0, 1], then g (BT (r)) =⇒ g (B (r)) .

The system implies that y2t is not cointegrated and the first equation is a
single cointegrating regression with cointegrating vectors α′ = (1,−β′). This is
the so-called triangular representation (Phillips, 1991). Taking first differences
in (1) and rearranging, the system has the following VECM representation:

∆yt = γα′yt−1 + vt (2)

where y′t = (y1t, y2t) , γ′ = (−1, 0) , and vt =
(

1 β′

0 Im

)
ut.
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While traditional cointegration theory assumes linearity and symmetry in
adjustment to long-run equilibrium, threshold cointegration describes the dise-
quilibrium error process zt as a Threshold Autoregressive (TAR) process such
that

zt =
{

φ1zt−1 + εt if st−d ≤ θ
φ2zt−1 + εt if st−d > θ

(3)

where εt is a white-noise disturbance of variance σ2, and st−d is called the
transition variable where d ≥ 0 is the threshold lag or delay, and θ is a threshold,
which corresponds to the long-run equilibrium value. The transition variable
st could be an exogenous variable or could even be the the lagged dependent
variable, for instance the disequilibrium term zt−1 (Balke and Fomby, 1997,
Enders and Siklos, 2001). This latter particular case is called Self-Exciting
Threshold Autoregressive (SETAR).

Another perhaps more convenient choice for the transition variable is ∆st

or more generally ∆dst because it ensures the stationarity of the transition
variable (See Enders and Siklos, 2001, and Caner and Hansen, 2001). When
this transition variable corresponds to the lagged dependent variable, ∆zt−1,
such a TAR model is called a Momentum-TAR (M-TAR).

The basic TAR model was introduced by Tong (1983) for which inference
was widely studied by Tsay (1989, 1998), Chan (1993) and Hansen (1996,
1997) among others. Chan et al. (1985) have shown that this two-regime
TAR process is stationary and ergodic if φ1 < 1, φ2 < 1 and φ1φ2 < 1.
Under these conditions and according to the definition of cointegration, y1t

and y2t are cointegrated with cointegrating vector α. The equilibrium error zt

is said to be mean reverting. However, unlike conventional cointegrated systems
considered by Engle and Granger (1987) where the adjustment is symmetric
(i.e. φ1 = φ2), here the movement towards long-run equilibrium is asymmetric
in that the speeds of mean reversion?, φ1 and φ2, differ according to the value of
st−d. Thus the Engle-Granger definition appears as a special case of threshold
cointegration. Note that when the special case φ1 = φ2 = 1 occurs, then zt is
I (1) and y1t and y2t are not cointegrated.

Figure 1 displays an example of threshold cointegrated system as defined
by (1) and (3) , where st−d = ∆zt−1 and where the error-correction term is
an asymmetric mean reverting process φ1 6= φ2 6= 1 (we use this ‘short-cut’
notation to both are different and different from 1). Both regimes are stationary
but when ∆zt−1 exceeds the threshold (taken to be zero here), the persistence
of zt in the second regime is stronger: the parameter values used for simulation
are φ1 = 0.3, φ2 = 0.6, and β = −0.9.

The formulation (1) and (3) describing a threshold cointegrated system is
now commonly used in empirical and theoretical studies to take into account
nonlinear adjustments (Enders and Siklos, 2001, Lo and Zivot, 2001, among
others). In the above example, we have only considered two regimes in the
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Figure 1: Threshold cointegrated system

TAR model, but multi-band models could also be developed. See for example
Balke and Fomby (1997), or more recently Kapetanios and Shin (2003) that
consider TAR models with three regimes.

2.2 Partial cointegration

A growing interest in the recent literature on TAR processes has focused on
the presence of a unit root in one of the regimes. Indeed, some macroeconomic
variables may behave in a non-stationary manner only in a particular context.
This local nonstationary feature occurs when φ1 = 1 and φ2 < 1 or φ1 < 1
and φ2 = 1 in eq. (3) such that the TAR behaves like a unit root process in
one regime.2 In the terminology of Caner and Hansen (2001), this intermediate
case is called partial unit root. By analogy with this terminology, we call the
same configuration in threshold cointegration, partial cointegration. Figure 2
illustrates such a cointegrated system where the non-stationary state is only
active under the first regime. The parameter values used for this simulated
system are φ1 = 1, φ2 = 0.3, and β = −0.9.

In spite of the lack of literature in this area, one should note that when Balke
and Fomby (1997) published their work, it was this case of partial cointegration
that they initially considered. However, emphasizing the difficulties in testing
partial cointegration, the authors did not provide either a formal test theory or
any empirical illustration.

2Note that, in spite of the local nonstationarity of the process, it remains globally ergodic
(See Tweedie, 1975 and Chan et al., 1985)
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Figure 2: Partial cointegrated system

The purpose of this paper therefore is to complete the Balke and Fomby in-
vestigations exploiting some of the results from the literature on TAR processes
with unit root. In particular we extend the works of Caner and Hansen (2001)
to develop a testing procedure to detect the presence of a partial unit root in
the long-run disequilibrium term. Since our procedure makes use of the error
correction representation of a threshold cointegration system, we briefly recall
its formulation in the following subsection.

2.3 Error correction representation

To derive the Threshold Vector Error Correction Model (TVECM henceforth)
associated with the data generating process (DGP) of Section 2, it is convenient
to rewrite (3) as follows. Using the notations z

(1)
t = zt1I{st−d≤θ} and z

(2)
t−1 =

zt1I{st−d>θ}, where 1I{·} denotes the indicator function, and by noting that

z
(1)
t + z

(2)
t = zt, we can write the TAR(1) process as:

Φ1 (L) z
(1)
t + Φ2 (L) z

(2)
t = εt (4)

where Φj (L) = 1− φjL, for j = 1, 2.

Proposition 1. The Threshold VECM associated with the system described
by (1) and (2) with ηt denoting a q-order autocorrelated process, is given by

∆yt = π(1)y
(1)
t−1 + π(2)y

(2)
t−1 + Γ (L)∆yt−1 + εt (5)
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where y
(1)
t−1 = yt−11I{st−d≤θ}, y

(2)
t−1 = yt−11I{st−d>θ},

π(j) = γjα
′, εt with covariance matrix Σ

γj =
( −Φj (1)

0

)
, Γ (L) =

(
0 β′g (L)
0 g (L)

)
with

g (L) =
∑q

i=1 gi Li−1, gi being (m×m) coefficient matrices .

Proof. See Appendix A.1. ¥

The threshold effect is active only if 0 < IP (st−d ≤ θ) < 1, otherwise the
model is reduced to the standard VECM, i.e. π(1) = π(2). Indeed, if there is no
threshold effect, the disequilibrium in (1) is an autoregressive process of order
1 and the earlier VECM becomes

∆yt = πyt−1 + Γ (L)∆yt−1 + εt

¿From a TVECM, Seo (2004) proposes a test of no-cointegration whose
alternative is the threshold cointegration, while Hansen and Seo (2002) provide
a test of linear cointegration hypothesis against the threshold cointegration
hypothesis conditioning on the existence of cointegration. The main difficulty
of these tests is that under the null hypothesis there is no threshold effect and
so the threshold parameter is not identified. Moreover, the issue considered
by Seo is more complicated because there are added unidentified parameters
under the null namely those of the cointegrating vector. Under the null of
no-cointegration, i.e. φ1 = φ2 = 1, so γ1 = γ2 = 0, the disequilibrium in (1) is
an I (1) process, so the TVECM of the proposition 1 becomes a simple VAR
process.

However, these tests do not consider the alternative that (3) has a unit root.
As we have seen in the previous section, the hypothesis of partial cointegration
in (3) can be written as:

H0 : φ1 = φ2 = 1 vs. H1 :
{

φ1 = 1
φ2 < 1

or
φ1 < 1
φ2 = 1

Now, consider the TVECM specification (5). It is straightforward to show that
the previous alternative hypothesis is equivalent to the following:

Ha :
{

γ1 = 0
γ2 6= 0

or
γ1 6= 0
γ2 = 0

Under Ha, the process described by the TVECM is locally nonstationary. In
this context, π(1) = 0 in our TVECM:

∆yt = π(2)y
(2)
t−1 + Γ (L)∆yt−1 + εt

While the test proposed by Seo (2004) could be used to test the null of
no-cointegration against the alternatives γ1 6= γ2 6= 0 and Ha above, it is
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unable to discriminate between these two hypotheses. Moreover, Caner and
Hansen (2001) point out the difficulty of testing H0 against H1 based on a
TAR model because of the one-sided feature of H1. They suggest examining
the significance of the individual estimators φ̂1 and φ̂2 considering negative
values of the t-statistics to improve the power of the test. In cointegration
analysis, it is convenient to conduct this test using the TVECM representation
because the alternative becomes two-sided. Hence, we will derive the Wald
test from the TVECM which is easier to perform than the one-sided test in
model (3). Considering the individual Wald statistics of both vector estimates
γ̂1 and γ̂2, if only one is significant, then the test would be consistent with the
hypothesis H1 but not with the alternative γ1 6= γ2 6= 0.

We now add some assumptions on the transition variable required for the
inference in the generalised context.

Assumption 2. (i) The transition variable st−d is a strictly stationary and
ergodic sequence that is independent of εkt, for k = 1, ..., n, and whose dis-
tribution F is continuous everywhere; (ii) the threshold θ is such that θ ∈
Θ =

[
θ , θ

]
, a closed and bounded subset of the sample space of the transition

variable st−d.

The support for the threshold parameter is required to be trimmed such
that IP (st−d ≤ θ) = λ > 0 and IP

(
st−d ≤ θ

)
= 1 − λ. In general, empirical

investigations choose λ to be 15 percent. Notice that the choice of this percent-
age is somewhat arbitrary. It is chosen in order to ensure enough observations
in each regime and that the limits for the test statistics used in inference are
nondegenerate (See Hansen, 1996). Let Ut = F (st−d) ∼ U[0,1]. Due to the
equality 1I{st−d≤θ} = 1I{F (st−d)≤F (θ)}, we will use u = F (θ) ∈ [ λ , 1− λ ] (See
Caner and Hansen, 2001).

Let “=⇒” denote weak convergence with respect to the uniform metric on
[0, 1]2 , under Assumptions 1 and 2 we have the following Lemma from Caner
and Hansen (2001), that will serve for the subsequent results developed in the
paper.

Lemma 1. Let Assumption 2 hold and consider the earlier integrated n-vector
process yt such as ∆yt = et, where et satisfies Assumption 1 and whose covari-
ance is Ω. Let Ω1/2 be the matrix P such that Ω = PP′. Then, as T −→ ∞
we have:

(i) BT (r, u) = T−1/2
∑[Tr]

t=1 1I{Ut≤u}et =⇒ Ω1/2B(r, u) on (r, u) ∈ [0, 1]2 ,
with B (r, u) a n-vector standard two-parameter Brownian motion, such
that
B(r, u) ∼ N (0, ru) , B (r, 1) = B (r) .

Symmetrically we have T−1/2
∑[Tr]

t=1 1I{Ut>u}et =⇒ B (r, 1− u) .
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(ii) T−1
∑T

t=1 1I{Ut≤u}yt−1e ′t=⇒Ω1/2
∫

B (r) dB (r, u)′

(iii) T−2
∑T

t=1 1I{Ut≤u}zt−1z
′
t−1=⇒F (θ)

∫
V (r)V (r)′ dr

(iv) T−2
∑T

t=1 1I{Ut>u}zt−1z
′
t−1=⇒S (θ)

∫
V (r)V (r)′ dr

where zt = α′yt with α is a nonrandom matrix and S (θ) = 1− F (θ) .

Proof. See Caner and Hansen (2001, Theorems 1-3, pp. 1560-1561). ¥

3 Testing no-cointegration

Testing no-cointegration against partial cointegration

In this section we develop a test that can discriminate against the alternative
of partial cointegration where the equlibrium error follows a TAR process with
a unit root in one regime.

Letting V ar (εt) = Σ and z
(j)
t = α′y(j)

t in the n-dimensional TVECM (5) ,
we write

∆yt = γ1z
(1)
t−1 + γ2z

(2)
t−1 + Γ (L)∆yt−1 + εt (6)

where γj is a n-vector. In order to consider the test of no-cointegration with
the alternative of partial cointegration Ha, it is convenient to vectorize the
formulation of the previous model stacking the observations in order to obtain:

vec (∆Y ) = γ1 ⊗ Z1 + γ2 ⊗ Z2 +
∑q

i=1 (Γi ⊗ IT ) vec (∆Y−i) + ξ

where ∆Y is a (T×n) matrix, ξ = vec (ε) with ε is the (T×n) matrix of stacked
errors, Zj is a T -vector, Γi are (n× n) matrices, and ∆Y−i = [∆Y1,−i, ∆Yn,−i] ,
where ∆Yk,−i is the matrix (T × n) which stacks the observations of the kth
component of ∆yt−i, for k = 1, ..., n and i = 1, ...q. Using partitioned regres-
sion, the Wald statistic under the null is given by

WT,j = γ̂j (u)′ V ar (γ̂j (u))−1
γ̂j (u)

WT,j =
[(

In ⊗
(
Z ′jMXZj

)−1
Z ′jMX

)
ξ
]′ [

Σ̂−1 ⊗ (
Z ′jMXZj

)] [(
In ⊗

(
Z ′jMXZj

)−1
Z ′jMX

)
ξ
]

= vec
([(

Z ′jMXZj

)−1
Z ′jMX

]
ε
)′ [

Σ̂−1 ⊗ (
Z ′jMXZj

)]
vec

([(
Z ′jMXZj

)−1
Z ′jMX

]
ε
)

for j = 1, 2, where MX = IT −X (X ′X)−1 X ′ is the idempotent matrix associ-
ated with the projection onto the orthogonal space of the sub-space generated
by X =

[
R Zj′

]
of order (T × qn + 1) with j 6= j′, and where
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R = [∆Y−1 · · · ∆Y−q] a (T × qn) matrix of stationary elements of X under
the null hypothesis with Σ̂ a consistent estimator of Σ. Using the result that,
for suitable matrices A,B and C,

tr {AB′CB} = vec (B′)′ (C ′ ⊗A) vec (B′) = vec (B)′ (A⊗ C ′) vec (B)

we have:

WT,j (u) = tr
{

Σ̂−1
(
Z ′jMXε

)′ (
Z ′jMXZj

)−1 (
Z ′jMXε

)}

Since the threshold parameter is not identified under the null, we consider the
supremum Wald statistic (denoted sup-Wald) over a grid set of possible values
of threshold to eliminate this nuisance parameter. For stationary data, this
statistic was investigated by Davies (1987), Andrews and Ploberger (1994) and
Hansen (1996), while sup-Wald was discussed by Caner and Hansen (2001) and
Seo (2004) for integrated data. Thus, the appropriate statistic is:

supWj = sup
u∈[ λ ,1−λ ]

WT,j (u) , for j = 1, 2

Testing no-cointegration against threshold cointegration

The previous section proposed a new test but this section re-examines a test
that already exists in the literature viz., the test for no-cointegration against
threshold cointegration (without unit root) proposed by Seo (2004) and gen-
eralises it for any transition variable st−d which satisfies Assumption 2. Seo
considers the case in which the transition variable is the lagged disequilib-
rium error process, zt−1, and proposes a Wald statistic to test no-cointegration
based on a TVECM similar to our (5), deriving its asymptotic distribution,
while Kapetanios and Shin (2003) investigate the same test in a TAR process
with three regimes. In both cases the alternative is global stationarity.

Keeping the same notations and stacking the observations, the model (6)
could be written compactly as

vec (∆Y ) = Z vec (γ) + ∆Y Γ + ξ

V ar (ξ) = Σ⊗ IT

where Z = In⊗Z is a (nT ×2n), with Z = [Z1 Z2], γ = [γ1 γ2] is a 2n-vector,
∆Y = In ⊗R, and Γ the qn2-vector of the coefficients of the lags.

Using partitioned regression, under H0 : vec (γ) = 0 as before, the Wald
statistic is given by:

WT,0 (u) = ξ′
(
In ⊗ (Z ′MRZ)−1

Z ′MR

)′ [
Σ̂−1 ⊗ (Z ′MRZ)

] (
In ⊗ (Z ′MRZ)−1

Z ′MR

)
ξ

Once again we rewrite this statistic as:
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WT,0 (u) = tr
{

Σ̂−1
(
Z ′MRε

)′ (
Z ′MRZ

)−1 (
Z ′MRε

)}

where MR denotes the idempotent matrix associated with the projection onto
the orthogonal space of the sub-space generated by R. Thus the test statistic
will be supW0 = sup

u∈[ λ ,1−λ ]
WT,0 (u) .

In the next section, we derive the large sample distribution of our statistics
under the null, taking into account that the threshold is unidentified under the
null (i.e. γ1 = γ2 = 0).

4 Asymptotic distributions

In this section, asymptotic distributions of statistics are derived. As tradition-
ally, two cases are considered: when the cointegrated vector is known and when
it is unknown a priori, hence estimated.

Economic theory often provides equilibrium relationships that the econo-
metrician would like to verify in practice. This is typically the case for the
hypothesis of purchasing power parity where the long-run equilibrium relation
is fully known. Therefore, we begin by assuming β known to derive the asymp-
totic distributions. The following theorem gives the asymptotic distributions
for supW0, supW1 and supW2.

Theorem 1. Let Assumptions 1 and 2 hold. Then, under H0 , the distribution
of supW0, supW1 and supW2 as T →∞ are:

supWj =⇒ sup
u∈[ λ ,1−λ ]

Tj (u) , for j = 0, 1, 2

where T0 (u) , T1 (u) and T2 (u) are defined as

T0 (u) = tr
{
Q (r, u)′

(
M (u)

∫
V 2 (r) dr

)−1
Q (r, u)

}

T1 (u) = tr
{∫

dB (r, u)V (r)′
(
u
∫

V 2 (r) dr
)−1 ∫

V (r) dB (r, u)′
}

T2 (u) = tr
{∫

dB (r, 1− u)V (r)′
(
(1− u)

∫
V 2 (r) dr

)−1 ∫
V (r) dB (r, 1− u)′

}

where Q (r, u) =
( ∫

V (r) dB (r, u)′∫
V (r) dB (r, 1− u)′

)
, M (u) =

(
u 0
0 1− u

)
, V (r)

is a univariate Brownian motion, B (r, u) and B (r, 1− u) are standard two-
parameter Brownian motions on (r, F (θ)) and (r, S (θ)) respectively.

Proof. See Appendix A.2. ¥
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In many cases the cointegrating vector is unknown. Since these parameters
are only identified under the alternative hypothesis, the cointegrated vector
is a nuisance parameter, and so β must be estimated. Exploiting the super-
consistency of the OLS estimator in the long-run equilibrium relationship, we
conduct a two-step method like the Engle-Granger procedure (1987) to estimate
the TVECM. Let now β̂T = (y′2y2)

−1 y′2y1 be the least squares estimator of β
based on a sample of T observations. The results of Phillips and Ouliaris (1990)
allow us to derive the asymptotic distribution of the sup-Wald statistics given
α̂′T = (1, −β̂′T ).

Theorem 2. Let Assumption 1 and 2 hold. Under H0 and for a consistent
estimator α̂T , the asymptotic distribution of our test statistics supW0, supW1

and supW2 are the same as in Theorem 1 where the Brownian motion V (r)
should be replaced by:

V (r) = U1 (r)− ∫
U1 (r) Um (r)′ dr

(∫
Um (r) Um (r)′ dr

)−1
Um (r)

with the following partition of the n-vector Brownian motion
U (r) =

(
U1 (r) , Um (r)′

)′ with Um (r) is m-dimensional.

Proof. See Appendix A.3. ¥

Having derived the asymptotic distributions, we go on to tabulate them
by Monte Carlo simulations. The stochastic integrals are evaluated at 10,000
points over the argument r and 100 steps over the argument u. The critical
values are computed as the empirical quantiles from 100,000 replications and
are reported in Table 1 for the bivariate case (n = 2). Note that the critical
values for supW1 and supW2 are the same due to the symmetry of both sta-
tistics. We report those of supW1 only for various ranges [λ , 1− λ ] because
the choice of λ affects the power of the tests. Caner and Hansen (2001) discuss
the inconsistency of the tests for λ = 0. Indeed, the critical values of the statis-
tics increase as λ decreases. This implies that the rejection of null hypothesis
requires a larger value of the statistics as λ tends to 0. It follows that λ should
be set in the interior of (0, 1) . However, as discussed by Andrews (1993) and
Caner and Hansen (2001) the choice remains somewhat arbitrary and so var-
ious values must be tried in empirical applications to verify the robustness of
the results to the selected value of λ.

So far, we assumed that the DGP had zero mean in order to arrive at
the results without complicating notations. However it is not a very realistic
assumption in practice where it is reasonable to include an intercept in the
TVECM as follows:

∆yt = µ + π(1)y
(1)
t−1 + π(2)y

(2)
t−1 + Γ (L)∆yt−1 + εt

While the presence of an intercept in the model does not cause trouble for
the estimation procedure, the asymptotic distributions of the estimators of

13



long-run parameters and of the test statistics need minor analytical transfor-
mations. The Brownian motions V in Theorem 1 and 2 should be replaced
by the corresponding demeaned Brownian motion defined as V ∗ = V − ∫

V dr.
For Theorem 2, we will have V = U1 −

∫
U∗

1 U∗′
mdr

(∫
U∗

mU∗′
mdr

)−1
Um, where

U∗ = (U∗
1 , U∗′

m)′ =
(
U1 −

∫
U1,

(
Um − ∫

Um

)′)′. This latter modification
comes from the presence of a drift in the estimation of the long-run relationship
by OLS. The critical values for demeaned case are also reported in Table 1.

Table 1: Critical Values for Wald Statistics for Bivariate Models (i.e. n = 2)

[λ , 1− λ] 90% 95% 99% 90% 95% 99%
(µ = 0) (µ 6= 0)

[0.15 , 0.85] 10.666 12.631 16.821 13.008 15.106 19.745
supW1, supW2 [0.10 , 0.90] 10.983 12.911 17.120 13.328 15.415 20.018

[0.05 , 0.95] 11.327 13.211 17.365 13.647 15.702 20.295

[0.15 , 0.85] 14.947 17.117 21.620 17.735 20.104 24.998
supW0 [0.10 , 0.90] 15.374 17.501 22.059 18.137 20.488 25.409

[0.05 , 0.95] 15.855 18.011 22.554 18.615 20.981 26.046

Note : calculated from 100,000 simulations.

5 Finite sample size and power

In this section we perform Monte-Carlo experiments to evaluate the finite-
sample properties of the proposed tests, when the threshold is unidentified.
For this purpose, we simulate the bivariate TVECM according to the DGP (1),
setting γ1 = γ2 = 0 and assuming an AR(1) process for ηt in (1) i.e.

∆yt = Γ∆yt−1 + εt

where Γ =
(

0 0
0 Γ22

)
with Γ22 taking values from {−0.5, 0, 0.5}. We gener-

ate 100 independent bivariate observations of ε′t = (ε1t, ε2t) according to iid
N (0, I2) .

We first examine the size based on asymptotic distributions. Table 2 reports
rejection frequencies of the null hypothesis at 5% level from 5000 Monte-Carlo
replications for the tests supW1, supW2, and supW0. It shows that the as-
ymptotic tests are strongly biased in small samples for all the three tests. Note
that for the test based on supW1 and supW2, the null is rejected if either one,
supW1 or supW2, rejects the null.

14



Let us now turn to the bootstrap approximation. Caner and Hansen (2001)
discuss it in the context of TAR inference and find that the finite sample infer-
ence is improved when the bootstrap-approximated distribution is used. We fol-
low the same procedure to construct our bootstrap critical values and p-values.
Recall that under the null γ1 = γ2 = 0 in the TVECM(1). Let

(
γ̃1, γ̃2, Γ̃, F̃

)
be

estimates of parameters (γ1, γ2,Γ, F (εt)) where F̃ is the empirical distribution
of the residual {ε̂t} . Next, we generate ∆yb

t = Γ̃∆yb
t−1 + εb

t from F̃ (i.e. εb
t is a

drawing from F̃ ). Compute supWb
j and supWb

0. The estimated p-values are the
percentage of simulated supWb

j and supWb
0 that exceed the observed supWj

and supW0 respectively. Our bootstrap 5% critical values for T = 100, are
19.674 for supWj and 28.790 for supW0.

3 Based on these values, we repeat the
Monte-Carlo experiments to obtain the size of our no-cointegration tests. The
results are given in Table 3. It also reports the rejection rates for Johansen’s
trace test (1995). The results show that, while the statistic supW0 dominates,
both joint tests work better than the procedure based on supW1 and supW2.

Table 2: Size of Asymptotic Tests

supW1, supW2 supW0

Γ22

-0.5 0.300 0.247
0.0 0.297 0.243
0.5 0.293 0.238

Note : T = 100. Nominal size 5%. Rejection rates from 5000 replications.

Table 3: Size of Bootstrap No-Cointegration Tests

supW1, supW2 supW0 λtr

Γ22

-0.5 0.083 0.040 0.055
0.0 0.082 0.037 0.057
0.5 0.078 0.033 0.058

Note : Nominal size 5%. Rejection rates from 5000 replications.
λtr denotes the trace statistic of Johansen.

It is interesting to analyze the power of the proposed testing procedures
when the DGP is a partial cointegrated system. For this purpose, 1000 par-
tially cointegrated processes were generated according the following values of
parameters: β = −0.9, φ1 = 1, u = 0.5, Γ22 once again taking values from
{−0.5, 0, 0.5} and φ2 from {0.2, 0.5, 0.7, 0.9} . The associated TVECM is

∆yt = γ2z
(2)
t−1 + Γ∆yt−1 + εt

3These values are obtained form 5000 bootstrap replications with bound λ = 0.15.
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Note that in this case we have γ2 =
(

φ2 − 1
0

)
and Γ =

(
0 βΓ22

0 Γ22

)
. The

percentage of times that the null hypothesis is correctly rejected defines the
power of the tests. The results of experiments (based on finite-sample critical
values), with estimated cointegrated parameter β, are reported in Table 4.
Our experiments show that the Wald statistics do a much better job than
Johansen’s test in general. Moreover, as expected, when the DGP is a partial
cointegrated system, the testing procedure based on supW1 and supW2 has
better power than the joint test (supW0 and Johansen’s test) because it allows
to discriminate between the unit root in zt and the partial unit root. Note
that, as always the case, the power of all tests falls as zt tends toward a unit
root process, i.e. when φ2 −→ 1. Thus, the tests suffer from a very low power
when the process is near unit root.

Table 4: Power of Tests

supW1, supW2

φ2 0.2 0.5 0.7 0.9
Γ22

-0.5 1.00 0.967 0.656 0.137
0.0 1.00 0.963 0.666 0.133
0.5 1.00 0.969 0.653 0.131

supW0

-0.5 0.996 0.852 0.391 0.063
0.0 0.995 0.852 0.400 0.059
0.5 0.997 0.854 0.388 0.056

λtr

-0.5 0.959 0.754 0.388 0.087
0.0 0.950 0.752 0.379 0.097
0.5 0.960 0.768 0.398 0.103

Note: T = 100. Nominal size 5%. Rejection rates from 1000 replications.

6 Application : the term structure of interest rates

We illustrate the partial cointegration test by analyzing the relationship be-
tween various long-term (rt) and short-term (Rt) U.S. interest rates. According
to the theory of the term structure of interest rates (Shiller, 1990), the long-
term interest rates should be cointegrated with the interest rates on shorter
maturity bonds (Campbell and Shiller, 1987, 1988). The basic idea behind
threshold cointegration in the spread between the two interest rates is that the
nonlinearity in the adjustment process stems from interventions of monetary
authority. In order to test this hypothesis, we use the monthly interest rate
series of McCulloch and Kwon (1993) which are constructed from the prices
of U.S. Treasury securities and expressed as continuously compounded zero-
coupon bonds. Following Hansen and Seo (2001), we estimate and test models
of threshold cointegration using a selection of bond rates with maturities rang-
ing from 1 to 120 months for the period January 1951 - February 1991 (482
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observations). It is generally agreed that interest-rates series are I(1). For this
reason the unit root test results on each variable, which confirm I(1), are not
reported here to save space.

Following the Engle-Granger methodology, we estimate the long-run equi-
librium relationship by OLS: Rt = µ + βrt + zt. Once the cointegrating vector
is estimated, the residuals are used to estimate the TVECM by Least Squares
over 340 grid points on the threshold parameter. Note that the transition vari-
able is taken be ∆zt−1 to ensure its stationarity in the case of no-cointegration
or partial cointegration. In other words, the threshold process implicitly as-
sumed for the disequilibrium term is a M-TAR. The grid set corresponds to
70% of estimated values of the transition variable ∆ẑt−1 which are possible
values of the threshold. The discarded values are the largest and smallest 15%
of ∆ẑt−1. As discussed earlier, this choice of the percentage of discarded ob-
servations is somewhat arbitrary. In practice, it is chosen in order to ensure
a sufficient number of observations to conduct regression in each regime and
Andrews (1993) suggests λ = 0.15 is a reasonable choice. The TVECM to be
estimated is formally given by:

(
∆rt

∆Rt

)
= µ+γ1zt−11I{F (∆zt−1)≤F (θ)}+γ2zt−11I{F (∆zt−1)≤F (θ)}+Γ

(
∆rt−1

∆Rt−1

)
+εt

The final results, such that F (θ̂) = arg min log
∣∣∣Σ̂

(
β̂, F (θ)

)∣∣∣ , are reported
below for two interesting pairs of interest rates: 3-month / 12-month and 12-
month / 24-month. These series are depicted in Figure 3. Note that the order
of TVECM was selected to minimize the AIC and BIC criteria.

For each model, we compute the statistics supWT,1, supWT,2 and supWT,0

over 340 grid points. Since the interest rates are highly heteroskedastic, stan-
dard deviations of parameters (in brackets) are computed using the Newey-
West (1987) method in order to obtain an heteroskedasticity-consistent value.
That is, Wald statistics are given by W̃T,j = (γ̂j (u))′ Ω̃ (γ̂j (u))−1 (γ̂j (u)) , for
j = 0, 1, 2 where Ω̃ (γ̂j (u)) is the Newey-West covariance matrix. Thus the
adequate test statistic is: sup W̃T,j (u). We also report the heteroscedasticity-
robust Ljung Box statistics

(
QW

)
on residuals for 6 and 12 lags. Their values

show that the residuals do not exhibit autocorrelation.

Examining the test results, one can conclude that there is evidence of thresh-
old cointegration in the first model whereas for the pair 3-month / 12-month,
the pure threshold cointegration is not an obvious fact, because supW2 is not
significant at 1%. Therefore, the null hypothesis could not be accepted and
the alternative is consistent with the partial cointegration hypothesis. As ex-
pected, the statistic supW0 rejects the null of no-cointegration hypothesis for
both models but it cannot discriminate between the stationary threshold coin-
tegration case and the partial cointegration case.
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Figure 3: Treasury Bond Rates

12-month / 24-month

Rt = −0.231
(0.074)

+ 1.007
(0.005)

rt + zt

∆Rt = 0.028
(0.021)

+ 0.066
(0.074)

z
(1)
t−1 −0.617

(0.128)
z
(2)
t−1 −0.121

(0.146)
∆R

(1)
t−1 + 0.379

(0.160)
∆r

(1)
t−1 + ε1t

u = 0.848

QW (6) = 2.019 ; QW (12) = 9.164

∆rt = 0.026
(0.018)

+ 0.135
(0.064)

z
(1)
t−1 −0.406

(0.110)
z
(2)
t−1 + 0.004

(0.126)
∆R

(1)
t−1 + 0.151

(0.138)
∆r

(1)
t−1 + ε2t

QW (6) = 1.951 ; QW (12) = 8.294

supW1 = 31.751a,b,c,d ; supW2 = 37.810a,b,c,d ; supW0 = 58.527a,b,c,d
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3-month / 12-month

Rt = −0.310
(0.103)

+ 0.980
(0.006)

rt + zt

∆Rt = 0.014
(0.022)

+ 0.051
(0.087)

z
(1)
t−1 −0.133

(0.065)
z
(2)
t−1 −0.172

(0.082)
∆R

(1)
t−1 + 0.344

(0.084)
∆r

(1)
t−1 + ε1t

u = 0.175

QW (6) = 2.532 ; QW (12) = 8.857

∆rt = 0.021
(0.018)

+ 0.388
(0.073)

z
(1)
t−1 + 0.015

(0.054)
z
(2)
t−1 −0.157

(0.069)
∆R

(1)
t−1 + 0.287

(0.071)
∆r

(1)
t−1 + ε2t

QW (6) = 3.732 ; QW (12) = 11.152

supW1 = 81.370a,b,c,d ; supW2 = 19.053a,c ; supW0 = 96.743a,b,c,d

a means that H0 could not be accepted at 5% based on asymptotic critical values.
b means that H0 could not be accepted at 1% based on asymptotic critical values.
c means that H0 could not be accepted at 5% based on finite-sample critical value:
16.417 for supWj and 21.968 for supW0.
d means that H0 could not be accepted at 1% based on finite-sample critical value:
21.460 for supWj and and 27.811 for supW0.

7 Conclusion

This paper investigates a partial cointegration case of cointegration in one
regime and no cointegration in another within the context of threshold error
correction models developed by Balke and Fomby (1997). It is called partial
cointegration following the same terminology as Caner and Hansen (2001) who
examined the case of a presence of a unit root in a TAR process. We propose a
test of the hypothesis of no cointegration against the alternatives of threshold
cointegration and partial cointegration. Asymptotic properties of the test sta-
tistics are derived, critical values are provided and the finite sample size and
power are analysed. An empirical application is carried out for illustrating the
practical relevance of such a test.
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Appendix

A.1 PROOF OF PROPOSITION 1:

We use the simplified notations It = 1I{Ut≤u} and (1− It)= 1I{Ut>u}. Using zt =

φ1α
′y(1)

t−1 + φ2α
′y(2)

t−1 + εt in VECM (2) we have

∆yt = γα′yt−1 +
(

1 β′

0 Im

)(
φ1α

′y(1)
t−1 + φ2α

′y(2)
t−1 + εt

ηt

)

∆yt = γα′yt−1 +
(

φ1It + φ2 (1− It)
0

)
α′yt−1 +

(
εt + β′ηt

ηt

)
,

so, we get:

∆yt =
( −1 + φ1It + φ2 (1− It)

0

)
α′yt−1 + εt,

which can be rewritten as ∆yt = π(1)y
(1)
t−1 + π(2)y

(2)
t−1 + εt,

with π(j) =
( −Φj (1)

0

)
α′, with Φj (L) = 1− φjL.

Now, assume that ηt has an finite q-autoregressive representation, G (L) ηt = ζt, where
ζt, is an independently and identically distributed (iid) process with 0 mean and such
that G (L) = Im − L g (L), with g (L) =

∑q
i=1giL

i−1, where gi are matrices (m×m)
of coefficients.

The previous VECM becomes

∆yt = π(1)y
(1)
t−1 + π(2)y

(2)
t−1 +

(
β′Lg (L) ηt−1

Lg (L) ηt−1

)
+

(
β′ζt + εt

ζt

)

Denoting εt =
(

β′ζt + εt

ζt

)
, we have:

∆yt = π(1)y
(1)
t−1 + π(2)y

(2)
t−1 +

(
0 β′g (L)
0 g (L)

)
∆yt−1 + εt. ¥

A.2 PROOF OF THEOREM 1:

Recall that under the null hypothesis, we have ∆yt = Γ (L)−1
εt,

where Γ (L) = In −L Γ (L) such that Γ (L) has roots lying outside the unit circle, i.e.
Γ (z) 6= 0, for all |z| ≤ 1.

Then we have T−1/2yt =⇒ W (r) = Γ (1)−1 Σ1/2B (r) ,

where B (r) is a standard n-vector Brownian.
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Consider the Wald statistic which tests the unit root in the first regime:

(A2.1) WT,1 = tr
{

Σ̂−1 1
T (Z ′1MXε)′ T 2 (Z ′1MXZ1)

−1 1
T (Z ′1MXε)

}

= tr

{
1
T

(
Z ′1MXεΣ̂−1/2

)′
T 2 (Z ′1MXZ1)

−1 1
T

(
Z ′1MXεΣ̂−1/2

)}

and using the result that for conformable matrices F and G such that H = [F G] ,
PH = H (H ′H)−1

H ′ = PF + MF G (G′MF G)−1
G′MF , with MF = I − PF ,

we get for the first term of A2.1

(A2.2) Z ′1MXε = Z ′1MRε + Z ′1MRZ2 (Z ′2MRZ2)
−1

Z ′2MRε

Consider the first term of (A2.2)

T−1Z ′1MRε = T−1Z ′1ε− T−3/2Z ′1R
(
T−1R′R

)−1
R′ T−1/2ε

Under the null zt being I (1) , we can use Lemma 1 to obtain the limit of T−1Z ′1ε :

T−1Z ′1ε = T−1α′
∑T

yt−11I{Ut≤u}ε′t =⇒ Σ1/2
∫

V (r) dB (r, u)′ ,

where V (r) is an univariate Brownian motion such that V (r) = α′B (r) .

Since T−3/2Z ′1R is op (1) , we have:

T−1Z ′1MRε =⇒ Σ1/2
∫

V (r) dB (r, u)′ .

Consider now, the second term of (A2.2).

T−1Z ′1MRZ2 (Z ′2MRZ2)
−1

Z ′2MRε = T−2A
(
T−2D−1

)
T−1C.

where

T−2A = T−2Z ′1Z2 − T−1Z ′1R
(
T−1R′R

)−1 (
T−3/2

)
T−1/2R′Z2 ,

T−1C = T−1Z ′2ε− T−3/2Z ′2R
(
T−1R′R

)−1
T−3/2R′Z2,

T−2D = T−2Z ′2Z2 − T−3/2Z ′2R
(
T−1R′R

)−1
T−3/2R′Z2 ,

Let us look at them one by one.

By construction Z ′1Z2 = Z ′2Z1 = 0 and due to over normalization by T−3/2, we have
T−2A = op (1) .

Since the second term of T−1C is op (1), using Lemma 1, we get:

T−1C = T−1Z ′2ε− op (1) =⇒ Σ1/2
∫

V (r) dB (r, 1− u)′

where B (r, 1− u) is a two-parameter Brownian motion on (r, S (θ)) ,

as T−1Z ′2ε =⇒ Σ1/2
∫

V (r) dB (r, 1− u)′ .

Finally T−2D =⇒ S (θ)
∫

V 2 (r) dr.
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Therefore the limiting distribution of (A2.2) is given by:

1
T Z ′1MXε =⇒ Σ1/2

∫
V (r) dB (r, u)′ .

In the same way, for the middle term of the Wald statistic (A2.1), we have:

Z ′1MXZ1 = Z ′1Z1 − Z ′1PRZ1 + Z ′1MRZ2 (Z ′2MRZ2)
−1

Z ′2MRZ1

T−2Z ′1MXZ1 =
T−2Z ′1Z1 − T−3/2Z ′1R

(
T−1R′R

)−1
T−3/2R′Z1 +

(
T−1

)
T−2A

(
T−2D−1

)
T−1C

Hence the limiting distribution of the middle term is T−2Z ′1MXZ1 =⇒ F (θ)
∫

V 2 (r) dr.

Putting the above terms appropriately together yields the expression of limiting dis-
tribution in Theorem 1.

A similar derivation can be carried out to obtain the asymptotic distribution of the
sup-Wald statistic for the parameter estimators of regime 2.

For the statistic WT,0 which jointly tests γ1 and γ2 , the algebra are similar but easier
because X = R with only stationary variables, so MX = MR. Let Z = [Z1 Z2] be
the (T × 2) matrix. Then we have:

WT,0 = tr
{

Σ̂−1
(
T−1Z ′MRε

)′ (
T−2Z ′MRZ

)−1 (
T−1Z ′MRε

)}

Let us take the first term of the above expression.

T−1Z ′MRε = T−1Z ′ε− T−3/2Z ′R
(
T−1R′R

)−1
T−1/2R′ε,

Using Lemma 1, we get:

T−1Z ′MRε =⇒ Σ1/2Q (r, u)

where Q (r, u) =
( ∫

V (r) dB (r, u)′∫
V (r) dB (r, 1− u)′

)
is a (2× n) matrix.

Similarly, for the middle term :

T−2Z ′MRZ = T−2Z ′Z − T−3/2Z ′R
(
T−1R′R

)−1
T−3/2R′Z, so

T−2Z ′Z =⇒
(

F (θ) 0
0 S (θ)

) ∫
V 2 (r) dr. ¥
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A.3 PROOF OF THEOREM 2:

This could be proved starting with the results of Phillips and Ourialis (1990).

Consider two processes νt iid (0, In) and yt iid (0, Σ) such that: T−1/2νt =⇒ U (r)
and T−1/2yt =⇒ W (r) are two n-vector Brownian motions.

Let us partition yt as
(

y1t

y2t

)
; W (r) as

(
W1 (r)
Wm (r)

)
and Σas

(
σ11 σ′21
σ21 Σ22

)
where

Σ22 is a positive matrix (m×m).

Let us decompose Σ as L′L with L =
(

l11 0
l21 L22

)
, such that W (r) ≡ L′U (r). We

can then write T−1/2yt = T−1/2L′ξt =⇒ W (r).

We also have :

T−2ν′ν =⇒ ∫
U(r)U(r)′dr =

(
s11 s′21
s21 S22

)
and

T−2y′y = T−2L′ν′νL =⇒ ∫
W (r)W (r)′dr =

(
λ11 λ′21
λ21 Λ22

)
= L′SL.

Thus, β̂T = (y′2y2)−1y′2y1 =⇒ Λ−1
22 λ21 and α̂′ = (1, −β̂′) =⇒ α′l =

(
1, −λ′21Λ

−1
22

)
,

Hence T−1/2α̂′T yt =⇒ α′lW (r) = α′lL
′U (r) , with α′lL

′ =
(
l11, l′21 − λ′21Λ

−1
22 L′22

)
.

By noting that l′21 − λ′21Λ
−1
22 L′22 = −l11s

′
21S

−1
22 , we have Lαl = l11

(
1

−S−1
22 s21

)
, and

α′lL
′U (r) = l11

(
1, − s′21S

−1
22

)(
U1 (r)
Um (r)

)

= l11

[
U1 (r)− (∫

U1(r)Um(r)′dr
) (∫

Um(r)Um(r)′dr
)−1

Um(r)
]
.

We can finally write T−1/2α̂′T yt = T−1/2ẑt =⇒ σU (r) ,

Noting V (r) = U1 (r)− (∫
U1(r)Um(r)′dr

) (∫
Um(r)Um(r)′dr

)−1
Um(r),

we obtain the proof of Theorem 2 using Lemma 1 with ẑt ∼ I (1) and a similar
derivation to that of Appendix A.2 . ¥
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