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Abstract

Mundlak (1978) showed that when individual effects are correlated with the
explanatory variables in an error component (EC) model, the GLS estimator
is given by the within. In this paper we bring out some additional inter-
esting properties of the within estimator in Mundlak’s model and go on to
show that the within estimator remains valid in an extended EC model with
time invariant variables and correlated specific effects. Adding an auxiliary
regression to take account of possible correlation between the explanatory
variables and the individual effects, we find that not only the elegant results
obtained by Mundlak but also the above mentioned special features carry
over to the extended case with interesting interpretations. We obtain these
results using a generalised version of the Frisch-Waugh theorem, stated and
proved in the paper. Finally, for both the EC models with and without time
invariant variables we have shown that the estimates of the coefficients of the
auxiliary variables can also be arrived at by following a two-step procedure.
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1 Introduction

This paper is concerned with the issue of time invariant variables in panel
data models. We try to look into an ‘old’ problem from a new angle or
rather in an extended framework. It is well-known that when time invariant
variables are present, the within transformation wipes them out and hence
does not yield estimates for their coefficients. However they can be retrieved
by regressing the means of the within residuals on these variables (see Hsiao
(1986) e.g.). Hausman and Taylor (1981) provide an efficient instrumental
variable estimation of the model when the individual effects are correlated
with some of the time invariant variables and some of the X’s. Valid instru-
ments are given by the other time invariant and time varying variables in the
equation.

Suppose we consider the case in which the individual effects are correlated
with all the explanatory variables. The earliest article dealing with this issue
in panel data literature is that of Mundlak (1978) where the author looked
at the error component model with individual effects and possible correla-
tion of these individual effects with the explanatory variables (or rather their
means). He showed that upon taking this correlation into account the re-
sulting GLS estimator is the within. Thus the question of choice between the
within and the random effects estimators was both “arbitrary and unneces-
sary” according to Mundlak.

Note that the question of correlation arises only in the random effects
framework as the fixed effects are by definition non-stochastic and hence
cannot be linked to the explanatory variables. We point this out because
Mundlak’s conclusion may often be interpreted wrongly that the fixed effects
model is the correct specification. What Mundlak’s study shows is that the
estimator is the same (the within) whether the effects are considered fixed or
random.

Now what happens to Mundlak’s results when time invariant variables
are present in the model? Do they still carry over? Or do they have to
be modified? If so in what way? Are there any neat interpretations as in
Mundlak’s case? This paper is an attempt to answer these questions and
go beyond them interpreting the results in a way that they keep the same
elegance as in Mundlak’s model.
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The answers to the above questions follow smoothly if we go through a
theorem extending the Frisch-Waugh result from the classical regression to
the generalised regression. Thus we start in Section 2 by stating a generalised
version of Frisch-Waugh theorem and giving its proof. In this section we
also explain the important characteristic of this new theorem which makes
it more than just a straightforward extension of the classical Frisch-Waugh
theorem and point out in what way it is different from a similar theorem
derived by Fiebig, Bartels and Krämer (1996). The next section briefly
recalls Mundlak’s case and puts the notation in place. Section 4 brings out
some interesting features of Mundlak’s model which enable the known results.
Section 5 presents the model with time invariant variables and discusses
it from the point of view of correlated effects. Relationships between the
different estimators are established and compared with the previous case.
Finally we conclude with a summary of our main results.

2 The Generalised Frisch-Waugh Theorem

Theorem 1

In the generalised regression model:

y = X1β1 + X2β2 + u (1)

with E(u) = 0 and V (u) = V , positive definite, non-scalar, the GLS estima-
tor of a subvector of the coefficients, say β2, can be written as

β̂2,gls = (R′
2V

−1R2)
−1R′

2V
−1R1 (2)

where
R1 = y −X1(X

′
1V

−1X1)
−1X ′

1V
−1y

R2 = X2 −X1(X
′
1V

−1X1)
−1X ′

1V
−1X2

The proof of this theorem is given in Appendix 1.

Let us note an important property in the above formula for β̂2,gls in that it
represents a generalised regression of the residuals of GLS of y on X1 on the
GLS residuals of X2 on X1 with the same initial V as the variance covariance
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matrix in all the three regressions. An additional feature is that one can even
replace R1 by y in (2) and our result still holds (as in the classical case).

Fiebig, Bartels and Krämer (1996) arrive at the GLS estimator β̂2 through
a different route (applying M1 to (1) and then (true) GLS on the transformed
model). They also show that using a (mistaken) original V for their trans-
formed model leads to a different estimator (which they call the pseudo GLS)
and derive conditions under which pseudo GLS is equal to true GLS. Balt-
agi (2000) refers to Fiebig, Bartels and Krämer (1996) in the context of his
Example 3 while mentioning a special case examined by Baltagi and Krämer
(1995) in which pseudo GLS equals true GLS.

Our β̂2 is the same as their true GLS on the initial model but obtained
through different transformations and has an interesting interpretation in
terms of (GLS) residuals of auxiliary regressions as in the classical Frisch-
Waugh result.

Corollary 1:

If in model (1) above we further have orthogonality between X1 and X2 in
the metric V −1 i.e. if

X ′
1V

−1X2 = 0

then

β̂1,gls = (X ′
1V

−1X1)
−1X ′

1V
−1y

β̂2,gls = (X ′
2V

−1X2)
−1X ′

2V
−1y

3 The Known Case: Mundlak’s Model

Let us briefly recall Mundlak’s result for a panel data model with only indi-
vidual effects. The model is:

y = X β + (IN ⊗ ιT )u + w (3)

We have the usual assumptions E(u) = 0, V (u) = σ2
uIN , E(w) = 0, V (w) =

σ2
wINT and independence between u and w. Thus denoting ε = (IN⊗ιT )u+w
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we have V (ε) ≡ Σ = λ1P + λ2Q with λ1 = σ2
w + Tσ2

u, λ2 = σ2
w, P =

1
T
(IN ⊗ ιT ι′T ) and Q = INT − P . Q is the well-known within transformation

matrix.

When there is correlation between the individual effects u and the ex-
planatory variables X, it is postulated using:

u = X̄γ + v (4)

where X̄ = 1
T
(IN ⊗ ι′T )X and v ∼ (0, σ2

vIN) . Here one should leave out the
previous assumption E(u) = 0. Substituting (4) into (3) we get

y = X β + (IN ⊗ ιT )X̄γ + (IN ⊗ ιT ) v + w (5)

Applying GLS to (5) Mundlak showed that

β̂gls = β̂w

γ̂gls = β̂b − β̂w (6)

where β̂w and β̂b are the within and the between estimators respectively.

Hence Mundlak concluded that the within estimator should be the pre-
ferred option in all circumstances.

4 Some interesting features

In this section we highlight some additional results for the above model which
have interesting interpretations and lead us to the more general case of a
model with time invariant variables.

Why within is GLS for β

Let us first look at the GLS estimation of the full model (5). Note that
the additional term (IN ⊗ ιT )X̄ can be written as PX.

Thus the augmented model becomes

y = Xβ + PXγ + ε̃ (7)

with ε̃ = (IN ⊗ ιT )v + w and V (ε̃) ≡ Σ̃ = λ̃1P + λ̃2Q with λ̃1 = σ2
w + Tσ2

v ,
λ̃2 = σ2

w.
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Splitting X into its two orthogonal components QX and PX let us rewrite
the above equation as

y = QXβ + PX(β + γ) + ε̃ (8)

Noticing that QX and PX are such that X ′QΣ̃−1PX = 0 we can apply
Corollary 1 to obtain

β̂gls = (X ′QΣ̃−1QX)−1X ′QΣ̃−1y

= (X ′QX)−1X ′Qy = β̂w

and

̂(β + γ)gls = (X ′P Σ̃−1PX)−1X ′P Σ̃−1y

= (X ′PX)−1X ′Py = β̂b

Thus we get back Mundlak’s result (6):

γ̂gls = β̂b − β̂w

This result can be further explained intuitively. Looking at model (7) we
have X and PX as explanatory variables. Thus the coefficient of X i.e. β
measures the effect of X on y holding that of PX constant. Holding the
effect of PX constant means that we are only actually measuring the effect
of QX on y with β . Hence it is not surprising that we get β̂w as the GLS
estimator on the full model (7). However in the case of γ, it is the effect of
PX holding X constant. Since X contains PX and QX as its components,
we are only holding the QX component constant letting the PX component
vary along with the PX which is explicitly in the equation whose combined
effect is β and γ. Now the effect of PX on y is estimated by none other than

the between estimator. So we have ̂(β + γ)gls = β̂b i.e. result (6) once again.

Within also equals an IV for β

As the X’s are correlated with the error term ε = (IN⊗ιT )u+w, the GLS
estimator will be biased but one could use instrumental variables. Various IV
sets have been proposed in the literature (cf. Hausman and Taylor (1981),
Amemiya and McCurdy (1986) and Breusch et al. (1989)) and relative effi-
ciency discussed at length. We will not go into that discussion here. Instead
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we point out that choosing the simple valid instrument QX also leads to the
within estimator. Indeed, premultiplying equation (3) by X ′Q we have

X ′Qy = X ′QXβ + X ′Qε (9)

and applying GLS we get the within estimator

β̂IV = (X ′QX)−1X ′Qy = β̂w (10)

GLS for γ is equivalent to a two-step procedure

As far as γ is concerned, we observe that GLS on the full model is equiv-
alent to the following two step procedure:

Step 1: Within regression on model (3)

Step 2: Regression of within estimates of individual effects on X̄ which gives
γ̂.

The individual effects estimates can be written as

u∗ =
1

T
(IN ⊗ ι′T )

[
INT −X(X ′QX)−1X ′Q

]
y

= u +
1

T
(IN ⊗ ι′T )

[
INT −X(X ′QX)−1X ′Q

]
ε

substituting (3) for y. Thus we have

u∗ = X̄γ + v +
1

T
(IN ⊗ ι′T )

[
INT −X(X ′QX)−1X ′Q

]
ε

or
u∗ = X̄γ + w∗ (11)

denoting w∗ = v + 1
T
(IN ⊗ ι′T ) [INT −X(X ′QX)−1X ′Q] ε.

It is interesting to verify that

V (w∗)X̄ = X̄A

with A non-singular and hence we can apply OLS on (11). Thus we obtain

γ̂ = (X̄ ′X̄)−1X̄ ′u∗ (12)

= (X̄ ′X̄)−1X̄ ′(ȳ − X̄β̂w)

= β̂b − β̂w
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which is the same result as (6).

The above simple results not only show that we are able to arrive at
the same estimator by various ways but also provide useful insight into the
interesting connections working within the same model due to the special
decomposition of the variance covariance structure of EC models.

5 Extension to the case with time invariant

variables

Now let us see what happens when time invariant variables come in. The
new model is

y = Xβ + (IN ⊗ ιT )Zδ + (IN ⊗ ιT )u + w = Xβ + CZδ + ε (13)

where Z is a N × p matrix of observations on p time-invariant variables
relating to the N individuals and C ≡ IN ⊗ ιT .

5.1 Without correlated effects

Applying Theorem 1 on (13) and simplifying (see Appendix 2) one can obtain
that β̂gls is a weighted combination of the ‘within’ and ‘between’ (in fact an
‘extended between’, see below) estimators i.e.

β̂gls = W1β̂eb + W2β̂w (14)

where β̂w is the same as before,

β̂eb =

[
X ′

(
1

Tλ1

CMZC ′
)

X

]−1

X ′
(

1

Tλ1

CMZC ′
)

y (15)

and W1,W2 are weight matrices defined in Appendix 2.

The estimator given in (15) is in fact the between estimator of β for
an EC model with time invariant variables (as the between transformation
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changes the X’s into their means but keeps the Z’s as such; hence we have the
transformation MZ in between to eliminate the Z ′s). We call it the ‘extended
between’ estimator and abbreviate it as ‘eb’.

Turning to δ̂gls, Theorem 1 implies

δ̂gls = (F ′
2Σ

−1F2)
−1F ′

2Σ
−1F1 (16)

where F2 are residuals of CZ on X and F1 are residuals of y on X. However
for the former we should in fact be talking of residuals of Z on X̄ as X is
time varying and Z is time invariant. This means that in order to obtain δ̂
we should be regressing the individual means of residuals of y on X on those
of Z on X̄. Redefining F1 and F2 in this way and simplifying the expressions,
we get

δ̂gls = (Z ′MX̄Z)−1Z ′MX̄

1

T
(IN ⊗ ι′T )(INT −X(X ′Σ−1X)−1X ′Σ−1)y

= (Z ′MX̄Z)−1Z ′MX̄ ȳ (17)

5.2 With correlated effects

Now suppose that the individual effects are correlated with the X’s and
the Z’s. The above estimators become inconsistent. Writing the auxiliary
regression as

u = X̄γ + Zφ + v (18)

and substituting u in (13) we get

y = Xβ + CZδ + (IN ⊗ ιT )X̄γ + (IN ⊗ ιT )Zδ + (IN ⊗ ιT )v + w

= Xβ + CZ(δ + φ) + PXγ + (IN ⊗ ιT )v + w (19)

Within is still GLS for β

If we apply Theorem 1 to our model (19) above then we have the result
that β̂gls on (19) is the same as β̂gls on the following model:

R1 = R2β + ε

where
R1 = y − Z̃(Z̃ ′Σ−1Z̃)−1Z̃ ′Σ−1y
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and
R2 = X − Z̃(Z̃ ′Σ−1Z̃)−1Z̃ ′Σ−1X

with
Z̃ = [(IN ⊗ ιT )Z PX] = (IN ⊗ ιT )[Z X̄] = CZ̄

In other words,
β̂gls = (R′

2Σ
−1R2)

−1R′
2Σ

−1R1 (20)

Once again making use of some special matrix results, one can show (see
Appendix 3) that β̂gls = β̂w for the augmented EC model with time invariant
variables and correlated effects.

How can we intuitively explain this? Again it is straightforward if we
write the model as

y = QXβ + PX(β + γ) + CZ(δ + φ) + ε

and notice that QX is orthogonal to both PX and CZ in the metric Σ−1.
Corollary 1 above tells us that β̂gls is given by

β̂gls = (X ′QΣ−1QX)−1X ′QΣ−1Qy = (X ′QX)−1X ′Qy = β̂w

Within also equals an IV for β

Now it is easy to see that instrumenting X by QX in the new model
(13) also leads to the within estimator for β coinciding with the GLS in the
extended model. Of course transforming the model by the instrument matrix
eliminates the time invariant variables just like the within transformation
does. The coefficient estimates of the latter can always be retrieved in a
second step by regressing the residual means on these same variables (see
below).

GLS for γ is an ‘extended’ between - within

From the above intuitive reasoning we can also deduce that the parame-
ters γ, δ and φ should be estimated together whereas we could leave out β
as QX is orthogonal to both PX and Z in the metric Σ−1.

Writing

θ =

[
(δ + φ)
(β + γ)

]

9



we have by Theorem 1

θ̂ =

[
̂(δ + φ)
̂(β + γ)

]
= (Z̃ ′Σ−1Z̃)−1Z̃ ′Σ−1y

Separate solutions for the two components of θ̂ can be obtained as yet another
application of the same theorem:

̂(δ + φ) = (Z ′MX̄Z)−1Z ′MX̄ ȳ

̂(β + γ) = (X̄ ′MZX̄)−1X̄ ′MZ ȳ

where ̂(β + γ) can be recognised as the ‘extended between’ estimator2. Once
again the estimator of γ in the extended model is derived as the difference
between the ‘extended between’ and the within estimators:

γ̂gls = ̂(β + γ)− β̂ = β̂eb − β̂w (21)

GLS for γ is again a two-step procedure

The above result on γ̂gls leads to another interpretation similar to that of
result (12) obtained in the model without time invariant variables. We have

γ̂gls = (X̄ ′MZX̄)−1X̄ ′MZ ȳ − (X ′QX)−1X ′Qy

= (X ′C ′MZC ′X)−1X ′CMZC ′y − (X ′QX)−1X ′Qy

= (X ′C ′MZC ′X)−1X ′CMZC ′y − (X ′C ′MZC ′X)−1X ′CMZC ′X(X ′QX)−1X ′Qy

= (X ′C ′MZC ′X)−1X ′CMZC ′(INT −X(X ′QX)−1X ′Q)y

= (X ′C ′MZC ′X)−1X ′CMZC ′û∗

which implies that γ̂gls can be obtained by a two step procedure as follows:

Step 1: Within regression of model (13)

Step 2: Regressing the within residual means on the residuals of the means
of the X’s on Z.

Now a few additional remarks. Note the formula for ̂(δ + φ) is exactly
the same as the one for δ̂ in the ‘old’ model (17) and this can be understood

2Here the ‘between’ model is ȳ = X̄(β + γ) + Z(δ + φ) + ε̄.
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if we look into the effect captured by this coefficient. In model (13) δ is the
effect of Z on y holding that of X constant i.e. holding constant the effect
of both the components QX and PX and the combined coefficient (δ + φ)
retains the same interpretation in the augmented model (19) too. However
a major difference here is that one can only estimate the sum (δ + φ) and
cannot identify δ and φ separately. This is logical as both the coefficients are
in a way trying to measure the same effect. Thus the inclusion of Zφ in the
auxiliary regression (18) is redundant. The expression for (δ + φ) can in fact
be obtained by regressing û on X̄ and Z. Thus, practically speaking δ and
γ can be retrieved by regressing within residual means on X̄ and Z.

Let us also mention that the Hausman specification tests are carried out
in the same manner whether time invariant variables are present or not and
the absence of correlation can be tested using any one of the differences
β̂b − β̂w, β̂gls − β̂w, β̂gls − β̂b or β̂gls − β̂ols as shown in Hausman and Taylor
(1981).

If we assume non-zero correlation between explanatory variables and the
combined disturbance term (the individual effects and the genuine distur-
bance terms), for instance in the context of a simultaneity problem, then
the whole framework changes, within estimator is no longer consistent and
only instrumental variables procedures such as the generalised 2SLS (G2SLS)
or the error component 2SLS (EC2SLS) are valid (see e.g. Krishnakumar
(1988), Baltagi (1981)).

6 Concluding remarks

In this paper we have shown that Mundlak’s approach and the within es-
timator remain perfectly valid even in an extended EC model with time
invariant variables. Adding an auxiliary regression to take account of possi-
ble correlation between the explanatory variables and the individual effects
one finds that the elegant results obtained by Mundlak (1978) as well as
some additional interesting ones can be derived in the extended case too.
These results are established by the application of a generalised version of
the Frisch-Waugh theorem also presented in the paper. Further, it is shown
that for both the models with and without time invariant variables, the es-
timates of the coefficients of the auxiliary variables can also be obtained by
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a two-step estimation procedure.
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Appendix 1

Proof of Theorem 1 :

Let us transform the original model (1) by V −1/2 to get

y∗ = X∗
1β1 + X∗

2β2 + u∗

where y∗ = V −1/2y, X∗
1 = V −1/2X1, X∗

2 = V −1/2X2 and u∗ = V −1/2u.

Now V (u∗) = INT and hence we can apply the classical Frisch-Waugh
theorem to obtain

β̂2 = (R∗′
2 R∗

2)
−1R∗′

2 R∗
1

where
R∗

1 = y∗ −X∗
1 (X∗′

1 X∗
1 )−1X∗′

1 y∗

R∗
2 = X∗

2 −X∗
1 (X∗′

1 X∗
1 )−1X∗′

1 X∗
2

Substituting the starred variables in terms of the non-starred ones and
rearranging we get

β̂2 = [X ′
2(V

−1 − V −1X1(X
′
1V

−1X1)
−1X ′

1V
−1)X2]

−1

X ′
2(V

−1 − V −1X1(X
′
1V

−1X1)
−1X ′

1V
−1)y

= [X ′
2V

−1(INT −X1(X
′
1V

−1X1)
−1X ′

1V
−1)X2]

−1

X ′
2V

−1(INT −X1(X
′
1V

−1X1)
−1X ′

1V
−1)y

= [X ′
2(INT − V −1X1(X

′
1V

−1X1)
−1X ′

1)V
−1(INT −X1(X

′
1V

−1X1)
−1X ′

1V
−1)X2]

−1

X ′
2(INT − V −1X1(X

′
1V

−1X1)
−1X ′

1)V
−1(INT −X1(X

′
1V

−1X1)
−1X ′

1V
−1)y

= (R′
2V

−1R2)
−1R′

2V
−1R1 q.e.d
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Appendix 2

Applying Theorem 1 on (13) yields:

β̂gls = (E ′
2Σ

−1E2)
−1E ′

2Σ
−1E1 (22)

where

E1 = y − CZ(Z ′C ′Σ−1CZ)−1Z ′C ′Σ−1y = (INT − 1

T
CZ(Z ′Z)−1Z ′C ′)y

and

E2 = X − CZ(Z ′C ′Σ−1CZ)−1Z ′C ′Σ−1X = (INT − 1

T
CZ(Z ′Z)−1Z ′C ′)X

using C ′Σ−1C = 1
λ1

TIN and writing X̄ = 1
T
C ′X.

Since PC = C, QC = 0, CC ′ = TP and C ′C = TIN one can see that

β̂gls = (E ′
2Σ

−1E2)
−1E ′

2Σ
−1E1

=

[
X ′

(
λ2

Tλ1

CMZC ′ + Q

)
X

]−1

X ′
(

λ2

Tλ1

CMZC ′ + Q

)
y

= W1β̂eb + W2β̂w

where

MZ = IN − Z(Z ′Z)−1Z ′

W1 =

[
X ′

(
λ2

Tλ1

CMZC ′ + Q

)
X

]−1

X ′
(

λ2

Tλ1

CMZC ′
)

X

W2 =

[
X ′

(
λ2

Tλ1

CMZC ′ + Q

)
X

]−1

X ′QX

and

β̂eb =

[
X ′

(
1

Tλ1

CMZC ′
)

X

]−1

X ′
(

1

Tλ1

CMZC ′
)

y
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Appendix 3

We have from (20)
β̂gls = (R′

2Σ
−1R2)

−1R′
2Σ

−1R1 (23)

Let us examine R1 and R2. We can write them as R1 = M̃y and R2 =
M̃X where M̃ = IN − Z̃(Z̃ ′Σ−1Z̃)−1Z̃ ′Σ−1.

Noting once again that PC = C, QC = 0, CC ′ = TP , C ′C = TIN ,
C ′Σ−1C = 1

λ1
TIN , Z̃ ′Σ−1 = 1

λ1
TZ ′C ′ and Z̃ ′Σ−1Z̃ = T

λ1
Z ′Z, one can show

that M̃ = INT − 1
T

CZ̄(Z̄ ′Z̄)−1Z̄ ′C ′ = INT − 1
T

CPZ̄C ′.

Further due to the partitioned nature of Z̄ we also know that

PZ̄ = PX̄ + MX̄Z(Z ′MX̄Z)−1Z ′MX̄

Hence

M̃ = INT − 1

T
C

(
PX̄ + MX̄Z(Z ′MX̄Z)−1Z ′MX̄

)
C ′

and

M̃X = (INT − 1

T
CX̄) = (INT − P )X = QX

as PX̄C ′X = TPX̄X̄ = TX̄ = C ′X and MX̄C ′X = 0. Therefore

R′
2Σ

−1R2 = X ′M̃Σ−1M̃X =
1

λ2

X ′QX

Similarly one can verify that

R′
2Σ

−1R1 = X ′M̃Σ−1M̃y =
1

λ2

X ′Qy

Thus
β̂gls = (X ′QX)−1X ′Qy = β̂w
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