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Abstract

Robust estimation of covariance matrices when some of the data at hand are missing is an
important problem. It has been studied by Little and Smith (1987) and more recently by
Cheng and Victoria-Feser (2002). The latter propose the use of high breakdown estimators
and so-called hybrid algorithms (see e.g. Woodruff and Rocke 1994). In particular, the
minimum volume ellipsoid of Rousseeuw (1984) is adapted to the case of missing data. To
compute it, they use (a modified version of) the forward search algorithm (see e.g. Atkinson
1994). In this paper, we propose to use instead a modification of the C-step algorithm
proposed by Rousseeuw and Van Driessen (1999) which is actually a lot faster. We also
adapt the orthogonalized Gnanadesikan-Kettering (OGK) estimator proposed by Maronna
and Zamar (2002) to the case of missing data and use it as a starting point for an adapted S-
estimator. Moreover, we conduct a simulation study to compare different robust estimators
in terms of their efficiency and breakdown and use them to analyse real datasets.

Keywords:C-step algorithm, minimum volume ellipsoid, outliers, robust statistics, S-
estimators, orthogonalized Gnanadesikan-Kettering robust estimator.



1 Introduction

Since the original works of Tukey (1960), Huber (1964) and Hampel (1971), robust statistics
are nowadays widely used, and new or improved tools are continuously proposed. In this
paper, we focus on the robust estimation of location and scatter of a multivariate normal
distribution with missing data
The classical estimator of the covariance matrix, namely the maximum likelihood esti-

mator (MLE) is very sensitive to model deviations. Indeed, one shouldn’t forget that the
common postulated models are only approximation of the reality. For example, there might
be gross error in the data. Such errors appear as points lying very far from the core of the
data and are extremely dangerous for classical statistical methods. It is therefore important
to develop and use robust estimators for the mean and covariance of multivariate data since
the latter can then be used in other analyses such as factor analysis. For example, Yuan
and Bentler (1998) showed that the influence of such data on covariance structure analysis
is limited if the covariance matrix is robustly estimated.
The aim of robust statistics is thus to provide tools not only to asses the robustness

properties of classical procedures but also to produce estimators and tests that are robust to
model deviations. In the case of robust estimation of multivariate location and scatter, robust
covariances have been first investigated by Maronna (1976). In particular, he shows that
robust estimators based on a weighting scheme that is not redescending (no weight of zero),
fails to be robust in high dimensions. This happens because for such estimators (including the
classical MLE), their breakdown point, i.e., the maximal amount of model misspecification
they can withstand before they “breakdown” or their bias becomes arbitrarily large, is at
most 1/(p + 1), p being the dimension of the data. When working in high dimension it is
therefore crucial to consider high breakdown estimators.
The statistical literature contains several proposals for high breakdown estimators of

the mean and covariance in multivariate data when it is suspected that the data contain
outliers or extreme observations. A well known one is the minimum covariance determinant
(MCD) of Rousseeuw (1984). When they are missing data only Little and Smith (1987)
and Cheng and Victoria-Feser (2002) propose different solutions. In this paper we actually
concentrate on robust estimators with missing data, in particular we propose the use of
faster algorithms for their computation and compare them through extensive simulations in
terms of their robustness properties when data are contaminated and also in terms of the
speed of two different algorithms used to compute the robust estimators. We also adapt the
orthogonalized Gnanadesikan-Kettering (OGK) estimator proposed by Maronna and Zamar
(2002) to the case of missing data and use it as a starting point for an adapted S-estimator.
All our programs are readily available (upon request) in the form of an Splus library which
has been used to produce the results and graphics presented in this paper. We will also
consider real data to illustrate in another way the added value of robust estimators of mean
and covariance, when the later is used for example as input to a principal component analysis.
The paper is organised as follows. In Section 2 we present a general class of estimators

adapted to the case of missing data that includes as particular cases the MLE computed
via the EM algorithm, its robust modification proposed by Little and Rubin (1987) and
the adaptation of the S-estimator (Rousseeuw and Yohai 1984) proposed by Cheng and
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Victoria-Feser (2002). In Section 3 we present the modified MCD proposed by Cheng
and Victoria-Feser (2002) with the modification of a fast algorithm proposed by Rousseeuw
and Van Driessen (1999), namely the FAST-MCD, to deal with missing data. We also
present the adaptation of the OGK estimator to the case of missing data. In Section 4,
an extensive simulation study is conducted to compare the speeds of the algorithms as well
as the robustness properties of the different robust estimators. Finally, in Section 5 real
datasets are analysed by means of a principal component analysis when classical and robust
estimators are used as input.

2 A general class of estimators with missing data

The aim is to estimate the parametersµ andΣ, i.e., the mean and covariance of an underlying
multivariate variable Y = (Y1, . . . , Yp) that has supposedly generated the sample yi, i =
1, . . . , n at hand. As it often happens in practice, we suppose that some of the observations
might be missing in that some of the yij are observed for some j ∈ {1, . . . , p} and the others
are not observed or missing for the other j’s. In other terms, yi = [yT[oi],y

T
[mi]]

T so that a
distinction is made between the observed (oi) and the missing (mi) data. We suppose that
the data are missing at random (see Rubin 1976), a sufficient condition for correct likelihood-
based inferences. Most known estimators of mean and covariance with missing data fall in
the class proposed by Cheng and Victoria-Feser (2002), i.e.,

1

n

nX
i=1

wµ
i (µ− ŷi) = 0 (1)

1

n

nX
i=1

£
wδ
iΣ− wη

i ((ŷi − µ)(ŷi − µ)T −Ci)
¤
= 0 (2)

where

ŷi =
h
yT[oi], E

£
y[mi]

¯̄
y[oi],µ,Σ

¤TiT
=

h
yT[oi],µ

T
[mi] + (y[oi] − µ[oi])TΣ−1[ooi]Σ[omi]

iT
(3)

and

Cijk = cov
∙∙

y[oi]
y[mi]

¸ £
yT[oi] y

T
[mi]

¤¯̄̄̄
y[oi],µ,Σ

¸
=

"
0 0

0 cov
h
y[mi]y

T
[mi]

¯̄̄
y[oi],µ,Σ

i #

=

∙
0 0
0 Σ[mmi] −Σ[moi]Σ

−1
[ooi]Σ[omi]

¸
. (4)

where for example Σ[ooi] denotes the partition of Σ corresponding to the observed part of yi,
etc. The different estimators are actually defined through the data weighting system given

2



by wµ
i , w

δ
i and w

η
i in (1) which in turn also depends on the parameters µ and Σ (see below).

To compute the estimators, one can use an iterative procedure in which given current values
of µ and Σ, the ŷi, Ci and the weights are first computed, and the values of µ and Σ are
then updated by

µ∗ =
1

n

nX
i=1

wµ
i ŷi

,
1

n

nX
i=1

wµ
i (5)

Σ∗ =

"
1

n

nX
i=1

wη
i ((ŷi − µ∗)(ŷi − µ∗)T −Ci)

#,"
1

n

nX
i=1

wδ
i

#
(6)

The classical MLE is obtained when wµ
i = wη

i = wδ
i = 1 ∀i, and (5) and (6) define the

EM algorithm (see Dempster, Laird, and Rubin 1977). However, with complete data it is
well known that the MLE of mean and covariance is not robust. When there are missing
data, the situation doesn’t change; see Cheng and Victoria-Feser (2002). Little and Rubin
(1987) propose to base the M-step on a robust estimator belonging to the general class of
M-estimator (Huber 1981). They call the resulting procedure the ER algorithm. Their
estimator is defined by (5) and (6) with1

(wµ
i )
2 = wη

i = wδ
i = wi = ω(doi)/d

2
oi (7)

where
d2oi = d2oi (µ,Σ) =

¡
y[oi] − µ[oi]

¢T
Σ−1[ooi]

¡
y[oi] − µ[oi]

¢
(8)

is the squared Mahalanobis distance corresponding to the observed part of yi. Here ω is a
two-parameter weight function defined by

ω(doi) =

½
d2oi if dio ≤ d∗i
(d∗i )

2 exp{−(doi − d∗i )
2/b22} if dio > d∗i

(9)

where d∗i =
√
pi + b1/2, and pi is the number of variables present for observation i. The

quantities b1 and b2 are to be specified by the analyst and Little and Smith (1987) proposed
b1 = 2 and b2 = 1.25. If the case i is uncontaminated, the data are normal and missing values
are missing at random, then (8) is asymptotically χ2pi. The Wilson-Hilferty transformation
of the chi-squared distribution yields (d2oi/pi)

1/3 ∼ N(1− 2/(9pi), 2/(9pi)). Following Little
and Smith (1987), we also propose a probability plot of

Zi =
(d2oi/pi)

1/3 − 1 + 2/(9pi)p
2/(9pi)

(10)

versus standard normal order statistics, that should reveal atypical observation.
Little and Smith (1987) proposed as starting point of the ER algorithm, the MLE on

the data where the missing ones have been replaced by the median of the corresponding

1The iteration step for the covariance matrix (6) doesn’t exactly correspond to the same step in the ER
algorithm in that the weights wη

i are not applied to the correction matrix Ci. We will however, in what
follows consider this slight modification of the ER algorithm.
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observations. Although the ER algorithm is relatively simple to implement, it suffer from
an important drawback : its breakdown point is at most 1/(p + 1) because it is based on
a weighting scheme that is not redescending. This drawback will be highlighted by the
simulation results. This means that if the proportion of outliers exceeds this value (or even
is near it) the robust estimator is not robust anymore.
To construct a high breakdown estimator of mean and covariance matrix in multivariate

data when some are missing, Cheng and Victoria-Feser (2002) propose two strategies. The
first one is to provide an high breakdown estimator such as the MCD estimator as starting
point for the ER algorithm and the second is to also adapt a high breakdown estimator such
as an S-estimator (Rousseeuw and Yohai 1984) to incomplete data. The resulting estimator
which is called the ERTBS is then defined through (5) and (6) with

wµ
i = ψ(doi

³bµ,bΣ´ /k). (doi/k) , (11)

wη
i = pwµ

i , (12)

wδ
i = (doi

³bµ,bΣ´ /k)2wµ
i (13)

with bµ and bΣ being the current values of the estimator, and

k =
d[q]q

(χ2p)
−1(q/(n+ 1))

, (14)

where d[q] denotes the q-th ordered distance (based on the doi
³bµ,bΣ´), q = b(n+ p + 1)/2c

with bxc denoting the integer part of x and

ψ(d; c,M) =

⎧⎪⎨⎪⎩
d 0 ≤ d < M

d
³
1−

¡
d−M
c

¢2´2
M ≤ d ≤M + c

0 d > M + c

This ψ function defines the translated biweight S-estimator proposed by Rocke (1996) and
is the derivative of the ρ function given for M ≤ d ≤M + c by

ρM≤d≤M+c(d; c,M) = M2/2−M2(M4 − 5M2c2 + 15c4)/30c4

+d2(0.5 +M4/2c4 −M2/c2) + d3(4M/3c2 − 4M3/3c4)

+d4(3M2/2c4 − 1/2c2)− 4Md5/5c4 + d6/6c4

and for all d by

ρ(d; c,M) =

⎧⎨⎩ d2/2 0 ≤ d < M
ρM≤d≤M+c(d; c,M) M ≤ d ≤M + c

M2/2 + c(5c+ 16M)/30 d > M + c

The parameters M and c control the breakdown point ε∗ and the asymptotic rejection
probability ARP α of the ERTBS. The ARP can be interpreted as the probability for
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an estimator, in large samples under a reference distribution, to give a null (or nearly null)
weight. M and c are found implicitely by

ε∗max
d

ρ(d; c,M) = Eχ2p
[ρ(d; c,M)] ,

M + c =
q
(χ2p)

−1(1− α) ;

The choices for ε∗ and α are to be made by the analyst. The former is the suspected maximal
amount of contaminated data and for the latter Cheng and Victoria-Feser (2002) propose
choices between 0.1% and 1%.
As Rocke (1996) noted, it is very important to choose a good starting point for any

algorithm defining a high breakdown point estimator, otherwise the later can loose its high
breakdown properties. For the ERTBS, Cheng and Victoria-Feser (2002) therefore propose
an adaptation of theMCD estimator as a starting point as well as an algorithm to compute
it. However, to compute theMCD one needs algorithms that are based on random starting
subsamples. This can lead to situations in which the MCD is very long to compute, if not
impossible. Therefore, in the following Section, we propose a fast algorithm to compute the
MCD by adapting the FAST-MCD of Rousseeuw and Van Driessen (1999) and as an even
faster alternative, we propose a modified version of the OGK estimator adapted to the case
of missing data to be used as a starting point for the ERTBS.

3 Starting point robust estimators with missing data

3.1 The modified MCD

The objective of the MCD estimator is to find h observations (out of n) whose covariance
matrix has the lowest determinant. The MCD mean estimator is then the sample mean
of those h points, and the MCD covariance estimator is their sample covariance matrix.
To compute the MCD, one needs an algorithm for finding the best subset of h points,
which usually involves the repeated computation of the sample mean and covariance as well
as Mahalanobis distances. When some observations are missing, Cheng and Victoria-Feser
(2002) propose to use the EM algorithm to compute the sample means and covariances
at all steps of the algorithm and to base the Mahalanobis distances on the observed part
of the observation as in (8). The later are standardized by means of the Wilson-Hilferty
transformation given in (10), so that one takes into account the non equal number of missing
values for each observation.
A choice needs to be made on h and one way is to choose it such that the MCD has the

highest breakdown. In this case, the minimal value of h is given by (Rousseeuw and Leroy
1987) :

h :=

¹
n+ p+ 1

2

º
But this is also the choice that give the largest efficiency loss. So when we suspect that
the sample is not heavily contaminated we can reasonably choose a larger value for the
proportion of points of say 75% or 80% so we can take h := b0.75nc or h := b0.80nc.
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The time needed to run the MCD can be quite large. That’s why several authors focus
on the development of algorithms able to deal with this problem. Hawkins (1994) presents
a feasible solution algorithm for the MCD which involves taking random “trial solutions”
and refining each ones to a local optimum satisfying the condition for the MCD criterion.
Atkinson (1993,1994) proposes the forward search algorithm which also permits the detection
of multiple outliers. This is the algorithm that is adapted by Cheng and Victoria-Feser (2002)
to the case of missing data. More recently, Rousseeuw and Van Driessen (1999) present a new
algorithm called FAST-MCD supposed to be even faster than the forward search algorithm
and able to deal with very large data sets. In this paper, we propose to adapt it to compute
the MCD when there are missing data.
A key idea of the FAST-MCD algorithm is the fact that starting from any approximation

to the MCD, it is possible to find an approximation with a lower determinant. Indeed
Rousseeuw and Van Driessen (1999) observed that from a subset Hk of size h in which µ, Σ
and the Mahalanobis distances are computed, one can create a subset Hk+1 by taking among
the n observations the h ones with the smallest Mahalanobis distances with the property
that the determinant of Σ based on Hk+1is smaller. Each step is called a C-step. The
initial subset is created by choosing randomly p+ 1 observations on which the Mahalanobis
distances are computed to order the n observations. The first h ones define the initial subset
H1. If the determinant of Σ based on the randomly chosen p+1 observations is nil, one adds
one randomly chosen observation at the time until the determinant becomes positive. If for
any subset Hk there are missing values, we compute µk and Σk with the EM algorithm. The
Mahalanobis distances are also changed as in (8) and standardized using the Wilson-Hilferty
transformation. The absolute value of the later is used to order the observations. The initial
subset is created choosing randomly p+ 1 observations among the fully observed ones.
For each subset Hk, one must compute a covariance matrix, a determinant and the Ma-

halanobis distances. This can be rather heavy if the data set is large. Therefore Rousseeuw
and Van Driessen (1999) suggest a simplification: they show empirically that it is possible to
make a distinction between good (robust) estimations and bad ones after only two or three
steps. This means that the C-step doesn’t need to be iterated until the covariance matrix
with minimal determinant is found, the algorithm can switch to another initial subset. We
found the same feature with our simulations. Finally, another particularity of the FAST-
MCD algorithm is that it can be split into a nested system of subsets to improve the speed
of convergence in large datasets (see Rousseeuw and Van Driessen 1999).
Through extensive simulations we compare in Section 4 the forward search algorithm and

the FAST-MCD algorithm for the computation of the MCD with missing data.

3.2 The modified OGK

Maronna and Zamar (2002) base their OGK on the robust estimator for covariances σjk
proposed by Gnanadesikan and Kettenring (1972) which is very simple to compute. Indeed
the later is defined for a pair of random variables (i.e. p = 2) as

1

4

¡
σ(Yj + Yk)

2 − σ(Yj − Yk)
2
¢
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where σ() is a standard deviation function applied on its argument. A robust estimator
for σjk is obtained when σ() is a robust function. When p > 2, the covariance matrix Σ
is estimated by replacing all its elements by all pairwise estimates. It is well known that
such an estimator may produce non positive definite matrices and the estimator is not affine
equivariant. To overcome the lack of positive definitness, Maronna and Zamar (2002) propose
an estimator defined by the following four steps:

1. Let D = diag (σ (Yj))|j=1,...,p and define xi = D−1yi, i = 1, . . . , n, i.e., realizations from
X = (X1, . . . , Xp)

2. Compute the matrix U = (ujk) with

ujk =

½
1
4
(σ(Xj +Xk)

2 − σ(Xj −Xk)
2) j 6= k

1 j = k
(15)

3. Decompose U as U = EΛET with Λ =diag(λ1, . . . , λp)

4. Define zi = ETxi, i.e., realizations from Z = (Z1, . . . , Zp) and A = DE. The estimator
of Σ is AΓAT with Γ = diag

¡
σ (Zj)

2¢¯̄
j=1,...,p

.

A location estimator for µ is given byAν with ν = (m (Zj))|j=1,...,p, m() being a (robust)
mean function. The procedure can be iterated by replacing U in step 2 by EΓET until
convergence. For σ() and m(), Maronna and Zamar (2002) propose the following functions

m(Y ) =

Pn
i=1wiyiPn
i=1wi

(16)

and

σ (Y )2 =
MAD (Y )

n

nX
i=1

ρc2

µ
yi −m(Y )

MAD (Y )

¶
(17)

with

wi =Wc1

µ
yi −m(Y )

σ0 (Y )

¶

Wc(x) =

( ³
1−

¡
x
c

¢2´2 |x| ≤ c

0 otherwise

and
ρc (x) = min

¡
x2, c2

¢
Maronna and Zamar (2002) propose to use the values of c1 = 4.5 and c2 = 3. Moreover, they
argue that to improve the efficiency of the OGK, one could use it as a hard rejection tool
in that a reweighted estimator as in (1) is used in which ŷi = yi∀i and wµ

i = wη
i = wδ

i = wi

with

wi =

½
1 (yi − bµOGK)T bΣ−1OGK (yi − bµOGK) ≤ χ2p(.9)
0 otherwise
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The resulting estimator will be called the reweighted OGK (rOGK). Note that this strategy
is also used most of the times with the MCD but with the quatile 0.975 (instead of 0.9) of
the χ2p. We will call the resulting estimator the rMCD.
To extend the OGK or rOGK to the case of missing data, we propose to impute the

missing values by means of the by in (3) obtained by the EM algorithm, i.e., with µ and Σ
estimated by (1) where all weights are equal to 1. The reason is that the EM algorithm is
very fast, and although it leads to baised estimates of µ and Σ and therefore of the imputed
values by, this shouldn’t affect the resulting OGK. Indeed, the OGK downweigths extreme
observations in (16) and (17), and these observations can be extreme because of either the
observed values or the imputed ones. Through extensive simulations, we will study this
adapted OGK in Section 4.

4 Simulation study

The aim of our simulation study is first to compare the behaviors under different situations of
the different estimators proposed by Cheng and Victoria-Feser (2002) as well as the modified
OGK for missing values as such or as a starting point for the ERTBS. Second,we also
compare the speed of the two algorithms for theMCD with missing data in different settings,
i.e., the (modified) forward search algorithm and our adaptation of the FAST-MCD, as well
as with the modified OGK. We will see that the FAST-MCD outperforms the forward search
in all situations but that the OGK is the fastest of all.

4.1 The design

The model is the multivariate normal distribution N(µ,Σ). For the affine equivariant esti-
mators (i.e. the MCD and the ERTBS), their performance is supposed to be independent
of the choice for µ and Σ so that one could choose 0 and I. This is however not the case
for the OGK, and in fact the more the variables are correlated, the larger the potential
bias of the estimator. In order to control for the strenght of the correlation, Maronna and
Zamar (2002) suggest to transform the N(0, I) simulated data yi by xi = R(ρ)yi where
R(ρ) = (rjk)|j,k=1,...,p and

rjk =

½
1 j = k
ρ j 6= k

so that the resulting covariance matrix is Σ = R(ρ)2. Maronna and Zamar (2002) suggest
to use the value of ρ = 0.2 which yields a Σ with the largest eigen value more than 12 times
the second one, thus indicating a relatively strong correlation. In our simulations, we will
use the N(0, I) and the N(0,R(.2)2) models for all estimators.
For the problem of how to contaminate the data, we follow the proposition of Woodruff

and Rocke (1993). To generate an -proportion of so-called shift-outliers, i.e., the ones
which are the hardest to find, we put the center of the contaminated data at a distances of√
p+β/

√
2 from the mean where β parametrizes the distances of the contamination from the

main body of the data. The missing data, if any, are chosen randomly among the mixture
distribution between the good data (N(0,Σ)) and the bad data (N(

¡√
p+ β/

√
2
¢
ep,Σ), ep
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being a p-dimensional vector of ones). Table 1 summarizes the combinations of quantities
for , β and the proportion of missing data (miss) that we have considered. Table 2 shows
the different values for n and p used in the simulations.

miss = 0.1 0.2 0.3
= 0 0.02 0.05 0.1

β = 1.6

Table 1: values for miss, and β

p = 10 p = 20 p = 50
n = 50 100 200
n = 100 200 400
n = 500 500 600

Table 2: values for n and p

Each robust estimator requires a decision on its initialization parameters. For theMCD
estimator, h = [0.6n].was chosen. For the OGK, c1 = 4.5 and c2 = 3 were chosen. For
the ERTBS estimator we chose for our simulations the breakdown point ε∗ = 0.3 and the
ARP α = 0.001. All computational experiments were done on a Athlon 1900Mhz with 512
MB of memory. The core of the program was written in Fortran 77 and Splus was used
as a front-end (to produce the various graphics). For all combinations of parameters, 1000
samples were generated.

4.2 Computational times

We describe now the time needed to compute the rOGK or the rMCD, when the later is
computed using the adapted FAST-MCD algorithm (rMCD/FAST ) or the forward search
algorithm (rMCD/FWD). We chose the reweighted version of the two starting point esti-
mators, because as we will see later, the non-reweighted versions can lead to biased estimates.
For each of the parameters given in Table 2 and for different sample sizes, a time in second
has been computed. Figure 1 shows the results (in a log-scale) for the datasets with = 10%
and miss = 30% (for other combinations the results are comparatively similar).
We notice the following features. The speed for the rMCD/FWD as expected is slower

than the speed of the rMCD/FAST , with an increasing difference as the sample size in-
creases. The rMCD/FAST can be up to 150 times faster than the rMCD/FWD. However,
when the rOGK is used as a starting point, the computational times decrease drastically,
with sometimes a ratio of 18 compared with the rMCD/FAST . However, the speed of the
rMCD/FAST doesn’t depend very much on the sample size $n$, whereas the rOGK does
quite substantially.

4.3 Comparing estimators

The aim of this subsection is to study the robustness properties (bias versus efficiency) of the
different estimators proposed with incomplete data by means of simulations. For theMCD,
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all calculations were made using the modified FAST-MCD for missing data. It should be
stressed that this exercise has not been done in Cheng and Victoria-Feser (2002). The esti-
mators we consider here are those presented in Section 2 namely, theMLE computed via the
EM algorithm (which is taken as a benchmark), the ER algorithm with theMLE as starting
point (ER/MLE), the ER algorithm with theMCD, rMCD, OGK and rOGK as starting
point (ER/MCD, ER/rMCD, ER/OGK and ER/rOGK), the ERTBS algorithm with
theMCD, rMCD, OGK and rOGK as starting point (ERTBS/MCD, ERTBS/rMCD,
etc.). The data were generated using the designs presented in Section 4.1. The percentage
of missing observations and the sizes n and p do not seem to have an influence on the be-
haviour of the different estimators. The influencial factors are the covariance structure and
the percentage of contamination. Indeed, when the data are correlated (N(0,R(.2))) the
OGK can be biased when there is data contamination which is not the case when the data
are uncorrelated (N(0, I)). The consequence is that the ER and the ERTBS become also
biased. We use boxplots to compare the estimators. They are built on the estimated biases of
one of the element of the mean vector, one of the diagonal elements of the covariance matrix
and one of the off-diagonal elements of the covariance matrix. Only the results for µ1, σ11,
and σ12 are represented, since for other parameters, the same pattern is found. In Figure 2
are presented the boxplots of the sampling distributions of the MCD, rMCD, OGK and
rOGK with miss = 0.1 and n = 50 and p = 10. One can see that for the variance and
covariance the OGK is biased when there is 5% or more data contamination. Fortunately,
the rOGK doesn’t show the same pattern and therefore we propose to use the later one as
a starting point for the ER or the ERTBS. In Figure 3 are presented the sampling distri-
butions of the final estimators when the rMCD and the rOGK are used as starting points
for the robust ones. The EM (i.e. MLE) is taken as a benchmark. The MLE clearly fails
even if the contamination is small. However it is the most efficient with no contamination
but the efficiency loss for the robust estimators seems to be quite small. The ER/MLE
breaksdown at (at most) 10% of data contamination. Finally, the ER/rMCD, ER/rOGK,
ETBBS/rMCD or ERTBS/rOGK are very robust and can withstand at least 10% of data
contamination.
If we want to see a difference between theER andERTBS with the same high breakdown

strating point, we have to push the percentage of contamination up to 30%. We haven’t done
a full coverage of such situation since its very unlikely that someone will want to study data
sets with such a percentage of contamination. We show here an example based on one
simulated dataset of size n = 100 and p = 10 with 30% of contamination (the first 30
observations) and 10% of missing values. We plot the transformed Mahalanobis distances
to see if the estimators can detect all the contaminated values. The results are displayed
in Figure 4 for the ER/rOGK and ERTBS/rOGK but we found the same result with
the rMCD as starting point. Clearly the ER/rOGK breaks down in such a case but the
ERTBS/rOGK does not since it is able to detect the 30 outliers.
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5 Conclusion

In this paper we have considered high breakdown estimation of the mean and covariance of a
multivariate normal distribution with missing data. We have proposed to use a modification
of the FAST-MCD algorithm to compute the MCD which is used as a starting point for
the ER of the ERTBS. We found through simulations that the computational speed is
much more improved when on uses the C-step instead of the forward search. We have also
conducted a simulation study to compare the different high breakdown estimators computed
in different ways. First we found that the results are independent of the chosen method to
compute theMCD. As expected, theMLE breaks down at very low levels of contamination
(2%). The ER breaks down at at least 10% of contamination if the starting point is not
theMCD and breaks down at 30% anyway. The ERTBS is the most robust overall and its
variance is comparable to the one of the other estimators (including the MLE) so that the
efficiency loss in using this high breakdown estimator is very small. Finally, the program to
compute the ERTBS by means of the FAST-MCD is available as an Splus library from the
authors.

11



References

Atkinson, A. C. (1993). Stalactite plots and robust estimation for the detection of mul-
tivariate outliers. In S. Morgenthaler, E. Ronchetti, and W. A. Stahel (Eds.), New
Directions in Statistical Data Analysis and Robustness. Basel: Birkhäuser.

Atkinson, A. C. (1994). Fast very robust methods for the detection of multiple outliers.
Journal of the American Statistical Association 89, 1329—1339.

Cheng, T.-C. and M. Victoria-Feser (2002). High breakdown estimation of multivariate
location and scale with missing observations. British Journal of Mathematical and
Statistical Psychology. To appear.

Dempster, A. P., M. N. Laird, and D. B. Rubin (1977). Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Serie B 39,
1—22.

Gnanadesikan, R. and J. R. Kettenring (1972). Robust estimates, residuals, and outlier
detection with multiresponse data. Biometrics 29, 81—124.

Hampel, F. R. (1971). A general qualitative definition of robustness. Annals of Mathemat-
ical Statistics 42, 1887—1896.

Hawkins, D. M. (1994). The feasible solution algorithm for the minimum covariance deter-
minant estimator in multivariate data. Computational Statistics & Data Analysis 17,
197—210.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical
Statistics 35, 73—101.

Huber, P. J. (1981). Robust Statistics. New York: John Wiley.

Little, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data. New York:
Wiley.

Little, R. J. A. and P. J. Smith (1987). Editing and imputing for quantitative survey data.
Journal of the American Statistical Association 82, 58—68.

Maronna, R. A. (1976). Robust M-estimators of multivariate location and scatter. The
Annals of Statistics 4, 51—67.

Maronna, R. A. and R. H. Zamar (2002). Robust multivariate estimates for high-
dimensional datasets. Technometrics 44, 307—317.

Rocke, D. M. (1996). Robustness properties of S-estimators of multivariate location and
shape in hish dimension. The Annals of Statistics 24, 1327—1345.

Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American
Statistical Association 79, 871—880.

Rousseeuw, P. J. and A. M. Leroy (1987). Robust Regression and Outlier Detection. New
York: John Wiley.

Rousseeuw, P. J. and K. Van Driessen (1999). A fast algorithm for the minimum covariance
determinant estimator. Technometrics 41, 212—223.

12



Rousseeuw, P. J. and V. J. Yohai (1984). Robust regression by means of S-estimators. In
J. W. Franke, Hardle, and R. D. Martin (Eds.), Robust and Nonlinear Time Series
Analysis, pp. 256—272. New York: Springer-Verlag.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581—592.

Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In I. Olkin
(Ed.), Contributions to Probability and Statistics, pp. 448—485. Stanford (CA): Stanford
University Press.

Woodruff, D. L. and D. M. Rocke (1993). Heuristic search algorithm for the minimum
volume ellipsoid. Journal of Computational and Graphical Statisitcs 2, 69—95.

Woodruff, D. L. and D. M. Rocke (1994). Computable robust estimation of multivari-
ate location and shape in high dimension using compound estimators. Journal of the
American Statistical Association 89, 888—896.

Yuan, K.-H. and P. M. Bentler (1998). Robust mean and covariance structure analysis.
British Journal of Mathematical and Statistical Psychology 51, 63—88.

13



number of observations

lo
g(

tim
e 

in
 s

ec
on

d)

200 250 300 350 400 450 500

2
3

4
5

6

rMCD/FAST

p=10

p=20

p=50

number of observations

lo
g(

tim
e 

in
 s

ec
on

d)

200 250 300 350 400 450 500

1.
5

2.
0

2.
5

3.
0

3.
5

rOGK

p=10

p=20

p=50

number of observations

lo
g(

tim
e 

in
 s

ec
on

d)

200 250 300 350 400 450 500

5
6

7
8

9
10

rMCD/FWD

p=10

p=20

p=50

Figure 1: Log of the mean time in seconds needed to compute the rOGK and the rMCD
by means of the forward search (FWD) algorithm and FAST-MCD algorithm as a function
of the sample size and the data dimension p.
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Figure 2: Sampling distribution of starting point robust estimators with missing data for
different amounts of data contamination.
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Figure 3: Sampling distribution of robust estimators with missing data for different amounts
of data contamination
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Figure 4: Transformed Mahalanobis distances using the ERTBS or ER with the rOGK
start to detect outlying observations
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