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Abstract

Longitudinal models are commonly used for studying data col-
lected on individuals repeatedly through time. While there are now
a variety of such models available (Marginal Models, Mixed Effects
Models, etc.), far fewer options appear to exist for the closely related
issue of variable selection. In addition, longitudinal data typically de-
rive from medical or other large-scale studies where often large num-
bers of potential explanatory variables and hence even larger numbers
of candidate models must be considered. Cross-validation is a pop-
ular method for variable selection based on the predictive ability of
the model. Here, we propose a cross-validation Markov Chain Monte
Carlo procedure as a general variable selection tool which avoids the
need to visit all candidate models. Inclusion of a “one-standard er-
ror” rule provides users with a collection of good models as is often
desired. We demonstrate the effectiveness of our procedure both in a
simulation setting and in a real application.
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1 INTRODUCTION

Longitudinal modelling techniques are commonly used for studying data col-
lected on individuals repeatedly through time. Such data arises frequently in
medical studies where large numbers of potential explanatory variables are
often considered. A variety of modelling approaches have been proposed for
handling such data and yet variable selection, key to any statistical analysis,
is typically neglected. An exception here is the recent work of [3] and [12].
Many commercially available software packages (Splus, SAS, Stata, etc.) now
include routines for analyzing longitudinal data but pay little attention to
variable selection, even in cases where many potential explanatory variables
and hence even larger numbers of candidate models, should be considered.

Although the final choice of model(s) must take into account subject mat-
ter and other nonstatistical aspects, data-based statistical methods are very
useful tools for variable selection. Probably the most widely used method
for estimating the predictive ability of a model is cross-validation. Here
we utilize cross-validation in a longitudinal setting with special attention to
the computational complexity associated with considering many candidate
models which makes approaches as in [3] and [12] inappropriate from a com-
putational point of view. The basic idea is as follows (see [15]). Given a
sample of K subjects, we randomly split the data into a construction sample
of size Kc and a validation sample of size K −Kc. We use the construction
sample to fit the model, and use the validation sample to evaluate the pre-
diction error of the particular model. We repeat this procedure for M splits.
With few explanatory variables we can proceed directly. However, with large
numbers of variables we cannot compute the prediction error for all models.
We therefore do cross-validation using a MCMC random search procedure
that allows us to sensibly sample the model space. This proposal is built
on ideas originally proposed by Qian and Field (see [6], [14]) and moves ef-
ficiently through the model space by turning the cross-validation procedure
into one of random sample generation from a finite population. Essentially a
probability distribution for the various candidate models is defined based on
a prediction error criterion. An MCMC method, based on either the Gibbs
sampler or the Metropolis-Hastings algorithm, can then be used to generate
a sample from this probability distribution. The convergence of the MCMC
method ensures that variable selection from the random sample generated
is consistent with that from all candidate models, provided that the MCMC
sample is sufficiently large.

One benefit of doing the M splits of the data in our procedure is that
it provides (at no additional cost) a measure of the standard error of our
prediction error estimate. We use this standard error as the basis of a ”one-
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standard error” rule as is often used with cross-validation ([10]). Depending
on the goal(s) of the user, one might choose the most parsimonious model
whose error is no more than one standard error above the error of the best
model. Alternatively, one might choose to average predictions over a collec-
tion good models (e.g. those within one standard error of the best model) as
in the spirit of bagging, see [1].

Marginal Longitudinal Generalized Linear Models, available in most soft-
ware packages, are a popular option for analyzing longitudinal data and are
fit using Generalized Estimating Equations (GEE). Given their popularity
we have tailored our cross-validation MCMC procedure to this setting while
noting that many other environments are possible.

The paper is organized as follows. In Section 2 we develop our cross-
validation MCMC procedure. In Section 3 we present the results of a simu-
lation study that examines the performance of our procedure in a number of
different settings. An application on real data from the Coronary Artery Risk
Development in Young Adults (CARDIA) Study is presented in Section 4.
Conclusions and directions for future research are provided in Section 5.

2 METHODOLOGY

2.1 Estimators for Prediction

We consider a longitudinal data analysis setting, where Yit is the discrete or
continuous outcome for subject i at time t, for i = 1, · · · , K and t = 1, · · · , ni.
For each outcome Yit, we also measure a set of covariates xit. We write
Yi = (Yi1, · · · , Yini

)T for the ni×1 vector of responses, and Xi = (xi1 · · · xini
)T

for the ni × p matrix of covariates of subject i. Purely dependent data are
obtained with K = 1 (only one cluster) and purely independent data are
obtained with ni = 1 for all i. We fit a Marginal Model to the data by
modelling the marginal mean E(Yit) = µit, and assuming that g(µit) = xT

itβ
for a known link function g, and V ar(Yit) = σ2ν(µit). We suppose that
Corr(Yi) = A−1

i V ar(Yi)A
−1
i , with Ai = diag(ν1/2(µi1), · · · , ν1/2(µini

)), and

that the subjects are independent. An estimator β̂ is the solution of the
general estimating equations proposed by [11]:

K∑

i=1

DT
i V −1

i Si = 0, (1)

where Si = Yi−µi, µi = (µi1, . . . , µini
)T , Di = Di(Xi, β) = ∂µi/∂β is a ni×p

matrix, and Vi = Vi(µi, α) = AiRi(α)Ai is a ni × ni matrix. The matrix

3



Ri(α), for an s-parameter α, is said to be the working correlation matrix, as
opposed to the “true” correlation matrix Corr(Yi).

One may wish to consider a more compact model

g(µit) = xT
itvβv (2)

in situations when some of the components of β are zero. We take v =
(v1, · · · , vp) with some components equal to 1 and others equal to 0 and let
dv denote the total number of 1s occuring in v (dv ≤ p). Then βv is a vector
of length dv containing the non-zero components of β and similarly xitv is a
vector of length dv. There are 2p − 1 possible different models each of which
corresponds to a subset (or candidate model) v.

2.2 The Cross-Validation MCMC Procedure

Consider the original sample (Xi, yi), i = 1, · · · , K and split the data into
a construction sample of size Kc and a validation sample of size Kval =
K − Kc. Note that we are splitting on subjects, the natural sampling unit
in the context of longitudinal data (rather than individual observations).
The estimation procedure described in Section 2.1 provides estimators for
prediction in the validation sample. That is, we use the construction sample
to obtain estimates of βv for the particular candidate model v of concern.
Then for each observation (Xi,yi) in the validation sample, we can compare
the observed value yi with the prediction ŷi. A suitable choice upon which
to base our prediction error criterion is hence a loss function of the form

Kval∑

i=1

(yi − ŷi)
T V −1

i (yi − ŷi), (3)

where Vi is the covariance matrix (which depends on the working correlation
Ri(α)) that we estimate (only once) based on the full set of observations.
This procedure enables one to arrive at a measure of prediction error for
each candidate model in our chain. In summary, the average prediction error
criterion is calculated as follows:

• Generate M random splits of the dataset into a construction sample of
size Kc and a validation sample of size K −Kc, where Kc is approxi-
mately K3/4 (see [15] for further details).

• For each split, use the construction sample to fit the v model. The
parameters of the model are estimated by the procedure given in the
section above.
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• Compute the prediction error for each of the M splits and then the
average prediction criterion over the M splits for model v. We denote
this quantity PE(v).

Note that the same M splits are used for each model v that we evaluate.
An exhaustive variable selection procedure requires the evaluation of

PE(v) for each candidate model and is therefore not feasible when there
are a large number of candidate models, that is, when p is moderate to large.
To overcome this difficulty we propose an MCMC random search procedure
built on defining an appropriate transition kernel,

P (v) = B exp{−PE(v|Y, X)}, (4)

where B = (
∑

v exp{−PE(v|Y,X)}) and PE(v) represents the average pre-
diction error criterion. We then proceed with variable selection from a sample
of candidate models generated using the probability distribution P (v). This
approach is based on methods in [14].

For the probability distribution P (v), the evaluation of the constant B
is not computationally feasible when there are a large number of candidate
models. Fortunately, one can generate a sample from P (v), by applying an
MCMC method even though B does not have a computable form. To use
an MCMC method, one needs a properly determined transition kernel which
generates a reversible Markov Chain. If the transition kernel satisfies a so-
called detailed balance condition and has a support covering that of P (v), it
can be shown that P (v) is the stationary distribution of the generated Markov
chain. Therefore after an initial burn-in period the generated Markov chain
becomes ergodic and can be used for most purposes as an i.i.d. sample from
P (v), even though the models in the chain are not independent. Since we
are looking for models with minimum PE, our objective is simply to move
through the model space in order to find them. As a result, an i.i.d. sample
and removal of the burn-in period are actually not necessary. A similar
approach is taken in [9] where a Gibbs sampler is used for Bayesian variable
selection in the context of multiple regression.

We will apply one of the most frequently used MCMC methods, the
Metropolis-Hasting algorithm, for generating a sample from the distribution
P (v) defined on the set of all candidate models. Alternatively one could use
Gibbs sampling (see [14] for further details). Note that generating a sample
for P (v) amounts to generating a sequence of 1 × p binary vectors. Hence
the following algorithm for generating a sample {v(1), v(2), · · · , v(J)} can be
used:

• Arbitrarily choose a starting model v(0) = (v
(0)
1 , · · · , v(0)

p ), compute
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PE(v(0)) and its corresponding standard error (over the M splits) here-
after denoted σ(PE).

• Repeat for j = 1 · · · , J : To get the model v(j), first generate a candi-
date model ṽ from an operating transition kernel q(v|v(j−1)) for v, and
generate a u from Uniform(0,1). Then set v(j) = ṽ if

u ≤ r(v(j−1), ṽ) = min{([P (ṽ)/P (v(j−1))]c/σ(PE) ∗ q(v(j−1)|ṽ)/q(ṽ|v(j−1)), 1}
= min{exp(c ∗ (PE(v(j−1))−PE(ṽ))

σ(PE)
∗ q(v(j−1)|ṽ)/q(ṽ|v(j−1)), 1},

otherwise set v(j) = v(j−1).

• Return the model sequence {v(1), v(2), · · · , v(J)}.
The constant c = − log(prob) is used to calibrate the MCMC chain so that
it visits a reasonable number of candidate models. Note that the larger the
value of c, the higher the probability of moving to a candidate model with
larger PE. We refer to [7] for a discussion on calibration of the Metropolis-
Hasting algorithm. We define the operating transition kernel for all candidate
models v which differ from the present model v(j−1) only in that they either
include an additional covariate or exclude a present one. The probability
q(v|v(j−1)) is calculated based on the p-value (obtained from the t-test for the
full model) for the covariate under consideration for inclusion or exclusion.
Let pt−test be a vector of size p containing the p-value of the t-test in the full
model (for each explanatory variable). For a model v(j−1) define the set of its
neighboring models as Mv(j−1) = {m1, . . . , mp}, where each mi is such that∑p

k=1 |v(j−1)
k −mi

k| = 1. For each mi ∈ Mv(j−1) , the transition kernel is then
defined by

q(mi|v(j−1)) =
(1− pt−test

i ) ∗ Ei + pt−test
i ∗ (1− Ei)∑p

l=1[(1− pt−test
l ) ∗ El + pt−test

l ∗ (1− El)]
,

where Ei = 1∑p

k=1
(mi

k
−v

(j−1)
k

)=1
= 1 if

∑p
k=1(m

i
k − v

(j−1)
k ) = 1, that is if

mi includes an extra variable with respect to vj−1, and 0 otherwise. For
example, suppose we have a full model with p = 3 covariates where pt−test =
(.05, .65, .15). Note that if the p-value is small we would typically like to keep
the covariate in the model so we choose to add it with probabililty 1 - p-value.
Now suppose that v(j−1) = (1, 0, 0) (i.e. the model that contains only the first
covariate) and the model under consideration in the set of neighboring models
is m1 = (1, 1, 0). Then, q(m1|v(j−1)) = (1− .65)/(.05 + (1− .65) + (1− .15))
and similarly q(v(j−1)|m1) = .65/(.05 + .65 + (1− .15)).
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Alternatively one could use uniform probabilities, q(v|v(j−1)) = 1
p

(where

p is the number of covariates) but our experience has shown this approach
to be less efficient. Note that various choices for the operating kernel are
possible. It is our feeling that we have chosen the most sensible one for this
application.

2.3 The ”one-standard error” Rule

For each model v in the chain our MCMC cross-validation procedure provides
both a measure of predictive ability (PE(v)) and the associated standard
error, σ computed over the M splits for the model. This latter statistic has
traditionally not been available and hence represents one of the innovations of
our procedure. Supposing that v0 is the model in the chain with the smallest
PE, we can define a set of indistinguishable models as being comprised of all
those models whose PE is within σ of PE(v0). We refer to this approach as
the “one-standard error” rule in keeping with that suggested on page 214 of
[10]. We view the resulting set as representing a collection of good models
for the data.

The researcher now can summarize the collection of good models in a
number of ways. In many prediction settings a search for a single best model
for a particular set of data is neither sensible nor reasonable. Instead, as in
the spirit of bagging ([1]), models provided by the “one-standard error” rule
can be used together to obtain good prediction estimates. By looking at the
ensemble of variables selected, the researcher can see which variables occur
across most or all of the models giving a set of core variables to be included for
any analysis. There may also be situations where one or the other of a pair of
variables is selected indicating that each has similar explanatory power hence
suggesting new composite variables. If one final model is required for further
analysis, a sensible strategy would be to include all variables occurring in
the majority of models creating a consensus model. In Section 3 and 4 we
illustrate these ideas in the context of simulated and actual data.

2.4 Extensions

We note that our procedure could be used with robust GEE ([2]) rather
than GEE. In addition there are other choices available for PE, Efron’s .632
estimator (p. 321 of [4]), for example. For an interesting and insightful
discussion of some of the relationships between these estimators we suggest
[5]. If one wished to move more quickly to other models as comprised of
those models that differ from the present one in that they include or exclude
2 covariates rather than just 1.
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Table 1: Marginal frequencies of appearance of the x variables in a chain of
length 5000. Note that x1 through x7 are significant.

no interaction interaction
mean median sd mean median sd

x1 0.83 1 0.28 0.59 0.5 0.33
x2 0.76 1 0.3 0.8 1 0.29
x3 0.78 1 0.29 0.67 0.66 0.25
x4 0.87 1 0.19 0.76 1 0.29
x5 0.83 1 0.23 0.79 0.98 0.27
x6 0.81 1 0.24 0.89 1 0.18
x7 0.84 1 0.23 0.89 1 0.17
x8 0.17 0.16 0.07 0.25 0.25 0.11
x9 0.23 0.2 0.15 0.26 0.24 0.1
x10 0.24 0.19 0.22 0.21 0.2 0.12
x11 0.19 0.15 0.16 0.28 0.25 0.14
x12 0.4 0.36 0.16 0.38 0.36 0.14
x13 0.37 0.35 0.13 0.35 0.33 0.12
x14 0.37 0.35 0.11 0.35 0.34 0.09
x15 0.38 0.37 0.14 0.36 0.35 0.13
x16 0.35 0.36 0.09 0.38 0.36 0.1
x17 0.37 0.38 0.11 0.4 0.38 0.15
x18 0.39 0.35 0.14 0.37 0.34 0.13
x19 0.4 0.39 0.08 0.37 0.34 0.17
x20 0.36 0.36 0.1 0.38 0.37 0.14

3 SIMULATION STUDY

To assess the performance of our cross-validation MCMC procedure we have
carried out a simulation study designed to measure performance in a number
of different settings as well as to serve as a general indicator of utility.

We consider a marginal longitudinal model (as described in Section 2.1)
with log link, for i = 1, · · · , K = 30 and t = 1, · · · , ni = n = 10. The response
Yit is Poisson. The dimension of xit is p = 20 with this set of explanatory
variables including a combination of those which are time-dependent or time-
independent as well as those which are continuous or discrete. The correlation
between observations on the same subject is exchangeable. The subjects are
assumed independent. We take c = − log(.5) in our cross-validation MCMC
procedure. Our starting model is the one retaining all the variables for which
the individual t-tests are significant.
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We begin by considering a setting in which X1, X2, X8 and X9 are
binomial(.5), X3, X10 and X11 are three-level variables with probabilities
(0.5,0.35,0.15) and X4 → X7 and, X12 → X20 are N(0,1) variables. The
true model generating the data includes 7 significant variables, X1 → X7.
We run 50 simulations and for each utilize an MCMC chain of length 5000.
The true model generating the data is usually visited quite early on giving
us confidence in the fact that the chain is of sufficient length. Each chain
provides 5000 models and we compute the frequency of appearence of all 20
explanatory variables in these models. We run 50 simulations and in the
left half of Table 1 we report summaries (mean, median, standard deviation)
of the distribution of the marginal frequencies of appearance of all 20 ex-
planatory variables over the 50 simulations. This approach to summarizing
results is similar in spirit to that of [8] where promising covariates were iden-
tified as those with more frequent appearance in the Gibbs sample. Clearly,
our procedure does an excellent job of identifying those variables which are
significant. In addition (results not shown), all variables appear in models
at least 15% of the time suggesting that we are moving around the design
space quite well. Similar results are obtained when the number of significant
variables generating the true model is reduced. We next consider a setting
in which there are interactions. That is, X1, X8 and X9 are binomial(.5),
X2, X10 and X11 are three-level variables with probabilities (0.5,0.35,0.15),
X3 → X5 and, X12 → X18 are N(0,1) variables, X6 = X1 ∗X3, X7 = X4 ∗X5,
X19 = X8 ∗ X12 and X20 = X13 ∗ X14. The true model generating the data
includes 7 significant variables, X1 → X7. Again we run 50 simulations and
for each utilize an MCMC chain of length 5000. In the right half of Ta-
ble 1 we report the marginal frequencies of appearance of all 20 explanatory
variables over the 50 simulations. We assume that, in order to include an
interaction effect one must also include the corresponding individual effects
in the model. Again, our procedure does an excellent job of identifying those
variables which are significant.

Our cross-validation MCMC procedure can achieve a variety of objectives.
For instance, suppose that one requires a single best model for the dataset
of interest. We hereafter refer to such a model as a consensus model and
suggest that it need not simply be the model in our chain with the smallest
PE, though this is one possibility. Instead, one could choose to define the
consensus model dependent upon the objective(s) of the end user. For ex-
ample, suppose that the most parsimonious model for the dataset is desired.
One could then define the consensus model to include only those variables
occuring in all of the indistinguishable models, as obtained by application of
the “one-standard error” rule. At the other end of the spectrum, one could
define the consensus model as being comprised of all variables occuring in any
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Table 2: Consensus Model and number of Indistinguishable Models, 7 signif-
icant out of 20.

Sim # Consensus model Indist. Sim # Consensus model Indist.
1 1 2 3 5 7 18 15 26 1 3 4 5 6 7 22
2 2 3 4 5 6 7 14 25 27 1 2 3 4 5 6 7 20
3 3 4 5 6 7 23 28 1 2 3 4 6 7 13 9
4 1 2 4 6 7 11 29 1 3 4 5 6 7 10 13 19 26
5 1 2 3 4 5 6 7 18 30 1 2 3 4 5 6 7 58
6 1 2 3 4 5 6 7 20 15 31 3 4 5 6 7 5
7 1 2 3 4 5 6 7 16 17 17 32 1 2 4 5 6 7 14 23
8 3 4 5 6 7 6 33 1 3 4 5 6 7 15 20 21
9 1 3 4 5 7 12 14 34 1 2 4 5 6 7 9 10 17 18 9
10 1 4 5 6 7 12 15 18 14 35 1 3 4 5 6 8 5
11 2 3 5 6 7 44 36 3 4 5 6 7 20 7
12 1 2 4 5 6 7 9 8 37 1 2 3 4 5 6 7 12 27
13 1 2 3 5 6 7 18 22 38 1 2 3 4 5 7 13
14 1 2 3 4 5 6 7 11 39 1 3 4 5 6 7 12
15 1 2 4 7 14 40 1 2 4 5 7 20
16 1 2 3 4 5 6 14 6 41 1 2 3 4 5 6 7 16
17 1 3 4 5 6 7 11 42 3 4 5 6 8 11 13 15 10
18 1 2 3 4 5 6 7 16 19 46 43 1 2 3 4 5 6 7 14
19 1 2 3 4 5 6 7 12 6 44 1 2 4 5 6 7 10
20 1 2 3 4 5 6 7 13 14 45 1 2 3 4 5 6 7 11 9
21 1 2 3 4 5 7 12 8 46 1 2 3 4 5 6 7 10
22 1 2 4 5 6 7 10 26 47 1 2 3 4 5 6 7 15 9
23 1 2 3 4 5 6 7 15 45 48 1 2 3 4 5 6 7 14
24 1 2 3 4 5 6 7 9 20 31 49 1 2 4 5 6 7 13 18 11
25 3 4 5 6 7 8 50 2 3 4 5 6 7 17 20 15

of the indistinguishable models. Such a model would clearly be more conser-
vative in nature. In Table 2 we report the consensus model along with the
correponding number of indistinguishable models when the consensus model
is taken to include all variables occuring in more than 50% of the indistin-
guishable models. There are only 15 instances in which the true model is not
visited and yet it is within σ of the consensus model. This reflects our choice
of c and is reasonable given that there are over one million possible candidate
models. Furthermore, we visit the true model about 60% of the time. In Ta-
ble 3 we report similar results in the presence of interaction. To summarize,
our procedure provides a rich summary of predictive ability enabling one to
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address a vast array of questions pertaining to variable selection.

Table 3: Consensus Model and number of Indistinguishable Models, 7 signif-
icant (with interactions) out of 20.

Sim # Consensus model Indist. Sim # Consensus model Indist.
1 2 3 4 5 6 7 11 13 14 37 26 1 2 4 5 6 7 11 14 17 20 83
2 2 3 4 6 7 12 8 27 1 2 5 6 7 16 10
3 1 2 4 6 7 39 28 2 3 4 5 7 13
4 1 2 3 4 5 7 25 29 4 6 7 11 12 14
5 2 3 4 6 7 12 30 1 5 6 7 21
6 1 2 3 4 5 7 11 31 1 2 3 4 5 6 7 13 8
7 2 3 4 5 6 7 31 32 1 2 4 5 6 7 9 13 16 9
8 2 4 5 6 7 20 33 1 2 4 5 6 7 10 12 19 22
9 1 2 3 4 5 6 7 8 34 2 4 5 6 7 9 20 20
10 2 3 4 5 6 7 18 32 35 1 4 6 7 12
11 1 2 3 4 5 6 7 16 18 20 4 36 1 2 3 4 5 6 7 12 14 19 9
12 1 2 4 5 6 7 11 19 30 37 1 2 5 6 7 17 14
13 2 3 5 7 17 15 38 1 2 4 5 6 7 17
14 1 2 3 5 7 18 19 39 1 2 5 6 7 18 12
15 2 3 4 5 6 7 9 17 10 40 1 2 3 4 5 6 7 13
16 1 2 3 4 5 6 7 7 41 2 3 4 5 6 7 8 15 12
17 1 5 6 7 15 42 2 3 4 5 6 7 19
18 1 2 4 5 6 7 15 20 12 43 1 2 3 4 5 6 7 10
19 1 2 3 4 5 6 7 5 44 1 2 3 5 6 12 12
20 2 4 5 6 7 12 13 16 17 19 20 24 45 2 3 4 5 6 7 14 17
21 1 2 3 4 5 6 8 12 19 38 46 1 2 4 5 6 7 6
22 2 3 4 5 6 7 9 47 2 3 4 5 6 7 10 5
23 5 6 7 8 14 16 9 48 1 2 3 4 5 6 7 11 12
24 1 2 3 4 6 7 10 7 49 2 4 5 6 7 15
25 1 3 5 6 7 12 11 50 2 3 4 5 6 7 9

4 APPLICATION TO REAL DATA

We consider here data from the Coronary Artery Risk Development in young
Adults (CARDIA) Study which was originally designed to document levels of
risk factors for coronary artery disease and potential determinants of these
risk factors in young adults in the United States. [13] make available a
portion of the data corresponding to 5,078 black and white young adults
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and propose a weighted generalized estimating equations approach that ac-
counts for dropouts. We choose to examine a subset of this data in order
to demonstrate the utility of our cross-validation MCMC procedure. We
take a random sample of size 500 from 3693 individuals for which smoking
status (yes/no) has been recorded at 4 different time points (0, 2, 5 and 7
years). Previous analyses ([13]) have indicated that a logistic GEE approach
as discussed in Section 2.1 is appropriate. Available covariates are age in
years (AGE), a 3 level factor for birth cohort (BIRTH equals 1 if born in
1963-1967, 2 if born in 1955-1962 and 3 if born in 1955-1958), a 3 level factor
for attained level of education (EDUCATION is 1 for High School or less, 2
for Some College and 3 for College degree obtained) and a 4 level factor for
race/sex group (RACESEX is 1 for black males, 2 for black females, 3 for
white males and 4 for white females). Our cross-validation MCMC proce-
dure allows us to efficiently consider candidate models and draw a number of
insightful conclusions. We include AGE, BIRTH, EDUCATION, RACESEX
as well as interaction between AGE and RACESEX for a total of p=11 co-
variates (not including the intercept) . Both the consensus model (defined to
include all variables occuring in at least 50% of the indistinguishable models)
as well as the collection of indistinguishable models are shown in Table 4.
Results suggest that attained College degree, black females and age * black
female interaction are all significant predictors of smoking status. Due to the
interaction we would conclude that variables 1,5,6 and 9 would be most im-
portant. Without our cross-validation MCMC procedure available one would
likely use a t-test for variable selection. The resulting model with (p=.05)
would include only variables 4 and 5. Clearly our procedure provides a great
deal of additional information and is likely much more reliable than that of
the t-test.

5 CONCLUSIONS

In this paper we propose a cross-validation Markov Chain Monte Carlo pro-
cedure as a general variable selection tool which avoids the need to visit all
candidate models. This proves particularly useful in the presence of many
covariates. We adapt our approach to the context of longitudinal data anal-
ysis, while emphasizing that it represents a general technique for variable
selection that can be applied whenever a loss function is available (e.g. a
measure of predictive ability). Several parameters (M , Kval, c, etc., see Sec-
tion 2.2) allow the user to tune different aspects of the procedure, thereby
providing a very flexible tool. Moreover, in contrast to other available tech-
niques, it generates a rich output: not simply a “best” model, but a collection
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Table 4: Consensus Model followed by Indistinguishable Models for CARDIA
Example. Covariates are indicated by number where 1 corresponds to AGE, 2
and 3 are factors for BIRTH, 4 and 5 are factors for EDUCATION, 6 through
8 are factors for RACESEX, and 9 through 11 represent the interactions
between AGE and RACESEX.

AGE BIRTH EDUCATION RACESEX AGE*RACESEX

1 2 3 4 5 6 7 8 9 10 11
Consensus x x x
Indist. 1 x x
Indist. 2 x x x x
Indist. 3 x x x x x
Indist. 4 x x x x x
Indist. 5 x x x x x
Indist. 6 x x x x
Indist. 7 x x x x x
Indist. 8 x x x
Indist. 9 x x x x
Indist. 10 x x x x x
Indist. 11 x x x
Indist. 12 x x x x
Indist. 13 x x x x x
Indist. 14 x x x x x
Indist. 15 x x x x
Indist. 16 x x x
Indist. 17 x x
Indist. 18 x x x x
Indist. 19 x x
Indist. 20 x x
Indist. 21 x

of interesting models defined with the help of the estimated variability of the
optimality measure (e.g. according to the “one-standard error” rule). The
information conveyed by this collection of models can be used in many ways;
for example, to extract a “consensus” model as defined in Section 3.
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