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ROBUST MM -ESTIMATION AND INFERENCE
IN MIXED LINEAR MODELS

Samuel Copt and Stephane Heritier

NHMRC Clinical Trials Centre, University of Sydney

Abstract: Mixed linear models are used to analyse data in many settings. These

models generally rely on the normality assumption and are often fitted by means

of the maximum likelihood estimator (MLE) or the restricted maximum likeli-

hood estimator (REML). However, the sensitivity of these estimation techniques

and related tests to this underlying assumption has been identified as a weakness

that can even lead to wrong interpretations. Recently Copt and Victoria-Feser

(2005) proposed a high breakdown estimator, namely an S-estimator, for general

mixed linear models. It has the advantage of being easy to compute - even for

highly structured variance matrices - and allow the computation of a robust score

test. However this proposal cannot be used to define a likelihood ratio type test

which is certainly the most direct route to robustify an F-test. As the latter is

usually a key tool to test hypothesis in mixed linear models, we propose two new

robust estimators that allow the desired extension. They also lead to resistant

Wald-type tests useful for testing contrasts and covariate effects. We study their

properties theoretically and by means of simulations. An analysis of a real data

set illustrates the advantage of the new approach in the presence of outlying

observations.

Key words and phrases: Mixed models, Robustness, MM -estimator, Breakdown

point, Likelihood ratio test, Wald test.

1 Introduction

Mixed linear models are very popular models when there are multiple sources

of error and are widely used in many scientific fields. Estimation of parameters

The first author acknowledges the support of the Swiss National Science Foundation
(grant no PP001–106465)

1



in these models is usually a preliminary step to inference and the primary goal

of many experimental designs is more often than once hypothesis testing. An

example of such a design is given in Moy and Mounoud (2003). The data come

from an experiment in which 23 old subjects (between 60 and 65) had to decide

as quickly as possible if a target (object’s drawing), which appeared after a

prime (action of a pantomime), was a real object or not. The delay between

the pantomime and the apparition of the object was either short or long and

the pantomimes were of three types (related, unrelated and neutral). For each

combination of pantomime and delay five measures (time to decide wether the

object is real or not) were taken, with the first and last one discarded and the

mean of the remaining ones taken as the response variable. The underlying

hypothesis is that the reaction time is shorter when there is a link between the

priming and the object and researchers suspect an interaction with the delay.

A two-way ANOVA model with repeated measures can be fitted to these data,

namely

yijk = µ + λj + γk + (λγ)jk + si + (λs)ij + (γs)ik + εijk, (1)

with i = 1, .., 21, j = 1, ..., 2 and k = 1, ..., 3. µ is the grand mean, λj , γk are the

fixed effects for the delay and the priming respectively and (λγ)jk is the interac-

tion factor between the two fixed effects. si is the effect due to subject i, which

we assume to be a random variable N(0, σ2
s); (λs)ij and (γs)ik are interaction

random variables with distribution N(0, σ2
λs) and N(0, σ2

γs) respectively; and εijk

is the error term coming from N(0, σ2
ε). We assume that all the variables on the

right-hand side are independent.

A second example is described in Pinheiro, Liu, and Wu (2001) and was originally

reported by Potthoff and Roy (1964). The data come from an orthodontic study

on 16 boys and 11 girls between the ages of 8 and 14. The response variable is the

distance (in millimeters) between the pituitary and the pterygomaxillary fissure,

which was measured at 8, 10, 12 and 14 years for each boy and girl. Pinheiro

et al. (2001) suggest that a potential model for these data is

yijt = β0 + β1t + (β0g + β1gt) Ji(j) + γ0i + γ1it + εijt,

with yijt the response for the ith subject (i = 1, . . . , 27) of sex j (j = 1 for boys
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and j = 2 for girls) at age t = 8.10, 12, 14,

Ji(j) =

{
0 j = 1

1 j = 2,

a dummy variable for sex. β0, β1, β0g, β
T
1g are the fixed effects and γ0i, γ1i, εijt

the random effects with zero mean and respective variances of σ2
γ0

, σ2
γ1

, σ2
ε . This

model is actually a random slope and intercept model.

Both of the above models belong to the class of mixed linear model which is of

the form

y = Xα +
r∑

j=1

Zjβj + ε, (2)

where y is the N -vector of all measurements, X is a N × q0 design matrix for the

fixed effects, the Zj are the N × qj design matrices for the random effects βj , ε

is the N -vector of independent residual errors, with ε ∼ N(0, σ2
εIN ), α is a q0-

vector of unknown fixed effects, βj are the unobserved qj-vectors of independent

random effects, with βj ∼ N(0, σ2
j Iqj ). It follows that E[y] = Xα and var(y) =

r∑
j=0

σ2
jZjZT

j = V, with σ2
0 = σ2

ε and Z0 = IN . We assume that all the q0 + r + 1

effects are identifiable and concentrate on models for which we can write

V = diag(Σ). (3)

The usual procedures to derive estimates and tests for the various parameters

in (2), namely the maximum likelihood estimator (MLE) or the restricted max-

imum likelihood estimation (REML) of Patterson and Thompson (1971), rely

heavily on the normality assumption - see for instance Searle, Casella, and Mc-

Culloch (1992) for a review. Small departures from normality can have disastrous

effects on estimators (bias) and tests (increased type I error), see e.g. Welsh and

Richardson (1997) and Copt and Victoria-Feser (2005). Several alternative es-

timation techniques that are far less sensitive to model misspecifications have

been proposed in the last decade; see Huggins and Staudte (1994), Stahel and

Welsh (1997), Richardson and Welsh (1995), Richardson (1997) and Welsh and

Richardson (1997). They are mainly based on a weighted version of the likeli-

hood function. Although some of the above proposals can theoretically deal with
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leverage points, they are technically very difficult to compute and for that reason

virtually unused. A high breakdown estimator has recently been suggested by

Copt and Victoria-Feser (2005) with the major advantage to be intuitive and

computationally simple. Far less has been said on how to robustify classical tests

for mixed models. Researchers are ’de facto’ led to use the asymptotic standard

errors and 95% confidence intervals with the notable exception of the robust score

test proposed by Copt and Victoria-Feser (2005). As F -tests and contrast tests

are more commonly used in practise we would like to generalise this approach

and propose robust counterparts that can cope with outliers in the covariates,

have reasonable breakdown properties, and retain the simplicity of the previous

proposal.

The paper is organised as follows. In section 2 we reformulate the mixed linear

model in a convenient way and briefly review the high breakdown estimator (i.e.

an S-estimator) proposed by Copt and Victoria-Feser (2005) in that setting. Two

new estimators are introduced in Section 3 to pave the way for further testing

developments. They can be seen as M or MM -type estimators based on the

initial highly robust estimates of the scale parameters σj ’s. Unlike the initial

S-estimator, these new proposals allow the construction of robust alternatives to

the F -test presented and studied in Section 4. They will also be used to define

a robust Wald test typically useful for testing contrasts. A simulation study

illustrating the behavior of the new procedures is then carried out in Section 5.

An analysis of a real data set is presented in Section 6 showing the benefit of our

approach over the standard procedures. Finally, Section 7 concludes.

2 High breakdown estimation approach in

mixed linear models

We review briefly the approach proposed by Copt and Victoria-Feser (2005) to

extend the definition of multivariate S-estimators to mixed linear models. The

key idea is to reformulate a mixed linear model in term of multivariate normal

distribution with a structured covariance matrix. Specifically, model (2) can be
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rewritten as:

yi|xi ∼ N(µi,Σ), (4)

with yi the p-vector of independent observations obtained by partitioning Y

according to the covariance structure in (3) and

µi = xiα, (5)

with xi a p × q0 matrix obtained by partitioning X according to the covariance

structure in (3). When there is no covariate xi = x ∀i. Following (Copt and

Victoria-Feser 2005), we can write

Σ =
r∑

j=0

σ2
j zjzT

j , (6)

where zj is a p × qj random effects design matrix. Formula (6) clearly specifies

the structure of the covariance matrix of yi arising from the random part of the

model. In the rest of paper we will assume that the zj ’s are fixed or at least well

controlled.

A high breakdown point estimator, namely an S-estimator can then be easily

adapted to the model. When the mean vector is as in (5) and the covariance

matrix Σ is structured as in (6), Copt and Victoria-Feser (2005) introduced an

S-estimator for the mean and variance components as the solution for α and Σ

which minimizes det(Σ) = |Σ| subject to

n−1
n∑

i=1

ρ

(√
(yi − xiα)TΣ−1(yi − xiα)

)
= b0, (7)

where ρ is a function having the properties given in Rousseeuw and Yohai (1984)

and b0 a parameter typically chosen to achieve a pre-specified breakdown point.

Let di = di(α) =
√

(yi − xiα)TΣ−1(yi − xiα) be the Mahalanobis distance

for observation i, S0 be the vector of random effects parameters, i.e. S0 =

(σ2
0, ..., σ

2
r )

T and θ =
(
αT ,ST

0

)T the overall parameter. Then straightforward

calculations show that an S-estimator for the fixed effects α is solution of

∑
u(di)xT

i Σ−1(yi − xiα) =
∑

Ψα (yi,xi; θ) = 0, (8)
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and for the random effects

∑{
pu(di)(yi − xiα)TΣ−1zjzT

j Σ−1(yi − xiα)− u(di)d2
i tr

[
Σ−1zjzT

j

]}

=
∑

Ψσ2
j
(yi,xi; θ) = 0, (9)

where u(di) = ∂
∂di

ρ(di)/di = ψ(di)/di and ψ(di) = diu(di).

Both equations (8) and (9) are M -type equations for the overall parameter θ,

i.e. satisfy
∑

Ψ(y,x; θ) = 0 with Ψ = (ΨT
α, Ψσ2

1
, ...,Ψσ2

r
)T .

They may have multiple roots but Copt and Victoria-Feser (2005) showed that

this difficulty can be easily overcome to find the S-solution. This can be achieved

by solving an iterative system derived from (8) and (9) using a good high break-

down estimator as a starting point, e.g. the OGK estimator by Maronna and

Zamar (2002). They also recommended to use the translated Tukey’s biweight

of Rocke (1996) as the ρ function but other choices can also be made. We will

follow that path for simplicity. The estimator is called CTBS for constrained

translated biweight S-estimator. Using similar arguments as Davies (1987) and

Lopuhaä (1989), Copt and Victoria-Feser (2005) showed Fisher consistency and

asymptotic normality for the resulting estimator.

3 Other robust alternative estimators

Our purpose it to define a robust alternative to an F -test for mixed models. As F -

tests are asymptotically equivalent to likelihood ratio tests (LRT) it seems natural

to look for a robust version possibly based on the CTBS estimator. Attempts in

this direction rely on M -estimators and have been suggested first by Ronchetti

(1982) in linear regression and then Heritier and Ronchetti (1994) in a more

general framework. Unfortunately, despite that the CTBS estimator (or any

S-estimator) is asymptotically equivalent to an M -estimator the same approach

collapses in the mixed effects model. This is mainly due to the constraint (7)

as we shall see in Section 4. We propose two new procedures to overcome this

problem. For both of them, the idea is to dissociate the estimation of the fixed

effects from that of the random component. In other words we propose to obtain

first a highly-robust consistent estimate for the covariance matrix via the CTBS
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estimator, say Σ̂S , then use a different robust procedure for the regression part

α holding the variance parameter fixed and equal to the previous estimate. This

modification may look minimal but is actually essential to define robust LRT

tests as we will explain in Section 4.

3.1 3.1. Huber estimator

Let us assume that Σ is known and that the only remaining parameter to estimate

is the vector of fixed effects α. Following Lopuhaä (1992), the Huber estimator

can naturally be defined as the solution for α of the minimisation problem:

min
∑

ρ
(
di(α)

)
where ρ is the Huber objective function (quadratic in the middle

and linear in the tails). Equivalently it can be obtained by solving the first order

equation with

ΨH (y,x;α) = uc(d)(xTΣ−1(y − xα)), (10)

and uc(d) is the Huber-weight defined as usual as uc(d) = min(1, c/|d|) with c

the tuning constant controlling the desired efficiency. As Σ is unknown we will

typically replace it in (10) by a preliminary HBP estimate Σ̂S - see Lopuhaä

(1992) - yielding ∑
uc(di)xT

i Σ̂−1
S (yi − xiα) = 0. (11)

This estimator can thus be seen as a two-stage estimator. In a first stage, a

consistent high breakdown estimator of Σ is obtained via the CTBS estimator.

Then in a second stage, we estimate the fixed effect parameter by using an Huber

M -estimator with Σ being held constant and equal to Σ̂S for all practical pur-

poses. As long as only the response vector y is concerned and the design matrix

x is fixed, techniques analogues to Lopuhaä (1992) show that the M -estimate of

α defined through (11) with a Huber objective function ρ will inherit at least

the breakdown point of Σ̂S . Things are radically different when the breakdown

point is considered with respect to both x and y as the breakdown point is simply

zero. The reason is that the influence function (IF) which measures the worst

asymptotic bias caused to an estimator - see Hampel, Ronchetti, Rousseeuw, and

Stahel (1986) - is unbounded in that case. Even one single observation, namely

a leverage point, can ruin the estimator. To see this simply remark that the IF

of an M -estimator is proportional to its defining ψ function in general and in
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the present case the function ΨH is unbounded in x. This estimator has there-

fore the traditional drawback of all Huber estimates: it can be severely biased

in the presence of contamination in the factor space or (bad) leverage points.

This difficulty will be overcome with our next proposal. Note though that the

Huber estimator retains its full potential for all designs involving only factors,

categorical variables or well controlled covariates (e.g. ANOVA), situations that

are frequently encountered in practice.

3.2 MM estimator

The class of MM -estimators was first introduced by Yohai (1987) in the linear

regression setting. Such estimates are interesting as they combine high efficiency

and high breakdown point in a simple and intuitive way. Typically one starts

first with a highly-robust regression estimator, typically an S-estimator. Then

one can use the scale based upon this preliminary fit along with a better tuned ρ

function to obtain a more efficient M -estimator of the regression parameter. In

practice the initial regression estimator is based on a loss function ρ0, the final

estimator on ρ1 and both functions are related to each other via ρ0(u) = ρ(u/c0)

and ρ1(u) = ρ(u/c1) with 0 < c0 < c1 - see remark 2.3 in Yohai (1987). Tuning

constants need to be adjusted to achieve a specific breakdown point and efficiency

at the model. A multivariate version of this method was later suggested by

Lopuhaä (1992). We will simply extend this approach to mixed linear models.

Let us assume we have two functions ρ0 and ρ1 satisfying the conditions (A1) of

Yohai (1987) and the remark above. An MM -estimator of α is then defined as

any solution of an M -type equation where

ΨMM (y,x;α) = uMM (d)(xTΣ−1
S (y − xα)). (12)

This looks similar to the previous proposal. The difference with the Huber es-

timator lies in the definition of the weight function uMM (d) now based on a

redescending score. Technically we have uMM (d) = ∂
∂dρ1(d)/d = ψ1(d)/d where

ψ1 is redescending as it is the derivative of a bounded loss function ρ1, e.g. chosen

in the Tukey’s biweight family:

ρB(d; c) =

{
3(d

c )2 − 3(d
c )4 + (d

c )6 |d| ≤ c

1 |d| ≥ c.
(13)
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In practice Σ is replaced by its high breakdown estimate and, as before, the

MM -estimator is a solution of

∑
uMM (di)xT

i Σ̂−1
S (yi − xiα) = 0. (14)

The exact definition of the functions ρ’s and choice of tuning constants will be

given in Section 4. The proper solution to (14) with a high breakdown point can

be obtained via the iteratively reweighed algorithm of Rocke (1996), using as

a starting point the initial regression S-estimate and the variance matrix being

held fixed. As in Section 3.1 for the Huber estimator the MM -estimator has a

breakdown point with respect to y that is at least equal to the one of Σ̂S . The

advantage is that it now performs better when leverage points are present as

illustrated in Section 5. Although its global robustness properties are not fully

derived here, it is clear that the breakdown point of the MM -estimator with

respect to (y,x) is positive. Recently multivariate regression S-estimators have

been proposed by Van Aelst and Willems (2005) and their breakdown property

extensively studied. It is likely that their approach can be extended to MM -

estimators in mixed effects models. The formal derivation of the breakdown point

of MM -estimators in this setting is however beyond the scope of this paper.

3.3 Asymptotic distribution

Proposition 1. Let (yi|xi) , i = 1, . . . , n be a sequence of independent random

vectors conditionally distributed as a p-variate normal distribution Fα,Σ with

mean µ = xα and variance Σ positive definite and structured as in (6). Let K

be the distribution of a covariate matrix x and suppose that the q0×q0 dimensional

matrix Γ = EK

[
xTΣ−1x

]
exists and is invertible. For ψ chosen as either (10)

or (12) we denote α̂ a solution of the corresponding equation. Then
√

n (α̂−α)

has a limiting normal distribution with zero mean and covariance matrix H =

M−1QM−T where M = e1Γ and Q = e2Γ. As both matrices are M and Q are

proportional a simpler representation for H can be given

H =
e1

e2
2

Γ−1 =
e1

e2
2

EK

[
xTΣ−1x

]−1
, (15)
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where

e1 =
1
p
EΦ

[
d2u(d)2

]
(16)

e2 = EΦ

[
u(d) +

1
p
d

∂

∂d
u(d)

]
, (17)

u is the weight function associated to the chosen ψ function and Φ is the standard

p-variate normal distribution.

Proof. See Appendix 4.7

Formula (15) shows that the asymptotic covariance matrix of our two proposals

is proportional to that of the MLE. The scalar e1/e2
2 depends only on tuning

constants and the definition of ρ as shown in (16) and (17). It is typically cali-

brated to achieve a specific efficiency at the model; see next section for details. In

practice the asymptotic variance (15) is estimated by its sample counterpart to

avoid any specific distributional assumption on x. More details will be given in

the appendix. As indicated in Lopuhaä (1992) any preliminary affine-equivariant

covariance estimator with a high breakdown point that tends to Σ with proba-

bility one could be used instead of Σ̂S . The proposition would still hold in that

case.

4 Robust tests

Testing in mixed linear models is probably the central issue. In a crossover trial

one would like to test for example if there is a significant difference between

two or several treatments or whether specific contrasts are significant. In the

first example of Sec. 1, based on a two-way ANOVA model, the main issue

for the researcher is clearly to see whether the reaction time is shorter when a

link between the priming and the object exists or whether the delay impact on

the reaction time, possibly interacting with the type of pantomime. This can

be easily formulated using the notation introduced in Sections 1-2. Basically

we are interested in testing the null hypothesis that q (< p) linearly estimable

functions of the vector of parameters α are zero, the variance components being
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treated as nuisance parameters. Denote by αT = (αT
(1), α

T
(2)) the partition of the

vector α into p− q and q components and by A(ij), i, j = 1, 2 the corresponding

partition of p× p matrices. Through a linear transformation of the parameters,

the hypotheses to be tested can be reformulated as

H0 : α = α0 where α0(2) = 0, α0(1) unspecified

H1 : α0(2) 6= 0, α(1) unspecified.

The need for robust testing in this setting is obvious as classical F -tests and

contrast tests have reportedly been found unreliable under sometimes mild devi-

ations; see for instance Welsh and Richardson (1997) and Copt and Victoria-Feser

(2005). In the robustness paradigm, robust tests must have i) a stable type I

error under small, arbitrary departures from the null hypothesis (robustness of

validity), ii) a good power under small arbitrary departures from the specified al-

ternative (robustness of efficiency). In principle such tests and the related theory

results exist in a very general framework. For instance Heritier and Ronchetti

(1994) proposed a robust version of the Wald, score and LRT tests for general

parametric models. This follows earlier work in linear regression by Ronchetti

(1982) and others in the linear model. We will not discuss the case of the score

type test as it has already been implemented in Copt and Victoria-Feser (2005)

but we will focus on the two other alternatives.

4.1 Difficulty inherent to robust LRT statistics

Unfortunately the approach based on a likelihood-ratio type test statistic which

is probably the most natural route to robustify the F -test presents an intrinsic

difficulty. Before we explain the problem let us review the basic idea. In linear

regression the classical LRT is based on the difference of sum of squares basi-

cally computed at the full and reduced models with the respective maximum

likelihood estimators plugged in. It is therefore natural to base a robust LRT

on a difference in a dispersion (or loss) function properly chosen where this time

robust M -estimators have been substituted for the regression parameter α in the

full and reduced models. This idea can be more generally extended to any log-

likelihood based test as shown by Heritier and Ronchetti (1994). However such
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an approach requires a very stringent condition to hold for the theory to be valid.

Indeed the partial derivative of the dispersion function ρ(u; α) with respect to the

parameter (usually denoted ψ(u; α)) must be bounded to guarantee robustness

of the resulting testing procedure. As this condition is difficult to fulfill outside

the linear model, robust LRT procedures have been barely used with the notable

exception of the work on robust deviances by Cantoni and Ronchetti (2001) in

generalised linear models. In the mixed models framework the situation is simi-

lar. The approach by Copt and Victoria-Feser (2005) does not lead to a proper

LRT statistic either as the latter simply vanishes in that case. To see this, just

notice that the S-estimator proposed in this work is asymptotically equivalent to

an M -estimator but requires the constraint (7) to hold under both the full and

reduced models. The left-hand term is precisely what should be chosen as the test

statistic. Since it is constrained to be b0 for the estimator to exist, the resulting

LRT statistic is zero. In the following section we will show that the estimators

we have introduced in Section 3 do not present this drawback and allow for the

desired extension.

4.2 Robust likelihood-Ratio and Wald type tests

Let us reintroduce di(α) =
√

(yi − xiα)T Σ̂−1
S (yi − xiα) be the Mahalanobis

distance for observation i. The robust LRT test is defined by a test statistic of

the form

S2
n =

2
n

n∑

i=1

[
ρ
(
di(α̂)

)− ρ
(
di(α̇)

)]
, (18)

where α̂ and α̇ are the robust estimators in respectively the full and reduced

model and ρ the corresponding loss function. More specifically the LRT test

statistic associated to the Huber estimator is defined through (18) where α̂ and

α̇ are the solution of (11) in respectively the full and reduced model, ρ is the

Huber dispersion function:

ρH(d) =

{
1
2d2 |d| ≤ c

−1
2c2 + c |d| |d| ≥ c

, (19)

and c is a tuning constant controlling efficiency at the model. The LRT test

associated to the MM -estimator can be defined in a very similar way but use
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a redescending dispersion function, typically Tukey’s biweight (13). The corre-

sponding statistic is then given by (18) where α̂ and α̇ are solution of (14) in

respectively the full and reduced model, ρ is simply

ρMM (d) = ρB(d; c1), (20)

and c1 is chosen to achieve a specific efficiency as above. The initial starting point

and the variance matrix estimate Σ̂S are S-estimators based on ρ0(u) = ρB(u, c0)

with c0 < c1. Of course it is also possible to translate the biweight as in Copt

and Victoria-Feser (2005) or use other dispersion functions as in Rocke (1996)

but we stick to this common choice for simplicity.

A robust Wald-type test statistic is naturally defined by

W 2
n = α̂T

(2)Ĥ
−1
(22)α̂(2),

where α̂(2) is the robust estimator of α(2) in the full model and Ĥ(22) the cor-

responding variance estimate. Subscripts indicating the type of estimator used

are omitted as before. This definition can be easily extended to testing contrasts

or more generally null hypotheses of the type Lα = 0 where L is a specific fixed

matrix.

The constants c, c1 introduced above are generally tuned to achieve a predeter-

mined efficiency at the model. Another option is available for the Huber tests.

It stems from the fact that (19) has for argument d, the Mahalanobis distance.

As d2 has a chi-square distribution with p degrees of freedom χ2
p, c can be chosen

as the square-root of a specific quantile of this distribution. In the simulation

below we followed that option and set c =
√

(χ2
p)−1(.90). Regarding the MM -

tests, both c0 and c1 with c0 < c1 have to be set accordingly for the tests to be

properly defined. The constant c0 is normally chosen to ensure a high asymptotic

breakdown point for the initial estimate Σ̂S , 50% in our case.

Table 1 about here

The other constant c1 is computed to achieve a predetermined efficiency of the

estimator at the model, 95% in this paper. Both constants depend on the di-

mension of the parameter and can be obtained by Monte-Carlo simulations. Ta-

ble 1 summarises these values for different p when the function ρ is defined as
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above in (20). When p gets large enough an asymptotic approximation given

in Rocke (1996) p. 1330 can be used, i.e. c1 =
√

p/M where M is defined by

ρB(M) = .5ρB(M) with ρB as in (13) with c = 1. This formula already gives

reasonable results when p > 10. Note that the values of c0 and c1 depend on the

choice of the dispersion function and must therefore be recomputed if another ρ

function is to be used.

4.3 Asymptotic distribution and robustness proper-

ties

The general theory developed in Heritier and Ronchetti (1994) applies to the

robust LRT tests defined above. We have the following proposition.

Proposition 2. If the score function defining the estimator is like in (11) or in

(12), then under H0 the corresponding statistic nS2
n is asymptotically distributed

as the weighted sum of q independent chi-square variables with one degree of

freedom. The weights are simply the q positive eigenvalues of the matrix Q[M−1−
(M∗)+] and (M∗)+ is a p× p matrix where blocks (12), (21), (22) are zero and

block (11) is M−1
(11). The matrices M and Q refer to the corresponding estimator

and are defined as in Section 3.3.

Proof. See Appendix 4.7

The asymptotic distribution obtained for the Huber or MM -estimator defined

in Section 3 translates easily to the Wald test. If the score function defining

the estimator is like in (11) or in (12), then under H0 the statistic nW 2
n is

asymptotically χ2
q .

Robustness properties of the tests can theoretically be studied using the tech-

niques of Heritier and Ronchetti (1994) for the Wald test in general parametric

models and Cantoni and Ronchetti (2001) for the LRT test in generalised lin-

ear models. The idea is to define a ”neighborhood” of the null hypothesis that

shrinks around it at a rate of 1/
√

n and study the asymptotic level of the test

under any (contaminated) distribution in this neighborhood. One can show that
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the LRT or Wald-type tests of H0 have a stable asymptotic level if the influence

function of the underlying M -estimator is bounded. More exactly robustness of

validity is guaranteed if the second part of the influence function of the underly-

ing M -estimator, i.e. the component related to the parameter to be tested α(2),

is bounded. Similar derivations can also be carried out for the power and show

that the same condition holds to ensure robustness of efficiency; see Ronchetti

and Trojani (2001).

The same approach can be applied here to the tests based on the Huber-estimator

assuming that the variance parameters are known as in Hampel, Ronchetti,

Rousseeuw, and Stahel (1986), chapter 7. Because ΨH is a bounded function

of the response y so is the influence function of the corresponding estimator.

This in turn guarantees the stability of the level of the Huber LRT and Wald

test provided that problems occur in the response only. In the presence of lever-

age points both procedures collapses as the underlying Huber estimator itself

breaks down in that case - this will be further illustrated in Section 5. For the

tests based on the MM -estimator the same argument could be used. A slight

difficulty arises as such an estimator is initially based on a minimisation problem

and is therefore only asymptotically equivalent to an M -estimator. It turns out

that its influence function which is proportional to ΨMM is bounded in y but

not in x. However as the MM -estimator has a positive breakdown point this

global robustness property is carried over to the testing procedures as illustrated

in the simulation study. In other words, the level of either the LRT or Wald type

test based on the MM -estimator is stable even in the presence of leverage points

(outliers in the covariates).

4.4 Simulation

In this section we study the behavior of the robust Wald and likelihood ratio tests

defined in Section 3 through a simulation study. In principle a few potential

contenders can be considered: the robust and classical Wald tests, the robust

and classical likelihood ratio tests computed with the M -estimator or the MM -

estimator and the F -test. We want to study the performance of the different

procedures under various model misspecifications. We specifically focus on the
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level of the tests by comparing the theoretical type I error, which is fixed a priori,

and the experimental ones given by the simulations. If the test behaves well, one

can expect small differences between those two levels. Two different designs will

be included in the simulations, one with fixed carriers and one with random

covariates, enabling contamination in both the response and the design matrix.

The first design we consider is the one way ANOVA model with repeated mea-

sures given by the equation

yij = µ + λj + si + εij .

Values for the model’s parameters are µ = 85, λj = 0 ∀j = 1, . . . 4, σs = 10, σε =

4 and n = 100. The values for the parameter are the ones usually encountered

when measuring diastolic blood pressure. For example, one of the reasons behind

such an experiment could be the need to compare different treatments (say 4) and

to see whether there are differences between them. Recall that, for the parameters

to be identifiable we need Σl
j=1λj = 0. In this case α = [µ, λ1, λ2, λ3]T and the

hypothesis ’there is no measuring difference’ is stated as

H0 : λ1, λ2, λ3 = 0, µ unspecified

H1 : λ1, λ2, λ3 6= 0, µ unspecified.

To create a small model deviation (1 − ε)% of the data are generated from the

multivariate normal distribution with parameters µ = [85 85 85 85] and Σ =

102J4 + 82I4 with J4 being a 4× 4 matrix of ones. ε% of the data are generated

from a multivariate normal distribution with the same covariance matrix, but

with a shifted mean µ = [90 85 85 80] or α = [85, 5, 0, 0]T . This type of model

deviation produces so-called shift outliers (Woodruff and Rocke 1994) which are

supposed to be the most difficult to be detected. We generated 10000 samples

under the null hypothesis and recorded the proportion of times the null hypothesis

was rejected for different amounts of contamination. The nominal level is chosen

to be 5%. The results are summarized in Table 2.

Table 2 about here

We can see that all the tests perform similarly when the distribution of the re-

sponse is indeed normal. The observed levels are all close to each other and to the
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nominal level of 5%. When contamination is introduced all robust tests remain

stable irrespectively of the percentage of contamination. Meanwhile the classical

LRT and F tests exhibit a larger type I error than expected with for example

an observed level of more than 19% for ε = 5% with the classical F -test. Note

that only the LRT tests and F-test are presented here. The results for the Wald

tests are omitted but are similar to those of the LRT tests in their classical and

robust derivations.

The second design includes continuous covariates. To motivate such a design

imagine an experiment where an adjusted analysis has to be performed with the

inclusion of a laboratory parameter (e.g. triglycerides, or white blood cell count)

as a covariate in the model. Such a variable can be viewed as a predictor or

potential confounder than can take on naturally large values making the identifi-

cation of gross errors more difficult by routine checks. This design will thus allow

us to study the behavior of the tests when the design matrix is contaminated,

i.e. with the presence of leverage points.

Suppose that we observe n = 100 subjects at different points of time t = 1, 2, 3, 4.

A simple model including a continuous covariate could be expressed by the fol-

lowing equation.

yit = µ + λei + γxit + si + εit,

where ei could be a dummy variable, xit the continuous covariate for the labo-

ratory measurement measured on the ith subject at time t, si a random effect

for this patient and εit the error term. The parameters are µ = 2, λ = 0.5 and

γ = 0. The covariate x is normally distributed N(0, 1) and σ2
s = 1.5, σ2

ε = 1

respectively. We are interested in testing the effect of the covariate. To create

leverage points the response was generated with a covariate sampled from a stan-

dard normal distribution N(0, 1). Then, for a proportion ε of the measurements,

the xit’s values were substituted by random numbers drawn from N(5, 1), for

ε = .01, .02 and .03 adopting a similar strategy to the one used by Van Aelst and

Willems (2005). For each of these situations we generated 10000 samples under

the null hypothesis H0 : γ = 0 and reported how many times H0 was rejected

for the selected amounts of contamination. The theoretical level was again set

to 5%. Results are summarised in Table 3.
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Table 3 about here

As for such a hypothesis we commonly use a Wald test we will only present

results for this specific test. Similar results would be obtained with a LRT test.

When there is no contamination in the data, all tests have a level closed to

the nominal type I error α = 5%. In the presence of leverage points with a

percentage of contamination as small as 1% the classical tests (Wald and F ) are

seriously biased. The position of the leverage points is of course critical for this to

happen. Here we describe a situation with a low percentage of highly influential

points that completely ruin the classical analysis. Intermediate and possibly

more realistic situations can be thought of but this design somehow illustrates a

”worst-case” scenario. Differences with the first simulation can be noticed as the

robust Wald test based on the Huber estimator is now also biased. One single

extreme observation in the factor space can drive the level of the test beyond any

acceptable value. This does not come as a surprise as by definition this type of

test is only built to deal with distributional problems in the response. On the

contrary, the robust Wald test based on MM estimator remains stable. When

the percentage of contamination increases the pattern remains the same, the

classical and Huber tests displaying an even worse behavior. We now generate a

design with a non-null slope γ0 6= 0 e.g. γ0 = .5 to illustrate a common situation

where the covariate is indeed needed. Assume that we are interested in testing

H0 : γ = γ0 or equivalently in computing a 95% confidence interval for the slope.

In such a case similar results would be observed (results not shown). Confidence

intervals based on either both the classical or Huber approach would exhibit a

poor coverage and would even be completely misleading. In that case only the

MM -estimator can provide a proper confidence interval with the right nominal

coverage.

4.5 Data Analysis

We analyse a real data set based on the first design given in the introduction.

Our goal is to compare the classical and robust inference on that particular

sample. The model used to analyse these data is given in (1) with λj , j = 1, , 3

the pantomime type (PT) and γk, k = 1, 2 the delay (DE). As an explanatory
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diagnostic tool, we provide a scatter plot of the robust Mahalanobis distances di

obtained from an initial fit with the robust CTBS estimator. This graphic is

displayed in Figure 1 and reveals a few potential outliers. Note that the results

obtained with the Huber or MM estimator (omitted here) are virtually the same

as the CTBS. The horizontal line correspond to the quantile 97.5% of a χ2
6, i.e.

the asymptotic distribution of the Mahalanobis distance. An observation with

a Mahalanobis distance which exceeds this cutoff value will be seen as outlier.

In our example, the robust estimator detects one clear outlier (#12) which lies

far away from the bulk of the data. It also detects two additional outlying

observations (#19) and(#20).

We are primarily interested in testing whether the reaction time is different when

there is a link between the priming and the object. We also would like to know

whether the delay impacts on the reaction time, possibly with an interaction with

the type of pantomime.

Figure 1 about here

We tested the significance of each factor and each interaction (i.e. 3 hypotheses)

using the F-test, the classical and robust likelihood ratio tests. The results are

presented in Table 4. The influence of outliers present in the data set seems

to be quite substantial on the conclusions of the main effects and interaction

testing. With the F-test and the classical LRT, only the effect of the pantomime

type is found significant, whereas with the two robust LRT, the delay is also

found significant. No evidence of an interaction effect was found by the different

analyses. The robust Wald test (results not presented here) leads to the same

conclusions.

Table 4 about here

4.6 Concluding remarks

In this paper we have proposed a Huber- and an MM -estimator for mixed linear

models. These estimators are robust, easily computable and extend the previous
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work by Copt and Victoria-Feser (2005) based on S-estimators. They also allow

the computation of a direct robust alternative to the F -test, namely a likelihood-

ratio type test, something that was not possible with the previous proposal.

Robust Wald tests based on these estimators have also been suggested as a more

stable alternative to contrasts tests or test of covariate effects. We have derived

the asymptotic properties of these testing procedures and studied their robustness

properties. Through a real data set, we have shown that a robust analysis can

provide further insight on the data. The proposed procedures have nevertheless

the following limitations. Like the S-estimator these estimators and related tests

have been developed for balanced designs, i.e data where the same number of

measurements are recorded per observation. Future research is needed to release

this condition especially in light of many applications in biostatistics where data

with an unequal number of readings per subject naturally arise. The theoretical

results presented here are asymptotic by nature: their validity in smaller samples

needs to be examined. Alternative techniques like the fast bootstrap proposed by

Salibian-Barrera and Zamar (2002) can probably be extended to these estimators

and testing procedures. Another possibility would be to use more refined robust

tests based on saddle-point approximations as in Robinson, Ronchetti, and Young

(2003). The adaptation of this promising approach is left as future work.

4.7 Appendix

Proof of proposition 1

The proof is essentially the same as the proof of Theorem 3.2 in Lopuhaä (1992).

The difference is due to the presence of covariates and the structure of the co-

variance matrix Σ. We therefore give only a sketch of the derivations involved

and focus on the Huber estimator. Similar arguments could be used for the

MM -estimator.

We assume first that there is no structure on Σ but the mean of y is

µ = xα as in (5). Let α(F ) be the functional associated to α̂ the Huber es-

timator of α and denote Fα,Σ the model distribution, i.e. a distribution with

density fα,Σ(y,x)k(x). The density fα,Σ is the p-variate normal density with

mean µ = xα and variance Σ and k is the density corresponding to K. We
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also denote s the score function for that model, i.e. the derivative of the log-

density with respect to the regression parameter α. At any distribution F

the functional α(.) is defined as the vector α(F ) that minimises the function

RF (α) =
∫

ρH

(√
(y − xα)TΣ(F )−1(y − xα)

)
dF (y,x) where Σ(.) is the func-

tional corresponding to Σ̂S . This definition is similar to (2.4) in Lopuhaä (1992).

RF (α) has a derivative with respect to α proportional to

∫
uc

(√
(y − xα)TΣ(F )−1(y − xα)

)
xTΣ(F )−1(y − xα)dF (y,x)

where as before uc(d) = ψc(d)/d = min(1, c/|d|). Hence the functional (α(F ),Σ(F ))

is a zero of G(θ) = EF [g(.; θ)] where for θ = (α,Σ),

g(y,x;θ) = ΨH(y,x; α),

as previously defined in Section 3.1 with no specific structure on Σ. This is again

similar to equation (3.7) in Lopuhaä (1992). Then the same developments used

in the proof of Theorem 3.2 can be used. Note that all the conditions mentioned

there are satisfied. The function ρ is ρH which obviously satisfies condition (R) of

Lopuhaä (1992) and uc is of bounded variation. The functional α(F ) is uniquely

defined and is a point of symmetry when F is the model distribution Fα,Σ. G(θ)

has a partial derivative with respect to α that is continuous at any θ and its

partial derivative is nothing else than:

EFα,Σ

(
∂

∂α
ΨH(y,x; α)

)
= −EFα,Σ

(ΨHsT ) = −e1Γ = −M

Now repeat the same developments used in the proof of theorem 3.2 in that

particular setting. We then obtain that
√

n(α̂ − α) is asymptotically normal

with covariance matrix H = M−1QM−T where Q = EFα,Σ
(ΨHΨT

H) = e2Γ. The

simpler form of M, Q and finally H is a straightforward consequence of the

structure of ΨH and the elliptical property of Fα,Σ. This result can be seen as

a direct extension of Theorem 3.2 in Lopuhaä (1992). When a specific structure

is imposed on the covariance matrix as in (6) the proof is unchanged provided

that Σ̂S is a strongly consistent (robust and affine-equivariant) estimate of Σ. In

practice M, Q and V have to be estimated to compute the eigenvalues defining

21



the asymptotic distribution given in Proposition 2. We used the fully empirical

version of each matrix as estimates, e.g. M̂ = 1
n

∑n
i=1 ΨH

(
yi, xi; α

)
sT

(
yi, xi; α

)

as estimate of M. The corresponding robust estimate of α was plugged-in to

obtain numerical values.

Proof of proposition 2

We will give here only a sketch of the proof as it follows easily from the asymp-

totic results obtained by Heritier and Ronchetti (1994) for the likelihood-ratio

type test in a general parametric model. The only slight difference arises from

the presence of the nuisance parameter Σ required to fully specify the model.

To overcome this problem assume first that all the variances σj ’s are known and

redefine estimators and related LRT tests accordingly. Then, the parameter of

interest is only α and Proposition 3 Part a. in Heritier and Ronchetti (1994)

applies directly yielding the proposed weighted sum of q independent χ2(1) dis-

tributions as asymptotic distribution of nS2
n under the null hypothesis. Now, just

substitute (6) by Σ̂S . As it is a strongly consistent estimate of (6) that is further-

more estimated independently of α̂ asymptotically, the asymptotic distribution

remains unchanged, which completes the proof.

References

Cantoni, E. and E. Ronchetti (2001). Robust inference for generalized linear

models. Journal of the American Statistical Association 96 (455), 1022–

1030.

Copt, S. and M.-P. Victoria-Feser (2005). High breakdown inference for mixed

linear models. To appear in Journal of the American Statistical Associa-

tion.

Davies, P. L. (1987). Asymptotic behaviour of S-estimates of multivariate

location parameters and dispersion matrices. The Annals of Statistics 15,

1269–1292.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel (1986).

Robust statistics: The approach based on influence functions. John Wiley

and Sons.

22



Heritier, S. and E. Ronchetti (1994). Robust bounded-influence tests in general

parametric models. Journal of the American Statistical Association 89,

897–904.

Huggins, R. M. and R. G. Staudte (1994). Variance components models for

dependent cell populations. Journal of the American Statistical Associa-

tion 89, 19–29.
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constant c0 for ε∗ = 50%

p 1 2 3 4 5 6 7 8 9 10

c0 1.56 2.66 3.45 4.09 4.65 5.14 5.59 6.01 6.40 6.77

constant c1 for 95% efficiency

c1 4.68 5.12 5.51 5.82 6.10 6.37 6.60 6.83 7.04 7.25

Table 1: Values for c0 and c1 for Tukey’s biweight.

ε = 0% ε = 2% ε = 5% ε = 8%

Classical LRT 5.32% 7.45% 21.12% 48.01%

Robust LRT (Huber) 5.29% 4.98% 5.33% 5.23%

Robust LRT (MM) 5.18% 5.21% 5.13% 4.98%

F -test 5.04% 7.01% 19.78% 47.92%

Table 2: Proportion of times the null hypothesis is rejected.

ε = 0% ε = 1% ε = 3%

Classical Wald 5.12% 27.45% 82.32%

Robust Wald (Huber) 5.79% 12.12% 52.33%

Robust Wald (MM) 5.15% 4.89% 5.21%

F -test 5.17% 13.65% 46.58%

Table 3: Proportion of times the null hypothesis is rejected.

Classical LRT Robust LRT (M) Robust LRT (MM) F -test

DE 0.1905 0.0041 0.0043 0.1883

PT 0.0014 0.0021 0.0028 0.0018

DE:PT 0.8997 0.9251 0.9139 0.9232

Table 4: p-values for the different test statistics.
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Figure 1: Robust Mahalanobis Distances.
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