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state vector only and want to predict one or more of its elements using a stochastic 
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1 Introduction

Throughout the article we will assume a chaotic (mixing) reality, see section
2.1. We have a partial information about a state vector only (can observe a
function of the state vector) and want to predict one or more of its elements
using a stochastic model. Dynamics of the chaotic reality can be predicted
in the short term only, while in the long term an ergodic distribution is the
best predictor.

We will thus consider our stochastic model to be a local approximation,
in the neighborhood of the present state, with no predictive ability for the
far future. Such a model can then be focused on the short term predictive
power, while allowing for almost arbitrary long term dynamics (e.g. can be
nonstationary). Next, we assume to have an estimate of an ergodic distri-
bution of the predicted scalar (or eventually vector). Assumptions about
the local model and ergodic distribution will be stated in section 2.2. The
resulting model is defined in section 2.3.

We use a Bayesian approach, but do not have to assume explicitly any
prior distribution, all the information necessary is derived from the local
model and ergodic distribution under reasonable assumptions stated in sec-
tion 2.4.
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The resulting model is derived in section 3.1. It is uniquely specified and
contains information from both the local model and the ergodic distribution.
In section 3.2 we show that the resulting model converges to the ergodic
distribution for the far future predictions. For a small prediction horizon, if
the local model converges in probability to a constant1, the resulting model
converges in L1 norm2 to the local model.

We propose also a formula for computing the resulting model from a non-
parametric specification of the ergodic distribution (using past observations
directly) in section 3.3. Next, possibility of predicting a joint distribution of
a vector, instead of a scalar variable distribition only, is discussed in section
3.4.

Two examples follow: One uses a possibly nonstationary AR(1) model as
a local model (section 4.1) and the normal ergodic distribution. The other
predicts the Lorentz attractor using a corrected AR(2) model and nonpara-
metric specification of the ergodic distribution (section 4.2).

2 Assumptions and Definitions

2.1 Reality

First, we state an assumption about reality.

Assumption 1 (Reality) Consider a deterministic reality described by a
dynamical system żt = φ(zt), zt ∈ Rn with φ being unknown, where the
system is

(i) mixing3,

(ii) on its attractor.

We are not able to observe continuously the whole state vector zt but only in
unit time steps the vector yt = ψ(zt), yt ∈ S′ ⊂ Rm, ψ is an unknown con-
tinuous function. We will predict the scalar xt ≡ yt,1 = ψ1(zt) ∈ S ⊂ R i.e.

1The random variables Xi converge in probability to the constant x iff
P [|Xi − x| > ε] → 0 for all ε > 0. We will denote it plim Xi = x.

2The L1 norm of a measurable function f on S is defined ||f ||1 :=
∫

S |f(ξ)|dξ. The
sequence of measurable functions fi is said to converge in L1 to f iff ||fi − f ||1 → 0.

3A dynamical system f is called mixing if for every pair of sets A and B we have
limn→∞ µ(f−n(A) ∩ B) = µ(A)µ(B) (see Mañé (1987), p. 142). Note that mixing is a
kind of a chaotic behavior and every mixing system is ergodic.
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the first coordinate of the observed vector. We have not enough information
to predict xt deterministically. The present time value is t = 0.

This assumption about observing the function of the large continuous sys-
tem’s state vector in discrete time intervals is standard (see e. g. the recon-
struction theorem in Diks (1999), p. 15). Due to the lack of information we
are not able to precisely determine a state and dynamics of the system and
so will use a stochastic model. Mixing reperesents a chaotic behavior. Being
on an attractor is a standard assumption in systems, that exhibit complex
(chaotic) dynamics (see (Eubank and Farmer , 1997)). In most cases we will
assume S′ = Rm and S = R, however sometimes xt may be restricted to the
interval S = [0, 1], S = [0,∞) or other.

We will suppose assumption 1 to hold throughout the article.

2.2 Available Information

The only information available for the purpose of building the resulting cor-
rected model of x are the stochastic dynamical model and the ergodic distri-
bution estimate. We will state assumptions about them in this section.

It may be possible to estimate the fluctuations of zt in the near future.
Due to continuity of ψ a trajectory of the observation of interest xt will be
continuous and thus, for a sufficiently small t > 0, xt will be arbitrarily close
to its known present value x0. So it is possible to construct a model that can
predict xt in the near future:

Assumption 2 (Local Model) Assume we have a local approximation of
reality around the state zt described by a stochastic model, containing in-
formation Il and predicting xt in each time t ∈ (0,∞) by a continuous cu-
mulative distribution function (cdf) Lt(x) ≡ F (x|Il, t). We will denote the
corresponding probability density function (pdf) lt(x) ≡ f(x|Il, t), the random
variable Lt and assume

(i) there exist function l∞(x) and constant Kt, dependent on time, such
that

Ktlt(x) → l∞(x) for t→∞anda.e.x ∈ S, (1)

(ii) fraction of pdf lt and limit l∞ is bounded almost everywhere (belongs to
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the L∞ space4 ):

||lt(x)/l∞(x)||∞ <∞ for all t > 0, (2)

(iii) lt(x) > 0 for a.e. x ∈ S and all t > 0.

We will call this model a local model.

Condition (i) ensures that lt converges to some, possibly improper, distri-
bution for t → ∞. Restriction (ii) is merely technical. It is sufficient for
product of lt(x)/l∞(x) and any integrable function on S to be integrable.
For normally distributed pdf’s lt and l∞ it states that the local model mut
not have a lower variance than the limiting distribution – see example in the
next paragraph. Reasonability of (iii) follows from the assumption that the
local model is a local approximation only. Hence, it cannot reject a possibil-
ity of any state x being outside the neighborhood of x0 (but inside the state
space S). Assumption of positive probability of x being in the neighborhood
of x0 is natural.

Consider, for example, that our local model is normally distributed for
all t with mean µt and variance σ2

t . Next, consider µt → µ∞ and σt → σ∞,
where |µ∞| <∞ and |σ∞| <∞. We will verify assumption 2 for this case:

ad (i) We can choose Kt = 1 for all t > 0 and l∞ will thus be a pdf of a
normal distribution with mean µ∞ and variance σ2

∞.

ad (ii) It can be shown that (2) holds iff for each t > 0 one of the following
conditions holds:

(a) σt < σ∞,

(b) σt = σ∞ and µt = µ∞.

ad (iii) Pdf of a normal distribution is positive for all x ∈ R, regardless of the
parameters.

The local model can be seen as a local approximation of the system and
we will adopt this point of view throughout the article. As the system is
assumed to be mixing, it is predictable in a short time period only, and

4The L∞ norm of a measurable function f on S is defined ||f ||∞ :=
inf {M ∈ [0,∞] : |f(x)| ≤ M for a.e. x}. Function f is said to belong to the L∞ space
iff ||f ||∞ < ∞.
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so knowledge of the complete (global) dynamics of the system may not be
important. Hence, sufficiently good local approximation will be satisfactory
for prediction, together with a sufficiently good approximation of the ergodic
measure (see later the ergodic distribution).

There exists a vast number of models that we can use as a local model. We
can start with classical linear models and end with various nonlinear ones,
such as nonlinear theory-based models, radial basis functions (Kantz and
Schreiber (1997) p. 212), neural networks (Kantz and Schreiber (1997) p.
213, Oliveira et al. (2000)), local linear models (Fan and Yao (2003) p. 20,
Kantz and Schreiber (1997) p. 209), wavelet networks (Cao et al. (1995))
and many others. Judd and Mees (1995) discuss a method of building
nonlinear models of possibly chaotic reality from data, while maintaining
good robustness against noise.

Since we assume a mixing reality (by assumption 1), even if we were able
to measure z0 (and z−1, z−2, . . . , z−T+1) with an arbitrary accuracy ε > 0 and
knew an exact form of φ, the measurement would yield no information about
the location of future zt for large t. Hence, the local model can not tell us
anything about fluctuations of xt for large t.

As reality is on the attractor, we can define the probability measure

µ(A) = lim
T→∞

1

T

T∑
t=1

IA(xt) (3)

for all Borel sets A, where the indicator function IA(x) = 1 for x ∈ A and
zero elsewhere.

As we are on the attractor and by invertibility of the system, we have

lim
T→∞

1

T

T∑
t=1

IA(xt) = lim
T→∞

1

T

0∑
t=−T+1

IA(xt) (4)

and we can define µ using the historical data,

µ(A) = lim
T→∞

1

T

0∑
t=−T+1

IA(xt). (5)

Hence, probability measure µ(A) expresses the portion of time the system
spent and will spend in a set A. For t large, due to the impossibility to predict
the fluctuations, this measure is the best way of predicting possible values of
xt.
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Assumption 3 (Ergodic Distribution) Assume we have an estimate of
the ergodic probability measure µ of xt, containing information Im, described
by a continuous cdf M(x) ≡ F (x|Im) with the corresponding pdf m(x) ≡
f(x|Im) and random variable M . This distribution will be called an ergodic
distribution.

In the contrary to the local model, the ergodic distribution describes a lim-
iting distribution but no dynamics.

2.3 Resulting model

Our goal is to make a “synthesis” of the local model and ergodic distribution
and obtain a resulting model, containing information from both models:

Definition 1 (Resulting Model) The resulting model is defined by a con-
tinuous cdf Rt(x) ≡ F (x|Im, Il, t) with the corresponding pdf rt(x) ≡ f(x|Im, Il, t)
and random variable Rt.

We want to build the resulting distribution from knowledge of Il and Im
only, assuming we have no other information. Model specifications Il and
Im depend on present available information, thus the resulting distribution
depends on present available information only indirectly through Il and Im –
if we have some useful additional information, we should enclose it in Il and
Im, i.e. modify the local model or ergodic distribution.

In contrast to many local models described in the literature, only a little
attention has been given to a transition between the local model and ergodic
distribution. Judd and Small (2000) take also a generally nonspecified local
model and use the errors of its in-sample predictions to correct the out-of-
sample predictions. However they do not use the ergodic distribution. The
other way that can be used to treat this problem (but was not developed
for this particular purpose) is the switching regime models (treshold autore-
gression). The problem concerning this approach is necessity of choosing the
condition for switching and the resulting model is first equal to the local
model and then switches immediately to the ergodic distribution. In case
we use the regime switching determined by unobservable variables, we have
a problem with the choice of the underlying stochastic process (see Franses
and Dijk (2002)). However the most common approach is simply to use the
(local) model for predicting the whole future. If it does not behave satisfac-
torily, e. g. explodes, we change it somehow or simply say it is valid only in
a limited period of time only.
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2.4 Model Construction

When building the resulting model, we will employ the Bayesian approach.
All the information needed (such as prior distribution(s)) we derive from the
local model and ergodic distribution under assumptions that we will state
now.

In case we had no information about a state of the system, the best pre-
diction of its future state (with arbitrary t) would be the ergodic distribution.
Hence, it is suitable to use an estimate of the ergidic distribution as a prior
for introducing some dynamics:

Assumption 4 (Prior Distribution) The prior distribution of xt, where
t > 0, reflects our estimate of the ergodic distribution:

(i) f(x|Im, t) = f(x|Im) under knowledge of Im,

(ii) f(x|t) = f(x) is considered to be a noninformative prior.

In econometric practice it is common to omit distant past observations
from the sample. The reason is parameter instability across a longer time
horizon. To tell it in the language of our assumptions, the infinitely distant
observation posseses no additional information for an estimate of the local
model because the local model is a local approximation only:

Assumption 5 (Far Future Observation) Knowledge of an infinitely dis-
tant future observation does not affect an estimate of the local model:

f(Il|x, t = ∞) = f(Il). (6)

As we have already mentioned, the local model can be seen as a local
approximation of the system, while the ergodic distribution describes the
best prediction in the long run. It is natural to consider that information
about the ergodic distribution does not affect our estimate of the local model:

Assumption 6 (Model Independence)

f(Il|Im, x, t) = f(Il|x, t). (7)

7



3 Results

3.1 Assumptions Inference

According to the Bayes theorem and assumption 4,

rt(x) ≡ f(x|Il, Im, t) =
f(Il|Im, x, t)f(x|Im)∫

S f(Il|Im, ξ, t)f(ξ|Im)dξ
, (8)

lt(x) ≡ f(x|Il, t) =
f(Il|x, t)f(x)∫

S f(Il|ξ, t)f(ξ)dξ
. (9)

Using assumption 5, equation (9) turns out to be for t→∞

l∞(x) ≡ f(x|Il, t = ∞) =
f(Il)f(x)∫

S f(Il)f(ξ)dξ
= f(x). (10)

Hence, if we behave consistently with assumptions 4 (ii) and 5, our nonin-
formative prior is equal to the limiting distribution of the local model. This
is fully compliant with our assumptions because the local model is a local
approximation only and its predictive ability decreases with time, when the
state of the system moves away from z0.

No distribution can be generally considered nininformative, it depends
on the particular application. For a list of noninformative priors see Yang
and Berger (1998). On the other hand, we cannot say that for any partic-
ular distribution there does not exist application, in which someone could
reasonably consider it noninformative.

When choosing variability of the local model, we must take into account
model uncertainty. If, e.g., the limiting distribution has a relatively low
variability, compared to the ergodic distribution, and is moreover located far
away from the ergodic distribution, the resulting model will reflect these our
opinions. If we are not fully consistent with our choice, the resulting model
may thus look surprising for us.

Employing assumption 6, we get

rt(x)

lt(x)
=
f(x|Im)

f(x)
·

∫
S f(Il|ξ, t)f(ξ)dξ∫

S f(Il|ξ, t)f(ξ|Im)dξ
, (11)

hence by substituting for f(x|Im) and f(x) and multiplying by lt(x), the
resulting density becomes

rt(x) =
lt(x)m(x)/l∞(x)∫

S lt(ξ)m(ξ)/l∞(ξ)dξ
. (12)
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Due to assumption 2 (ii), an intergral in the denominator always exists and
is finite. Assumption 2 (iii) is sufficient for the integral to be positive.

Note that conditions for existence of a positive and finite integral in the
denominator can be specified in a different way. However, they should be
specified separately for the local model and ergodic distribution, so that they
would not force violating assumption 6. For example, we should not write
directly the condition

∫
S lt(ξ)m(x)/l∞(ξ)dξ > 0 to ensure that the integral

will be positive.

3.2 Result Properties

The resulting model has two important properties. First, it converges almost
everywhere to the ergodic distribution for t→∞, i.e.

lim
t→∞

rt(x) = lim
t→∞

m(x)lt(x)/l∞(x)∫
Sm(ξ)lt(ξ)/l∞(ξ)dξ

=

= lim
t→∞

m(x) 1
Kt
l∞(x)/l∞(x)∫

Sm(ξ) 1
Kt
l∞(ξ)/l∞(ξ)dξ

=

= m(x) for a.e. x ∈ S. (13)

Note that almost everywhere convergence together with ||m||1 = 1 implies
L1 convergence.

Next, if plimt→0+ Lt = x0 and m(x)/l∞(x) is continuous and positive in
x0, then limt→0+ ||rt − lt||1 = 0 (rt converges in L1 to lt), because

lim
t→0+

∫
S
|rt(x)− lt(x)| dx = lim

t→0+

∫ x0+ε

x0−ε

∣∣∣∣∣ m(x0)lt(x)/l∞(x0)∫ x0+ε

x0−ε
m(x0)lt(ξ)/l∞(x0)dξ

− lt(x)

∣∣∣∣∣ dx = 0

(14)
for any ε > 0.

3.3 Nonparametric Ergodic Distribution

In some cases, the ergodic distribution can be nonstandard and thus diffi-
cult to express parametrically. In this section we describe a possibility to
use historical values of xt directly, without a need of specifying the ergodic
distribution in a parametric form.

On the contrary to the ergodic distribution m, local model lt is usually
described in a parametric form (in most cases normally distributed).

9



By the Birkhoff ergodic theorem, the time average is equal to the space
average, the space average is integrated according to the ergodic measure.
In our model, the ergodic measure is represented by the ergodic distribution,
particularly by pdf m. Hence, the theorem implies∫

S
h(x)m(x)dx = lim

T→∞

1

T

0∑
i=−T+1

h(xi) a.s., (15)

where h is a function integrable with respect to the ergodic measure.
Choosing h(x) = lt(x)/l∞(x),∫

S
lt(x)/l∞(x)m(x)dx = lim

T→∞

1

T

0∑
i=−T+1

lt(xi)/l∞(xi) a.s., (16)

and analogically, when we choose h(x) = g(x)lt(x)/l∞(x), where g is a func-
tion integrable with respect to measure specified by rt,∫

S
g(x)lt(x)/l∞(x)m(x)dx = lim

T→∞

1

T

0∑
i=−T+1

g(xi)lt(xi)/l∞(xi) a.s. (17)

Substituting (16) and (17) into (12), we have∫
S
g(x)rt(x)dx =

limT→∞
1
T

∑0
i=−T+1 g(xi)lt(xi)/l∞(xi)

limT→∞
1
T

∑0
i=−T+1 lt(xi)/l∞(xi)

a.s. (18)

Hence, if we have a sufficiently long time series, we can use (18) for com-
puting

∫
S g(x)rt(x)dx without a need of specifying the ergodic distribution

parametrically.
In case of knowing xt in addition to the historical time series, we would

probably leave our belief about Im unchanged or would include value of xt to
the set of past observations. In both cases Im would be a subset of information
contained in the historical time series and xt and so assumtion 6 would hold.

Note that according to the assumptions, for expressing the ergodic dis-
tribution nonparametrically we should use the whole historical time series
available. On the other hand, for the local model estimation it is possible to
drop old observations.

10



3.4 Predicting the Joint Distribution

Sometimes, unconditional prediction of only one variable is not satisfactory
and we need to predict joint distribution of more variables instead. For
example, in place of monthly price change we need the total price change for
12 successive months, or we may need the joint distribution of inflation and
production growth.

One possibility, applicable to the first case, is changing the local model
and ergodic distribution, so that they would predict directly the price change
in successive 12 months instead of monthly price change.

However, in some cases we may not be able to modify the models, so that
we got to predict only one variable (this may be the second example). In this
case we can employ our approach in a slightly modified form: The resulting
formula (12), respectively (18), remains the same, if we assume that xt is a
(short) vector in the very beginning. We will probably be able to construct
marginal distributions of the (joint) ergodic distribution easily. The problem
will be in specifying dependencies (using the known marginals, dependencies
are specified by a copula, see Nelsen (1995)). The probably preferred way in
this case will be the nonparametric approach, where dependencies need not
be specified explicitly.

4 Examples

4.1 AR(1) Process

Consider the ergodic distribution with M ∼ N(µm, σ
2
m) and thus

m(x) =
1√

2πσm

exp

[
−1

2
· (x− µm)

σ2
m

]
. (19)

Let the local model be AR(1), xt+1 = axt+εt+1 with a ∈ (0,∞), t = 0, 1, 2, . . .
and εt+1 ∼ N(0, σ2

ε), i.i.d. Note that we did not allow for a negative a because
we will be able to extend t to (0,∞) now. The unconditional prediction of
the local model is

Lt ∼ N

(
atx0, σ

2
ε

1− a2t

1− a2

)
, (20)

hence

lt(x) =

√
1− a2√

2πσ2
ε(1− a2t)

exp

[
−1

2
· (x− atx0)

2(1− a2)

σ2
ε(1− a2t)

]
. (21)

11



We choose

Kt =

√
2πσ2

ε

1− a2t

1− a2
, (22)

but it could be specified in many different ways. We have

l∞(x) = lim
t→∞

Ktlt(x) =

 exp
[
−1

2
· (1−a2)x2

σ2
ε

]
for a ∈ (0, 1),

exp
[
−1

2
· (a2−1)x2

0

σ2
ε

]
for a ∈ [1,∞)

(23)

and so assumption 2 (i) holds for all a ∈ (0,∞). We can express lt(x)/l∞(x)
and verify that assumption 2 (ii) holds. Assumption 2 (iii) is fulfilled for any
normally distributed local model.

Let us substitute (19), (21) and (23) into (12). After some algebra we
realize that Rt ∼ N(µr(t, a), σ

2
r(t, a)), where

µr(t, a) =


(1−a2t)µmσ2

ε+at(1−a2)x0σ2
m

(1−a2t)σ2
ε+a2t(1−a2)σ2

m
for a ∈ (0, 1),

tµmσ2
ε+x0σ2

m

tσ2
ε+σ2

m
for a = 1,

(a2t−1)µmσ2
ε+at(a2−1)x0σ2

m

(a2t−1)σ2
ε+(a2−1)σ2

m
for a ∈ (1,∞),

(24)

σ2
r(t, a) =


(1−a2t)σ2

εσ2
m

(1−a2t)σ2
ε+a2t(1−a2)σ2

m
for a ∈ (0, 1),

tσ2
εσ2

m

tσ2
ε+σ2

m
for a = 1,

(a2t−1)σ2
εσ2

m

(a2t−1)σ2
ε+(a2−1)σ2

m
for a ∈ (1,∞).

(25)

It is worth noting that

lima→1− µr(t, a) = µr(t, 1) = lima→1+ µr(t, a), (26)

lima→1− σ
2
r(t, a) = σ2

r(t, 1) = lima→1+ σ2
r(t, a), (27)

hence µr(t, a) and σ2
r(t, a) are continuous in a = 1 for any t ∈ (0,∞), no

matter that the local model is stationary for a ∈ (0, 1) and nonstationary
for a ∈ [1,∞). In the short term, stationarity is not an important question,
however in case of using the local model even for the long term, we must
keep it stationary and force a ∈ (0, 1) and thus change its short term be-
haviour. Our approach leaves the short term properties unrestricted while
guaranteeing stationarity.

We can also verify that

lim
t→0+

µr(t, a)

µl(t, a)
= lim

t→∞

µr(t, a)

µm

= lim
t→0+

σ2
r(t, a)

σ2
l (t, a)

= lim
t→∞

σ2
r(t, a)

σ2
m

= 1. (28)
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Figure 1: Means and two sigma confidence intervals of the AR(1) local model
and the resulting model from example 4.1.

In figure 1 we can see the local models for a ∈ {0.8, 1, 1.2}. The corre-
sponding resulting models are depicted too. The remaining parameters are
same for both alternatives: x0 = 3, σε = 4, µm = 5, σm = 2.5. While the
local model is stationary for a = 0.8 and nonstationary for a ∈ {1, 1.2}, the
resulting models are very similar. Thus there is no need to test stationarity
of the local model.

As we have discussed in section 3.1, when choosing variance of the local
model, we must take into account model uncertainty. To be consistent with
the assumptions, the limiting distribution of the local model is considered to
be noninformative, hence it should be, in most applications, flat or at least
have a relatively high variance (compared to the ergodic distribution) and
mean not far away from the mean of the ergodic distribution. We can exper-
iment with values, not satisfying these suggestions, and see the consequences
of considering such distribution to be noninformative.
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4.2 Predicting the Lorenz System

We will assume that reality works according to the Lorenz system

ż1,t = 0.1(−10z1,t + 10z2,t) (29)

ż2,t = 0.1(28z1,t − z2,t − z1,tz3,t) (30)

ż3,t = 0.1(−8

3
z3,t + z1,tz2,t). (31)

These equations denote the Lorenz system with classical parameters, however
the right hand side of each equation is multiplied by 0.1. This does not modify
a shape of the attractor but rather changes the time scale.

To use symbols from assumption 1, the set of Lorenz equations describes
the function φ, the state vector zt ≡ [z1,t, z2,t, z3,t]

T . We can observe the
scalar ψ(zt) = yt = xt and this is also the variable we want to predict.

All the constants in this example will be rounded to 4 decimal places.
The observable history of our Lorenz system starts in the state z0 = [4.3606,
5.4437, 19.8638]T that is very close to the attractor. The time series is 100
observations long.

We have built the local model as AR(2) model

xt = 1.4xt−1 − 1.2xt−2 + 5.5 + εt, εt ∼ N(0, 1), i.i.d., (32)

x−1 = 4.3085, (33)

x0 = 4.3606. (34)

This implies
Lt ∼ N(µl(t), σ

2
l (t)). (35)

where

µl(t) = exp(0.0912t) [−2.5144 cos(0.8776t) + 1.5966 sin(0.8776t)] +

+6.8750, (36)

σ2
l (t) = exp(0.1823t) [−0.4059 cos(1.7552t)− .2885 sin(1.7552t)+

4.2254]− 3.8194. (37)

When choosing
Kt = σl(t), (38)

we get l∞(x) being constant for all x and we can easily verify assumption 2.
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We use the nonparametric approach to get the resulting model. It will be
compared with the best possible prediction that is obtainable under a slightly
different assumptions: knowledge of the Lorenz equations and ability to mea-
sure the whole present state vector z0 but with the normally distributed,
independent measurement errors with zero mean and standard deviation of
0.05. The prediction is computed as the mean value of trajectories with
the initial condition z0 plus the random measurement error (we used 1000
realisations). The results are depicted in figure 2.

5 Conclusion

In section 2 we have stated several assumptions. The rather technical ones
were assumptions 1, 2 and 3, the key ones on the other hand 4, 5 and 6. If
we are consistent with assumptions 4 (ii) and 5, we consider the limiting dis-
tribution of the local model for t → ∞ to be a noninformative prior. Using
assumption 4 (i) and 6 we derive the unique formula for the resulting model,
that contains information from both the local model and the ergodic distri-
bution. The noninformative prior distribution was replaced by an ergodic
distribution.

We showed that the resulting model converges to the ergodic distribution
for the far future predictions. For a small prediction horizon, if the local
model converges in probability to a constant x0 and both the ergodic pdf
and limiting pdf of the local model are continuous and positive in x0, the
resulting model converges in L1 to the local model.

As the ergodic distribution is nonstandard in many cases, we presented
a possibility to express it nonparametrically. We can thus use the resulting
model, computed directly from the local model and past observations. This
is particularly useful when predicting joint distribution of a random vector,
because specifying dependencies is often a difficult question.

In the end we presented two examples. In the first one we use a possibly
nonstationary AR(1) model as a local model and a normal ergodic distri-
bution. Consequences of considering the limiting distribution of the local
model to be a noninformative prior are discussed. In the second example we
predicted the Lorentz attractor using a corrected AR(2) model.
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Figure 2: True historical/future values, means and two sigma confidence
intervals of the local model, resulting model and best model from example
4.2.
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