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Abstract: 
The non-linear approach to economic dynamics enables us to study traditional economic models 
using modified formulations and different methods of solution. In this article we compare 
dynamical properties of Keynesian and Classical macroeconomic models. We start with an 
extended dynamical IS-LM neoclassical model generating behaviour of the real product, interest 
rate, expected inflation and the price level over time. Limiting behaviour, stability, and existence 
of limit cycles and other specific features of these models will be compared. 
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1. Macroeconomic Models 
In this article we are trying to revive traditional models based on IS-LM structure. 

Such models are different from the models which utilize micro-foundation of macroeconomic 
theory or rational expectation and nowadays prevail in modern analysis but they are still the 
subject of analysis in many professional journals and books1. We provide the non-linear re-
formulation of the models of IS-LM structure to comprehend better the nature of the economy 
which contradicts linear principles. In this way we get the non-linear models and try to 
analyse them with the help of appropriate methods.  

For the non-linear model presented here we have found the inspiration in the book 
Chiarella C., Flaschel P., Groh G., Semmler W. (2000). In this book the IS-LM-PC model is 
introduced.  PC denotes that IS-LM model is augmented by price-wage dynamics i.e. by the 
modified Philips curve including inflationary expectation. We will develop this model in the 
following way. We replace the price-wage dynamics by the price-marginal cost (PMC) 
dynamics. The modified model will be denoted by IS-LM-PMC.  

The IS-LM-PMC model is considered as the four differential equations structure. The 
first equation describes the commodity market, the second one describes the money market 
and the third one describes the relation between marginal cost and prices. The fourth equation 
deals with expectation of inflation. We assume an adaptive expectation. Left hand side of the 
commodity market equation (1) contains a gap between demand (investment) and supply 
(savings) in the aggregated commodity market. Left hand side of the equation (2) contains a 
gap between money supply and money demand. There is a gap between price level and 
marginal cost in the left hand side of the equation (3). Notice that the IS-LM-PMC structure 
from general point of view could be common both Keynesian and neoclassical approaches. 
The difference lies only in the style of imputation the equalising factors to the model. The 
Keynesian approach states that the change of production equalise commodity market (IS), the 

                                                           
1 In Turnovsky, S. (2000) we can find not only models of traditional macro-dynamics but 

also models of inter-temporal optimisation and rational expectation models. The last two 
exhibit the majority approach to the modern analysis of economic systems.          
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change of interest rate equalise money market (LM) and the change of price level equalise 
price level and marginal costs. Neoclassical approach assumes that the change of interest rate 
equalise commodity market (IS), the change of price equalise money market (LM) and the 
change of production equalise the price with marginal costs (PMC). The paper aims to analyse 
the consequences of Keynesian and neoclassical approach to the IS-LM-PMC structure for the 
dynamics of the related models. 

 We begin with the description of the Keynesian IS-LM-PMC model. Let (in 
continuous time ) ,  and 0t ≥ ( )Y t ( )S ⋅, ⋅ ( )I ⋅,⋅  be denote the real product, savings and real 
investments of the considered economy respectively. Recall that for the nominal interest ( )R t  
it holds  where  is the real rate of interest and  the expected 
inflation, in contrast to the inflation 

( ) ( ) ( )eR t r t tπ= + ( )r t ( )e tπ
( )tπ .  The dynamics of the IS model is then given by the 

following differential equation (see e.g. A.Takayama (1994)  

                                    { }( ( ) ( )) ( ( ) ( ))Y I Y t r t S Y t r tα= , − ,&  

 or on taking logarithms by 

 {( ) ( ( ) ( )) ( ( ) ( ))dy t i y t r t s y t r t
dt

α= , − , }  (1) 

where , and( ) ln ( )y t Y t= ( )
( )( ) I

Yi ⋅,⋅
⋅,⋅⋅,⋅ = , ( )

( )( ) S
Ys ⋅,⋅

⋅,⋅⋅, ⋅ = ,  is the so-called propensity to invest, 

to save respectively. Observe that for an equilibrium point ( )Y t Y≡ ĺ , ,  we 
have 

( )y t y≡ ĺ ( )r t r≡ ĺ

( ) ( )I Y r S Y r, = ,ĺ ĺ ĺ ĺ  or    ( ) ( )i y r s y r, = ,ĺ ĺ ĺ ĺ .

Denoting by ( )p t  the price level at time t , the dynamics of the money market is 
described by the following differential equation  

 { }( ) ( ( ) ( )) ln ( ( ) ( ) ( )) ( ( ))
( )

s
e sdr t My t R t y t r t t m p t

dt p t
β β π
⎧ ⎫

= , − = , + − −⎨ ⎬
⎩ ⎭
l l  (2) 

where , ( ( ) ( )) ln( ( ( ) ( ))y t R t L Y t R t, = ,l lns sm M= , ( ) ln ( )p t p t= ; ( )L ⋅, ⋅  and sM  is 
reserved for demand for money and money supply respectively. In (1), (2)α , β  are positive 
constants signifying the speed of adjustment of the respective market.  

To obtain a complete dynamic model of the economy we need to include equations for 
expected inflation  and the price level( )e tπ ( )p t . According to Tobin (1975): for  the 
following adaptive equation is valid  

( )e tπ

 ( ) ( ) ( )
e

ed t t t
dt
π γ π π⎡ ⎤= −⎣ ⎦  (3) 

where γ  is the coefficient of adaptation and ( )tπ  is the inflation. Recalling 
that ( )

( )( ) ( )p t d
p t dttπ = =& p t , from (3) we immediately get  

 ( ) ( ) ( )
e

ed t d p t t
dt dt
π γ π⎡ ⎤= − .⎢ ⎥⎣ ⎦

 (4) 

For what follows we need to express ( )d
dt p t .  For this end we assume that the 

development of the price level ( )p t  over time is in accordance with changes of the so-called 
cost function . In particular, the well-known condition of profit maximization ( ( ))C y t
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( )( ) 0dC y
dyp t − =  is the base for the following adjustment formula for ( )p t , where δ  is a 

constant:  

 ( )( ) ( ) p tdp t dC y e
dt dy

δ
⎛ ⎞
⎜
⎜
⎜
⎝ ⎠

= − ⎟
⎟
⎟
 (5) 

In fact, the above formula is in accordance with the traditional theory of perfectly 
competitive firms (see e.g. D. Laider and S. Estrin (1989)) and as such is interpreted in many 
treatises on monetary and price dynamics (cf. e.g. P. Flaschel, R. Franke, and W. Semmler 
(1997)).   

In what follows we shall use shorthand notations only, i.e., we replace ( )dp t
dt  by p& , 

similarly for the time derivatives , ,y& r& eπ , and ( )dC y
dy  is replaced by  Moreover, we shall 

often omit the argument t . Hence, (cf. (1), (2), (4), and (5)) using such a model the system 
describing an economy from the Keynesian point of view has the following form:  

( )C y
′

.

 

[ ( ) ( )]
[ ( ) ( )]

[ ]
[ ( ) ]

e s

ee

p

y i y r s y r
r y r m

p
p C y e

α
β π

γ ππ
δ ′

= , − , , ⎫
p ⎪= , + − − ,⎪

⎬= − , ⎪
⎪= − , ⎭

&

& l
&&

&

 (6) 

where , , ( )i y r, ( )s y r, ( )ey r π, +l  and  are real investment, real savings, real 
money demand and cost functions respectively, depending on production , rate of interest 

, (expected) inflation 

( )C y
y

r eπ  and the price level .   p

Classical models that describe (commodity) price level, interest rate, production and 
expected inflation dynamics have similar structure of right hand sides (RHS) of differential 
equations, but left hand sides (LSD) are permuted as follows:   

 
[ ( ) ( )]

[ ( ) ( )]
[ ]

e s

ee

r i y r s y r
p y r m

p

α
β π

γ ππ

= , − , , ⎫
p ⎪− = , + − − ,⎬

⎪= − . ⎭

&

& l

&&

 (7) 

Since for classical models the real product  is assumed to be constant, in (7) we 
ignore the equation

( )y t
[ ( ) ]py C y eδ ′− = −& .   

Just introduced models are the base for establishment of macroeconomic models of 
price and monetary dynamics. Recall that the vector ( ey r )pπ ∗∗ ∗ ∗ ∗= , , ,x  whose elements are 
obtained as a solution of the following set of equations:  

 
( ) ( )

( )
( )

e s

p

i y r s y r
y r m p

e C
π

′ y

, = , ⎫,
⎪, + = − ⎬,
⎪= , ⎭

l  (8) 

is the equilibrium point both of the Keynesian model given by the set of equations (6) 
and Classical models given by the set of equation (7). This equilibrium point is said to be 
(asymptotically) locally stable if every solution of the considered system, starting sufficiently 
close to  converges to  as . Similarly, ∗x ∗x t →∞ ∗x  is said to be (asymptotically) globally 
stable if every solution regardless the starting point converges to ∗x . It is well known (cf. e.g. 
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J. Guckenheimer and P. Holmes (1986) or A.Takayama (1994) that an equilibrium point (and 
also a stable point) of the system need not exist, hence the system is unstable. Recall that 
having found equilibrium points, the system need not converge to some or any of the 
equilibrium points (in the latter case the system is unstable). Furthermore, if the considered 
system is unstable and nonlinear, then the system can also exhibit limit cycles (i.e. its 
trajectory remains in a bounded region) or even chaotic behavior. In words, in contrast to 
above phenomena, stability is equivalent to monotone or oscillating convergence toward the 
equilibrium point.   

To identify a chaotic behaviour of a macroeconomic model, it is plausible to compare 
dynamical behaviour of the macroeconomic model by an exponential divergence of nearby 
trajectories measured by the so-called Lyapunov exponents. The most important is the 
maximal Lyapunov exponent, negative for stable models, positive for unstable models and 
infinite for the chaotic behaviour – for details see H.-W. Lorenz (1993). 

2. Approximation and Linearization of the Models 

To find an analytical form of the output ( ) ln ( )y t Y t= , interest rate , expected 

inflation  and the price level 

( )r t

( )e tπ ( )p t  we need to assume that the functions , ( )i ⋅,⋅ ( )s ⋅, ⋅ , 
 are of a specific analytical form. As usual, the functions ( )C ⋅ ( )s ⋅, ⋅  as well as demand for 

money  can be well approximated by linear functions, whereas it is necessary to 
approximate  and sometimes also 

(y R,l )
( )i ⋅,⋅ ( )C ⋅  by suitable nonlinear functions. In what follows, 

we assume that savings  can be well approximated by the following expression  ( ( ) ( ))S Y t r t,

  (9) 0 1 2 0 1 2( ( ) ( )) ( ) [ ( ) ( )] 0 0S Y t r t Y t s s y t s r t with s and s s, = ⋅ + ⋅ + ⋅ < , , > .

Hence the propensity to save ( ) ( ) ( )s S Y⋅,⋅ = ⋅,⋅ / ⋅  can be written as  

 0 1 2( ( ) ( )) ( ( ) ( )) ( ) ( )s Y t r t def s y t r t s s y t s r t, = , = + ⋅ + ⋅  (10) 

Similarly, the demand for money is described by the traditional Keynesian demand-
for-money function being in the following form  

 

 (11) 0 1 2 3 0 1 2 3( ( ) ( )) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )e ey t R t y t R t t y t r t t tπ π, = + − − = + − + −l l l l l l l l l eπ ,

3where the parameters  are given. On the other hand, it is convenient 

to assume that the propensity to invest 

0 0 1 2i i> , = , , ,l

( ( ) ( ))i y t r t,  is a product of 
1

( ) 1r t +  and the so-called 
logistic function. Hence the propensity to invest is assumed to be given analytically as  

 
( )

1( ( ) ( ))
( ) 1 1 ay t

ki y t r t
r t be−, = ⋅

+ +  (12) 

where the parameters  and  is an arbitrary real number. Similarly, we shall 
assume that the cost function  is also a logistic function given analytically as  

0k a, > b
( )C ⋅

 
( )( ( ))

1 cy t

hC y t
de−=

+  (13) 
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where the parameters  and  is an arbitrary real number. Hence  0h c, > d

 
2

( )
(1 )

cy
cy

dC y cdh e
dy de

−
−=

+  (14) 

and we can assume that the “central" part of  can be well approximated by a 
linear function  

( ( ))C y t

 0 1( ( )) ( )C y t d d y t= +  (15) 

Since  to calculate the values , ,0eπ =ĺ y ĺ
r ĺ p ĺ

, on inserting (10), (11), (12) and (13) 
into (8) we have  

 
0 1 2

1
1 1 ay

k s s y s r
r be−

⋅ = + +
+ +

ĺ
ĺ ĺ

ĺ
 (16) 

 

 0 1 2
sy r m p+ − = −l l l ĺĺ ĺ

 (17) 
 

 11ln d defp d= − = −ĺ

 (18) 

In virtue of (18) from (16), (17) the equilibrium values ,  can be found as a 
solution to  

y ĺ
r ĺ

 
0 1 2( ) (

1 ay

k s s y s r r
be−

= + + +
+

ĺ
ĺ ĺ 1 )ĺ

 (19) 

 

 
1 10 1 0

2 1

1 1( ( ) ) ( )s sr m y y md d⎛ ⎞
⎜ ⎟
⎝ ⎠

= − + + ⇐⇒ = + − +l l l
l l

ĺ ĺ ĺ
2rl ĺ

 (20) 

From (19), (20) we get  

 

0 1 0 11 1
0 2 1 2

2 2 2 2 2 2

11
1

s s

ay

m md ds s s s y y k
be

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ −⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎛ ⎞ ⎛ ⎞+ +
+ − + + ⋅ + − + = ⋅⎜ ⎟ ⎜ ⎟

+⎝ ⎠ ⎝ ⎠

l ll l

l l l l l l
ĺ

ĺ ĺ

 (21) 

Hence finding the solution to (21) and inserting this value into (20) we immediately 

get the pair of equilibrium points , . We can observe that:   y ĺ
r ĺ

The RHS of (21) is the so-called logistic function (an increasing function having an 

inflection point at 
1 lnay b=  that is convex in the interval 

1(0 ln )a b,  and concave in 
1( ln )a b,∞ );   

The LHS of (21) is a quadratic function (in fact, for real-life models this function 
differs only slightly from a straight line).    
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Hence there exist at most three, in real models usually only one, pair(s) of equilibrium 

points ,  for . More insight in the properties of the equilibrium points, especially 
with respect to the stability, can be obtained by linearization around the neighborhood of the 

equilibrium point

y ĺ
r ĺ 0y ≥

( ey r pπ, , , ĺĺ ĺ ĺ
) with 0eπ = .ĺ

 To check stability of the linearized model, 
(i.e., that all eigenvalues of the matrix of the linearized system have negative real parts), let us 
recall that all eigenvalues of the matrix lay in the union of the Gershgorin’s circles. The 
centers of circles are diagonal elements of the matrix and the radius is equal to the minimum 
of row of column sums of the absolute values of the corresponding off-diagonal elements. For 
details see e.g. Fiedler (1981).   

3. Stability and Speed of Adjustment 
1. Keynesian Model 

In particular, on employing (16), (17), and (18) for the Keynesian model we have:  

 

1 2

1 2 2 3

1

1

( ( ) )

( ) ( ) 0 0 ( )( ( ) )
( ) ( )

0 0 ( )( ( ))
0 0 0 ( )

( ( ) )

y r

e e

d y t y
dt

D s D s y t yd r t r
r t rdt

d td t
ddt p t p

d p t p
dt

α α
β β β β

γ γ ππ
δ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤−
⎢ ⎥
⎢ ⎥

− − −−⎢ ⎥
⎢ ⎥ − − + −

=⎢ ⎥
−⎢ ⎥

⎢ ⎥ − −⎢ ⎥
−⎢ ⎥

⎢ ⎥⎣ ⎦

l l l l

ĺ

ĺĺ

ĺ

ĺ

ĺ

 (22) 

where  

 
( ) ( )

1 1
1 1 1 1y ray t ay t

r r r r y yy y

k kD D
r y be r r be− −

= ==

∂ ∂
= ⋅ , = ⋅

+ ∂ + ∂ + +ĺ ĺ ĺĺ =

.
 

and  

 

0 1 0 11 1
0 2 1 2

2 2 2 2 1 2 2

1 1
s s

aym md dk s s s s y y be
d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎛ ⎞ ⎛ ⎞+ +
= + − + + ⋅ + − + ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

l ll l

l l l l l l

ĺĺ ĺ .
 

To verify if the obtained equilibrium point is stable, we shall have a look at the 
eigenvalues of the matrix  

 

1 2

1 2 2 3

1

1

( ) ( ) 0 0
( )

0 0
0 0 0

y rD s D s

d
d

α α
β β β

γ γ
β

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

− −
− − +

=
−

−

A
l l l l

 (23) 

Employing the “nearly" upper triangular structure of the matrix A  we can 

immediately conclude that the eigenvalues 1 2λ λ, ,  3 4λ λ,  of  are equal to A 1dδ γ,  and the 

remaining two eigenvalues 3 4λ λ,  can be calculated as the two eigenvalues of the matrix  
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  (24) 

1 2

1 2

( ) (y rD s D sα α
β β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

− −
=

−
A%

l

)
l

In particular, if the following two equations Keynesian model  

 

1 2

1 2

( ( ) )
( ) ( ) ( )

( )( ( ) )
y r

d y t y
D s D s y t ydt

r t rd r t r
dt

α α
β β

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤−
⎢ ⎥ − − −
⎢ ⎥ =

− −−⎢ ⎥
⎢ ⎥⎣ ⎦

l l

ĺ

ĺ

ĺ ĺ

 (25) 

is stable, then also our extended Keynesian model given by (22) must be stable. 
Obviously, the eigenvalues of A%  are (the symbols tr A%  and det A%  are reserved for trace and 
determinant of A%   

 
2

3 4
1 ( ) 4
2

tr A tr A det Aλ
⎛ ⎞
⎜ ⎟

, ⎜ ⎟
⎝ ⎠

= ± −% % %

 

and det A%  must be positive in order to exclude the possibility of a saddle point. For 

the asymptotic stability R 0e 3 4λ , f ytr A D sα β< , hence i 0 1 2( )= − − <% l

2

 both (23) and 24) are 

stable, in case that 1( )yD sα β− > l  the equilibrium is not asymptotically stable and the limit 
cycle occurs. In particular, sufficient conditions for the stability of the matrix A  of the 

considered four-equation Keynesian model are 1 0yD s− <  along with 1 2y rD s D− > s−

2

, 

 or1 <l l 1 1yD s β
α− > ⋅l , 2rD s β

α− > ⋅l2 . An interesting case is when eigenvalues of A%  are 

purely imaginary, i.e. if 1 0( )yD sα β− = l .  

Lyapunov exponents for the considered four-equation Keynesian model with the 
following  

values of parameters,  

  

0 1 2

0 1 2 3 2

20, 1, 0 1 0 02 0 1 1 5 0 16 0 07 0 016

0 25 0 4 0 06 0 06 1 0 3 0 65 0 4s

a b s s s

l l l l d d m k

α β γ δ= = = . , = . , = . , = . , = − . , = . , = . ,

= . , = . , = − . , = − . , = − , = . , = . , = .

are presented in Figure 1. The Lyapunov dimension of the Keynesian model attractor 
is equal 0. It means that real parts of all eigenvalues of the Keynesian model attractor are 
negative. Thus the Keynesian model is not a chaotic macroeconomic system.   

2. Classical Model 

In particular, on employing (16), (17), and (18) for the Classical model we have:  

 

2

2 2 3

1

( ( ) )

( ) 0 0 ( )
( ( ) ) ( ) ( )

0 (
( ( ))

r

e
e

d r t r
dt D s r t r

d p t p

)
p t p

dt
d t

d t
dt

α
β β β

γ γ π
π

⎡ ⎤−
⎢ ⎥
⎢ ⎥ ⎡ ⎤− −⎡ ⎤

−⎢ ⎥ ⎢ ⎥⎢ ⎥= − +⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

l l l

ĺ

ĺ
ĺ

ĺ

 (26) 
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where rD  and  take on the same values as in Section 3.1.   k

Lyapunov Exponents for Keynesian Model
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Figure 1: Lyapunov Exponents for Keynesian Model 

 

Lyapunov exponents for the classical model with the following values of parameters, 

0 1 2

0 1 2 3 2

200, 0 2 1 0 1 1 5 0 16 0 07 0 016

0 25 0 4 0 06 0 06 1 0 3 0 65 0 4 4 5s

a b s s s

l l l l d d m k y

α β γ δ= = . , = = , = . , = . , = − . , = . , = . ,

= . , = . , = − . , = − . , = − , = . , = . , = . , = .  
are presented in Figure 2. It is shown one of the Lyapunov exponents for the classical 

model attractor is equal to 0. It is mean that one real part of eigenvalues is zero and the others 
real parts of eigenvalues of the classical model attractor are negative. The Lyapunov 
dimension for the classical model attractor is equal to 0 also. Thus the classical model can 
exhibit limit cycle.   
 

Conclusions 
Macroeconomic models, Keynesian model and classical model, were analyzed from 

view of its both stability and speed adjustment. It was shown, by different methods of 
analyzing, eigenvalues and Lyapunov exponents, the Keynesian model is not a chaotic 
macroeconomic system. On the contrary, it was shown that the classical model can exhibit a 
limit cycle.  
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Figure 2: Lyapunov Exponents for Classical Model  
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