
447Finance a úvûr – Czech Journal of Economics and Finance, 56, 2006, ã. 9-10

UDT: 336.764/.768(430)
JEL Classification: G14, G35
Keywords: DAX 30; trading volume; univariate and bivariate long memory

Long Memory on the German Stock
Exchange
Henryk GURGUL* – Tomasz WÓJTOWICZ**

1. Introduction

Long memory, also known as the long-term dependence property, describes
the high-order correlation structure of a series. If a time series possesses
long memory, there is a persistent temporal dependence between observa-
tions even considerably separated in time. The autocorrelation function
(ACF) of series with long memory tails off hyperbolically. These series ex-
hibit low-frequency spectral distributions. In contrast to long memory,
the short-memory property is characterized by the low order correlation
structure of a series. It is no difficult task to recognize these types of time
series because they exhibit quickly declining autocorrelations and, in
the spectral domain, demonstrate high-frequency distributions. It is clear
that standard ARMA processes do not exhibit long memory. They can only
exhibit short-run (high-frequency) properties.

The presence of long memory in financial data causes a number of both
theoretical and empirical problems. The long-memory property is connected
with nonlinearities in economic data. Martingale models of stock prices can-
not follow from arbitrage, because new information cannot be entirely ar-
bitraged away. The second problem in the case of long memory is pricing
derivative securities with the martingale method. This method is usually
not correct if the accompanying stochastic (continuous) processes exhibit
long memory. Another problem concerns the standard testing procedures
applied to asset pricing models. In the case of long memory in a series these
procedures may not be relevant.

Some researchers raise doubts about the semi-strong market efficiency of
stock markets where financial data exhibit long memory. This is because
long memory is responsible for a nonlinear dependency in the first moment
of the series distribution and therefore can be a reason for a time-series
component which can be forecasted. In the case of the long-memory pro-
perty even observations which are far apart can be significantly correlated.
Therefore past returns can help to forecast future returns and speculative
profits can be reached. This clearly violates the market efficiency assum-
ption.
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The present study concentrates on the role of trading volume in the pro-
cess that generates stock returns and return volatilities on the German
stock market, namely the stocks of companies listed in the DAX30 of
Deutsche Börse. In contrary to most papers on this subject, we use indivi-
dual stock data instead of index data.

The main goal of this paper is to show the existence of long memory in
log-volume data and in the return volatility series of companies listed in
the DAX30. In order to check the robustness of our results against the sam-
ple size we examine the log-volume and volatility properties of the largest
German companies not only in the entire considered period from Janu-
ary 1994 to November 2005 but also in three subperiods: January 1994 to
December 1997, January 1998 to December 2001 and January 2002 to
November 2005.

The outline of the article is as follows: the most important contributions
in the context of returns, return volatility, trading volume and finally long
memory in finance are reviewed in the next section 2. Section 3 presents in
detail the concept of long memory and estimation methods of the long-me-
mory parameter. The data basis is characterized in Section 4, while empi-
rical results are presented in Section 5. The final section 6 concludes the pa-
per.

2. Trading Volume, Prices and Long Memory

In the past, researchers and investors concentrated their attention pri-
marily on stock prices and their behavior over time. Taking into account
a given set of information, stock prices reflect investors’ expectations about
the future development of a firm. Upcoming information is the main rea-
son to expect changes in investors beliefs and therefore the main reason for
price movements. There are situations when prices remain unaltered in
spite of new, important upcoming information. This can occur when diffe-
rent investors interpret new information differently, or when they interpret
new information identically but start from different initial expectations. As
we see, changes in stock prices reflect the average of investors’beliefs caused
by upcoming information. It is clear that stock price changes can be noticed
if there is positive trading volume.

In applications there are several measures of trading activities for indi-
vidual stocks:
a) number of trades per period,
b) share volume Xj,t,
c) value of shares traded (dollar volume) Pj,t Xj,t, where Pj,t denotes price of

j-th equity,
d) relative dollar volume Pj,t Xj,t / �jPj,t Xj,t,
e) share turnover (turnover ratio), i.e. the ratio of the number of shares

traded and number of shares outstanding �i,j = Xj,t / Nj,t,
f) dollar turnover �j,t = Pj,t Xj,t / Pj,t Nj,t = �j,t.

One can see that the last two measures are equal. The most common mea-
sures used in empirical investigations are given by b), c) and e). In order to
measure aggregate trading activity similar measures can be defined.
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In the literature an important question arises as to whether volume data
are just a descriptive parameter of the trading process, or whether trading
volume contains specific information that can be applied in modeling stock
returns or return volatilities. As in the case of prices, volume and volume
volatility depend on changes of the available set of relevant information on
the market. In contrast to stock prices, a change of intraday expectations
always leads to an enlargement of trading volume. Thus, trading volume
incorporates the sum of investors decisions in reaction to news. This pro-
cess increases trading volume. The differences between investors’ reactions
to the arrival of new information do not get lost as in the case of the ave-
raging process that establishes prices. The joint observation of stock price
behavior and trading volume enables us to determine the dynamic proper-
ties of stock markets and allows a better understanding of the impact of up-
coming news on the market. The speculative motive, however, leads in-
vestors to trade even in the absence of new information. Volume data are
regularly reported in the financial media together with price data.

Up to now, a considerable number of papers which examine in a theore-
tical framework the role of trading volume in return formation have been
published. One of the first contributors to the subject was Clark (1973), who
formulated the Mixture of Distribution Hypothesis (MDH). He claims that
stock returns and trading volume are related because they are jointly de-
pendent on an underlying latent information-flow variable. According to
MDH, upcoming information is a source of price volatility. Clark suggested
applying volume data as a proxy for the upcoming information stochastic
process. The assumption of MDH implies strong positive contemporaneous
(but not causal) linkages between volume and return volatility data,
whereas return levels and volume data feature no interactions. The MDH
hypothesis was extended, among others, by Andersen (1996), who argued
that asymmetries and liquidity needs cause trading activities in response
to the arrival of new information.

The second alternative hypothesis, known as the sequential information
flow model, was formulated by Copeland (1976). He suggested that new in-
formation is disseminated sequentially rather than simultaneously to mar-
ket participants. This results in a sequence of transitional price equilibri-
ums that are accompanied by a persisting high trading volume. One
important implication of Copeland’s assumptions is the existence of posi-
tive contemporaneous as well as causal relations between price volatilities
and trading activities.

In a framework where stock prices are assumed to follow random walk,
some studies, e.g. (Blume et al., 1994) and (Suominen, 2001), try to prove
the assumption that trading-volume data reveal unique information to
the market, and that this information is not contained in prices. The Blume
model assumes that informed traders transfer their private information to
the market through trades, and uninformed traders learn from volume data
about the precision and dispersion of an informational signal. Therefore re-
turn volatility and trading volume exhibit time persistence also in those
cases when information arrivals do not. In a model by Suominen (2001),
trading volume is used by uninformed traders as a signal of private infor-
mation in the market and therefore it can help to overcome information
asymmetries. It follows from these models that trading volume not only de-
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scribes market behavior but also affects market development. The level of
trading volume directly enters into the decision-making process of market
participants. In this sense a strong relationship (contemporaneous as well
as causal) between volume and return volatility can be expected.

In past decades, the hypotheses outlined above were confirmed by em-
pirical studies concerning volume-price relations on capital markets. The re-
lationship between trading volume and price changes, mainly using index
data, was considered in contributions by Karpoff (1987), Hiemstra and Jones
(1994), Brailsford (1996) and Lee and Rui (2002). Although these studies
differ in detail, the contributors draw a common conclusion about a posi-
tive volume-price relationship. On the other hand, the relation between
stock-return volatility and trading volume was the subject of contributions
by Karpoff (1987), Bessembinder and Seguin (1993), Brock and LeBaron
(1996), Avouyi-Dovi and Jondeau (2000) and Lee and Rui (2002). All these
studies uniformly confirmed a strong relationship, contemporaneous and
dynamic between return volatility and trading volume. The only exception
is the study by Darrat et al. (2003) based on intraday data from DJIA stocks.
The above-mentioned contributors find evidence that dynamic (causal) re-
lations are significant. They neglected the contemporaneous correlation be-
tween return volatility and trading volume.

Lamoureux and Lastrapes (1990) were the first to apply stochastic time-
-series models of conditional heteroskedasticity (GARCH-type) to explore
the contemporaneous relationship between volatility and volume data.
The authors find that persistence in stock-return variance vanishes for
the most part when trading volume is included in the conditional variance
equation. If trading volume is considered to be an appropriate measure for
the flow of information into the market, this finding is consistent with
the MDH. However, one has to realize that the observation by Lamoureux
and Lastrapes (1990) is mainly proof of the fact that trading volume and
return volatility are driven by identical factors, leaving the question of
the source of the joint process largely unresolved. This GARCH cum volu-
me approach has been applied and extended in several studies, such as
(Lamoureux – Lastrapes, 1994), (Andersen, 1996), (Brailsford, 1996), (Gallo
– Pacini, 2000) and (Omran – McKenzie, 2000).

Contributions by Campbell et al. (1993) and McKenzie and Faff (2003)
deal with linkages between trading volume and the autocorrelation pro-per-
ties of daily stock returns. The authors established that trading volume is
responsible for time-varying autocorrelations in stock returns. In the case
of higher trading volume the contributors noticed a drop in return auto-
correlation. Recently, Connolly and Stivers (2003) investigated the auto-
correlation properties of stock returns in conjunction with abnormal
turnover on a weekly basis. They found a contemporaneous dependence be-
tween stock returns and trading volume. Chordia and Swaminathan (2000)
were concerned with the role of trading volume in the cross-autocorrelation
patterns which stock returns exhibit. According to the contributors, returns
of stocks with high trading volume precede returns of stocks with lower
trading volume. This finding confirms the speed-of-adjustment hypothesis.
According to this hypothesis high volume stocks adjust more quickly to new
information than low volume stocks do. Chordia et al. (2001) found a ne-
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gative cross-sectional relation between expected stock returns and both
the level of and the changes in trading volume.

A persistence in autocorrelation can be observed in many financial time
series. Loosely speaking this property is called long memory. The concept
of long memory was introduced by the British hydrologist Hurst (1951).
Early contributions to the subject of long memory in time series are those
by Mandelbrot (1971) (which formalized Hurst’s empirical findings using
cumulative river-flow data), Geweke and Porter-Hudak (1983), and Hosk-
ing (1981). Granger and Joyeux (1980) introduced fractionally integrated
ARMA models, which were more recently discussed by Sowell (1992), Be-
ran (1992) and Baillie (1996).

The potential presence of long memory in financial data has been an im-
portant subject of both theoretical and empirical investigation by econo-
metricians and finance researchers. A number of studies have focused on
long memory (persistence) in financial asset returns. As we mentioned in
the first section of this paper, the finding of long-term dependence in fi-
nancial data might be in contradiction to the Efficient Markets Hypothesis
of Fama (1970), which is based on the assumption of martingale behavior
of financial market prices. The martingale theory requires an invariant sta-
tionarity and an independence from any innovations of historical price in-
formation sets, but it is difficult to show that this requirement is fulfilled
either in a weak form or, even less so, in a semi-strong or strong form.
The theory of the Fractional Market formulated by Peters (1994) is an ap-
plication of the long-term dependence concept. This concept is more general
than Fama’s understanding of efficiency. The first contribution to this sub-
ject in finance is that by Greene and Fielitz (1977) who, by means of
the rescaled-range (R/S) method of Hurst, found long memory in daily equi-
ty returns. This result was rejected by Lo (1991), who applied a more ade-
quate form of the R/S method. Also, in the subsequent contributions by Crato
(1994), Cheung et al. (1993), Cheung and Lai (1995), Barkoulas and Baum
(1996) the presence of long memory in finance data could not be signifi-
cantly confirmed. Beveridge and Oickle (1997) investigate long-memory de-
pendence in Canadian daily stock returns using ARIMA models and find
long-memory mean reversion.

In parallel, spot and futures foreign-exchange rates and commodity prices
were investigated with respect to long memory. Contributions by Helms et
al. (1984), Cheung and Lai (1993), Fang et al. (1994), and Barkoulas et al.
(1997) confirm long memory in the above-mentioned kinds of foreign-cur-
rency rates.

In recent years researchers have come back to stock markets and started
to investigate volatility (absolute values of returns or squared returns) and
more recently trading volume, also with respect to long memory and bi-
variate long memory.

Estimation results by Bollerslev and Mikkelsen (1996) provide new evi-
dence that the apparent long-run dependence in US stock market volati-
lity is best described by a mean-reverting fractionally integrated process,
so that a shock to the optimal forecast of the future conditional variance
dissipates at a low hyperbolic rate.

Granger and Zhuanxin (1996) illustrate the relevance of long memory us-
ing returns from a daily stock-market index. The authors also point out that
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a number of other processes like generalized fractionally integrated mo-
dels resulting from aggregation, time-changing coefficient models, and pos-
sibly nonlinear models can be long memory.

Koop et al. (1997) provide a Bayesian analysis of ARFIMA models and de-
scribe a test of ARFIMA against ARIMA alternatives.

Bollerslev and Jubinski (1999) examined the behavior of stock-trading
volume and volatility for the individual firms composing the Stan-
dard & Poor 100 composite index. In line with the MDH hypothesis, they
found that long-run hyperbolic decay rates appear to be common across each
volume-volatility pair. In addition, they also established that fractionally
integrated processes best describe the long-run temporal dependencies in
volume and volatility series.

Lobato and Velasco (2000) investigated the properties of 30 equities in
the DJIA with respect to long memory. They found that trading volume ex-
hibits long memory, and that volatility and volume exhibit the same degree
of long memory for most of the stocks. However, the contributors did not
find a common long memory component for both processes.

Analogously to both the above studies, we use in our contribution indi-
vidual stock data instead of index data.

In the next section we explain in detail the notion of long-memory pa-
rameter d.

3. Long Memory Estimators

A covariance stationary stochastic process exhibits long memory with
memory parameter d when its spectral density function f(�) satisfies:

f(�) � c�–2d as � → 0+ (1)

where c is a finite positive constant and the symbol “�” means that the ra-
tio of the left- and right-hand sides tends to one at the limit. When the pro-
cess satisfies condition (1) and d > 0 its autocorrelation function dies out at
a hyperbolic rate (Granger – Joyeux, 1980), (Hosking, 1981), (Beran, 1994),
i.e.

�k � c�k2d–1 as k → �

The parameter d determines the memory of the process. If d > 0 the spec-
tral density is unbounded near the origin, and the process exhibits long
memory. If d = 0 the spectral density is bounded at 0 and the process is
called short memory. When d < 0 the spectral density is zero at the origin
and the process is called anti-persistent and displays negative memory.

The most well-known class of long-memory processes satisfying (1) is
the class of autoregressive fractionally integrated moving average
(ARFIMA) processes introduced into econometrics by Granger and
Joyeux (1980).

We say that xt is an ARFIMA(p, d, q) process if:

�(B)(1 – B)d (xt – �) = 	(B)
t
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where �(z) = 1 – �1z – ... – �pzp and 	(z) = 1 – �1z – ... – �qzq are lag poly-
nomials of order p and q respectively, in the backshift operator B with roots
outside the unit circle, 
t is iid (0,2), and (1–B)d is defined by binomial ex-
pansion:

� � (j – d)
(1–B)d = � –––––––––––––– Bj

j=0 � (–d) � (j + 1)

In addition to the previously mentioned properties of memory, if d > –0.5
the ARFIMA process is invertible and possesses linear Wold representation
and if d < 0.5 it is covariance stationary. Thus, if 0 < d < 0.5 the process is
stationary and exhibits long memory. Many non-stationary series can be
transformed by integer integrating into stationary ones with spectral den-
sity satisfying (1).

There are several methods for the estimation of long-memory parame-
ter d. We will review them briefly in the following subsections.

3.1 Maximum Likelihood Estimator

Maximum likelihood estimation (MLE) in the time domain needs an as-
sumption about the exact form of the estimated ARFIMAmodel. Then the ex-
act Gaussian likelihood function for the given sample �xt�t=1...T is:

T 1
L(d, �, �, 2, �) = – –– ln�� � – –– (x – �1)T �–1(x – �1) (2)

2             2

where 1= (1,...,1)T, x = (x1,...,xT)T, � and � are the parameters of autore-
gression and moving average polynomials respectively, � is the mean of
the process, and � is its covariance matrix. Sowell (1992) proved that 
the exact maximum likelihood estimator (EML) obtained by maximising
the likelihood function (2) is consistent and asymptotically normal, i.e.

d
^

EML � N �d, (�2T / 6 – c)–1�

where c = 0 when p =q = 0 and c > 0 otherwise.
Other properties of MLE and methods of solving some computational pro-

blems are discussed in (Sowell, 1992) and (Doornik – Ooms, 2003).
There are several modifications of exact maximum likelihood estimation,

e.g. modified profile likelihood (see (Cox – Reid, 1987)) or conditional maxi-
mum likelihood (see (Tanaka, 1999)). The main drawback of such maximum
likelihood estimators is their sensitivity to any model misspecification, and
thus they can by easily influenced by any short-run dynamics.

3.2 GPH Estimator

Another class of estimators of the long-memory parameter d are semi-
parametric estimators based on the approximation (1) of the spectral den-
sity function near the origin. Among them the most popular is the log-pe-
riodogram regression method originally developed by Geweke and
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Porter-Hudak (1983) and analyzed in detail by Robinson (1995a). Semi-
parametric estimators use only information from the periodogram for very
low frequencies. Thus they are robust to short-run dynamics. Based on con-
dition (1), after taking the logarithms and inserting sample quantities,
the long-memory estimator is computed from the approximate regression
relationship:

ln�I(�j)� � const –2d ln(�j)

2�j                                                            1     T

where �j = ––– are the Fourier frequencies and I(�) = –––– ��xteit��
2 
is the pe-

T                                                          2�T  t=1

riodogram of the given sample x1,...,xT. The GPH estimator is then defined
as the OLS estimator in the above regression using only j = 1,..., m its first
values, where m = m(T) is a bandwidth parameter satisfying condition:

1     m
–– + –– → 0 as T → �
m    T

Geweke and Porter-Hudak originally suggested choosing m equal to 	–
T.

For further considerations about the optimal bandwidth see (Hurvich et al.,
1998) and (Henry – Robinson, 1996). The asymptotical normality of the GPH
estimator was initially proved by Robinson (1995a) for d∈(–1/2, 1/2), but
recently Velasco (1999a) showed that it is consistent for d∈(–1/2, 1) and has
an asymptotically normal limit distribution for d∈(–1/2, 3/4):

�2

d
^

GPH � N 
d, ––––�24m

There are several modifications of the GPH estimator. For example, Agiak-
loglou et al. (1993) suggested replacing the constant in the regression by
the polynomial in order to reduce bias (see also (Andrews – Guggenberger,
2003)). Similarly, an estimator that allows a short-run component was pro-
posed by Shimotsu and Phillips (2002a).

The univariate GPH estimator described above can be generalized for
a multivariate case. Consider xt = (x1,t, ..., xN,t)T a covariance stationary 
N-dimensional vector process with mean vector � and covariance matrix �j at
lag j and a fractional integration vector (d1,...,dN)T, i.e. each xi,t is integrated

2�j
of order di. For any a, b = 1,..., N and �j = ––– define the crossperiodogram

T
of the process xt:

1      T 1      T

Iab(�) = 
––––––– �xa,teit��
 ––––––– �xb,teit��*

(2�T)1/2  
t=1                    (2�T)1/2   

t=1

where the asterisk means complex conjugation. For a bandwidth parame-
ter m we define Ykj = ln[Ikk(�j)], k = 1,..., N, j = 1,..., m. Then the multivari-
ate GPH estimator of fractional integration dk is given by:

m

� �jYkj                                              
1 mj=1

d
^

k = – ––––––– where  �j = ln�j – –– �ln�jm (3)
2��j

2
m j=1

j=1
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For individual series �xj,t�t = 1,.., T this estimator is equivalent to the univari-
ate GPH estimator previously described. Based on its asymptotic norma-
lity (Robinson (1995a)) a Wald-type test for the null hypothesis:

H0 : Pd = �

for a u�N matrix P and u�1 vector � can be constructed. The test statis-
tic:

4m(Pd
^

– �)T (P�
^

PT)–1 (Pd
^

– �)

has the limiting �2
u distribution, where d

^
= (d

^

1, ..., d
^

N)T and �
^

is a consis-
tent estimate of the limiting variance of 2	–m (d

^
– d) [see (Robinson, 1995a)].

In the case of testing for a common long-memory parameter of the process,
� is a vector of zeroes and P = (IN–1�0) – (0�IN–1) is a (N–1)�N matrix, where
IN–1 is the identity matrix of dimension N–1.

When the existence of a common order of integration d is assumed, the re-
stricted least square estimator is given by:

m

1
� 1T

N 
�

^
–1 Yj�j

j=1
d

^
= – –– ––––––––––––m (4)2

1T
N 

�
^

–11N��j
2

j=1

where Yj = (Y1j,..., YNj)T and 1N is a N�1 vector of ones. Like the unrestricted
estimates, the d

^
is asymptotically normally distributed.

3.3 Whittle Estimator

Another class of semiparametric estimators are the narrow-band Gaus-
sian or local Whittle estimators introduced by Künsch (1987), and deve-
loped by Robinson (1995b) and Lobato (1999). In the univariate case it is
defined as a maximiser of the likelihood function:

1 m I(�j)Q(g,d) = – –– ��ln(g�j
–2d) + –––––� (5)

m j=1 g�j
–2d

The ranges of consistency and asymptotic normality of the local Whittle
estimator are the same as those for the GPH estimator (see (Velasco, 1999b)
and (Phillips – Shimotsu, 2004)) but the Whittle estimator is more efficient
because asymptotically:

1d
^

LW � N
d, –––�4m

For further modifications of the local Whittle estimator, see for example
(Shimotsu – Phillips, 2002b) or (Andrews – Sun, 2004).

As with the GPH estimator, the local Whittle estimator can be defined in
the multivariate case. The corresponding (concentrating) likelihood func-
tion is:
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2 N       m

Q(d) = – –– �di �ln�j + ln�R
^
(d)� (6)

m i=1    j=1

where
1 m 

R
^
(d) = –– ��j Re �I(�j)��j (7)

m j=1

with �j = diag(�j
d1, ..., �j

dN) and a crossperiodogram matrix I(�). The esti-
mator d

^
= (d

^

1, ..., d
^

N)T is defined as a maximizer of the concentrating like-
lihood function (6). It can be computed in two ways: by numerical maxi-
mizing of (6) or using the two-step procedure proposed by Lobato (1999).
The first step is to compute the univariate QMLE for every series (denoted
that vector by  d

^
(1)) and the second step is to compute the following ex-

pression:

�2Q(d)           �Q(d)
d

^
(2) = d

^
(1) – 
––––––� d

^(1)�–1 
–––––� d
^(1)��d�dT                    �d

As showed by Lobato (1999) the above two-step estimator has the same
asymptotic distribution as the QMLE based on the equation (6), but it is
straightforward to calculate. Under the reasonable assumption this esti-
mator is normally distributed with parameters:

1
d

^
(2) � N
d, ––– E–1�	–m

where E = 2(IN + R ° R–1) and ° denotes the Hadamard product of two ma-
trices.

Based on these asymptotic properties a test for the null hypothesis of a li-
near set of restrictions on d is available. Consider P which is q�N matrix,
q�1 vector � and the null hypothesis

H0 : Pd = �

Then the test statistic:

m(Pd
^
(2) – �)T (PE

^
–1 – PT)–1 (Pd

^
(2) – �)

is asymptotically  �2
q distributed under the null hypothesis. It allows test-

ing for a common long-memory parameter. In this case � is a vector of ze-
roes and P = (IN–1�0) – (0�IN–1) is a (N–1)�N matrix. On the other hand, it
allows testing if the vector process is I(0) or I(1). In this case P = IN and �
is q�1 vector of zeroes or ones, respectively.

If the existence of a common order of integration is assumed, the esti-
mator of d* can be computed by maximizing the likelihood function

2Nd  m

Q*(d) = – –––– �ln�j + ln�R^ (d1N) (8)
m j=1
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The resulting QMLE d
^

* is asymptotically normally distributed:

1
d

^

* � N(d*, –––––)
4Nm

3.4 Fractional Cointegration

We will consider the special but simplest case of the cointegration of two
processes. Several definitions of fractional cointegration can be found in
the literature (see (Robinson – Yajima, 2002)). The most common definition
is as follows. We say that two fractionally integrated series xt and yt are
cointegrated of order d if:
– xt and yt share the same long memory, i.e. dx = dy;
– there exists a constant � such that process 
t = yt – �xt has long-memory

parameter d < dy.
Estimation of parameter � can be done by means of the frequency domain

least squares (FDLS) method. Based on the definition of the crossperio-
dogram from Subsection 3.2., for any Fourier frequencies �j define the ave-
raged crossperiodogram:

2�   m
F

^

ab(m) = 2Re �––– � Iab(�j)�T   j=1

Twhere m < –– is the bandwidth parameter. Then the FDLS estimate of 
2

� is given by:

�
^

= F
^

xy(m) F
^

xx
–1(m)

assuming that the inverse exists. The regularity conditions and asymptotic
properties of estimates of � were considered in (Robinson – Marinucci, 2001).

Alternatively, based on local Whittle estimation methods, another way to
check the existence of fractional cointegration between xt and yt is to test
the necessary condition that the coherency between both series is 1 at zero
frequency. Given the estimates matrix R

^
, the squared coherency estimate

is expressed by:

R
^ 2

xyH
^ 2

xy(0) = ––––––––
R
^

xx R
^

yy

4. Data Description

The data consist of the absolute daily rates of return, squared return and
the natural logarithms of the trading-volume series for 22 companies listed
in the DAX in the whole period from January 1994 to November 2005. For
each firm calculations exclusively concentrate on the period of its DAX mem-
bership. Therefore, it was possible to extract 22 companies over the whole
above-mentioned period. All time series were derived from Reuters. Con-
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tinuously compounded stock returns were calculated from daily closing
prices, adjusted for the effects of dividend payouts and stock splits. In or-
der to examine the robustness of estimated parameters across time and
with respect to sample size, the whole period has been divided into three
subperiods: from January 1994 to December 1997, from January 1998 to
December 2001 and from January 2002 to November 2005.

As can be seen from panels A–C of Table, the stylized fact of a ‘fat-tailed
and high-peaked’ distribution, widely reported for return-volatility series,
is mostly present in our data, especially in case of squared daily returns.
The median of stock squared return kurtosis in the whole period is 102.6
and ranges from 46.78 (MAN) to 1694 (Bayer). Positive skewness additio-
nally confirms non-normality of returns volatility. Unlike returns volatility,
trading volume displays rather negative skewness in the whole period. How-
ever, in second and third subperiods a change in sign of skewness can be
observed.

5. Empirical Results

Long-memory properties of volatility (measured either as absolute or
squared returns) and log-volume series were examined by means of
the methods described in Section 3.

As a first step, the individual long-memory parameter of each series was
estimated. In order to examine the robustness of the estimates, three dif-
ferent values of bandwidth m were considered (T0.5, 1.5*T0.5 and T0.65) and
several long-memory estimation methods were applied: GPH log-perio-
dogram regression and local Whittle estimation together with their modi-
fications: bias reduced log-periodogram regression (Andrews – Guggen-
berger, 2003), pooled log-periodogram regression (Shimotsu – Philips,
2002a), exact local Whittle estimation (Shimotsu – Philips, 2002b) and lo-
cal polynomial Whittle estimation (Andrews – Sun, 2002). For fixed m all
the methods gave similar results but when the bandwidth m changed, long-
-memory estimates differed slightly: the smaller m, the higher estimates
values. Despite these differences in values, the same conclusions can be
drawn for different m because relationships of long-memory estimates
across subsamples remained unchanged. Due to the lack of space only re-
sults of local Whittle estimation are presented in Table 2. The other results
can be supplied to the reader upon request.

It is no surprise that univariate long-memory estimators for two diffe-
rent measures of volatility, i.e. absolute and squared returns, are quite si-
milar. Moreover, in all but two presented cases volatility long-memory esti-
mates are in the stationary region, i.e. –0.5 < d < 0.5. This is in line with
previous results in the literature ((Ding et al., 1993), (Bollerslev –
Mikkelsen, 1996), (Baillie et al., 1996), (Lobato – Savin, 1998)).

When we focus our attention on the behavior of long memory of volati-
lity series in different subperiods, it turns out that for majority of samples
estimates increase, i.e. in most cases value of memory parameter increases
from one subperiod to another (it is particularly visible between the second
and third subperiods) and reaches its maxima in the most recent subperiod:
in 20 cases of absolute returns and 15 cases of squared returns.
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In contrast to volatility long-memory estimates, a large number of long-
-memory estimates of log-volume lie in the nonstationary region d > 0.5.
This is again in line with results from the literature (Gallant et al., 1992),
(Andersen, 1996), (Bollerslev – Jubinski, 1999). The nonstationarity of log-
-volume series is particularly visible among estimates of memory parame-
ter d in the whole period (13 cases). On the other hand, there is no visible
increasing or decreasing trend in the behavior of d across time, however
there are many more cases when long memory decreases. Moreover, it should
be noted here that the value of memory parameters in the whole period is
superior to d in subperiods for the majority of stocks.

Based on the asymptotic normality of the considered long-memory esti-
mates, the standard cases I(0) and I(1) were tested. The null hypothesis
about week dependence, i.e. I(0) was rejected in the great majority of sam-
ples, whereas the I(1) hypothesis about the unit root was rejected in all
cases.

As a next step, we examined the long memory of bivariate series consist-
ing of different measures of volatility and log-volume. As it was pointed out
in Section 3, the GPH bivariate estimates are identical to the univariate es-
timates. Thus only multivariate modifications of local Whittle procedures
were used. The bivariate memory parameter of volatility-volume series was
computed via the two-step procedure. In literature, some authors – e.g.
Bollerslev and Jubinski (1999), Lobato and Velasco (2000) – raise the ques-
tion about the existence of common long memory of volatility and log-vo-
lume. In order to answer this question we performed tests of equality of
long-memory parameters of volatility and log-volume. We use bivariate lo-
cal Whittle estimates as well as GPH estimates. When the null hypothesis
that returns volatility and trading volume share the same long-memory pa-
rameter could not be rejected, a common memory was estimated. As an exam-
ple, Tables 3 and 4 summarise the results of these estimations for volume-
-squared returns pairs. The Wald test described in Section 3 rejects the null
hypothesis of a common long memory of squared returns and log-volume in
the whole period for 17 cases of GPH bivariate estimates and for 16 cases
of LW bivariate estimates. On the other hand, in the most recent period it
rejects the null hypothesis only in three and two cases respectively. There
are similar results regarding the long-run relationship between absolute
returns and log-volume. The results of testing the existence of the common
long-memory parameter suggest that generally it can be assumed that log-
-volume and returns volatility have the same long memory, particularly in
the most recent period. Therefore, a new question arises: do they move to-
gether in a long time horizon? To answer this question, fractional cointe-
gration between log-volume and volatility series should be examined by
means of estimation of squared coherency and parameter �, described in
Subsection 3.4. Typically, the estimated squared coherency for either of
the considered pairs, i.e. log-volume and absolute returns or log-volume and
squared returns, is in the range 0.1–0.3, and only in two cases it is greater
than 0.4. However, it is too far from 1 to assume trading volume and re-
turns volatility are fractionally cointegrated. A similar conclusion can be
drawn from examining � estimates and the long-memory parameter of resi-
duals in a frequency domain least squares estimation. As it was mentioned
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TABLE 3 GPH Estimates of Long Memory Parameter d = (d1,d2)T of Squared Returns (upper
row) and Log-volume (lower row). (If there is no rejection of the null hypothesis: d1 = d2

at 0.05 significance level, the common long memory parameter is displayed (in bold).)

Squared Returns

01.94–11.05 01.94–12.97 01.98–12.01 01.02–11.05

Allianz 0.40 0.24 0.24 0.18 0.58 0.55
0.65 0.23 0.47 0.53

BASF 0.28 0.18 0.23 0.24 0.36 0.34
0.43 0.31 0.44 0.32

Bayer 0.21 0.24 0.30 0.14 0.09
0.46 0.36 0.46 0.35

BMW 0.41 0.41 0.35 0.34 0.36 0.38 0.38 0.35
0.41 0.33 0.39 0.31

CommB 0.40 0.42 0.29 0.30 0.40 0.40 0.41
0.43 0.34 0.18 0.43

Daimler 0.36 0.18 0.36 0.42 0.49 0.42
0.50 0.43 0.50 0.35

DBank 0.39 0.37 0.24 0.28 0.26 0.49
0.33 0.35 0.45 0.29

DTelekom 0.45 0.23 0.29 0.24 0.51 0.40
0.65 0.34 0.66 0.31

Henkel 0.29 0.30 0.20 0.27 0.23 0.21
0.57 0.50 0.31 0.20

HVB 0.47 0.20 0.51 0.57 0.55 0.51
0.63 0.36 0.63 0.49

Linde 0.34 0.35 0.38 0.27 0.31 0.26 0.17
0.63 0.44 0.38 0.10

Lufthansa 0.26 0.14 0.50 0.25 0.28
0.58 0.41 0.34 0.30

MAN 0.38 0.20 0.28 0.21 0.24 0.44 0.43
0.57 0.36 0.30 0.40

Metro 0.30 0.15 0.25 0.15 0.25 0.25
0.55 0.31 0.36 0.24

MuRe 0.45 0.22 0.26 0.29 0.40 0.49
0.68 0.30 0.52 0.55

RWE 0.38 0.22 0.23 0.25 0.48 0.41
0.54 0.23 0.57 0.32

SAP 0.24 -0.03 0.25 0.37 0.35
0.66 0.39 0.67 0.32

Schering 0.18 0.26 0.34 0.22 0.23 0.22 0.25
0.41 0.40 0.24 0.29

Siemens 0.37 0.37 0.29 0.29 0.23 0.37 0.33
0.36 0.28 0.46 0.27

Thyssen 0.19 0.21 0.22 0.07 0.11 0.19 0.25
0.42 0.23 0.17 0.33

TUI 0.39 0.22 0.37 0.35 0.28
0.67 0.49 0.30 0.61

VW 0.38 0.35 0.22 0.24 0.46 0.39 0.44 0.39
0.31 0.27 0.36 0.35
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TABLE 4 Multivariate Whittle Estimates of the Long Memory Parameter d = (d1, d2)T of Squared Re-
turns (upper row) and Log-volume (lower row). (If there is no rejection of the null hypothesis:
d1 = d2 at 0.05 significance level, the common long memory parameter is displayed (in bold).)

Squared Returns

01.94–11.05 01.94–12.97 01.98–12.01 01.02–11.05

Allianz 0.38 0.29 0.28 0.23 0.52 0.53
0.66 0.28 0.49 0.54

BASF 0.26 0.18 0.21 0.35 0.33
0.47 0.35 0.38 0.29

Bayer 0.19 0.26 0.31 0.10 0.13 0.20
0.46 0.37 0.41 0.27

BMW 0.41 0.44 0.34 0.36 0.32 0.36 0.42 0.38
0.45 0.39 0.39 0.28

CommB 0.38 0.27 0.31 0.44 0.37 0.38
0.49 0.36 0.30 0.40

Daimler 0.35 0.24 0.35 0.41 0.44 0.41
0.54 0.49 0.45 0.34

DBank 0.37 0.40 0.27 0.33 0.36 0.42 0.38
0.42 0.41 0.37 0.28

DTelekom 0.42 0.29 0.31 0.26 0.43
0.65 0.34 0.62 0.28

Henkel 0.32 0.30 0.27 0.33 0.26 0.25
0.54 0.48 0.39 0.23

HVB 0.45 0.19 0.46 0.51 0.48 0.46
0.65 0.38 0.53 0.43

Linde 0.33 0.34 0.37 0.26 0.32 0.28 0.25
0.58 0.40 0.38 0.20

Lufthansa 0.34 0.23 0.50 0.30 0.32
0.58 0.43 0.35 0.34

MAN 0.38 0.16 0.22 0.25 0.41 0.43
0.55 0.34 0.27 0.45

Metro 0.32 0.20 0.21 0.28 0.26
0.56 0.39 0.39 0.22

MuRe 0.43 0.20 0.22 0.28 0.41 0.46
0.67 0.23 0.53 0.50

RWE 0.36 0.25 0.24 0.25 0.38 0.37
0.57 0.22 0.48 0.36

SAP 0.26 0,00 0.23 0.28 0.28
0.66 0.36 0.66 0.27

Schering 0.24 0.22 0.21 0.23 0.22 0.25
0.41 0.36 0.25 0.28

Siemens 0.39 0.41 0.34 0.35 0.22 0.38 0.36
0.43 0.35 0.42 0.31

Thyssen 0.25 0.36 0.16 0.20 0.13 0.20 0.30 0.33
0.42 0.24 0.25 0.36

TUI 0.36 0.53 0.22 0.34 0.30 0.32
0.61 0.41 0.27 0.58

VW 0.44 0.40 0.23 0.26 0.42 0.38 0.40 0.40
0.37 0.30 0.33 0.39



in Subsection 3.4, the memory of residuals must be smaller than the com-
mon long memory of the series under consideration (i.e. log-volume and
volatility). The above condition is fulfilled only in a minority of cases. More-
over, if it is fulfilled, the difference between the common long memory of
volume – volatility and residuals is insignificant. These findings are in line
with those of Lobato and Velasco (2000) and indicate that even though re-
turns volatility and trading-volume series might share a common long-me-
mory parameter, they do not move together.

6. Conclusions

We tested by means of several methods for stochastic long memory in
the stock data of German companies included in DAX index. The subject of
our investigations were trading volume and volatility of returns (approxi-
mated by absolute returns and alternatively by squared returns). We es-
tablished that for the equities listed in the DAX index the log-volume (the lo-
garithm of trading volume) and returns volatility exhibit long memory.
Moreover these two series have the same long-memory parameters for most
of the equities. This common long memory of both series is especially
strongly pronounced in the latest data. On the other hand, there is no evi-
dence that log-volume and volatility share the same long memory compo-
nent.

The presence of long memory represents nonlinearity in the mean of
the process. This suggests a possibility for constructing nonlinear econo-
metric models which could be applied to forecasting, especially over long
forecasting horizons. According to our experience the known methods of
long-memory parameter estimation lead to estimators whose values are
very close together. One important question which arises here concerns
the source of long memory in the series. The existence of long memory in
the investigated series may reflect the statistical properties of fundamen-
tal factors underlying their behavior or qualitative changes which take place
on stock markets. According to empirical investigations, the growing share
of stocks by institutional investors is accompanied by an increasing auto-
correlation in returns and trading volume data. On the other hand, long
memory is related to autocorrelation. Thus, in our opinion the increasing
presence of long memory in the latest German trading-volume data may be
caused by the growing share of equities by institutional investors. This is
in line with results presented in the contribution by Gurgul and Majdosz
(2006) for the Polish capital market.

The increasing level of long memory in stock data also suggests the pos-
sibility of risk-level reduction in response to increasing activities of insti-
tutional investors on the German capital market. This finding supports par-
ticularly the hypothesis concerning the stabilizing impact of pension reform
on the German capital market and corresponds to the empirical evidence
presented in the literature for other markets.

464 Finance a úvûr – Czech Journal of Economics and Finance, 56, 2006, ã. 9-10



REFERENCES

AGIAKLOGLOU, C. – NEWBOLD, P. – WOHAR, M. (1993): Bias in an estimator of the frac-
tional difference parameter. Journal of Time Series Analysis, vol. 14, 1993, pp. 235–246.

ANDERSEN, T. G. (1996): Return volatility and trading volume: An information flow interpre-
tation of stochastic volatility. Journal of Finance, vol. 51, 1996, pp. 169–204.

ANDREWS, D. W. K. – GUGGENBERGER, P. (2003): A bias-reduced log-periodogram regres-
sion estimator for the long-memory parameter. Econometrica, vol. 71, 2003, pp. 675–712.

ANDREWS, D. W. K. – SUN, Y. (2004): Adaptive local polynomial Whittle estimation of long-
-range dependence. Econometrica, vol. 72, 2004, pp. 569–614.

AVOUYI-DOVI, S. – JONDEAU, E. (2000): International transmission and volume effects in
G5 stock market returns and volatility. BIS Conference Papers, 2000, no. 8, pp. 159–174.

BAILLIE, R. T. (1996): Long memory processes and fractional integration in econometrics. Jour-
nal of Econometrics, vol. 73, 1996, pp. 5–59.

BAILLIE, R. T. – BOLLERSLEV, T. – MIKKELSEN, H. O. (1996): Fractionally integrated ge-
neralized autoregressive conditional heteroskedasticity. Journal of Econometrics, vol. 74, 1996,
pp. 3–30.

BARKOULAS, J. T. – BAUM, C. F. (1996): Long term dependence in stock returns. Economics
Letters, vol. 53, 1996, pp. 253–259.

BARKOULAS, J. T. – LABYS, W. C. – ONOCHIE, J. (1997): Fractional dynamics in interna-
tional commodity prices. Journal of Futures Markets, vol. 17, 1997, pp. 161–189.

BERAN, J. A. (1992): Statistical methods for data with long-range dependence. Statistical Sci-
ence, vol. 7, 1992, pp. 404–427.

BERAN, J. A. (1994): Statistics for Long-Memory Processes. Chapman and Hall, 1994.

BESSEMBINDER, H. – SEGUIN, P. J. (1993): Price volatility, trading volume and market depth:
evidence from futures markets. Journal of Financial and Quantitative Analysis, vol. 28, 1993,
pp. 21–39.

BEVERIDGE, S. – OICKLE, C. (1997): Long memory in the Canadian stock market. Applied
Financial Economics, 1997, pp. 667–672.

BLUME, L. – EASLEY, D. – O’HARA, M. (1994): Market statistics and technical analysis:
The role of volume. Journal of Finance, vol. 49, 1994, pp. 153–181.

BOLLERSLEV, T. – JUBINSKI, D. (1999): Equity trading volume volatility: latent information
arrivals and common long-run dependencies. Journal of Business & Economic Statistics, vol. 17,
1999, pp. 9–21.

BOLLERSLEV, T. – MIKKELSEN, H. O. (1996): Modeling and pricing long memory in stock
market volatility. Journal of Econometrics, vol. 73, 1996, pp. 151–184.

BRAILSFORD, T. J. (1996): The empirical relationship between trading volume, returns and
volatility. Accounting and Finance, vol. 35, 1996, pp. 89–111.

BROCK, W. A. – LEBARON, B. D. (1996): A dynamic structural model for stock return volati-
lity and trading volume. The Review of Economics and Statistics, vol. 78, 1996, pp. 94–110.

CAMPBELL, J. Y. – GROSSMANN, S. J. – WANG, J. (1993): Trading volume and serial corre-
lation in stock returns. Quarterly Journal of Economics, vol. 108, 1993, pp. 905–939.

CHEUNG, Y. W. – LAI, K. – LAI, M. (1993): Are there long cycles in foreign stock returns? Jour-
nal of International Financial Markets, Institutions and Money, vol. 3, 1993, pp. 33–47.

CHEUNG, Y. W. – LAI, K. S. (1993): Do gold market returns have long memory? Financial Re-
view, vol. 28, 1993, pp. 181–202.

CHEUNG, Y. W. – LAI, K. S. (1995): A search for long memory in international stock market
returns. Journal of International Money and Finance, vol. 14, 1995, pp. 597–615.

CHORDIA, T. – SUBRAHMANYAM, A. – ANSHUMAN, V. R. (2001): Trading activity and ex-
pected stock returns. Journal of Financial Economics, vol. 59, 2001, pp. 3–32.

CHORDIA, T. – SWAMINATHAN, B. (2000): Trading volume and cross-autocorrelations in stock
returns. Journal of Finance, vol. 55, 2000, pp. 913–935.

CLARK, P. K. (1973): A subordinated stochastic process model with finite variance for specula-
tive prices. Econometrica, vol. 41, 1973, pp. 135–155.

465Finance a úvûr – Czech Journal of Economics and Finance, 56, 2006, ã. 9-10



CONNOLLY, R. – STIVERS, C. (2003): Momentum and reversals in equity-index returns du-
ring periods of abnormal turnover and return dispersion. Journal of Finance, vol. 58, 2003,
pp. 1521–1555.

COPELAND, T. (1976): A model of asset trading under the assumption of sequential informa-
tion arrival. Journal of Finance, vol. 31, 1976, pp. 135–155.

COX, D. R. – REID, N. (1987): Parameter orthogonality and approximate conditional inference
(with discussion). Journal of the Royal Statistical Society Series B, vol. 49, 1987, pp. 1–39.

CRATO, N. (1994): Some international evidence regarding the stochastic memory of stock re-
turns. Applied Financial Economics, vol. 4, 1994, pp. 33–39.

DARRAT, A. F. – RAHMAN, S. – ZHONG, M. (2003): Intraday trading volume and return volati-
lity of the DJIA stocks: A note. Journal of Banking and Finance, vol. 27, 2003, pp. 2035–2043.

DING, Z. – GRANGER, C. W. J. – ENGLE, R. F. (1993): A long memory property of stock mar-
ket returns and a new model. Journal of Empirical Finance, vol. 1, 1993, pp. 83–106.

DOORNIK, J. A. – OOMS, M. (2003): Computational aspects of maximum likelihood estimation
of autoregressive fractionally integrated moving average models. Computational Statistics and
Data Analysis, vol. 42, 2003, pp. 333–348.

FAMA, E. F. (1970): Efficient capital markets: A review of theory and empirical work. Journal
of Finance, vol. 25, 1970, pp. 383–417.

FANG, H. – LAI, K. – LAI, M. (1994): Fractal structure in currency futures prices. Journal of
Futures Markets, vol. 14, 1994, pp. 169–181.

GALLANT, A. R. – ROSSI, P. E. – TAUCHEN, G. E. (1992): Stock prices and volume. Review of
Financial Studies, vol. 5, 1992, pp. 199–242.

GALLO, G. M. – PACINI, B. (2000): The effects of trading activity on market volatility. The Eu-
ropean Journal of Finance, vol. 6, 2000, pp. 163–175.

GEWEKE, J. – PORTER-HUDAK, S. (1983): The estimation and application of long memory
time series models. Journal of Time Series Analysis, vol. 4, 1983, pp. 221–238.

GRANGER, C. W. J. – JOYEUX, R. (1980): An introduction to long-memory time series models
and fractional differencing. Journal of Time Series Analysis, vol. 1, 1980, pp. 15–29.

GRANGER, C. W. J. – ZHUANXIN, D. (1996): Varieties of long memory models. Journal of
Econometrics, vol. 73, 1996, pp. 61–67.

GREENE, M. T. – FIELITZ, B. D. (1977): Long-term dependence in common stock returns. Jour-
nal of Financial Economics, vol. 5, 1977, pp. 339–349.

GURGUL, H. – MAJDOSZ, P. (2006): The impact of institutional investors on risk and stock re-
turn autocorrelation in the context of the Polish pension reform. Badania Operacyjne i Decyzje,
forthcoming.

HELMS, B. P. – KAEN, F. R. – ROSENMAN, R. E. (1984): Memory in commodity futures con-
tracts. Journal of Futures Market, vol. 4, 1984, pp. 559–567.

HENRY, M. – ROBINSON, P. M. (1996): Bandwidth choice in Gaussian semiparametric esti-
mation of long range dependence. In: Robinson, P. M. – Rosenblatt, M. (eds.): Athens Conference
on Applied Probability and Time Series Analysis, Volume II: Time Series Analysis, In Memory
of E. J. Hannan. New York, Springer, pp. 220–232.

HIEMSTRA, C. – JONES, J. D. (1994): Testing for linear and nonlinear Granger causality in
the stock price – volume relation. Journal of Finance, vol. 49, 1994, pp. 1639–1664.

HOSKING, J. R. M. (1981): Fractional differencing. Biometrika, vol. 68, 1981, pp. 165–176.

HURST, H. R. (1951): Long-term storage capacity of reservoirs. Transactions of the American
Society of Civil Engineers, vol. 1, 1951, pp. 519–543.

HURVICH, C. M. – DEO, R. S. – BRODSKY, J. (1998): The mean squared error of Geweke and
Porter-Hudak’s estimator of the memory parameter of a long memory time series. Journal of
Time Series Analysis, vol. 19, 1998, pp. 19–46.

KARPOFF, J. M. (1987): The relation between price changes and trading volume: A survey. Jour-
nal of Financial and Quantitative Analysis, vol. 22, 1987, pp. 109–126.

KOOP, G. – LEY, E. – OSIEWALSKI, J. – STEEL, M. F. J. (1997): Bayesian analysis of long
memory and persistence using ARFIMA models. Journal of Econometrics, vol. 76, 1997,
pp. 149–169.

466 Finance a úvûr – Czech Journal of Economics and Finance, 56, 2006, ã. 9-10



KÜNSCH, H. R. (1987): Statistical aspects of self-similar processes. In: Prokhorov, Y. – Sazanov,
V. V. (eds.): Proceedings of the First World Congress of the Bernoulli Society. Utrecht, VNU Sci-
ence Press, 1987, pp. 67–74.

LAMOUREUX, C. G. – LASTRAPES, W. D. (1990): Heteroscedasticity in stock return data: Vo-
lume versus GARCH effects. Journal of Finance, vol. 45, 1990, pp. 221–229.

LAMOUREUX, C. G. – LASTRAPES, W. D. (1994): Endogenous trading volume and momen-
tum in stock-return volatility. Journal of Business and Economic Statistics, vol. 12, 1994,
pp. 253–260.

LEE, B. S. – RUI, O. M. (2002): The dynamic relationship between stock returns and trading
volume: Domestic and cross-country evidence. Journal of Banking and Finance, vol. 26, 2002,
pp. 51–78.

LO, A. W. (1991): Long-term memory in stock market prices. Econometrica, vol. 59, 1991,
pp. 1279–1313.

LOBATO, I. N. (1999): A semiparametric two-step estimator in a multivariate long memory
model. Journal of Econometrics, vol. 90, 1999, pp. 129–153.

LOBATO, I. N. – SAVIN, N. E. (1998): Real and spurious long-memory properties of stock-mar-
ket data (with discussion). Journal of Business & Economic Statistics, vol. 16, 1998, pp. 261–283.

LOBATO, I. N. – VELASCO, C. (2000): Long memory in stock-market trading volume. Journal
of Business & Economic Statistics, vol. 18, 2000, no. 4, pp. 410–427.

MANDELBROT, B. B. (1971): When can a price be arbitraged efficiently? A limit to the vali-
dity of the random walk and martingale models. Review of Economics and Statistics, vol. 53,
1971, pp. 225–236.

MCKENZIE, M. D. – FAFF, R. W. (2003): The determinants of conditional autocorrelation in
stock returns. Journal of Financial Research, vol. 26, 2003, pp. 259–274.

OMRAN, M. F. – MCKENZIE, E. (2000): Heteroscedasticity in stock returns data revisited: Vo-
lume versus GARCH effects. Applied Financial Economics, vol. 10, 2000, pp. 553–560.

PETERS, E. E. (1994): Fractal market analysis: applying chaos theory to investment and eco-
nomics. J. Wiley & Sons, 1994.

PHILLIPS, P. C. B. – SHIMOTSU, K. (2004): Local Whittle estimation in nonstationary and
unit root cases. Annals of Statistics, vol. 34, 2004, no. 2, pp. 656–692.

ROBINSON, P. (1995a): Log-periodogram regression of time series with long range dependence.
Annals of Statistics, vol. 23, 1995, pp. 1048–1072.

ROBINSON, P. M. (1995b): Gaussian semiparametric estimation of long range dependence. An-
nals of Statistics, vol. 23, 1995, pp. 1630–1661.

ROBINSON, P. M. – MARINUCCI, D. (2001): Narrow-band analysis of nonstationary processes.
Annals of Statistics, vol. 29, 2001, no. 4, pp. 947–986.

ROBINSON, P. M. – YAJIMA, Y. (2002): Determination of cointegrating rank in fractional sys-
tems. Journal of Econometrics, vol. 106, 2002, no. 2, pp. 217–241.

SHIMOTSU, K. – PHILLIPS, P. C. B. (2002a): Pooled log periodogram regression. Journal of
Time Series Analysis, vol. 23, 2002, pp. 57–93.

SHIMOTSU, K. – PHILLIPS, P. C. B. (2002b): Exact local Whittle estimation of fractional in-
tegration. Cowles Foundation Discussion Paper, no. 1367.

SOWELL, F. B. (1992): Maximum likelihood estimation of stationary univariate fractionally in-
tegrated time series models. Journal of Econometrics, vol. 53, 1992, pp. 165–188.

SUOMINEN, M. (2001): Trading volume and information revelation in stock markets. Journal
of Financial and Quantitative Analysis, vol. 36, 2001, pp. 545–565.

TANAKA, K. (1999): The nonstationary fractional unit root. Econometric Theory, vol. 15, 1999,
pp. 549–582.

VELASCO, C. (1999a): Non-stationary log-periodogram regression. Journal of Econometrics,
vol. 91, 1999, pp. 325–371.

VELASCO, C. (1999b): Gaussian semiparametric estimation of non-stationary time series. Jour-
nal of Time Series Analysis, vol. 20, 1999, pp. 87–127.

467Finance a úvûr – Czech Journal of Economics and Finance, 56, 2006, ã. 9-10



SUMMARY
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In this study, the contributors present the results of their investigations into
the long-memory properties of trading volume and the volatility of stock returns (gi-
ven by absolute returns and alternatively by square returns). Their database is dai-
ly stock data of German companies in the DAX segment of the German Stock Ex-
change. The purpose of these investigations is the calculation of memory parameters
and to determine whether there exists the same degree of long memory for trading-
-volume and return-volatility data. Calculations are performed on daily results from
January 1994 to November 2005 and in three sub-periods: January 1994 to De-
cember 1997, January 1998 to December 2001, and January 2002 to November 2005.
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