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Abstract

In The Big Problem of Small Change, Sargent and Velde apply a cash-

in-advance model to the history of coinage and to contemporary thought

about coinage. They assert that their model accounts for puzzling ob-

servations involving the depreciation and disappearance of small coins. I

question its usefulness for that purpose and for other issues pertaining to

coinage. My main concern is that their model does not depict the prob-

lems usually associated with full-bodied coinage systems–problems that

stem from the technological difficulties of having a full-bodied coinage

system in which money is portable, divisible, durable, and recognizable.

JEL classification: E42

1 Introduction

In The Big Problem of Small Change (Princeton University Press, Princeton
and Oxford, 2002, xxi+405 pages), Thomas Sargent and Franc̨ois Velde present
an ambitious treatise on the history of coinage and contemporary thought about
coinage in Western Europe during six centuries, roughly from 1200 until 1800.
As the title suggests, they focus on the seeming inability of governments to
provide adequate small-denomination money. The main conclusions of the au-
thors are even more narrowly focused and have to do with the usefulness of a
two-money, nested, cash-in-advance model–nested in that one of the monies,
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labeled small change, can be used to purchase anything, while the other, labeled
large denomination money, can be used only to purchase some goods.
The authors make two main assertions about this model. The first is that

[o]ur model explains why the medieval money supply mechanism was
prone to shortages of small coins. It shows why debasements or rein-
forcements of parts of the denomination structure would temporarily
cure those shortages. The model also explains why shortages and
depreciations of small coins happened simultaneously (page 8, their
italics).

The second is that if governments had had access to the model, then they would
have more quickly put into place a monetary system with an adequate supply
of small-denomination money. In particular, they would sooner have adoped
a system in which small-denomination coins are token coins (rather than full-
bodied coins) that are exchangable on demand for large-denomination, full-
bodied coins. Such a monetary system, which is called the standard formula,
was not adopted until the 19th century. In their words,

The theme of this book is that implementing the standard formula
required several things: a good technology to make coins, an under-
standing of the relevant monetary theory, and a government wanting
to convert token coins into full-bodied coins on demand (page 272).

And the relevant monetary theory is their cash-in-advance model: “Our his-
torical account refers to our model so often that sometimes we may seem to
be writing a history of how past monetary experts learned our model, piece by
piece through a long process of trial and error (page 14).”
I was not persuaded about either assertion. As regards the first, the authors

do not describe the equilibria to which they repeatedly allude. They appeal
to back-solving without describing the processes for exogenous variables that
produce those equilibria. Moreover, even if the model has such equilibria, the
authors do not convincingly argue that it provides a good interpretation of the
episodes on which they focus. Many of those episodes involve disruption of
trade, and nothing in the model resembles disruption of trade. Finally, and this
alone would lead me to question both assertions, their model does not depict
any of the problems usually associated with full-bodied coinage systems.
Economists have long agreed that ideal monies must be portable, divisible,

durable, and recognizable. The history of coinage is mainly about the techno-
logical difficulties of achieving a full-bodied coinage system that comes close to
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having those attributes. Although the authors describe such difficulties and the
governmental commitment needed to implement the standard formula, neither
the difficulties nor the inability to commit appear in their model.
To illustrate that there are models that include at least some of those dif-

ficulties and that the difficulties matter, I will briefly describe some models of
indivisible money. Given the focus on small change, indivisibility is an obvious
difficulty to try to study. After all, how could there be a small-change problem
if the objects used to make large-denomination money were naturally divisible?

2 The Sargent-Velde Model

Sargent and Velde describe their model twice–informally near the beginning
of their book and then, more completely, in the last part of their book which
is entitled A Formal Theory. Here is their model, although in slightly different
language.
There are two perishable consumption goods per discrete date, good 1 and

good 2. The representative household, a shopper-producer pair, maximizes
discounted utility with a period utility function that depends on its consumption
of the two goods. There are two assets which the household can carry over from
one date to the next: money 1 and money 2. The shopper is constrained by the
quantities of the two monies the household brings into the period, the prices
faced, and two cash-in-advance constraints: money 1, labeled small change, is
required for purchases of good 1; either money can be used to purchase good 2.
The producer has an endowment of resource that can be turned one-for-one into
either of the two consumption goods, but not into goods that the producer’s
household consumes. The producer is a price-taker whose activities result in
end-of-period holdings of the two monies which then get added to any unspent
money of the shopper to give the household’s money for the next period.
If this were a closed economy, then that would be the end of the story.

Instead, it is a small open economy with proportional (iceberg) transport costs.
The producer faces f.o.b. world prices of the resource, one price in terms of
each money, and the transport costs. The world market can be used to turn
one money into the other only by bearing double transport costs. For example,
in order to turn money 2 into money 1 using the world market, the producer
imports resource on the world market paying with money 2 and then exports
the resource for money 1. Clearly, the world market puts bounds on domestic
prices.
Rather than transport costs, the authors set out their model in terms of the
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minting of coins from silver and the melting of coins into silver, where silver is
an object which differs from the coins and which is available at an exogenous
world price in terms of the resource. A government mint stands ready to turn
silver into each money at announced prices and for per unit fees which are
interpreted to be a sum of taxes and real costs of producing coins. The taxes
are rebated to people lump-sum. To be consistent with the taxes, my transport-
cost description has to be supplemented with import and export taxes.

2.1 Equilibria with shortages

As noted above, the crucial and paradoxical observations for the authors are
small coins losing value relative to large coins and, at the same time, reported
decreases in the stock of small coins–and, sometimes, even the complete dis-
appearance of such coins. For the authors, an explanation is an equilibrium
of their model in which small coins are losing value (relative to large coins).
However, as is well-known, such paths do not generally exist in their model.
The authors’ solution, as they emphasize, is to use back-solving: they posit the
above kinds of sequences for endogenous variables and then claim that there are
supporting sequences of the exogenous variables–the endowments and world
prices. However, they never describe the supporting sequences. To see why
existence of such sequences which are also plausible is not obvious, let’s first
consider two extreme cases of their model.
One extreme case is infinite transport costs. In that case, the economy is

closed and has exogenous and constant stocks of two monies. The authors
present the conditions that characterize equilibria for this case on page 351 in a
section entitled Equilibria with neither melting nor minting. If the good-1 cash-
in-advance constraint is binding (the second column of the display on page 351),
which is necessary for an equilibrium with a falling relative value of money 1, and
if the resource endowment is constant, then the equilibrium conditions which
are equalities reduce to the following implicit autonomous first-order difference
equation,

xt
y − xt

r(xt, y − xt) =
xt−1

y − xt−1
. (1)

Here, y denotes the endowment, xt ∈ [0, y] denotes date t consumption of good
1 (which is equal to the value of money 1 in a binding equilibrium), y − xt is
consumption of good 2, and the function r is the ratio of the marginal utility of
good 1 to that of good 2.
Under their assumptions, which include an infinite value of r(0, y), the fol-

lowing can be said about solutions to (1). There is one steady state with xt = x∗,
where x∗ is the unique solution to r(x∗, y − x∗) = 1. There may or may not
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be a second steady state at xt = 0.1 In this second steady state, money 1 has
no value.2 In addition, and as is familiar from closely related models, there is
always at least a one-dimensional continuum of equilibria: for any x0 ∈ (0, x∗),
there exists at least one sequence converging to 0 which is an equilibrium.3

Another extreme case is zero transport costs. With zero transport costs,
prices are exogenous. The initial condition is arbitrary: there can be surplus
amounts of both monies, deficient amounts of both, or a deficient amount of
money 1 only–all relative to the amounts needed to support the consump-
tion pair (x∗, y − x∗). If the amount of money 1 is deficient, then the unique
equilibrium has some of the resource for a time devoted to acquiring money 1.
Now consider the general case, finite transport costs. For a constant envi-

ronment, the implied lower bound on the value of money 1 eliminates equilibria
with a falling value of money 1. That is why the authors appeal to back-solving.
However, if the sequences of the exogenous variables needed to get such equi-
libria are implausible, then so are the equilibria.

2.2 Steady-state neutrality

Occasionally, the authors allude to an equilibrium of their model with unchang-
ing relative values of the two monies. Against the background of a constant
environment, such an equilibrium has a constant allocation with consumption
given by (x∗, y − x∗). This constant allocation does not depend on–is neutral
with respect to–the silver content of small and large coins and the world price
of silver. Moreover, any such equilibrium of their model is an optimum subject
only to the resource constraint. These are questionable predictions for the kinds
of economies the authors claim to be analyzing–economies in which it is tech-
nologically impossible to provide full-bodied coinage that is portable, divisible,
durable, and recognizable.

3 The History

Most of the book, Parts II-IV, is devoted to a discussion of episodes from the
histories of Venice, Florence, England, France, Flanders, and Castile and, to a
lesser extent, a discussion of contemporary monetary theory. A prelude to the
history is given at the beginning of chapter 2:

1 It exists if limx→0 xr(x, y − x) = 0.
2Both steady states satisfy the inequality requirements for equilibrium. The second steady

state is somewhat awkward in their notation. It is not awkward if the resource is chosen as
the numeraire.

3 Such paths also satisfy the equilibrium conditions that are inequalities.
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Our theory allows us to interpret a pervasive and persistent depreci-
ation of small denomination coins, exhibited for example in the data
shown in figure 2.1. The six panels record estimates of the (inverse
of the) silver content of small denomination coins from 1200 to 1800
for six countries [those listed above]. Increases in exchange rates of
large for small coins and recurrent shortages of small coins accom-
panied these persistent depreciations in the silver content of small
coins. Our theory identifies the source of the upward drifts in figure
2.1 and explains how they related to the concurrent shortages (page
15).

Despite repeatedly referring to the model, the authors’ exposition of histor-
ical episodes is not a straightforward comparison between observations and the
implications of their model. Even after my first reading of most of the book, I
thought that the authors’ claims about the model’s implications rested on com-
puter files of solutions which were too complicated and messy to present. Then,
quite late in my reading I came across the following statement: "Though the
formal model in part V assumes rational expectations, our narrative assumes
that policy makers frequently used incorrect or incomplete models (page 327,
my italics)." To what does narrative refer? It is certainly not referring to data
like that displayed in the authors’ figure 2.1. I think it refers to their claims
about what their theory implies. If so, then I must conclude that we have not
been given a complete description of their model.
Even if the model has plausible equilibria with a falling value of money 1,

I question whether it can explain most of the shortages in the historical record
on which the authors focus. The shortages are reports by contemporaries con-
cerning the difficulty of carrying out trade in the face of sudden disappearances
of some kinds of coins (see, for example, the description of shortages in 16th
century France on pages 202, 203.)
The kinds of shortages that can occur in the model are not consistent with

such reports. A shortage in the model is a positive multiplier on the money-1
cash-in-advance constraint together with a decline in the total value of money 1.
How would people in the model feel about an equilibrium in which this happens?
Would they associate such a multiplier with a shortage? A positive multiplier
on a cash-in-advance constraint is the usual equilibrium in such models. In the
model, real balances in the form of money 1 are like refrigerator space that must
accompany consumption of good 1 in a fixed proportion. The positive multiplier
implies that the pecuniary rate-of-return on refrigerator space is lower than that
on other assets. That does not translate into a shortage of refrigerator space.
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The model’s quantity implications are no better. The people in the model are
freely choosing quantities while taking prices as given. Therefore, nothing in
the model looks like a shortage or a disruption of trade.
So what is going on during these shortage episodes in the historical record?

The data in the authors’ figure 2.1 depict recoinages. Recoinages were sometimes
accompanied by attempts to coerce the public into turning in their coins for
reminting. And there were repeated attempts to prohibit the exporting of coins.
My guess is that these sorts of actions and speculation about them gave rise to
disruption of trade. Such policies do not appear in the authors’ model. More
generally, while the authors discuss the interplay between the public’s actions
and the minting and associated policies of governments, the interplay is not
formally described and analyzed.
Although the model is mainly appealed to for explanations of episodes of

changing relative values of small and large coins, it is occasionally invoked to
deal with episodes of unchanging relative values. Here, it is used for 18th century
Britain:

In addition, the price of silver coins expressed in terms of gold sta-
bilized after 1717. Persistent depreciation of small denomination
coins, the telltale sign of shortages of small change found in figure
2.1 on page 16, is absent in eighteenth-century Britain. Thus, be-
sides transforming the unit of account, eighteenth-century Britain
effectively solved the problem of small change. Counterfeiters and
other suppliers of tokens somehow produced enough small change to
have allowed the exchange rate between large (now gold) coins and
smaller silver coins to stabilize after 1720 (page 292).

Sargent and Velde cannot see a shortage of small coins without seeing such coins
depreciating relative to large coins. That accounts for their conclusion that non
government suppliers “somehow”–must have (?)–filled the well-documented
denomination gap left by the government. As I now demonstrate, models which
deal directly with the imperfect physical attributes of coins have different im-
plications.

4 A Model of Indivisible Money

The imperfect physical attribute that I analyze is indivisibility. I do this pri-
marily because it is hard to imagine that a small change problem could exist
if the stuff out of which large coins were made were divisible in the sense in
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which goods in standard models are divisible. Indeed, Sargent and Velde seem
to motivate their analysis by calling attention to the substantial size of coins.
They begin Part II, Ideas and Technologies, with a description of the value of
the smallest silver coins in the middle ages:

Typically, the daily wage represented 1 to 3 silver coins, and thus
daily necessities required smaller coins. Another way to appreciate
its role is to estimate what the smallest silver coin could purchase.
In Florence, in the second half of the 14th century, the smallest silver
coin was the grosso (5s.): it could purchase 5 liters of the cheapest
wine, 1 kg of mutton, 20 eggs, 1 kg of olive oil; or pay a month’s
rent for an unmarried manual laborer (page 48).

And one need not go back to the middle ages for reports of the absence of small
change: such shortages appeared during the colonial period in America (see
Hanson, 1979) and in Australia in the early 1800’s (see Butlin, 1968).
I will discuss the implications of indivisible money using versions of a some-

what well-known model–a matching model due to Trejos and Wright (1995)
and Shi (1995), which, itself, is built on ideas in Kiyotaki and Wright (1989).
According to this model, trade takes place in meetings between pairs of people,
rather than in centralized markets. This feature is attractive for thinking about
small-change problems. After all, it is natural to motivate the need for small
change by describing a buyer and a seller and the problem they face if neither
has small change.

4.1 The environment

Time is discrete. There are N > 2 perishable types of goods at each date and a
[0, 1] continuum of each ofN specialization types of people. For n ∈ {1, 2, ...,N},
a type n person consumes only good n and is able to produce only good n+ 1

(modulo N). Each person maximizes expected discounted utility and the period
utility function is u(x) − y, where x is consumption of the relevant good and
y is production of the relevant good. The function u is strictly concave and
increasing, and satisfies u(0) = 0. In addition, there exists y0 > 0 that satisfies
u(y0) = y0.
At each date, each person meets one person at random. There is an exoge-

nous stock of money, which is uniform, exists in indivisible units, and is perfectly
durable. Each person sees the money holdings of his or her trading partner and
individual histories are private except as reflected in current money holdings.
In addition, people cannot commit to future actions.
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4.2 Non-neutrality and steady-state shortages

Zhu (2002) studies a version of this model with no restrictions on individual
holdings of money except a general and sufficiently large upper bound (a tech-
nical assumption) and with deterministic take-it-or-leave-it offers by potential
consumers in single-coincidence meetings. (Under the assumptions made, there
are no double-coincidence meetings and no-coincidence meetings are not rele-
vant.) He shows that if u0(0) is sufficiently large, then there is a nice steady
state which is symmetric across specialization types–nice in that it has an in-
creasing and strictly concave value function defined on money holdings and has
a distribution over money holdings that has full support.
Would the people in Zhu’s steady state be experiencing a shortage of small

coins? Yes. Very generally, they would be making different and from their point
of view more desirable trades if they had smaller units of money.4

As Zhu shows, his existence result also implies non-neutrality of the following
sort. The model has three exogenous nominal quantities, (∆,m,B) ≡ z, where
∆ is the size of the smallest unit, m is average holding per specialization type
(in effect, the total amount of money), and B is the upper bound on individual
holdings. Let k be an integer that exceeds unity and consider the following
three alternative vectors of exogenous nominal quantities: z0 = kz and z00 =
(∆, km, kB) and z000 = (∆, km,B). Notice that z000 relative to z corresponds to
a large exogenous increase in the stock of money, one way of viewing the 16th
century specie discoveries in the Americas.
As might be expected, neutrality holds for the comparison between z and

for z0, neutrality in the sense of real allocations. As regards z and z00, z00 has
strictly more steady states in terms of allocations. Any steady state for z has
an equivalent (in terms of real allocations) steady state for z00: the equivalent
steady state is produced by replacing the trade of m units of money under z
by a trade of km units under z00. There are more steady states for z00 because
no nice steady state for z00 has the same real allocation as any steady state for
z. Finally, as regards z and z000, if the bound B is large enough, then the nice
steady states for z00and for z000 should be similar.
Although the model allows for the possibility of observing the same real

allocation under z and z00, such neutrality requires that a change in the money
supply be accompanied by a proportional change in the size of the smallest unit
of money in use. Such a change in units seems far-fetched for an economy which
starts with an indivisibility-of-money problem. Therefore, we should focus on

4All of the results carry over to a version in which consumers are permitted to randomize
their offers. Then, more divisible money would allow for less individual uncertainty.
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the nice steady states for z and z00. Aside from being different, a good bet is
that a nice steady state for z00 has more trade and output than a nice steady
state for z0. Thus, indivisibility alone may be able to explain the purported
expansionary real effects in Europe of 16th century specie discoveries in the
Americas. Moreover, because a comparison between z and z00 is equivalent to
a comparison between z and (∆/k,m,B), the same claim about expansionary
effects applies to having a more divisible money.

4.3 The disappearance of coins

Motivated in part by the supposed shortages of money in colonial America and
in Australia in the early 18th century and in part by governmental attempts to
prohibit the export of money, Wallace and Zhou (1997) study a version of the
above model with permanent differences between people. They let the period
utility function be u(x) − αy, where α is a parameter that differs across two
groups of people. (High α people are less productive.) For a version of the model
in which individual money holdings are restricted to be either zero or one unit,
they show that there are equilibria in which money ends up only in the hands of
the low α people. Moreover, these can be such that an effective prohibition on
trade between high α people and low α people, one way to interpret a prohibition
on the export of money, would benefit high α people. It is obvious that this
result does not depend on the unit upper bound on individual money holdings.
It does depend on scarcity of money–on a small enough ratio of the per capita
stock to the smallest unit.

4.4 Coin production

The above matching model can also be amended to include two kinds of money
and an endogenous determination of the mix between the two. Let money exist
in two potential forms, large coins and small coins, and let there be technologies
that allow each person to produce one from the other: in particular, let j small
coins be “meltable” into 1 large coin and let 1 large coin be “mintable” into j
small coins.5 (In the Sargent-Velde terminology, this is the special case of no
melting or minting costs.) For the economy as a whole, the per capita amount
of money (the raw material for making coins) is given in the following sense.
Let π(x1, x2) denote the fraction of each specialization type who hold x1 small
coins and x2 large coins. The given amount of money, denotedM and measured

5These technologies define small and large.
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in units of large coins per specialization type, constrains π to satisfy,

∞X
x1=0

∞X
x2=0

π(x1, x2)(
x1
j
+ x2) =M. (2)

In addition, some timing must be specified. I would be inclined to separate
melting and minting from meetings. Moreover, if the model is to have a steady
state with both large and small coins, then there must be some advantage to
melting–to producing large coins from small coins. Following Kiyotaki and
Wright (1989), it could be assumed that there is a utility cost to carrying coins
from one period to the next that is proportional to the amount carried and that
the cost of carrying j small coins exceeds that of one large coin.
This structure bears some resemblance to the Sargent-Velde model. Coins

are the only assets and individuals have access to coin production. The model
can be used to assess how the set of steady states depends on the size of small
coins, j. Or, for a given j, it can be used to assess how the set of steady states
depends on the total amount of money, M . In either case, we do not expect
neutrality to hold. As noted above, the Sargent-Velde model implies neutrality
for such experiments.
This two-coin model gives rise to a “demand” for small coins. Moreover, as

already suggested, that demand would not disappear even if small coins have
a lower rate-of-return than large coins. However, it is not obvious that the
model can be made to generate a declining value of small coins relative to large
coins–the kind of paradoxical observation on which Sargent and Velde focus.
In that regard, this model is on a par with their model. In other respects, it
seems better as a model of small-change problems.

5 Concluding Remarks

The most surprising thing about the Sargent-Velde book is the degree to which
it ignores existing and long-standing ideas about the difficulties that govern-
ment faced in providing money with desirable attributes: portability, divisibil-
ity, durability, and recognizability. In particular, it seemed to be infeasible to
produce from the same underlying material coins that varied sufficiently in size
and were also portable, durable, and recognizable. Bimetallism, making small
coins out of less valuable objects and large coins out of more valuable objects,
was one response; another was not to make small coins (see Glassman and Re-
dish 1988). Bimetallism, as is well-known, gives rise to the following problem: as
the relative values of the underlying objects change, “small” and “large” coins
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do not continue to exchange in convenient and fixed ratios; that is, the property
called the aliquot property fails to hold.6

The standard formula goes a long way toward solving the bimetallism prob-
lem, but only at a cost. Under full-bodied coinage, there is no need for commit-
ment on the part of those making coins and counterfeiting is no more severe a
problem than it is for any other commodity. (That is what full-bodied means.)
In contrast, as noted by Sargent and Velde, the standard formula involves com-
mitment: it is banking with the token coins serving as liabilities and the objects
into which they are convertible serving as the reserve. And because the small
coins are token coins, counterfeiting must be prevented.
The authors’ model deals with none of this. Is that because all of it is already

understood, thereby leaving us free to go on to matters like the paradoxical
observations concerning declining relative values of small coins? I do not think
so. For example, the non-neutrality that stems from indivisibility seems to be
new. And, where is a model that depicts the benefits of satisfying the aliquot
property? And, if there were such a model, wouldn’t we want to use it to deal
with the subtler questions on which the authors focus? I agree with the authors
that the history of coinage provides theoretical challenges. I do not agree that
their cash-in-advance model provides useful insights regarding that history.
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