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1 Introduction

1.1 The Implementation Problem

The implementation problem is the problem of designing a mechanism (game
form) such that the equilibrium outcomes satisfy some criterion of social opti-
mality. The early literature assumed that each agent would simply report his
own personal characteristics (preferences, endowments, productive capacity)
to a social planner, who would use this information to compute the socially
optimal outcome. It was discovered that the agents can gain from misrep-
resenting their preferences if the cost of providing a public good is shared
according to the Lindahl rule, or if private goods are allocated according to
the Walrasian rule [Bowen (1943), Samuelson (1954), Hurwicz (1972)]. In
quasi-linear economic environments, the Vickrey-Clarke-Groves mechanism
is in fact strategy-proof, i.e., all agents reporting their own preferences truth-
fully is an equilibrium [Vickrey (1961), Clarke (1971), Groves (1973)]. But
a mechanism with truthful equilibria may also have undesirable untruthful
equilibria which can only be eliminated by allowing more abstract messages
to be sent. In addition, if an agent knows something about other agents�
characteristics, then this can be exploited by expanding the set of possi-
ble messages. Groves and Ledyard (1977), Hurwicz and Schmeidler (1978)
and Maskin (1999)1 initiated the study of mechanisms with general message

∗We are grateful to Sandeep Baliga, Luis Corchón, Matt Jackson, Byungchae Rhee,
Ilya Segal and Hannu Vartiainen for helpful comments.

1Maskin�s paper was circulated as a working paper in 1977.
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spaces. This line of research, known as implementation theory, provides an
analytical framework for the design of institutions. It has been criticized for
allowing mechanisms to be arbitrarily complicated, but much of the complex-
ity is due to the fact that the theorems cover large classes of social choice rules
in very general environments. In many applications the optimal mechanisms
have turned out to be quite simple.2

1.2 DeÞnitions

The environment is hA,N,Θi, where A is the set of feasible alternatives or
outcomes, N = {1, 2, ..., n} is the set of agents, and Θ is the set of possible
states of the world. For simplicity, we suppose the set of feasible alternatives
is the same in all states [see Hurwicz, Maskin and Postlewaite (1995) for
implementation with a state-dependent feasible set]. The agents� preferences
do depend on the state of the world. Each agent i ∈ N has a payoff function
ui : A × Θ → R. Thus, if the outcome is a ∈ A in state of the world
θ ∈ Θ, then agent i�s payoff is ui(a, θ). His weak preference relation in state
θ is denoted Ri = Ri(θ), the strict part of his preference is denoted Pi =
Pi(θ), and indifference is denoted Ii = Ii(θ). That is, xRiy if and only if
ui(x, θ) ≥ ui(y, θ), xPiy if and only if ui(x, θ) > ui(y, θ), and xIiy if and
only if ui(x, θ) = ui(y, θ). The preference proÞle at state θ ∈ Θ is denoted
R = R(θ) = (R1(θ), ..., Rn(θ)). The preference domain is the set of preference
proÞles that are consistent with some state of the world, i.e., the set

R(Θ) ≡ {R : there is θ ∈ Θ such that R = R(θ)}.

The preference domain for agent i is the set

Ri(Θ) ≡ {Ri : there is R−i such that (Ri, R−i) ∈ R(Θ)}.

When Θ is Þxed, we can write R and Ri instead of R(Θ) and Ri(Θ).
Let RA be the set of all proÞles of complete and transitive preference

relations on A, the unrestricted domain. Notice that R(Θ) ⊆ RA and R(Θ)
may be a proper subset of RA. Let PA be the set of all proÞles of linear
orderings of A, the unrestricted domain of strict preferences.3

2Earlier surveys of implementation theory include Maskin (1985), Moore (1992), Palfrey
(1992), and Corchón (1996).

3A preference relation Ri is a linear ordering if and only if it is complete, transitive
and antisymmetric (for all (a, b) ∈ A×A, if aRib and bRia then a = b).
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For any sets X and Y, let X − Y ≡ {x ∈ X : x /∈ Y }, let Y X denote the
set of all functions from X to Y, and let 2X denote the set of all subsets of X.
A social choice rule (SCR) is a function F : Θ→ 2A− {∅} (i.e. a non-empty
valued correspondence). The set F (θ) ⊆ A is the set of socially optimal (or
F-optimal) alternatives in state θ ∈ Θ. The image or range of the SCR F is
the set

F (Θ) ≡ {a ∈ A : a ∈ F (θ) for some θ ∈ Θ}.
A social choice function (SCF) is a single-valued SCR, i.e., a function f :
Θ→ A.
Some important properties of SCRs are as follows. Ordinality: for all

(θ, θ0) ∈ Θ×Θ, if R(θ) = R(θ0) then F (θ) = F (θ0). Weak Pareto optimality:
for all θ ∈ Θ and all a ∈ F (θ), there is no b ∈ A such that ui(b, θ) > ui(a, θ)
for all i ∈ N. Pareto optimality: for all θ ∈ Θ and all a ∈ F (θ), there is
no b ∈ A such that ui(b, θ) ≥ ui(a, θ) for all i ∈ N with strict inequality
for some i. Pareto indifference: for all (a, θ) ∈ A × Θ and all b ∈ F (θ), if
ui(a, θ) = ui(b, θ) for all i ∈ N then a ∈ F (θ). Dictatorship: there exists
i ∈ N such that for all θ ∈ Θ and all a ∈ F (θ), ui(a, θ) ≥ ui(b, θ) for all
b ∈ A. Unanimity: for all (a, θ) ∈ A × Θ, if ui(a, θ) ≥ ui(b, θ) for all i ∈ N
and all b ∈ A then a ∈ F (θ). Strong unanimity: for all (a, θ) ∈ A × Θ, if
ui(a, θ) > ui(b, θ) for all i ∈ N and all b 6= a then F (θ) = {a}. No veto power:
for all (a, j, θ) ∈ A ×N × Θ, if ui(a, θ) ≥ ui(b, θ) for all b ∈ A and all i 6= j
then a ∈ F (θ).
A normal form mechanism (or game form) is denoted Γ = h×ni=1Mi, hi

and consists of a message space Mi for each agent i ∈ N and an outcome
function h : ×ni=1Mi → A. Let mi ∈ Mi denote agent i�s message. A
message proÞle is denoted m = (m1, ...,mn) ∈ M ≡ ×ni=1Mi. All messages
are sent simultaneously, and the Þnal outcome is h(m) ∈ A. An extensive
form mechanism is a more complicated object since it allows agents to make
choices sequentially; for a formal deÞnition see Moore and Repullo (1988).
The most common interpretation of the implementation problem is that

a social planner or mechanism designer (who cannot observe the true state
of the world) wants to design a mechanism in such a way that in each state
of the world the set of equilibrium outcomes coincides with the set of F -
optimal outcomes. Let S-equilibrium be a game theoretic solution concept.
For each mechanism Γ and each state θ ∈ Θ, the solution concept speciÞes
a set of S-equilibrium outcomes denoted S(Γ, θ) ⊆ A. Let F be an SCR.
The mechanism Γ implements F in S-equilibria, or simply S-implements F,
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if and only if S(Γ, θ) = F (θ) for all θ ∈ Θ. Thus, the set of S-equilibrium
outcomes should coincide with the set of F -optimal outcomes in each state.
If such a mechanism exists then F is implementable in S-equilibria or simply
S-implementable. This notion is also referred to as full implementation. If
S1 and S2 are two solution concepts, then Γ doubly S1 and S2-implements F
if and only if S1(Γ, θ) = S2(Γ, θ) = F (θ) for all θ ∈ Θ.
The mechanism Γ weakly S-implements F if and only if ∅ 6= S(Γ, θ) ⊆

F (θ) for all θ ∈ Θ. That is, every S−equilibrium outcome must be F -optimal,
but every F -optimal outcome need not be an equilibrium outcome. Weak
implementation is actually subsumed by the theory of full implementation,
since weak implementation of F is equivalent to full implementation of a
subcorrespondence of F [Thomson (1996)].
In general, whether or not an SCR F is S-implementable depends on the

solution concept S. If solution concept S2 is a reÞnement of S1, in the sense
that for any Γ we have S2(Γ, θ) ⊆ S1(Γ, θ) for all θ ∈ Θ, then it is not a priori
clear whether it will be easier to satisfy S1(Γ, θ) = F (θ) or S2(Γ, θ) = F (θ) for
all θ ∈ Θ. However, the literature shows that reÞnements usually make things
easier. Generally speaking, more social choice rules can be implemented in
undominated Nash equilibria, or in trembling-hand perfect equilibria, than
in Nash equilibria.4 Harsanyi and Selten (1988) argue that game theoretic
analysis should lead to an ideal solution concept which applies universally to
all possible games, but experiments show that behavior in fact depends on
the nature of the game (even on �irrelevant� aspects such as the labelling
of strategies). Thus, for successful applications of implementation theory,
the solution concept should be appropriate for the mechanism, but it is hard
to make this criterion mathematically precise. For an insightful discussion,
see Jackson (1992). Muench and Walker (1984), de Trenqualye (1988) and
Cabrales (1999) discuss the problem of how agents come to coordinate on a
particular equilibrium. Jordan (1986) shows that equilibria of game forms
that Nash implement the Walrasian correspondence will in general not be
stable under continuous time strategy adjustment processes. Cabrales and
Ponti (2000) show how evolutionary dynamics may lead to the �wrong� Nash
equilibrium in mechanisms which rely on the elimination of weakly dominated
strategies. Best-response dynamics do converge to the �right� equilibrium
for the particular mechanism they analyze.

4There are exceptions. Sjöström (1993) gives an example of an SCR which is imple-
mentable in Nash equilibria but not in trembling-hand perfect Nash equilibria.

4



The notion of implementing an SCR discussed in this survey is conse-
quentialist : the precise structure of the game form is unimportant as long as
the equilibrium outcomes are F -optimal. However, game forms can be used
to represent rights [Gärdenfors (1981), Gaertner, Pattanaik and Suzumura
(1992), Deb (1994), Hammond (1997)]. Deb, Pattanaik and Razzolini (1997)
introduced several properties of game forms that correspond to acceptable
rights structures. For example, individual i ∈ N has a say if there exists
at least some circumstance where his message can inßuence the outcome.
This requirement seems weak, yet there is nothing in the deÞnition of im-
plementation used in this survey that guarantees that each individual has a
say.5

2 Nash Implementation

We start by assuming that the true state of the world θ ∈ Θ is common
knowledge among the agents. This is the case of complete information.

2.1 DeÞnitions

Given a normal form mechanism Γ = hM,hi , for any m ∈M and i ∈ N , let
m−i = {mj}j 6=i ∈ M−i ≡ ×j 6=iMj denote the messages sent by agents other
than i. For message proÞle m = (m−i,mi) ∈M , the set

h(m−i,Mi) ≡ {a ∈ A : a = h(m−i,m0
i) for some m

0
i ∈Mi}

is agent i�s attainable set at m. Agent i�s lower contour set at (a, θ) ∈ A×Θ
is Li(a, θ) ≡ {b ∈ A : ui(a, θ) ≥ ui(b, θ)}. A message proÞle m ∈ M is a
(pure strategy) Nash equilibrium at state θ ∈ Θ if and only if h(m−i,Mi) ⊆
Li(h(m), θ) for all i ∈ N . (For now we neglect mixed strategies: they are
discussed in Section 3.4.) The set of Nash equilibria at state θ is denoted
NΓ(θ) ⊆ M , and the set of Nash equilibrium outcomes at state θ is denoted
h(NΓ(θ)) = {a ∈ A : a = h(m) for some m ∈ NΓ(θ)}. The mechanism Γ
Nash-implements F if and only if h(NΓ(θ)) = F (θ) for all θ ∈ Θ.

5Gaspart (1996, 1997) proposed a stronger notion of equality (or symmetry) of attain-
able sets: all agents, by unilaterally varying their strategies, should be able to attain
identical (or symmetric) sets of outcomes, at least at equilibrium.
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2.2 Monotonicity and No Veto Power

If Li(a, θ) ⊆ Li(a, θ0) then we say that Ri(θ0) is amonotonic transformation of
Ri(θ) at alternative a. The SCR F ismonotonic if and only if for all (a, θ, θ

0) ∈
A × Θ × Θ the following is true: if a ∈ F (θ) and Li(a, θ) ⊆ Li(a, θ0) for all
i ∈ N , then a ∈ F (θ0). Thus, if a is optimal in state θ, and when the state
changes from θ to θ0 outcome a does not fall in any agent�s preference ordering
relative to any other alternative, then monotonicity requires that a remains
optimal in state θ0. Clearly, if F is monotonic then it must be ordinal. But
many ordinal social choice rules are not monotonic.6 Whether a particular
SCR is monotonic may depend on the preference domainR(Θ). For example,
in an exchange economy, the Walrasian correspondence is not monotonic
in general, but it is monotonic on a domain of preferences such that all
Walrasian equilibria occur in the interior of the feasible set [Hurwicz, Maskin
and Postlewaite (1995)]. There is no monotonic and Pareto optimal SCR on
the unrestricted domain RA [Hurwicz and Schmeidler (1978)].

7 However,
the weak Pareto correspondence8 is monotonic on any domain. A monotonic
SCF on RA must be a constant function,

9 but there are important examples
of monotonic non-constant SCFs on restricted domains.
Maskin (1999) proved that for any mechanism Γ, the Nash equilibrium

outcome correspondence h ◦NΓ : Θ→ A is monotonic.

Theorem 1 [Maskin (1999)] If the SCR F is Nash implementable, then F
is monotonic.

Proof. Suppose Γ = hM,hi Nash implements F . Then if a ∈ F (θ) there is
m ∈ NΓ(θ) such that a = h(m). Suppose Li(a, θ) ⊆ Li(a, θ

0) for all i ∈ N.
6If F is not monotonic then an interesting problem is to Þnd the minimal monotonic

extension, i.e., the smallest monotonic supercorrespondence of F [Sen (1995), Thomson
(1999)].

7Let θ ∈ Θ be a state where the agents do not unanimously agree on a top-ranked
alternative, and let a ∈ F (θ). There must exist j ∈ N and b ∈ A such that bPj(θ)a. Let
state θ0 be such that preferences over alternatives in A − {b} are as in state θ, but each
agent i 6= j has now become indifferent between a and b. Agent j still strictly prefers b to
a in state θ0 so b Pareto dominates a. But Li(a, θ) ⊆ Li(a, θ

0) for all i so a ∈ F (θ0) if F is
monotonic.

8The weak Pareto correspondence selects all weakly Pareto optimal outcomes: for all
θ ∈ Θ, F (θ) = {a ∈ A : there is no b ∈ A such that ui(b, θ) > ui(a, θ) for all i ∈ N}.

9That is, f(Θ) = {a} for some a ∈ A. For if f(θ) = a 6= a0 = f(θ0) then monotonicity
implies {a, a0} ⊆ f(θ00) if a and a0 are both top-ranked by all agents in state θ00, but this
contradicts the fact that f is single-valued.
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Then, for all i ∈ N,

h(m−i,Mi) ⊆ Li(a, θ) ⊆ Li(a, θ0).

Therefore, m ∈ NΓ(θ0) and a ∈ h(NΓ(θ0)) = F (θ0). ¤
Theorem 1 has a partial converse, stated by Maskin (1999) without a

satisfactory proof [complete proofs were given by Williams (1986), Repullo
(1987) and Saijo (1988)]. Recall that F satisÞes no veto power if an alter-
native is F -optimal whenever it is top-ranked by at least n − 1 agents. In
economic environments, no veto power is usually trivially satisÞed. However,
in other environments no veto power is not a trivial condition. If A is a
Þnite set and R(Θ) = PA then the Borda rule only satisÞes no veto power
if there are at least as many agents as there are alternatives. If R(Θ) = RA

then no Pareto optimal SCR can satisfy no veto power.10 The weak Pareto
correspondence does satisfy no veto power on any domain.

Theorem 2 [Maskin (1999)] Suppose n ≥ 3. If the SCR F satisÞes mono-
tonicity and no veto power, then F is Nash implementable.

Proof. The proof is constructive. Let each agent i ∈ N announce an
outcome, a state of the world, and an integer between 1 and n. Thus, Mi =
A × Θ × {1, 2, ..., n} and a typical message for agent i is denoted mi =
(ai, θi, zi) ∈Mi. Let the outcome function be as follows.
Rule 1. If (ai, θi) = (a, θ) for all i ∈ N and a ∈ F (θ), then h(m) = a.
Rule 2. Suppose there exists j ∈ N such that (ai, θi) = (a, θ) for all

i 6= j but (aj , θj) 6= (a, θ). Then h(m) = aj if aj ∈ Lj(a, θ) and h(m) = a
otherwise.
Rule 3. In all other cases, let h(m) = aj for j ∈ N such that j =

(
P

i∈N z
i) (modn).11

We need to show that, for any θ∗ ∈ Θ, h(NΓ(θ∗)) = F (θ∗).
Step 1 : h(NΓ(θ∗)) ⊆ F (θ∗). Suppose m ∈ NΓ(θ∗). If either rule 2 or

rule 3 applies to m, then there is j ∈ N such that any agent k 6= j can get
his top-ranked alternative, via rule 3, by announcing an integer zk such that
k = (

P
zi) (modn). Therefore, we must have uk(h(m), θ

∗) ≥ uk(x, θ∗) for all
k 6= j and all x ∈ A, and hence h(m) ∈ F (θ∗) by no veto power. If instead

10If u1(b, θ) > u1(a, θ), and ui(b, θ) = ui(a, θ) ≥ ui(x, θ) for all i 6= 1 and all x ∈
A− {a, b}, then no veto power implies a ∈ F (θ) even though b Pareto dominates a.

11α = β (mod n) denotes that integers α and β are congruent modulo n.
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rule 1 applies, then (ai, θi) = (a, θ) for all i ∈ N, and a ∈ F (θ). The attainable
set for each agent j is Lj(a, θ), by rule 2. Since m ∈ NΓ(θ∗), we have
Lj(a, θ) ⊆ Lj(a, θ∗). By monotonicity, a ∈ F (θ∗). Thus, h(NΓ(θ∗)) ⊆ F (θ∗).
Step 2 : F (θ∗) ⊆ h(NΓ(θ∗)). Suppose a ∈ F (θ∗). If mi = (a, θ

∗, 1) for all
i ∈ N, then h(m) = a. By rule 2, h(m−j,Mj) = Lj(a, θ

∗) for all j ∈ N, so
m ∈ NΓ(θ∗). Thus, F (θ∗) ⊆ h(NΓ(θ∗)). ¤
The mechanism in the proof of Theorem 2 is the canonical mechanism for

Nash implementation. Some simpliÞcations are possible even in this abstract
framework. Since any Nash implementable F is ordinal, it clearly suffices
to let the agents announce a preference proÞle R ∈ R(Θ) rather than a
state of the world θ ∈ Θ. In fact, it suffices if each agent i ∈ N announces
a preference ordering for himself and one for his �neighbor� agent i + 1,
where agents 1 and n are considered neighbors [Saijo (1988)]. Lower contour
sets could be announced instead of preference orderings [McKelvey (1989)].
More generally, given any message process which �computes� (or �realizes�)
an SCR, Williams (1986) considered the problem of embedding the message
process into a mechanism which Nash implements the SCR. If the original
message process encodes information in an efficient way, then the same will
be true for Williams� mechanism for Nash implementation.

2.3 Necessary and Sufficient Conditions

The no veto power condition is not necessary for Nash implementation with
n ≥ 3. On the other hand, monotonicity on its own is not sufficient. The
necessary and sufficient condition was given by Moore and Repullo (1990).
It can be explained by considering how the canonical mechanism of Section
2.2 must be modiÞed when no veto power is violated.
Suppose we want to Nash implement a monotonic SCR F using some

mechanism Γ. Let a ∈ F (θ). There must exist a Nash equilibriumm∗ ∈ NΓ(θ)
such that h(m∗) = a. Agent j�s attainable set must satisfy h(m∗

−j,Mj) ⊆
Lj(a, θ). Alternative c ∈ Lj(a, θ) is an awkward outcome for agent j in
Lj(a, θ) if and only if there is θ

0 ∈ Θ such that: (i) Lj(a, θ) ⊆ Lj(c, θ
0);

(ii) for each i 6= j, Li(c, θ0) = A; (iii) c /∈ F (θ0). (Notice that (ii) and (iii) im-
ply that F does not satisfy no veto power.) Suppose c is awkward in Lj(a, θ).
If c ∈ h(m∗

−j,Mj) then there is mj ∈ Mj such that h(m
∗
−j ,mj) = c. Then

(m∗
−j,mj) ∈ NΓ(θ0) since (i) implies c is the best outcome for agent j in his

attainable set h(m∗
−j ,Mj) in state θ

0, and (ii) implies c is the best outcome
in all of A for all other agents. By (iii), c /∈ F (θ0), so h(NΓ(θ0)) 6= F (θ0),
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contradicting the deÞnition of implementation. Thus, the awkward outcome
c cannot be in agent j�s attainable set. We must have h(m∗

−j ,Mj) ⊆ Cj(a, θ),
where Cj(a, θ) denotes the set of outcomes in Lj(a, θ) that are not awkward
for agent j in Lj(a, θ). That is, Cj(a, θ) ≡ {c ∈ Lj(a, θ) : for all θ0 ∈ Θ,
if Lj(a, θ) ⊆ Lj(c, θ

0) and for each i 6= j, Li(c, θ
0) = A, then c ∈ F (θ0)}.

But if h(m∗
−i,Mi) ⊆ Ci(a, θ) for all i ∈ N, then for any θ0 ∈ Θ such that

Ci(a, θ) ⊆ Li(a, θ0) for all i ∈ N we will have m∗ ∈ NΓ(θ0), so Nash imple-
mentation requires a = h(m∗) ∈ F (θ0). The SCR F is strongly monotonic if
and only if for all (a, θ, θ0) ∈ A×Θ×Θ the following is true: if a ∈ F (θ) and
Ci(a, θ) ⊆ Li(a, θ0) for all i ∈ N, then a ∈ F (θ0).
In the canonical mechanism of Section 2.2, ifm∗ is a �consensus� message

proÞle such that rule 1 applies, i.e., all agents announce (a, θ) with a ∈ F (θ),
then agent j�s attainable set is Lj(a, θ). We have just shown why this may not
work if no veto power is violated. The obvious solution is to modify rule 2 in
such a way that Cj(a, θ) becomes agent j�s attainable set. If PA ⊆ R(Θ) then
this solution does work and strong monotonicity is necessary and sufficient
for Nash implementation (when n ≥ 3). A version of this result appears
in Danilov (1992) [see also Moore (1992)]. It is instructive to prove it by
comparing strong monotonicity to condition M, which is a necessary and
sufficient condition for Nash implementation on any domain, assuming n ≥ 3
[Sjöström (1991)].12

There are three differences between strong monotonicity and condition M,
all of which turn out to be irrelevant when PA ⊆ R(Θ). The Þrst difference is
due to the fact that if F does not satisfy unanimity, then there are alternatives
that must never be in the range of the outcome function h. Alternative a
is a problematic outcome if and only if a /∈ F (θ) for some state θ such that
Li(a, θ) = A for all i ∈ N. The problematic outcome a would clearly be a
non-F -optimal Nash equilibrium outcome in state θ if a = h(m) for some
m ∈M . After removing all problematic outcomes from A (several iterations
may be necessary), what remains is some set B∗ ⊆ A. Since we must have
h(m) ∈ B∗ for all m ∈ M, Sjöström (1991) in effect treats B∗ as the true
�feasible set�. Thus, Sjöström�s (1991) analogue of part (ii) of the deÞnition
of �awkward outcome� says: for each i 6= j, B∗ ⊆ Li(c, θ0). However, it turns
out that this difference is irrelevant if PA ⊆ R(Θ). 13

12Condition M is equivalent to Moore and Repullo�s (1990) condition µ. But it is easier
to check.

13Suppose PA ⊆ R(Θ) and let F be strongly monotonic. Let a ∈ F (θ), and let �Cj(a, θ)

9



The second difference between strong monotonicity and condition M is
due to the fact that, after removing the awkward outcomes from Lj(a, θ),
we may discover a second order awkward outcome c ∈ Cj(a, θ) such that
for some θ0 ∈ Θ: (i) Cj(a, θ) ⊆ Lj(c, θ

0); (ii) for each i 6= j, Li(c, θ
0) = A;

(iii) c /∈ F (θ0). Again, this would contradict implementation, so we must
remove all second order awkward outcomes from the attainable set, too.
Indeed, Sjöström�s (1991) algorithm may lead to iterated elimination of even
higher order awkward outcomes. When there are no more iterations to be
made, what remains is some set C∗j (a, θ) ⊆ Cj(a, θ). In Sjöström�s modiÞed
canonical mechanism, C∗j (a, θ) is agent j�s attainable set at the �consensus�.
Condition M requires that if a ∈ F (θ) and C∗i (a, θ) ⊆ Li(a, θ0) for all i ∈ N,
then a ∈ F (θ0). However, it turns out that if PA ⊆ R(Θ) and F is strongly
monotonic, then there is no need to worry about second order awkward
outcomes. In this case, Sjöström�s (1991) algorithm terminates after one
step with C∗j (a, θ) = Cj(a, θ).

14

The third and Þnal difference is that, since C∗j (a, θ) will be agent j�s
attainable set at a Nash equilibrium m∗ such that h(m∗) = a ∈ F (θ), con-
dition M explicitly requires a ∈ C∗j (a, θ). However, if PA ⊆ R(Θ) and F is
strongly monotonic then this is clearly true (i.e., a ∈ Ci(a, θ) = C∗j (a, θ)).
It follows that condition M is equivalent to strong monotonicity whenever
PA ⊆ R(Θ). Thus, if n ≥ 3 and PA ⊆ R(Θ) then the SCR F is Nash imple-
mentable if and only if it is strongly monotonic, as claimed. We remark that
if R(Θ) = RA then any monotonic F which satisÞes Pareto indifference is
strongly monotonic.15 This fact is useful because if F is implementable when

be the set of outcomes in Lj(a, θ) that are not awkward according to the new deÞnition

(using B∗ in (ii)). We claim �Cj(a, θ) = Cj(a, θ). Clearly, �Cj(a, θ) ⊆ Cj(a, θ) since B∗ ⊆ A.
Now suppose c ∈ Lj(a, θ) − �Cj(a, θ). Then there is θ

0 such that Lj(a, θ) ⊆ Lj(c, θ
0) and

B∗ ⊆ Li(c, θ
0) for each i 6= j, and c /∈ F (θ0). Suppose, in order to get a contradiction,

that c ∈ Cj(a, θ). Then, if θ
00 ∈ Θ is a state where Lj(a, θ) = Lj(c, θ

00) and Li(c, θ
00) = A

for each i 6= j, we have c ∈ F (θ00). It is easy to check that strong monotonicity implies
Ci(c, θ

00) ⊆ B∗ for all i. Thus, Cj(c, θ
00) ⊆ Lj(c, θ

00) ⊆ Lj(c, θ
0) and Ci(c, θ

00) ⊆ B∗ ⊆
Li(c, θ

0) for each i 6= j, so c ∈ F (θ0) by strong monotonicity. This is a contradiction.
Thus, Cj(a, θ) ⊆ �Cj(a, θ).

14We claim that there are no second order awkward outcomes if PA ⊆ R(Θ) and F
is strongly monotonic. Suppose a ∈ F (θ), c ∈ Cj(a, θ) ⊆ Lj(c, θ

0), and for each i 6= j,
Li(c, θ

0) = A. Since PA ⊆ R(Θ) there exists θ00 ∈ Θ such that Lj(c, θ
00) = Lj(a, θ) and

Li(c, θ
00) = A for all i 6= j. Since c ∈ Cj(a, θ), we have c ∈ F (θ00). Now, Cj(c, θ

00) =
Cj(a, θ) ⊆ Lj(c, θ

0) and Li(c, θ
0) = A for all i 6= j, so c ∈ F (θ0) by strong monotonicity.

15There are no awkward outcomes in this case. Indeed, let a ∈ F (θ), and suppose
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R(Θ) = RA then implementation is possible (using the same mechanism)
when the domain of preferences is restricted in an arbitrary way.
Consider two examples due to Maskin (1985). First, supposeN = {1, 2, 3},

A = {a, b, c} and R(Θ) = PA. The SCR F is deÞned as follows. For any
θ ∈ Θ, a ∈ F (θ) if and only if a majority prefers a to b, and b ∈ F (θ) if and
only if a majority prefers b to a, and c ∈ F (θ) if and only if c is top-ranked in A
by all agents. This SCR is monotonic and satisÞes unanimity but not no veto
power. Fix j ∈ N and suppose θ is such that bPj(θ)aPj(θ)c, and aPi(θ)b for
all i 6= j. Then F (θ) = {a}. Now suppose θ0 is such that bPj(θ0)cPj(θ0)a and
Li(c, θ

0) = A for all i 6= j. Since Lj(a, θ) = Lj(c, θ0) = {a, c} but c /∈ F (θ0),
c is awkward in Lj(a, θ). Removing c, we obtain Cj(a, θ) = {a}. By the
symmetry of a and b, Cj(b, θ) = {b} whenever aPj(θ)bPj(θ)c and bPi(θ)a
for all i 6= j. There are no other awkward outcomes and it can be veriÞed
that F is strongly monotonic, hence Nash implementable. For a second ex-
ample, consider any environment with n ≥ 3, and let a0 ∈ A be a Þxed
�status quo� alternative. The individually rational correspondence, deÞned
by F (θ) = {a ∈ A : aRi(θ)a0 for all i ∈ N}, satisÞes monotonicity and una-
nimity but not no veto power. If a ∈ F (θ) then a0 ∈ Lj(a, θ) for all j ∈ N.
If c ∈ Lj(a, θ) ⊆ Lj(c, θ

0) and Li(c, θ0) = A for each i 6= j, then cRi(θ
0)a0

for all i ∈ N so c ∈ F (θ0). Therefore, there are no awkward outcomes, and
condition M and strong monotonicity both reduce to monotonicity. Since F
is monotonic, it is Nash implementable.
Let a ∈ F (θ). Alternative c ∈ Li(a, θ) is an essential outcome for agent

i in Li(a, θ) if and only if there exists �θ ∈ Θ such that c ∈ F (�θ) and
Li(c, �θ) ⊆ Li(a, θ). Let Ei(a, θ) ⊆ Li(a, θ) denote the set of all outcomes
that are essential for agent i in Li(a, θ). An SCR F is essentially monotonic
if and only if for all (a, θ, θ0) ∈ A× Θ× Θ the following is true: if a ∈ F (θ)
and Ei(a, θ) ⊆ Li(a, θ0) for all i ∈ N , then a ∈ F (θ0). If F is monotonic then
Ei(a, θ) ⊆ Ci(a, θ).16 If PA ⊆ R(Θ) then Ci(a, θ) ⊆ Ei(a, θ).17 Thus, while
c ∈ Lj(a, θ) ⊆ Lj(c, θ

0) and for each i 6= j, Li(c, θ
0) = A. We claim c ∈ F (θ0). Let θ00 be

such that for all i ∈ N , cIi(θ
00)a and for all x, y ∈ A−{c}, xRi(θ

00)y if and only if xRi(θ)y.
Since a ∈ F (θ), monotonicity implies a ∈ F (θ00). Pareto indifference implies c ∈ F (θ00).
But Li(c, θ

00) = Li(a, θ) ∪ {c} ⊆ Li(c, θ
0) for all i, so c ∈ F (θ0) by monotonicity.

16If c ∈ Ej(a, θ) then there is �θ ∈ Θ such that c ∈ F (�θ) and Lj(c, �θ) ⊆ Lj(a, θ). If
Lj(a, θ) ⊆ Lj(c, θ

0) and Li(c, θ
0) = A for each i 6= j, then c ∈ F (θ0) by monotonicity.

Hence, c ∈ Cj(a, θ).
17If c ∈ Cj(a, θ) then c ∈ F (�θ) for �θ ∈ Θ such that Lj(c, �θ) = Lj(a, θ) and Li(c, �θ) = A

for all i 6= j. So c ∈ Ej(a, θ).
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essential monotonicity is in general stronger than strong monotonicity, the
two conditions are equivalent if PA ⊆ R(Θ).

Theorem 3 [Danilov (1992)] Suppose n ≥ 3 and PA ⊆ R(Θ). The SCR F
is Nash implementable if and only if it is essentially monotonic.

Yamato (1992) showed that essential monotonicity is a sufficient condition
for Nash implementation in any environment (when n ≥ 3), but it is a
necessary condition only if R(Θ) is sufficiently large.

2.4 Weak Implementation

If �F (θ) ⊆ F (θ) for all θ ∈ Θ then �F is a subcorrespondence of F , denoted
�F ⊆ F . To weakly implement the SCR F is equivalent to fully implementing
a non-empty valued subcorrespondence of F . Fix an SCR F, and for all
θ ∈ Θ deÞne
F ∗(θ) ≡ {a ∈ A : a ∈ F (�θ) for all �θ ∈ Θ such that Li(a, θ) ⊆ Li(a, �θ) for all i ∈ N}

Theorem 4 If F ∗(θ) 6= ∅ for all θ ∈ Θ then F ∗ is a monotonic SCR.

Proof. Suppose a ∈ F ∗(θ) and Li(a, θ) ⊆ Li(a, θ0) for all i ∈ N. Suppose �θ ∈
Θ is such that Li(a, θ

0) ⊆ Li(a, �θ) for all i ∈ N. Then Li(a, θ) ⊆ Li(a, θ0) ⊆
Li(a, �θ) for all i. Since a ∈ F ∗(θ) we must have a ∈ F (�θ). Therefore, a ∈
F ∗(θ0). ¤
If F ∗(θ) = ∅ for some θ ∈ Θ then F does not have any monotonic subcor-

respondence, but if F ∗(θ) 6= ∅ for all θ ∈ Θ then F ∗ is the maximal monotonic
subcorrespondence of F . Moreover, F is monotonic if and only if F ∗ = F.
If F ∗(θ) 6= ∅ for all θ ∈ Θ and F ∗ satisÞes no veto power then Theorem 2
implies that F ∗ is Nash implementable, hence F is weakly implementable.
Conversely, if F is weakly Nash implementable, then Theorem 1 implies that
F has a monotonic non-empty valued subcorrespondence �F ⊆ F . Then
�F ⊆ F ∗ so F ∗(θ) 6= ∅ for all θ ∈ Θ. Thus, Theorems 1, 2 and 4 imply the
following.

Theorem 5 If F can be weakly Nash implemented then F ∗(θ) 6= ∅ for all
θ ∈ Θ. Conversely, if F ∗(θ) 6= ∅ for all θ ∈ Θ and F ∗ satisÞes no veto
power then F can be weakly Nash implemented (and F ∗ is the maximal Nash
implementable subcorrespondence of F ).

12



2.5 Rich Domains of Preferences

If ui(a, θ) ≥ ui(b, θ) and ui(a, θ
0) ≤ ui(b, θ

0) and at least one inequality is
strict, then we say that b improves with respect to a for agent i as the state
changes from θ to θ0. The following condition was introduced by Dasgupta,
Hammond and Maskin (1979).

DeÞnition Rich domain. For any a, b ∈ A and any θ, θ0 ∈ Θ, if b does
not improve with respect to a for any i ∈ N when the state changes
from θ to θ0, then there exists θ00 ∈ Θ such that Li(a, θ) ⊆ Li(a, θ00) and
Li(b, θ

0) ⊆ Li(b, θ00) for all i ∈ N.

Theorem 6 [Dasgupta, Hammond and Maskin (1979)] Suppose f is a mono-
tonic SCF, the domain is rich, and a = f(θ) 6= f(θ0) = b. Then b improves
with respect to a for some i ∈ N as the state changes from θ to θ0.

Proof. If not, then there exists θ00 ∈ Θ such that for all i ∈ N, Li(a, θ) ⊆
Li(a, θ

00) and Li(b, θ0) ⊆ Li(b, θ00). By monotonicity, a = f(θ00) and b = f(θ00)
but a 6= b, a contradiction. ¤
This result implies that if f is a monotonic SCF on a rich domain, then

the function f̄ : R(Θ) → A deÞned by f̄(R(θ)) = f(θ) for all θ ∈ Θ is
coalitionally strategy-proof. That is, for all R,R0 ∈ R(Θ), f̄(R)Rif̄(R0) for
some i such that Ri 6= R0i.

2.6 Unrestricted Domain of Strict Preferences

In models of voting over a Þnite set of alternatives it is often assumed that
any strict preference ordering is possible: R(Θ) = PA. This domain is rich.
The SCR F is dictatorial on its image if and only if there exists i ∈ N such
that for all θ ∈ Θ and all a ∈ F (θ), ui(a, θ) ≥ ui(b, θ) for all b ∈ F (Θ).
Theorem 7 [Muller and Satterthwaite (1977), Dasgupta, Hammond and
Maskin (1979), Roberts (1979)] Suppose the SCF f is Nash implementable,
A is a Þnite set, f(Θ) contains at least three alternatives, and R(Θ) = PA.
Then f is dictatorial on its image.

Proof. By Theorems 1 and 6, the function f̄ : PA → A, deÞned by
f̄(R(θ)) = f(θ) for all θ ∈ Θ, is strategy-proof. By the Gibbard-Satterthwaite
theorem, it must be dictatorial [Gibbard (1973), Satterthwaite (1975)]. ¤
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Theorem 7 is false without the hypothesis of single-valuedness. For exam-
ple, the weak Pareto correspondence is monotonic and satisÞes no veto power
in any environment, so it can be Nash implemented by Theorem 2 (when
n ≥ 3). Theorem 7 is also false without the hypothesis that the image con-
tains at least three alternatives. Let N(a, b, θ) denote the number of agents
who strictly prefer a to b in state θ. Suppose A = {x, y} and deÞne themethod
of majority rule as follows: F (θ) = {x} if N(x, y, θ) > N(y, x, θ), F (θ) = {y}
if N(x, y, θ) < N(y, x, θ), and F (θ) = {x, y} if N(x, y, θ) = N(y, x, θ). If n
is odd and R(Θ) = PA then F is single-valued, monotonic, and satisÞes no
veto power. By Theorem 2 it can be Nash implemented.
When |A| ≥ 3 the results are mainly negative: the plurality rule (which

picks the alternative that is top-ranked by the greatest number of agents)
is not monotonic, and neither are other well-known voting rules such as the
Borda and Copeland rules. Peleg (1998) showed that all monotonic and
strongly unanimous SCRs violate Sen�s (1970) condition of minimal liberty.
Indeed, if R(Θ) = PA then monotonicity and strong unanimity imply Pareto
optimality,18 but Sen showed that no Pareto optimal SCR can satisfy minimal
liberty.

2.7 Economic Environments

An interesting environment is the L-good exchange economy hAE, N,ΘEi.
The feasible set is

AE =

(
a = (a1, a2, ...., an) ∈ RL

+ ×RL
+ × ...×RL

+ :
nX
i=1

ai ≤ ω
)

where ai ∈ RL
+ is agent i�s consumption vector, and ω ∈ RL

++ the aggregate
endowment vector.19 Let A0E = {a ∈ AE : ai 6= 0 for all i ∈ N} denote the
set of allocations where no agent gets a zero consumption vector. In each
state θ ∈ ΘE, for each agent i ∈ N there is a continuous, increasing and
strictly quasi-concave function vi(·, θ) : RL

+ → R such that ui(a, θ) = vi(ai, θ)
18For suppose ui(a, θ) > ui(b, θ) for all i ∈ N but b ∈ F (θ). Consider the state θ0 where

preferences are as in state θ except that a has been moved to the top of everybody�s
preference. Then, Ri(θ

0) is a monotonic transformation of Ri(θ) at b for all i so b ∈ F (θ0)
by monotonicity, but F (θ0) = {a} by strong unanimity, a contradiction.

19RL is L-dimensional Euclidean space, RL
+ = {x ∈ RL : xk ≥ 0, for k = 1, ..., L} and

RL
++ = {x ∈ RL : xk > 0, for k = 1, ..., L}.

14



for all a ∈ A.20 Moreover, for any function from RL
+ to R satisfying these

standard assumptions, there is a state θ ∈ ΘE such that agent i�s preferences
are represented by that function. The domain RE ≡ R(ΘE) is the domain
of all preference proÞles that can be represented by utility functions satis-
fying these standard assumptions. Notice that each agent is assumed to be
�selÞsh� and only care about his own consumption vector, and furthermore
he strictly prefers any allocation in A0E to an allocation where he gets a zero
consumption vector. Also notice that preferences are deÞned over feasible al-
locations in AE. When n ≥ 3, no veto power is automatically satisÞed in this
environment, since n− 1 agents can never agree on the best way to allocate
ω. Thus, monotonicity will be both necessary and sufficient for implementa-
tion. Dasgupta, Hammond and Maskin (1979) showed that the domainRE is
rich, so by Theorem 6 any monotonic SCF is strategy-proof. This is a rather
negative result. For example, if n = 2 then strategy-proofness plus Pareto
optimality implies dictatorship in this environment [Zhou (1991)]. However,
restricting the set of preferences to some subset of RE can lead to positive
results. For example, consider an �Edgeworth box� economy, and suppose
in each state θ ∈ Θ both goods are normal for both agents. Let ` be a
Þxed �downward sloping line� that passes through the Edgeworth box. For
each θ ∈ Θ there is a unique Pareto optimal and feasible point on `, which
we deÞne to be f(θ). Then f : Θ → AE is a monotonic, Pareto optimal
and non-dictatorial SCF which can be Nash implemented by the mechanism
described in Section 2.8.
More positive results are obtained by relaxing the requirement of single-

valuedness. Hurwicz (1979a) and Schmeidler (1980) constructed simple �mar-
ket mechanisms� for an L-good exchange economy. In these mechanisms each
agent proposes a consumption vector and a price vector, and the set of Nash
equilibrium outcomes coincides with the set of Walrasian outcomes. Reichel-
stein and Reiter (1988) showed (under certain smoothness conditions on the
outcome function) that the minimal dimension of the message space M of
any such mechanism is approximately n(L− 1) + L/(n− 1).21 However, the

20The function vi(·, θ) is increasing if and only if vi(ai, θ) > vi(a0i, θ) whenever ai ≥ a0i,
ai 6= a0i.

21The Þrst term n(L − 1) is due to each agent proposing an (L − 1)-dimensional con-
sumption vector for himself, and the second term L/(n− 1) comes from the need to also
allow announcements of price variables. Smoothness conditions are needed to rule out �in-
formation smuggling� [Hurwicz (1972), Mount and Reiter (1974), Reichelstein and Reiter
(1988)].
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mechanisms in these articles violated the feasibility constraint h(m) ∈ A for
allm ∈ M . In fact, the Walrasian correspondenceW is not monotonic, hence
not Nash implementable, in the environment hAE, N,ΘEi. The problem oc-
curs because a change in preferences over non-feasible consumption bundles
can eliminate a Walrasian equilibrium on the boundary of the feasible set.
For public goods economies, Hurwicz (1979a) and Walker (1981) constructed
simple mechanisms such that the set of Nash equilibrium outcomes coincides
with the set of Lindahl outcomes. Again, however, h(m) /∈ A was allowed
out of equilibrium. (Like the Walrasian correspondence, the Lindahl corre-
spondence is not monotonic in general.) In Walker�s mechanism each agent
announces a real number for each of the K public goods, so the dimension of
M is nK, the minimal dimension of any smooth Pareto efficient mechanism
in this environment [Sato (1981), Reichelstein and Reiter (1988)].
The minimal monotonic extension of the Walrasian correspondence W is

the constrained Walrasian correspondence W c [Hurwicz, Maskin and Postle-
waite (1995)]. In an exchange economy with a sufficiently large domain of
preferences, if F is any monotonic, Pareto optimal, individually rational and
continuous SCR, then W c ⊆ F, and a similar result is true in the public
goods economy with the constrained Lindahl correspondence Lc replacing
W c [Hurwicz (1979b), Hurwicz, Maskin and Postlewaite (1995)]. Further
results in this direction were obtained by Hurwicz (1979c), Thomson (1979)
and Schmeidler (1982). For simple, feasible and continuous implementation
of the (constrained) Walrasian and Lindahl correspondences, see Postlewaite
and Wettstein (1989), Tian (1989), and Hong (1995).
Hurwicz (1960, 1972) discussed �proposed outcome� mechanisms where

each agent i�s message mi is his proposed net trade vector. �Information
smuggling� can be ruled out by requiring that in equilibrium h(m) = m.
In exchange economies, a proposed trade vector does not in general con-
tain enough information about marginal rates of substitution to ensure a
Pareto efficient outcome [Saijo, Tatamitani and Yamato (1996) and Sjöström
(1996a)], although the situation may be rather different in production economies
with known production sets [Yoshihara (2000)]. Dutta, Sen and Vohra (1995)
characterized the class of SCRs that can be implemented by �elementary�
mechanisms where agents propose prices as well as trade vectors. The Wal-
rasian correspondence is a member of this class, assuming the preference
domain is such that Walrasian equilibria always occur in the interior of the
feasible set.
In many economic environments a single crossing condition holds which

16



makes monotonicity rather easy to satisfy. For example, suppose there is a
seller and a buyer, a divisible good and �money�. Let q denote the transfer
of money from the buyer to the seller (which can be positive or negative),
and x ≥ 0 the amount of the good delivered from the seller to the buyer. The
feasible set is A = {(q, x) ∈ R2 : x ≥ 0}. The state of the world is denoted
θ = (θs, θb) ∈ [0, 1] × [0, 1] ≡ Θ. The seller�s payoff function is u(q, x, θs),
with ∂u/∂q > 0, ∂u/∂x < 0. The buyer�s payoff function is v(q, x, θb), with
∂v/∂q < 0, ∂v/∂x > 0. An increase in θs represents an increase in the seller�s
marginal production cost, and an increase in θb represents an increase in
the buyer�s marginal valuation. More formally, the single crossing condition
states that

∂

∂θs

¯̄̄̄
∂u/∂x

∂u/∂q

¯̄̄̄
> 0 and

∂

∂θb

¯̄̄̄
∂v/∂x

∂v/∂q

¯̄̄̄
> 0

Under this assumption, a monotonic transformation can only take place at a
boundary allocation where x = 0. Monotonicity says that if (q, 0) ∈ F (θs, θb),
θ0s ≥ θs and θ0b ≤ θb, then (q, 0) ∈ F (θ0s, θ0b).

2.8 Two Agent Implementation

The necessary and sufficient condition for two-agent Nash implementation in
general environments was given by Moore and Repullo (1990) and Dutta and
Sen (1991b). To see why the case n = 2 may be more difficult than the case
n ≥ 3, note that rule 2 of the canonical mechanism for Nash implementation
singles out a unique deviator from a �consensus�. However, with n = 2 this
is not possible. Suppose n = 2, and let a ∈ F (θ) and a0 ∈ F (θ0). If Γ
Nash implements F then there are message proÞles (m1,m2) ∈ NΓ(θ) and
(m0

1,m
0
2) ∈ NΓ(θ0) such that h(m1,m2) = a and h(m

0
1,m

0
2) = a

0. Since agent
1 should have no incentive to deviate to message m1 in state θ

0 and agent
2 should have no incentive to deviate to message m0

2 in state θ, a property
called weak non-empty lower intersection must be satisÞed: there exists an
outcome b = h(m1,m

0
2) such that a

0R1(θ0)b and aR2(θ)b. In most economic
environments this condition automatically holds, and the case n = 2 turns
out to be similar to the case n ≥ 3. In the environment hAE, {1, 2},ΘEi (see
Section 2.7 for deÞnitions), an SCR F can be Nash implemented if and only if
it is monotonic and satisÞes a very weak boundary condition.22 For example,

22The boundary condition says that if it is sometimes F -optimal to set a1 = 0 (i.e., no
consumption to agent 1), and sometimes F -optimal to set a2 = 0, then a1 = a2 = 0 is
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if F is monotonic and never recommends a zero consumption vector to any
agent (i.e., F (ΘE) ⊆ A0E), then it may be easily checked that the following
simple mechanism Nash implements F . Each agent i ∈ {1, 2} announces an
outcome ai = (ai1, a

i
2) ∈ A0E, where aij is a proposed consumption vector for

agent j, and a state θi ∈ ΘE. Thus, mi = (ai, θi) ∈ Mi ≡ A0E × ΘE. Let
hi(m) denote agent i�s consumption vector. Set hi(m) = a

i
i if m1 = m2 and

ai ∈ F (θi), or if Rj(θi) = Rj(θj), Ri(θj) 6= Ri(θi) and ajRi(θj)ai. Otherwise,
hi(m) = 0.
Such positive results for the case n = 2 do rely on restrictions on the

domain of preferences, as the following result shows.

Theorem 8 [Maskin (1999), Hurwicz and Schmeidler (1978)] Suppose n =
2 and PA ⊆ R(Θ). If the SCR F is weakly Pareto optimal and Nash imple-
mentable, then F is dictatorial.

Proof. Suppose a weakly Pareto optimal SCR F is implemented by Γ =
hM,hi . For any a ∈ A, there is an agent i = i(a) ∈ {1, 2} such that a is
always in his attainable set, i.e., a ∈ h(mj,Mi) for all mj ∈ Mj (j 6= i).
For if not, then there is m ∈ M such that when m is played neither agent
1 nor agent 2 can attain a, but then x = h(m) is a Pareto dominated Nash
equilibrium outcome whenever both agents rank a Þrst and x second. In fact,
for any two outcomes a and b we must have i(a) = i(b), for otherwise there
is no Nash equilibrium when agent i(a) ranks a Þrst and agent i(b) ranks b
Þrst. So there exists a dictator, i.e., an agent i such that h(mj ,Mi) = A for
all mj ∈Mj . ¤

3 Implementation with Complete Information:

Further Topics

3.1 ReÞnements of Nash Equilibrium

Messagemi ∈Mi is a dominated strategy in state θ ∈ Θ for agent i ∈ N if and
only if there exists m0

i ∈ Mi such that ui(h(m−i,m0
i), θ) ≥ ui(h(m−i,mi), θ)

for all m−i ∈M−i, and ui(h(m−i,m0
i), θ) > ui(h(m−i,mi), θ) for some m−i ∈

M−i. A Nash equilibrium is an undominated Nash equilibrium if and only

F -optimal in all states [Sjöström (1991)].
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if no player uses a dominated strategy.23 Notice that we are considering
domination in the weak sense. It turns out that �almost anything� can be
implemented in undominated Nash equilibria. Of course, a mechanism that
implements a non-monotonic SCR F in undominated Nash equilibria must
have non-F -optimal Nash equilibria involving dominated strategies. The
assumption here, however, is that dominated strategies will in fact never be
used.
An SCR F satisÞes property Q if and only if, for all (θ, θ0) ∈ Θ × Θ

such that F (θ) * F (θ0), there exists an agent i ∈ N and two alternatives
(a, b) ∈ A×A such that b improves with respect to a for agent i as the state
changes from θ to θ0, and moreover this agent i is not indifferent over all
alternatives in A in state θ0. Property Q is a very weak condition because it
only involves a preference reversal over two arbitrary alternatives a and b,
neither of which has to be F -optimal. If no agent is ever indifferent over all
alternatives in A, then property Q is equivalent to ordinality.

Theorem 9 [Palfrey and Srivastava (1991)] If the SCR F is implementable
in undominated Nash equilibria, then it satisÞes property Q. Conversely, if
n ≥ 3 and F satisÞes property Q and no veto power, then F is implementable
in undominated Nash equilibria.

Proof. It is not difficult to see the necessity of property Q. To prove the
sufficiency part, we will simplify by assuming R(Θ) = ×ni=1Ri and property
Q is strengthened to value distinction: for all i ∈ N and all ordered pairs
(Ri, R

0
i) ∈ Ri ×Ri, if R

0
i 6= Ri then there exists outcomes b and c in A such

that cRib and bP
0
i c. Since F is ordinal, we can suppose it is deÞned directly

on the set of possible preference proÞles, F : R ≡ ×ni=1 Ri → A. Consider
the following mechanism. Agent i�s message space is

Mi = A×R×Ri × Z × Z × Z

where Z is the set of all positive integers. A typical message for agent
i is mi = (ai, Ri, ri, zi, ζ i, γi) ∈ Mi, where a

i ∈ A is an outcome, Ri =

23The Nash equilibria of the the canonical mechanism for Nash implementation are not
necessarily undominated, because if a ∈ F (θ) is the worst outcome in A for agent i in state
θ then it may be a (weakly) dominated strategy for him to announce a. However, Yamato
(1999) modiÞed the canonical mechanism so that all Nash equilibria are undominated. He
showed that if n ≥ 3 then any Nash implementable SCR is doubly implementable in Nash
and undominated Nash equilibria.
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(Ri1, R
i
2, ..., R

i
n) ∈ R is a statement about the preference proÞle, ri ∈ Ri is an

�extra� statement about agent i�s own preference, and (zi, ζ i, γi) are three
integers. Let P ij denote the asymmetric part of the announced R

i
j and p

i the
asymmetric part of the announced ri. The outcome function is as follows.
Rule 1. If there exists j ∈ N such that (ai, Ri) = (a,R) for all i 6= j, and

a ∈ F (R), then h(m) = a.
Rule 2. If Rule 1 does not apply then: (a) if there is j ∈ N such that

j =(
Pn

k=1 z
k) mod(2n) set

h(m) = aj

(b) if there is j ∈ N such that n+ j =(
Pn

k=1 z
k) mod(2n) and γj > ζj−1 set

h(m) =

½
aj−1 if aj−1rjaj+1

aj+1 if aj+1pjaj−1

(c) if there is j ∈ N such that n+ j =(
Pn

k=1 z
k) mod(2n) and γj ≤ ζj−1 set

h(m) =

½
aj−1 if aj−1Rjja

j+1

aj+1 if aj+1P jj a
j−1

Notice that rule 1 includes the case of a consensus, (ai, Ri) = (a,R) for
all i, as well as the case where a single agent j differs from the rest. Rule
2a is a modulo game similar to rule 3 of the canonical mechanism for Nash
implementation. Rule 2b chooses agent j�s most preferred outcome among
aj−1 and aj+1 according to preferences rj, and rule 2c chooses agent j�s most
preferred outcome among aj−1 and aj+1 according to preferences Rjj .
Notice that references to agents j − 1 and j + 1 are always �modulo n�.

That is, if j = 1 then agent j − 1 is agent n; if j = n then agent j + 1 is
agent 1.
Let R∗ = (R∗1, ..., R

∗
n) denote the true preference proÞle. Let U

Γ(R∗)
denote the set of undominated Nash equilibria when the preference proÞle is
R∗. The proof consists of several steps.
Step 1. If mj is undominated for agent j then r

j = R∗j . Indeed, r
j only

appears in rule 2b, where �truthfully� announcing rj = R∗j is always at least
as good as any false announcement. By value distinction there exists aj−1

and aj+1 such that the preference is strict.
Step 2. If mj is undominated for agent j then R

j
j = R

∗
j . For, if R

j
j 6= R∗j

then (since rj = R∗j by step 1) if n+ j =(
Pn

k=1 z
k) mod(2n), agent j always

weakly prefers rule 2b to rule 2c, and by value distinction there exists aj−1
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and aj+1 such that this preference is strict. But increasing γj increases the
chance of rule 2b at the expense of rule 2c, without any other consequence,
so mj cannot be undominated.
Step 3. If m is a Nash equilibrium then either (ai, Ri) = (a,R) for all

i ∈ N and a ∈ F (R), or there is j such that for all i 6= j, h(m)R∗i a for
all a ∈ A. This follows from rule 2a (the same argument was used in the
canonical mechanism for Nash implementation).
Step 4. h(UΓ(R∗)) ⊆ F (R∗). For, if m ∈ UΓ(R∗), then by steps 1 and

2, Rjj = rj = R∗j for all j. By step 3 , either rule 1 applies, in which case
(ai, Ri) = (a,R∗) for all i ∈ N and h(m) = a ∈ F (R∗), or else h(m) ∈ F (R∗)
by no veto power.
Step 5. F (R∗) ⊆ h(UΓ(R∗)). Each agent j announcing (Rj , rj) = (R∗, R∗j )

�truthfully� and aj = a ∈ F (R∗) (and three arbitrary integers) is an undom-
inated Nash equilibrium. (Notice that if Rjj = r

j then there is no possibility
that γj can change the outcome).
Steps 4 and 5 imply h(UΓ(R∗)) = F (R∗). ¤
A similar possibility result was obtained for trembling-hand perfect Nash

equilibria by Sjöström (1991). If agents have strict preferences over an under-
lying Þnite set of basic alternatives B, and A = ∆(B) as discussed in Section
3.3, then a sufficient condition for F to be implementable in trembling-hand
perfect equilibria is that F satisÞes no veto power as well as its �converse�: if
all but one agent agree on which alternative is the worst, then this alternative
is not F -optimal.
A mechanism is bounded if and only if each dominated strategy is domi-

nated by some undominated strategy [Jackson (1992)]. The mechanism used
by Sjöström (1991) for trembling hand perfect Nash implementation has
a Þnite message space, hence it is bounded. But Palfrey and Srivastava�s
(1991) mechanism for undominated Nash implementation contains inÞnite
sequences of strategies dominating each other, hence it is not bounded. This
is illustrated by step 2 of the proof of Theorem 9. However, in economic
environments satisfying standard assumptions, any ordinal SCF which never
recommends a zero consumption vector to any agent can be implemented in
undominated Nash equilibria by a very simple bounded mechanism which
does not use integer or modulo games.

Theorem 10 [Jackson, Palfrey and Srivastava (1994), Sjöström (1994)] In
the environment hAE, N,ΘEi with n ≥ 2, any ordinal SCF that never rec-
ommends a zero consumption vector to any agent can be implemented in
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undominated Nash equilibria by a bounded mechanism.

Proof. We prove this for n = 2 using Jackson, Palfrey and Srivastava�s
(1994) mechanism.24 If f is ordinal then without loss of generality (but abus-
ing notation) we may assume f is deÞned on RE instead of on ΘE. Thus,
consider f : RE → A0E. Let fj(R) denote agent j�s f -optimal consump-
tion vector when the preference proÞle is R ∈ RE. Each agent i ∈ {1, 2}
announces either a preference proÞle Ri = (Ri1, R

i
2) ∈ RE, or a pair of

outcomes (ai, bi) ∈ A0E × A0E. Notice that ai = (ai1, ai2) is a pair of consump-
tion vectors, and bi = (bi1, b

i
2) is another pair. Let hj(m) denote agent j�s

consumption.
Rule 1. Suppose both agents announce a preference proÞle. If Rij 6= Rjj ,

then hi(m) = 0. If R
i
j = R

j
j , then hi(m) = fi(R

j).
Rule 2. Suppose agent i announces a preference proÞle Ri and agent j

announces outcomes (aj , bj). Then, hj(m) = 0. If a
jP ii b

j then hi(m) = a
j
i ,

otherwise hi(m) = b
j
i .

Rule 3. In all other cases, h1(m) = h2(m) = 0.
Suppose the true preference proÞle is R∗ = (R∗1, R

∗
2). It is a dominated

strategy to announce outcomes, since that guarantees a zero consumption
bundle. Moreover, truthfully announcing Rii = R

∗
i dominates lying since the

only effect lying about his own preferences can have on agent i�s consumption
is to give him an inferior allocation under rule 2.25 Now, if agent j is announc-
ing preferences, any best response for agent i must involve Rij = R

j
j (getting

fi(R
j) 6= 0 is strictly better than getting no consumption at all). Therefore,

in the unique undominated Nash equilibrium both agents announce the true
preference proÞle, so this mechanism implements f . ¤
The most disturbing feature of the mechanism in the proof of Theorem

10 is that agent i�s only reason to announce Rii = R
∗
i truthfully is that it will

give him a preferred outcome in case agent j 6= i uses the dominated strategy
of announcing outcomes. However, this problem does not occur in Sjöström�s
(1994) mechanism, where each agent only reports a preference ordering for
himself and two �neighbors�. In that mechanism, the only dominated strate-
gies are those where an agent does not tell the truth about himself. When
these dominated strategies have been removed, a second round of elimination

24Sjöström�s (1994) mechanism is similar but works only for n ≥ 3.
25The allocation can be strictly inferior because value distinction holds in this environ-

ment. Indeed, since preferences are deÞned over feasible outcomes, if Ri 6= R∗i then there
is (aj , bj) ∈ A0

E ×A0
E such that ajP∗i bj but bjRia

j .
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of strictly dominated strategies leads each agent to match what his neighbors
are saying about themselves.
The iterated removal of dominated strategies was considered by Farquhar-

son (1969) and Moulin (1979) in their analyses of dominance solvable voting
schemes. Abreu and Matsushima (1994) showed that if the feasible set con-
sists of lotteries over a set of basic alternatives, strict value distinction holds,
and the social planner can use �small Þnes�, then any SCF can be imple-
mented using the iterated elimination of dominated strategies (without using
integer and modulo games). It does not matter in which order dominated
strategies are eliminated, but many rounds of elimination may be required
[for a discussion of this type of mechanism, see Glazer and Rosenthal (1992)
and Abreu and Matsushima (1992b)].
A Nash equilibrium is strong if and only if no group S ⊆ N has a joint

deviation which makes all agents in S better off. Monotonicity is a neces-
sary condition for implementation in strong Nash equilibria [Maskin (1979b,
1985)]. A necessary and sufficient condition for strong Nash implementation
was found by Dutta and Sen (1991a), and an algorithm for checking it was
provided by Suh (1995). Moulin and Peleg (1982) established the close con-
nection between strong Nash implementation and the notion of effectivity
function. For double implementation in Nash and strong Nash equilibria,
see Maskin (1979a, 1985), Schmeidler (1980) and Suh (1997). In the envi-
ronment hAE, N,ΘEi with n ≥ 2, any monotonic and Pareto optimal SCR
which never recommends a zero consumption bundle for any agent can be
doubly implemented in Nash and strong Nash equilibria, even if joint devi-
ations may involve ex post trade of goods outside the mechanism [Maskin
(1979a), Sjöström (1996b)]. Further results on implementation with coalition
formation are contained in Peleg (1984) and Suh (1996).

3.2 Extensive Form Mechanisms

An SCR F is implementable in subgame perfect equilibria if and only if there
exists an extensive form mechanism such that in each state θ ∈ Θ, the set
of subgame perfect equilibrium outcomes equals F (θ). Extensive form mech-
anisms were Þrst studied by Farquharson (1969) and Moulin (1979) in the
context of voting over a Þnite set of alternatives. Moore and Repullo (1988)
obtained a partial characterization of subgame perfect implementable SCRs
in general environments. Their result was improved on by Abreu and Sen
(1990).
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To illustrate the ideas that are involved, consider a quasi-linear environ-
ment with two agents, N = {1, 2}. There is an underlying set B of �basic
alternatives�, which can be Þnite or inÞnite. In addition, �money� can be
used to freely transfer utility between the agents. Let yi denote the net
transfer of money to agent i, which can be positive or negative. However,
we assume social choice rules are bounded : they do not recommend arbi-
trarily large transfers to or from any agent. A typical outcome is denoted
a = (b, y1, y2). The feasible set is

A = {(b, y1, y2) ∈ B × R× R : y1 + y2 ≤ 0}

Notice that y1+ y2 < 0 is allowed (money can be destroyed or given to some
outside party). In all states, each agent i�s payoff function is of the quasi-
linear form ui(a, θ) = vi(b, θ) + yi, where vi is bounded. Assume strict value
distinction in the sense that we can select (b(θ, θ0), y(θ, θ0)) ∈ B × R, for
each ordered pair (θ, θ0) ∈ Θ×Θ, such that the following is true. Whenever
θ 6= θ0, there exists a �test agent� j = j(θ, θ0) = j(θ0, θ) ∈ N that experiences
a strict preference reversal of the form:

vj(b(θ, θ
0), θ) + y(θ, θ0) > vj(b(θ0, θ), θ) + y(θ0, θ) (1)

and
vj(b(θ, θ

0), θ0) + y(θ, θ0) < vj(b(θ0, θ), θ0) + y(θ0, θ). (2)

In this environment, any bounded SCF f : Θ → A can be implemented
in subgame perfect equilibria by the following simple two-stage mechanism.
[See Moore and Repullo (1988) and Moore (1992) for similar mechanisms.]
Stage 1 consists of simultaneous announcements of a state: each agent i ∈ N
announces θi ∈ Θ. If θ1 = θ2 = θ then the game ends with the outcome
f(θ). If θ1 6= θ2, then go to stage 2. Let j(1) = j(θ1, θ2) denote the �test
agent� for (θ1, θ2), let θ = θj(1) denote the test agent�s announcement in
stage 1 and let θ0 = θj(0) denote the announcement made by the other agent,
agent j(0) 6= j(1). Let a(1) = (b(θ, θ0), y1, y2) with yj(1) = y(θ, θ0) − z and
yj(0) = −z where z > 0. Let a(2) = (b(θ0, θ), y1, y2) with yj(1) = y(θ0, θ) − z
and yj(0) = r > 0. In stage 2, agent j(1) decides the outcome of the game by
choosing either a(1) or a(2). By formulas (1) and (2), agent j(1) prefers a(2)
to a(1) if θ0 is the true state, but he prefers a(1) to a(2) if θ is the true state.
In effect, agent j(0)�s announcement θ0 is �conÞrmed� if agent j(1) chooses
a(2), and then agent j(0) receives a �bonus� r. But if agent j(1) chooses a(1),
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then agent j(0) pays a �Þne� z. Agent j(1) pays the Þne whichever outcome
he chooses in stage 2 (this does not affect his preference reversal over a(1)
and a(2)).
If the agents disagree in stage 1, then at least one agent must pay the Þne

z. This is incompatible with equilibrium if z is sufficiently big, because any
agent can avoid the Þne by agreeing with the other agent in stage 1.26 Thus
in equilibrium both agents will announce the same state, say θ1 = θ2 = θ,
in stage 1. Suppose the true state is θ0 6= θ. Let j(1) = j(θ, θ0) be the test
agent for (θ, θ0). Suppose agent j(0) 6= j(1) deviates in stage 1 by announcing
θj(0) = θ0 truthfully. In stage 2, agent j(1) will choose a(2) so agent j(0) will
get the bonus r which makes him strictly better off if r is sufficiently big.
Thus, if z and r are big enough, in any subgame perfect equilibrium both
agents must announce the true state in stage 1. Conversely both agents
announcing the true state in stage 1 is part of a subgame perfect equilibrium
which yields the f -optimal outcome (no agent wants to deviate, because he
will pay the Þne if he does). Thus, f is implemented in subgame perfect
equilibria. The reader can verify that the sequences a(0) = f(θ), a(1), a(2)
in A, and j(0), j(1) in N, fulÞl the requirements of the following deÞnition
(with ` = 1 and A0 = A).

DeÞnition Property α. There exists a set A0, with F (Θ) ⊆ A0 ⊆ A, such
that for all (a, θ, θ0) ∈ A×Θ×Θ the following is true. If a ∈ F (θ)−F (θ0)
then there exists a sequence of outcomes a(0) = a, a(1), ..., a(`), a(`+1)
in A0 and a sequence of agents j(0), j(1), ..., j(`) in N such that: (i) for
k = 0, 1, ..., `,

uj(k)(a(k), θ) ≥ uj(k)(a(k + 1), θ)
(ii)

uj(`)(a(`), θ
0) < uj(`)(a(`+ 1), θ0)

(iii) for k = 0, 1, ..., `, in state θ0 outcome a(k) is not the top-ranked
outcome in A0 for agent j(k)
(iv) if in state θ0, a(` + 1) is the top-ranked outcome in A0 for each
agent i 6= j(`), then either ` = 0 or j(`− 1) 6= j(`).

If F is monotonic then a ∈ F (θ)−F (θ0) implies the existence of (a(1), j(0)) ∈
A × N such that uj(0)(a, θ) ≥ uj(0)(a(1), θ) and uj(0)(a, θ

0) < uj(0)(a(1), θ
0),

26As long as f and vi are bounded, each agent prefers any f(θ) to paying a large Þne.
Without boundedness, z and r would have to depend on (θ, θ0).
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so sequences satisfying (i)-(iv) exist (with length ` = 0). Hence, property
α is weaker than monotonicity. Recall that property Q requires that some-
one�s preferences reverse over two arbitrary alternatives. Since condition α
requires a preference reversal over two alternatives a(`) and a(` + 1) that
can be connected to a by sequences satisfying (i)-(iv), property α is stronger
than property Q.

Theorem 11 [Moore and Repullo (1988), Abreu and Sen (1990)] If the SCR
F is implementable in subgame perfect equilibria, then it satisÞes property α.
Conversely, if n ≥ 3 and F satisÞes property α and no veto power, then F
is implementable in subgame perfect equilibria.

Recently, Vartiainen (1999) found a condition which is both necessary
and sufficient for subgame perfect implementation when n ≥ 3 and A is a
Þnite set. Herrero and Srivastava (1992) derived a necessary and sufficient
condition for an SCF to be implementable via backward induction using a
Þnite game of perfect information.

3.3 Virtual Implementation

The problem of virtual implementation was Þrst studied by Abreu and Sen
(1991) and Matsushima (1988). Let B be a Þnite set of �basic alternatives�,
and let the set of feasible outcomes be A = ∆(B), the set of all probability
distributions over B. The elements of ∆(B) are called lotteries. Let ∆0(B)
denote the subset of ∆(B) which consists of all lotteries that give strictly
positive probability to all alternatives in B. Let d(a, b) denote the Euclidean
distance between lotteries a, b ∈ ∆(B). Two SCRs F and G are ε-close if
and only if for all θ ∈ Θ there exists a bijection αθ : F (θ)→ G(θ) such that
d(a,αθ(a)) ≤ ε for all a ∈ F (θ). An SCR F is virtually Nash implementable if
and only if for all ε > 0 there exists an SCR G which is Nash implementable
and ε-close to F. If F is virtually implemented, then the social planner ac-
cepts a strictly positive probability that the equilibrium outcome is some
undesirable element of B. However, this probability can be made arbitrarily
small.

Theorem 12 [Abreu and Sen (1991), Matsushima (1988)] Suppose n ≥ 3,
and let B be a Þnite set of �basic alternatives�. Suppose for all θ ∈ Θ, no
agent is indifferent over all alternatives in B, and preferences over ∆(B)
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satisfy the von Neumann-Morgenstern axioms. Then any ordinal SCR F :
Θ→ ∆(B) is virtually Nash implementable.

Proof. Since any ordinal SCR F : Θ → ∆(B) can be approximated arbi-
trarily closely by an ordinal SCR G such that G(Θ) ⊆ ∆0(B), it suffices to
show that any such G is Nash implementable. So let G : Θ→ ∆0(B) be an
ordinal SCR. In the environment h∆0(B), N,Θi the SCR G satisÞes no veto
power because no agent has a most preferred outcome in ∆0(B). If a ∈ G(θ)
but a /∈ G(θ0), then since G is ordinal there is i ∈ N such that Ri(θ) 6= Ri(θ0).
The von Neumann-Morgenstern axioms imply that indifference surfaces are
hyperplanes, so Ri(θ

0) cannot be a monotonic transformation of Ri(θ) at
a ∈ ∆0(B). Thus, G is monotonic. By Theorem 2, G is Nash implementable
in environment h∆0(B), N,Θi. But then G is also Nash implementable when
the feasible set is ∆(B), since we can always just disregard the alternatives
that are not in ∆0(B). ¤

The proof does not do justice to the work of Abreu and Sen (1991) and
Matsushima (1988), since their mechanisms are better behaved than the
canonical mechanism. For virtual implementation using iterated elimination
of strictly dominated strategies, see Abreu and Matsushima (1992a).

3.4 Mixed Strategies

A mixed strategy µi for agent i ∈ N is a probability distribution over
Mi. For simplicity, we restrict attention to mixed strategies that put pos-
itive probability on only a Þnite number of messages. Let µi(mi) denote
the probability that agent i sends message mi, let µ(m) ≡ ×ni=1µi(mi) and
µ−j(m−j) ≡ ×i6=jµi(mi). In most of the implementation literature, only the
pure strategy equilibria of the mechanism are veriÞed to be F -optimal, leav-
ing open the possibility that there may be non-F -optimal mixed strategy
equilibria.27 In particular, in the proof of Theorem 2 we did not establish
that all mixed strategy Nash equilibria are F -optimal. In fact they need
not be. To see the problem, consider a mixed strategy Nash equilibrium
µ = (µ1, ..., µn) for the canonical mechanism in state θ∗. Suppose µ(m) > 0
for m such that rule 2 applies, that is,

(ai, θi) = (a, θ) for all i 6= j (3)
27Exceptions include Abreu and Matsushima (1992), Jackson, Palfrey and Srivastava

(1994), Sjöström (1994).
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but (aj, θj) 6= (a, θ). If µ(m) = 1 then h(m) must be top-ranked by each
agent i 6= j. Otherwise, agent i 6= j could induce his favorite alternative �ai
via rule 3. Thus, no veto power guarantees h(m) ∈ F (θ∗). But suppose
µ−i(m

0
−i) > 0 for some m0

−i such that m
0
k = (a0, θ0, z0k) for all k 6= i, where

a0 ∈ F (θ0) and
ui(�a

i, θ0) > ui(a0, θ0) > ui(a, θ0) (4)

Then, although agent i can induce �ai when the others play m−i, formula (4)
and rule 2 of the canonical mechanism imply that he cannot induce �ai when
the others play m0

−i. Indeed, if he tries to do so the outcome will be a
0, which

may be much worse for him than a (the outcome that, from (4) and rule 2,
he would get by sticking to mi). Hence, he may prefer not to try to induce
�ai even if he strictly prefers it to h(m). And so we cannot infer that h(m) is
F -optimal. The difficulty arises because which message is best for agent i to
send depends on the messages that the other agents send, but if the other
agents are using mixed strategies then agent i is unable to forecast (except
probabilistically) what these messages will be. Nevertheless, the canonical
mechanism can be readily modiÞed to take account of mixed strategies.
Suppose n ≥ 3. The following is a version of a modiÞed canonical mech-

anism proposed by Maskin (1999). A typical message for agent i is mi =¡
ai, θi, zi,αi

¢
, where ai ∈ A is an outcome, θi ∈ Θ is a state, zi ∈ Z is a pos-

itive integer, and αi : A×Θ→ A is a mapping from outcomes and states to
outcomes satisfying αi(a, θ) ∈ Li(a, θ) for all (a, θ). Let the outcome function
be deÞned as follows.
Rule 1. Suppose there exists j ∈ N such that (ai, θi, zi) = (a, θ, 1) for all

i 6= j and zj = 1. Then h(m) = a.
Rule 2. Suppose there exists j ∈ N such that (ai, θi, zi) = (a, θ, 1) for all

i 6= j and zj > 1. Then h(m) = αj(a, θ).
Rule 3. In all other cases let h(m) = ai for i such that zi ≥ zj for all

j ∈ N (if there are several such i, choose the one with the lowest index i).

Notice that rule 1 encompasses the case of a consensus, (ai, θi, zi) =
(a, θ, 1) for all i ∈ N. The mapping αi enables agent i, in effect, to propose
a contingent outcome, which eliminates the difficulty noted above. Indeed,
for any mixed Nash equilibrium µ, agent i has nothing to lose from setting
αi(a, θ) equal to his favorite outcome in Li(a, θ), a

i equal to his favorite
outcome in all of A, and zi larger than any integer announced with positive
probability by any other agent.28 Such a strategy guarantees that he gets his

28If such favorite outcomes do not exist, the argument is more roundabout but still goes
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favorite outcome in his attainable set Li(a, θ) whenever (a
k, θk, zk) = (a, θ, 1)

for all k 6= i, and for all other m−i such that µ−i(m−i) > 0 it will cause him
to win the integer game in rule 3. Thus, in Nash equilibrium, if µ(m) > 0
and rule 1 applies to m, so (ai, θi) = (a, θ) for all i, then h(m) = a must
be the most preferred alternative in Li(a, θ) for each agent i. But if instead
rule 2 or rule 3 applies to m then h(m) must be top-ranked in all of A by at
least n− 1 agents. Thus, if F is monotonic and satisÞes no veto power then
µ(m) > 0 implies h(m) is F -optimal. Conversely, if a ∈ F (θ) then there is a
pure strategy Nash equilibrium in state θ where (ai, θi, zi) = (a, θ, 1) for all
i ∈ N.29 So this mechanism Nash implements F even when we take account
of mixed strategies.
Maskin and Moore (1999) show that the extensive form mechanisms con-

sidered by Moore and Repullo (1988) and Abreu and Sen (1990) can also be
suitably modiÞed for mixed strategies. We conjecture that analogous mod-
iÞcations can be made for mechanisms corresponding to most of the other
solution concepts that have been considered in the literature.

3.5 Renegotiation

So far we have been assuming implicitly that the mechanism Γ is immutable.
In this section we shall allow for the possibility that agents might renegotiate
it. Articles on implementation theory are often written as though an exoge-
nous planner simply imposes the mechanism on the agents. But this is not
the only possible interpretation of the implementation setting. The agents
might choose the mechanism themselves, in which case we can think of the
mechanism as a �constitution�, or a �contract� that the agents have signed.
Suppose that when this contract is executed (i.e., when the mechanism is
played) it results in a Pareto inefficient outcome. Presumably, if the contract
has been properly designed, this could not occur in equilibrium: agents would
not deliberately design an inefficient contract. But inefficient outcomes might
be incorporated in contracts as �punishments� for deviations from equilib-
rium. However, if a deviation from equilibrium has occurred, why should the
agents accept the corresponding outcome given that it is inefficient? Why

through. The same is true if the other agents use mixed strategies with inÞnite support.
In that case, agent i cannot guarantee that he will have the highest integer, but he can
make the probability arbitrarily close to one and that is all we need.

29The Nash equilibrium strategies are undominated as long as a is neither the best nor
the worst outcome in A for any agent.
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can�t they �tear up� their contract (abandon the mechanism) and sign a new
one resulting in a Pareto superior outcome? In other words, why can�t they
renegotiate? But if punishment is renegotiated, it may no longer serve as an
effective deterrent to deviation from equilibrium. Notice that renegotiation
would normally not pose a problem if all that mattered was that the Þnal
outcome should be Pareto optimal. However, a contract will in general try to
achieve a particular distribution of the payoffs (for example, in order to share
risks), and there is no reason why renegotiation would lead to the desired
distribution. Thus, the original contract must be designed with the possi-
bility of renegotiation explicitly taken into account. Our discussion follows
Maskin and Moore (1999). A different approach is suggested by Rubinstein
and Wolinsky (1992).
Consider the following example, drawn from Maskin and Moore (1999).

Let N = {1, 2}, Θ = {θ, θ0}, and A = {a, b, c}. Agent 1 always prefers a to
c to b. Agent 2 has preferences cP2(θ)aP2(θ)b in state θ and bP2(θ

0)aP2(θ0)c
in state θ0. Let f be the SCF such that f(θ) = a and f(θ0) = b. If we leave
aside the issue of renegotiation for the moment, there is a simple mechanism
that Nash implements f , namely, agent 2 chooses between a and b. He will
have an incentive to choose a in state θ and b in state θ0 and so f will be
implemented. But what if he happened to choose b in state θ ? Since b is
Pareto dominated by a and c, the agents will be motivated to renegotiate.
If, in fact, b were renegotiated to a, there would be no problem since whether
agent 2 chose a or b in state θ, the Þnal outcome would be a = f(θ). However,
if b were renegotiated to c in state θ, then agent 2 would intentionally choose
b in state θ, anticipating the renegotiation to c. Then b would not serve to
punish agent 2 for deviating from the choice he is supposed to make in state
θ, and the simple mechanism would no longer work. Moreover, from Theorem
13 below, no other mechanism can implement f either. Thus renegotiation
can indeed constrain the SCRs that are implementable. But the example also
makes clear that whether or not f is implementable depends on the precise
nature of renegotiation (if b is renegotiated to a, implementation is possible;
if b is renegotiated to c, it is not). Thus, rather than speaking merely of the
�implementation of f� we should speak of the �implementation of f for a
given renegotiation process�.
In this section the feasible set is A = ∆(B), the set of all probability

distributions over a set of basic alternatives B. We identify degenerate prob-
ability distributions that assign probability one to some basic alternative b
with the alternative b itself. The renegotiation process can be expressed as a
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function r : B ×Θ→ B, where r(b, θ) is the (basic) alternative to which the
agents renegotiate in state θ ∈ Θ if the fall-back outcome (i.e., the outcome
prescribed by the mechanism) is b ∈ B. Assume renegotiation is efficient
(for all b and θ, r(b, θ) is Pareto efficient in state θ) and individually rational
(for all b and θ, r(b, θ)Ri(θ)b for all i).

30 For each θ ∈ Θ, deÞne a function
rθ : B → B by rθ(b) ≡ r(θ, b). Let x ∈ A, assume for the moment that B is
a Þnite set, and let x(b) denote the probability that the lottery x assigns to
outcome b ∈ B. Extend rθ to lotteries in the following way: let rθ(x) ∈ A be
the lottery which assigns probability

P
x(a) to basic alternative b ∈ B, where

the sum is over the set {a : rθ(a) = b}. For B an inÞnite set, deÞne rθ(x)
in the obvious analogous way. Thus we now have rθ : A → A for all θ ∈ Θ.
Finally, given a mechanism Γ = hM,hi and a state θ ∈ Θ, let rθ◦h denote the
composition of rθ and h. That is, for any m ∈ M, (rθ ◦ h) (m) ≡ rθ(h(m)).
The composition rθ ◦ h :M → A describes the de facto outcome function in
state θ, since any basic outcome prescribed by the mechanism will be renego-
tiated according to rθ. Notice that if the outcome h(m) is a non-degenerate
randomization over B, then renegotiation takes place after the uncertainty
inherent in h(m) has been resolved and the mechanism has prescribed a basic
alternative in B. Let S(hM, rθ ◦ hi , θ) denote the set of S-equilibrium out-
comes in state θ, when the outcome function h has been replaced by rθ ◦ h.
The mechanism Γ = hM,hi is said to S-implement the SCR F for renego-
tiation function r if and only if S(hM, rθ ◦ hi , θ) = F (θ) for all θ ∈ Θ. In
this section we restrict our attention to social choice rules that are essentially
single-valued : for all θ ∈ Θ, if a ∈ F (θ) then F (θ) = {b ∈ A : bIi(θ)a for all
i ∈ N}.
Much of implementation theory with renegotiation has been developed

for its application to bilateral contracts. With n = 2, a simple set of condi-
tions are necessary for implementation regardless of the reÞnement of Nash
equilibrium that is adopted as the solution concept.

Theorem 13 [Maskin and Moore (1999)] The two-agent SCR F can be im-
plemented in Nash equilibria (or any reÞnement thereof) for renegotiation
function r only if there exists a random function �a : Θ × Θ → A such that,

30Jackson and Palfrey (1998) propose an alternative set of assumptions. If in state
θ any agent can veto the outcome of the mechanism and instead enforce an alternative
a(θ), renegotiation will satisfy r(b, θ) = b if bRi(θ)a(θ) for all i ∈ N, and r(b, θ) = a(θ)
otherwise. In an exchange economy, a(θ) may be the endowment point, in which case the
constrained Walrasian correspondence is not implementable [Jackson and Palfrey (1998)].
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for all θ ∈ Θ,
rθ(�a(θ, θ)) ∈ F (θ) (i)

and for all (θ, θ0) ∈ Θ×Θ,
rθ(�a(θ, θ))R1(θ)rθ(�a(θ

0, θ)) (ii)

and
rθ(�a(θ, θ))R2(θ)rθ(�a(θ, θ

0)) (iii)

If �a(θ, θ) is the (random) equilibrium outcome of a mechanism in state θ,
then condition (i) ensures that the renegotiated outcome is F -optimal, and
conditions (ii) and (iii) ensure that neither agent 1 nor agent 2 will not wish
to deviate and act as though the state were θ0.
The reason for introducing randomizations over basic alternatives in The-

orem 13 and the following results is to enhance the possibility of punishing
agents for deviating from equilibrium. By assumption, agents will always
renegotiate to a Pareto efficient alternative. Thus, if agent 1 is to be pun-
ished for a deviation (i.e., if his utility is to be reduced below the equilibrium
level), then agent 2 must, in effect, be rewarded for this deviation (i.e., his
utility must be raised above the equilibrium), once renegotiation is taken
into account. But as we noted in Section 2.8, determining which agent has
deviated may not be possible when n = 2, so it may be necessary to punish
both agents. However, this cannot be done if one agent is always rewarded
when the other is punished. That is where randomization comes in. Al-
though, for each realization b ∈ B of the random variable �a ∈ A, rθ(b) is
Pareto optimal, the random variable rθ(�a) need not be Pareto optimal (if the
Pareto frontier in utility space is not linear). Hence, deliberately introducing
randomization is a way to create mutual punishments despite the constraint
of renegotiation.
In the case of a linear Pareto frontier31 randomization does not help. In

that case, the conditions of Theorem 13 become sufficient for implementa-
tion.

Theorem 14 [Maskin and Moore (1999)] Suppose that the Pareto frontier
is linear for all θ ∈ Θ. Then the two-agent F can be implemented in Nash
equilibria for renegotiation function r if there exists a random function �a :
Θ×Θ→ A satisfying conditions (i), (ii) and (iii) of Theorem 13.

31Formally, the frontier is linear in state θ if, for all b, b0 ∈ B that are both Pareto optimal
in state θ, the lottery λb+(1−λ)b0 is also Pareto optimal, where λ is the probability of b.
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Under the hypothesis of Theorem 14, a mechanism in effect induces a
two-person zero-sum game (renegotiation ensures that outcomes are Pareto
efficient, and the linearity of the Pareto frontier means that payoffs sum to a
constant). In zero-sum games, any reÞned Nash equilibrium must yield both
players the same payoffs as all other Nash equilibria. Theorems 13 and 14
show that using reÞnements will not be helpful for implementation in such a
situation.
With �quasi-linear preferences� the Pareto frontier is linear, and Segal

and Whinston (1998) have shown that Theorem 14 can be re-expressed in
terms of Þrst-order conditions.32

Theorem 15 [Segal and Whinston (1998)] Assume (i) N = {1, 2}; (ii) the
set of alternatives is

A = {(b, y1, y2) ∈ B × R× R : y1 + y2 = 0}
where B is a connected compact space; (iii) Θ = [θ, θ] is a compact interval in
R; and (iv) in each state θ ∈ Θ, each agent i�s post-renegotiation preferences
take the form: for all (b, y1, y2) ∈ A,

ui(rθ(b, y1, y2), θ) = vi(b, θ) + yi

where vi is C
1. If the SCR F : Θ → A is implementable in Nash equilibria

(or any reÞnement thereof) for renegotiation function r, then there exists
�b : Θ→ B such that, for all θ ∈ Θ and all i ∈ N,

ui(F (θ), θ) =

Z θ

θ

∂vi
∂θ

³
�b(t), t

´
dt+ ui(F (θ), θ) (5)

Furthermore, if there is i ∈ N such that ∂2vi

∂θ∂b
(b, θ) > 0 for all b ∈ B and

all θ ∈ Θ, then the existence of �b satisfying (5) is sufficient for F �s Nash
implementability by a mechanism where only agent i sends a message.

Notice that as F is essentially single-valued, we may abuse notation and
write ui(F (θ), θ) in (5).
When the Pareto frontier is not linear it becomes possible to punish both

agents for deviations from equilibrium. We obtain the following result for
implementation in subgame-perfect equilibria.

32Notice that their feasible set is different from what we otherwise assume in this section.
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Theorem 16 [Maskin and Moore (1999)] The two-agent SCR F can be im-
plemented in subgame-perfect equilibria with renegotiation function r if there
exists a random function �a : Θ→ A such that
(i) for all θ ∈ Θ, r(�a(θ), θ) ∈ F (θ);
(ii) for all (θ, θ0) ∈ Θ×Θ such that r(�a(θ), θ0) /∈ F (θ0) there exists an agent
k and a pair of random alternatives �b(θ, θ0), �c(θ, θ0) in A such that

r(�b(θ, θ0), θ)Rk(θ)r(�c(θ, θ0), θ)

and
r(�c(θ, θ0), θ0)Pk(θ0)r(�b(θ, θ0), θ0);

(iii) if Z ⊆ A is the union of all �a(θ) for θ ∈ Θ together with all �b(θ, θ0) and
�c(θ, θ0) for θ, θ0 ∈ Θ, then no alternative z ∈ Z is maximal for any agent i in
any state θ ∈ Θ even after renegotiation (that is, there exists some di(θ) ∈ A
such that di(θ)Pi(θ)r(z, θ)); and
(iv) there exists some random alternative �e ∈ A such that, for any agent i
and any state θ ∈ Θ, every alternative in Z is strictly preferred to �e after
renegotiation (that is, r(z, θ)Pi(θ)r(�e, θ) for all z ∈ Z).

The deÞnition of implementation with renegotiation suggests that charac-
terization results should be r-translations of those for implementation when
renegotiation is ruled out. That is, for each result without renegotiation, we
can apply r to obtain the corresponding result with renegotiation. This is
particularly clear if Nash equilibrium is the solution concept. From Theorems
1 and 2 we know that monotonicity is the key to Nash implementation. By
analogy, we would expect that some form of �renegotiation-monotonicity�
should be the key when renegotiation is admitted. More precisely, we say
that the SCR F is renegotiation monotonic for renegotiation function r pro-
vided that, for all θ ∈ Θ and all x ∈ F (θ) there is a ∈ A such that r(a, θ) = x,
and if Li(r(a, θ), θ) ⊆ Li(r(a, θ0), θ0) for all i ∈ N then r(a, θ0) ∈ F (θ0).

Theorem 17 [Maskin and Moore (1999)] The SCR F can be implemented in
Nash equilibria with renegotiation function r only if F satisÞes renegotiation
monotonicity for r. Conversely, if n ≥ 3 and no alternative is maximal in
A for two or more agents, then F is implementable in Nash equilibria with
renegotiation function r if F satisÞes renegotiation monotonicity for r.
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Sjöström (1999) shows that in the environment hAE, N,ΘEi with n ≥ 3,
any Pareto optimal and ordinal SCF that never recommends a zero consump-
tion vector to any agent can be implemented in undominated Nash equilibria
for any renegotiation function that satisÞes disagreement point monotonicity
(so each agent prefers to renegotiate from a fall-back outcome that is bet-
ter for him) as well as individual rationality. The same mechanism can be
used for any renegotiation function that satisÞes these assumptions, and all
undominated Nash equilibria are coalition-proof. A similar possibility result
was obtained by Baliga and Brusco (2000) for implementation using exten-
sive form mechanisms. Introducing a third party into a bilateral economic
relationship makes it possible to simultaneously punish both original parties
by transferring resources to the third party, which makes the problem of rene-
gotiation less serious. Sjöström (1999) and Baliga and Brusco (2000) show
that collusion between the third party and either one of the original parties
can be eliminated by an appropriately constructed mechanism, as long as the
agents cannot sign binding side-contracts ex ante (allowing binding ex ante
agreements would take the analysis into the realm of n-person cooperative
game theory).

3.6 The Planner as a Player

Suppose the mechanism is designed by a social planner who cannot observe
the true state of the world, but who wants the set of equilibrium outcomes to
equal the set of F -optimal outcomes in each state. The canonical mechanism
for Nash implementation can be given the following intuitive explanation.
Rule 1 states that if (a, θ) is a consensus among the agents, where a ∈ F (θ),
then a is chosen by the planner. Rule 2 states that agent j�s attainable set
at the consensus is the lower contour set Lj(a, θ). By �objecting� against
the consensus, agent j can induce any aj ∈ Lj(a, θ). Monotonicity is the
condition that makes such objections effective. For if θ0 6= θ is the true state
and a /∈ F (θ0), then by monotonicity some agent j strictly prefers to deviate
from the consensus with an objection aj ∈ Lj(a, θ) − Lj(a, θ0). Agent j
would have no reason to propose aj in state θ since aj ∈ Lj(a, θ), but he does
have such an incentive in state θ0 since aj /∈ Lj(a, θ0). Following the logic of
Farrell (1993) and Grossman and Perry (1986), this objection may convince
the social planner that θ is not the true state (and therefore that a is not the
right outcome), although it may not convince her that the true state must
be θ0 (there may be some third state θ00 where the agent also would have an
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incentive to propose aj). Worse, even if the objection should convince the
planner that the state is θ0, she does not actually want to choose aj unless it
should happen that aj ∈ F (θ0). Thus, there is a commitment problem for the
planner in the sense that she may want to deviate ex post from the rules she
herself has laid down, much like the agents renegotiated outcomes in Section
3.5.
Chakravorty, Corchón and Wilkie (1997) discuss the planner�s commit-

ment problem under the assumption that the mechanism is operated by a
�mindless servant� who is not a player. Baliga, Corchón and Sjöström (1997)
assume the planner herself operates the mechanism. She gets payoff u0(a, θ)
from alternative a in state θ, and the SCR F she wants to implement is

F (θ) ≡ argmax
a∈A

u0(a, θ) (6)

If the planner has no commitment power, after receiving the agents� messages
she must choose an alternative a which maximizes the expected value of
u0(a, θ), given her beliefs about θ. Baliga, Corchón and Sjöström (1997)
found necessary and sufficient conditions for implementation, assuming the
planner�s beliefs satisfy restrictions similar to those in Farrell (1993) and
Grossman and Perry (1986). Removing the planner�s commitment power in
this way can make the implementation problem much more difficult, since it
rules out �incredible threats� (such as a benevolent planner threatening zero
consumption to all agents if their messages disagree).
On the other hand, if the planner can commit to an outcome function

then explicitly allowing her to participate as a player in the game expands
the set of implementable social choice rules. Consider a utilitarian social
planner with payoff function

u0(a, θ) =
nX
i=1

ui(a, θ)

The SCR F she wants to implement is the utilitarian SCR which is not even
ordinal (it is not invariant to multiplying an agent�s utility function by a
scalar). If the planner does not play then this F cannot be implemented
using any non-cooperative solution concept (even virtually). However, it is
true by deÞnition that if F (θ) 6= F (θ0) then the planner�s preferences over
A differ in states θ and θ0. Suppose the environment is hAE, N,ΘEi, with
n ≥ 3. If we let the planner, who does not know the true θ, participate as a
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player by sending a message, then the utilitarian SCR can be implemented
in Bayesian Nash equilibria for �generic� prior beliefs over Θ [Baliga and
Sjöström (1999)].33

4 Bayesian Implementation

Now we drop the assumption that each agent knows the true state of the
world and consider the case of incomplete information.

4.1 DeÞnitions

A generic state of the world is denoted θ = (θ1, ..., θn), where θi is agent
i�s type. Let Θi denote the Þnite set of possible types for agent i, and Θ ≡
Θ1 × ... × Θn. Agent i knows his own type θi but may be unsure about
θ−i ≡ (θ1, ..., θi−1, θi+1, ..., θn). Agent i�s payoff depends only on his own type
and the Þnal outcome (private values). Thus, if the outcome is a ∈ A and the
state of the world is θ = (θ1, ..., θn) ∈ Θ, then we will write agent i�s payoff
as ui(a, θi) rather than ui(a, θ). There exists a common prior distribution on
Θ, denoted p. Conditional on knowing his own type θi, agent i�s posterior
distribution over Θ−i ≡ ×j 6=iΘj is denoted p(· | θi). It can be deduced from
p using Bayes� rule for any θi which occurs with positive probability. If g :
Θ−i → A is any function, and θi ∈ Θi, then the expectation of ui(g(θ−i), θi)
conditional on θi is denoted

E {ui(g(θ−i), θi) | θi} =
X

θ−i∈Θ−i

p(θ−i | θi)ui(g(θ−i), θi)

A strategy proÞle in the mechanism Γ = hM,hi is denoted σ = (σ1, ...,σn),
where for each i, σi : Θi →Mi is a function which speciÞes the messages sent
by agent i�s different types. The message proÞle sent at state θ is denoted
σ(θ) = (σ1(θ1), ..., σn(θn)), and the message proÞle sent by agents other than
i in state θ = (θ−i, θi) is denoted

σ−i(θ−i) = (σ1(θ1), ...,σi−1(θi−1), σi+1(θi+1), ..., σn(θn)).
33Hurwicz (1979b) considered implementation with the help of an �auctioneer� whose

payoff function agrees with the SCR as in equation (6). However, he considered Nash
equilibria among the n+ 1 players, which either requires the auctioneer to know the true
θ or to Þnd it out during some unspeciÞed adjustment process.
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Let Σ denote the set of all strategy proÞles. Strategy proÞle σ ∈ Σ is a
Bayesian Nash Equilibrium if and only if for all i ∈ N and all θi ∈ Θi,

E {ui(h(σ(θ−i, θi)), θi) | θi} ≥ E {ui(h(σ−i(θ−i),m0
i), θi) | θi}

for all m0
i ∈ Mi. All expectations are with respect to θ−i conditional on θi.

Let BNEΓ ⊆ Σ denote the set of Bayesian Nash Equilibria for mechanism
Γ.
A social choice set (SCS) is a collection �F = {f1, f2, ...} of social choice

functions, i.e., a subset of AΘ.We identify the SCF f : Θ→ A with the SCS
�F = {f}. DeÞne the composition h◦σ : Θ→ A by (h ◦σ)(θ) = h(σ(θ)). The
mechanism Γ = hM,hi implements the SCS �F in Bayesian Nash equilibria
if and only if (i) for all f ∈ �F, there is σ ∈ BNEΓ such that h ◦ σ = f, and
(ii) for all σ ∈ BNEΓ there is f ∈ �F such that h ◦ σ = f.

4.2 Closure

A set Θ0 ⊆ Θ is a common knowledge event if and only if θ0 = (θ0−i, θ0i) ∈ Θ0
and θ = (θ−i, θi) /∈ Θ0 implies, for all i ∈ N, p(θ−i | θ0i) = 0. If an agent is not
sure about the true state, then in order to know what message to send he must
predict what messages the other agents would send in all those states that he
thinks are possible, which links a number of states together. However, two
disjoint common knowledge events Θ1 and Θ2 are not at all linked in this way.
For this reason, a necessary condition for Bayesian Nash implementation of an
SCS �F is closure [Postlewaite and Schmeidler (1986), Palfrey and Srivastava
(1989a), Jackson (1991)]: for any two common knowledge events Θ1 and Θ2
that partition Θ, and any pair f1, f2 ∈ �F , we have f ∈ �F where f is deÞned
by f(θ) = f1(θ) if θ ∈ Θ1 and f(θ) = f2(θ) if θ ∈ Θ2.
If every state is a common knowledge event, then we are in effect back

to the case of complete information, and any SCS which satisÞes closure is
equivalent to an SCR. For an example of an SCS which does not satisfy clo-
sure, suppose A = {a, b} and Θ = {θ, θ0}. Each state is a common knowledge
event. The SCS is �F = {f1, f2}, where f1(θ) = f2(θ0) = a, f1(θ0) = f2(θ) = b,
and a 6= b. This �F cannot be implemented. Indeed, to implement �F we
would in effect need both a and b to be Nash equilibrium outcomes in both
states, but then there would be no way to guarantee that the outcomes in the
two states are different, as required by both f1 and f2. Notice that �F is not
equivalent to the constant SCR F deÞned by F (θ) = F (θ0) = {a, b}, since
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F does not incorporate the requirement that there be a different outcome in
the two states.

4.3 Incentive Compatibility

An SCF f is incentive compatible if and only if for all i ∈ N and all θi, θ0i ∈ Θi,
E {ui(f(θ−i, θi), θi) | θi} ≥ E {ui(f(θ−i, θ0i), θi) | θi}

An SCS �F is incentive compatible if and only if each f ∈ �F is incentive
compatible.

Theorem 18 [Dasgupta, Hammond and Maskin (1979), Myerson (1979),
Harris and Townsend (1981)] If the SCS �F is implementable in Bayesian
Nash equilibria, then �F is incentive compatible.

Proof. Suppose Γ = hM,hi implements �F , but some f ∈ �F is not incentive
compatible. Then there is i ∈ N and θi, θ

0
i ∈ Θi such that

E {ui(f(θ), θi) | θi} < E {ui(f(θ−i, θ0i), θi) | θi} (7)

where θ = (θ−i, θi). Let σ ∈ BNEΓ be such that h ◦ σ = f. If agent i�s type
θi uses the equilibrium strategy σi(θi), his expected payoff is

E {ui(h(σ(θ)), θi) | θi} = E {ui(f(θ), θi) | θi} (8)

If instead he were to send the message m0
i = σi(θ

0
i), he would get

E {ui (h(σ−i(θ−i), σi(θ0i))) | θi)} = E {ui (f(θ−i, θ0i), θi) | θi} (9)

But inequality (7) and equations (8) and (9) contradict the deÞnition of
Bayesian Nash equilibrium. ¤
The mechanism Γ is a revelation mechanism if each agent�s message is

an announcement of his own type: Mi = Θi for all i ∈ N . Theorem 18
implies the revelation principle: if �F is implementable, then for each f ∈ �F ,
truth telling is a Bayesian Nash equilibrium for the revelation mechanism
hM,hi where h = f and Mi = Θi for each i ∈ N . However, the revelation
mechanism will in general have untruthful Bayesian Nash equilibria and will
therefore not fully implement f [Postlewaite and Schmeidler (1986), Repullo
(1986)].
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4.4 Bayesian Monotonicity

A deception for agent i is a function αi : Θi → Θi. A deception α =
(α1, ...,αn) consists of a deception αi for each agent i. Let α(θ) ≡ (α1(θ1), ...,αn(θn))
and α−i(θ−i) ≡ (α1(θ1), ...,αi−1(θi−1),αi+1(θi+1), ...,αn(θn)).
DeÞnition Bayesian monotonicity. For all f ∈ �F and all deceptions α such

that f ◦ α /∈ �F , there exists i ∈ N and a function y : Θ→ A such that

E {ui(f(θ), θi) | θi} ≥ E {ui(y(θ), θi) | θi} (10)

for all θi ∈ Θi and
E {ui(f(α(θ−i, θ0i)), θ0i) | θ0i} < E {ui(y(α(θ−i, θ0i)), θ0i) | θ0i} (11)

for some θ0i ∈ Θi.
This deÞnition is due to Jackson (1991), and is slightly stronger than

the version given by Palfrey and Srivastava (1989a). A related condition
called selective elimination was used by Mookherjee and Reichelstein (1990).
They showed how mechanisms for full implementation can be built from
incentive compatible revelation mechanisms by adding messages in order to
eliminate undesirable equilibria. The following result shows that Bayesian
monotonicity generalizes monotonicity to the case of incomplete information.

Theorem 19 [Postlewaite and Schmeidler (1986), Palfrey and Srivastava
(1989a), Jackson (1991)] If the SCS �F is implementable in Bayesian Nash
equilibria, then �F is Bayesian monotonic.

Proof. Suppose the mechanism Γ = hM,hi implements �F in Bayesian Nash
equilibria. For each f ∈ �F there is σ ∈ BNEΓ such that h ◦ σ = f . Let α
be a deception such that f ◦α /∈ �F. Now, σ ◦α ∈ Σ is a strategy proÞle such
that in state θ ∈ Θ the agents behave as they would under σ if their types
were α(θ), i.e. they �deceptively� send message proÞle (σ ◦ α)(θ) = σ(α(θ)).
Since h◦ (σ ◦α) = f ◦α /∈ �F , it follows that σ ◦α /∈ BNEΓ. Therefore, some
type θ0i ∈ Θi must have a message m0

i ∈Mi such that

E {ui(h(σ(α(θ−i, θ0i))), θ0i) | θ0i} < E {ui(h(σ−i(α−i(θ−i)),m0
i), θ

0
i) | θ0i} (12)

Let y : Θ → A be deÞned by y(θ) = h(σ−i(θ−i),m0
i). Note that y(θ) is

independent of θi, and

y(α(θ)) = h(σ−i(α−i(θ−i)),m0
i)
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Now (10) follows from the deÞnition of Bayesian Nash equilibrium, and (11)
follows from (12). ¤
Thus, the three conditions of closure, Bayesian monotonicity and incen-

tive compatibility are necessary for Bayesian Nash implementation. Con-
versely, Jackson (1991) showed that in economic environments with n ≥ 3,
any SCS satisfying these three condition can be Bayesian Nash implemented.
This improved on two earlier results for economic environments with n ≥ 3:
Postlewaite and Schmeidler (1986) proved the sufficiency of closure and
Bayesian monotonicity when information is non-exclusive,34 and Palfrey and
Srivastava (1989a) proved the sufficiency of closure together with a version
of Bayesian monotonicity35 and a stronger incentive compatibility condition.
For general environments with n ≥ 3, Jackson (1991) shows that closure,
Bayesian monotonicity and a condition called monotonicity-no-veto together
are sufficient for Bayesian Nash implementation. Palfrey and Srivastava
(1989b) showed that any incentive-compatible SCF can be implemented in
undominated Bayesian Nash equilibria if n ≥ 3, value distinction and a full
support assumption hold, and no agent is ever indifferent across all alter-
natives. For virtual Bayesian implementation see Abreu and Matsushima
(1990), Duggan (1997) and Serrano and Vohra (2001). For Bayesian imple-
mentation using sequential mechanisms see Baliga (1999), Bergin and Sen
(1998) and Brusco (1995).

4.5 Non-Parametric, Robust and Fault Tolerant Im-
plementation

So far we have implicitly assumed that the mechanism designer knows the
common prior p. The assumption is relaxed by Choi and Kim (1999) who
construct a mechanism for non-parametric implementation in undominated

34Information is non-exclusive if each agent�s information can be inferred by pooling the
other n− 1 agents� information.

35Palfrey and Srivastava (1989a) considered a different model of incomplete informa-
tion. In their model, each agent observes an event (a set of states containing the true
state). A set of events are compatible if they have non-empty intersection. Social choice
functions only recommend outcomes for situations where the agents have observed com-
patible events. The social planner can respond to incompatible reports any way she wants,
which (at least in economic environments) makes it easy to deter the agents from sending
incompatible reports. Thus, Palfrey and Srivastava (1989a) found it sufficient to restrict
their monotonicity condition to �compatible deceptions�.
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Bayesian-Nash equilibrium. They assume types are independently drawn
from a distribution which is known to the agents, but not to the mechanism
designer. Each agent is asked to announce his own beliefs as well as the
beliefs of a �neighbor�, and in equilibrium all agents tell the truth. Duggan
and Roberts (1997) introduced a notion of robust implementation, where the
social planner is assumed to have a point estimate of the agents� prior p, but
implementation is robust against small errors in this estimate.
A different kind of robustness was introduced by Corchón and Ortu�no-

Ortin (1995), who assumed agents are divided into local communities, each
with at least three members. The social planner knows that information is
complete within a community, but she does not necessarily know what agents
in one community know about members of other communities. Implementa-
tion should be robust against different possible inter-community information
structures. Yamato (1994) showed that an SCR is robustly implementable
in this sense if and only if it is Nash implementable.
Eliaz (2000) introduced fault tolerant implementation. The idea is that

mechanisms ought not to break down if there are a few �faulty� agents who
do not understand the rules of the game or make mistakes. Suppose neither
the social planner nor the (non-faulty) agents know which agent (if any) is
faulty, but all other aspects of the state are known to the (non-faulty) agents.
Eliaz deÞnes a Nash equilibrium to be k-fault tolerant if it is robust against
deviations by at most k faulty players and gives necessary and sufficient
conditions for implementation when k + 1 < n/2.
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Baliga, S. and T. Sjöström (1999), �Interactive implementation�, Games
and Economic Behavior, 27:38-63.

Barbera, S. and M. Jackson (1995), �Strategy-proof exchange�, Economet-
rica, 63: 51-87.

Bergin, J. and Sen, A. (1998), �Extensive form implementation in incom-
plete information environments�, Journal of Economic Theory, 80:222-
56.

Bowen, H. (1943), �The interpretation of voting in the allocation of eco-
nomic resources�, Quarterly Journal of Economics, 58:27- 48.

Brusco, S. (1995), �Perfect Bayesian implementation�, Economic Theory,
5:429-444.

Cabrales, A. (1999), �Adaptive dynamics and the implementation problem
with complete information�, Journal of Economic Theory, 86:159-184.

Cabrales, A. and G. Ponti (2000), �Implementation, elimination of weakly
dominated strategies and evolutionary dynamics�, Review of Economic
Dynamics, 3:247-282.

Chakravorty, B. (1991) �Strategy space reduction for feasible implementa-
tion of Walrasian performance�, Social Choice and Welfare, 8:235-245.

43



Chakravorty, B., L. Corchón and S. Wilkie (1997), �Credible implementa-
tion�, to appear in Games and Economic Behavior.

Choi, J. and T. Kim (1999), �A nonparametric, efficient public decision
mechanism: Undominated Bayesian Nash implementation�, Games and
Economic Behavior, 27:64-85.

Clarke, E.H. (1971), �Multipart pricing of public goods,� Public Choice,
11:17-33.

Corchón, L. (1996), The Theory of Implementation of Socially Optimal
Decisions in Economics, New York: St. Martin�s Press.

Corchón, L. and I. Ortu�no-Ortin (1995) �Robust implementation under
alternative information structures�, Economic Design, 1:159-171.

Crawford, V. (1979), �A procedure for generating Pareto-efficient egalitarian-
equivalent allocations�, Econometrica, 47:49-60.

Danilov, V. (1992), �Implementation via Nash equilibria�, Econometrica,
60:43-56.

Dasgupta, P., P. Hammond and E. Maskin (1979), �The implementation of
social choice rules: Some general results on incentive compatibility�,
Review of Economic Studies, 46:185-216.

Deb, R. (1994), �Waiver, effectivity, and rights as game forms�, Economica,
61:167-178.

Deb, R., P. K. Pattanaik, and L. Razzolini (1997), �Game forms, rights
and the efficiency of social outcomes�, Journal of Economic Theory,
72:74�95.

Duggan, J. (1997), �Virtual Bayesian implementation�, Econometrica, 67:1175-
1199.

Duggan, J. and J. Roberts (1997) �Robust implementation�, Mimeo, Uni-
versity of Rochester.

Dutta, B. and A. Sen (1991a), �Implementation under strong equilibria: A
complete characterization�, Journal of Mathematical Economics, 20:49-
67.

44



Dutta, B. and A. Sen (1991b), �A necessary and sufficient condition for two-
person Nash implementation�, Review of Economic Studies, 58:121-
128.

Dutta, B., A. Sen and R. Vohra (1995), �Nash implementation through
elementary mechanisms in economic environments�, Economic Design,
1:173-204.

Eliaz, K. (2000), �Fault tolerant implementation�, Mimeo, Tel Aviv Uni-
versity.

Farquharson, R. (1969), The Theory of Voting, New Haven, Conn.: Yale
University Press.

Farrell, J. (1993), �Meaning and credibility in cheap-talk games�, Games
and Economic Behavior, 5:514-531.

Gaertner, W., P. Pattanaik and K. Suzumura (1992), �Individual rights
revisited�, Economica, 59:161-177.

Gärdenfors, P. (1981), �Rights, games and social choice�, Nous, 15:341-356.

Gaspart, F. (1996) �Fair implementation in the cooperative production
problem: Two properties of normal form mechanisms�, Mimeo, FUND
Namur.

Gaspart, F. (1997), �A general concept of procedural fairness for one-stage
implementation�, Mimeo, FUND Namur.

Gibbard, A. (1973), �Manipulation of voting schemes: A general result�,
Econometrica, 41:587-601.

Glazer, J. and R. Rosenthal (1992), �A note on Abreu-Matsushima mecha-
nisms�, Econometrica, 60:1435-1438.

Grossman, S. and M. Perry (1986), �Perfect sequential equilibrium�, Jour-
nal of Economic Theory, 39:97-119.

Groves, T. (1973) �Incentives in Teams�, Econometrica, 41:617-631.

Groves, T. and J. Ledyard (1977), �Optimal allocation of public goods: A
solution to the �free rider� dilemma�, Econometrica 45: 783-811.

45



Hammond, P. (1997) �Game forms versus social choice rules as models of
rights�, in: K.J. Arrow, A.K. Sen and K. Suzumura, eds., Social Choice
Re-examined, Vol. II (IEA Conference Volume No. 117), pp. 82-95.
London: Macmillan.

Harris, M. and R. Townsend (1981) �Resource allocation with asymmetric
information�, Econometrica, 49: 33-64.

Harsanyi, J. and R. Selten (1988), A General Theory of Equilibrium Selec-
tion in Games, MIT Press.

Herrero, M. and S. Srivastava (1992) �Implementation via backward induc-
tion�, Journal of Economic Theory, 56:70-88.

Hong, L. (1995), �Nash implementation in production economies�, Eco-
nomic Theory, 5:401-418.

Hurwicz, L. (1960), �Optimality and informational efficiency in resource
allocation processes�, in: K.J. Arrow, S. Karlin, and P. Suppes, eds.,
Mathematical Methods in the Social Sciences, pp. 27-46. Stanford:
Stanford University Press.

Hurwicz, L. (1972), �On informationally decentralized systems�, in: R.
Radner and C.B. McGuire, eds., Decision and Organization (Volume
in Honor of J. Marshak), pp. 297-336. Amsterdam: North-Holland.

Hurwicz, L. (1979a), �Outcome functions yielding Walrasian and Lindahl
allocations at Nash equilibrium points�, Review of Economic Studies,
46:217-225.

Hurwicz, L. (1979b), �On Allocations attainable through Nash equilibria�,
Journal of Economic Theory, 21:140-165.

Hurwicz, L. (1979c), �Balanced outcome functions yielding Walrasian and
Lindahl allocations at Nash equilibrium points for two or more agents�,
in: J. Green and J. Scheinkman, eds., General Equilibrium, Growth and
Trade. New York: Academic Press.

Hurwicz, L., E. Maskin and A. Postlewaite (1995), �Feasible Nash imple-
mentation of social choice rules when the designer does not know en-
dowments or production sets�, in: J. Ledyard, ed., The Economics of

46



Informational Decentralization: Complexity, Efficiency and Stability,
pp. 367-433. Kluwer Academic Publishers.

Hurwicz, L. and D. Schmeidler (1978), �Construction of outcome func-
tions guaranteeing existence and Pareto-optimality of Nash equilibria�,
Econometrica, 46:1447-1474.

Jackson, M. (1991), �Bayesian implementation�, Econometrica, 59:461-477.

Jackson, M. (1992) �Implementation in undominated strategies: A look at
bounded mechanisms�, Review of Economic Studies, 59:757-775.

Jackson, M. and T. Palfrey (1998), �Voluntary implementation�, Mimeo,
CALTECH.

Jackson, M., T. Palfrey and S. Srivastava (1994), �Undominated Nash im-
plementation in bounded mechanisms�, Games and Economic Behav-
ior, 6:474-501.

Jordan, J. (1986), �Instability in the implementation of Walrasian alloca-
tions�, Journal of Economic Theory, 39:301-328.

Maskin, E. (1979a), �Incentive schemes immune to group manipulation�,
Mimeo, MIT

Maskin, E. (1979b), �Implementation and strong Nash equilibrium�, in: J.J.
Laffont, ed., Aggregation and Revelation of Preferences, pp. 433-440.
Amsterdam: North-Holland.

Maskin, E. (1985), �The theory of implementation in Nash equilibrium:
A survey�, in: L. Hurwicz, D. Schmeidler and H. Sonnenschein, eds.,
Social Goals and Social Organization (Volume in Memory of Elisha
Pazner), pp. 173-204. Cambridge: Cambridge University Press.

Maskin, E. (1999), �Nash equilibrium and welfare optimality�, Review of
Economic Studies, 66:23-38.

Maskin, E. and J. Moore (1999), �Implementation and renegotiation�, Re-
view of Economic Studies, 66:39-56.

Matsushima, H. (1988), �A new approach to the implementation problem�,
Journal of Economic Theory, 45:128-144.

47



Matsushima, H (1993), �Bayesian monotonicity with side payments�, Jour-
nal of Economic Theory, 39:107-121.

McKelvey, R. (1989), �Game forms for Nash implementation of general
social choice correspondences�, Social Choice and Welfare, 6:139-156.

Mookherjee, D. and S. Reichelstein (1990), �Implementation via augmented
revelation mechanisms�, Review of Economic Studies, 57:453-476.

Moore, J. (1992), �Implementation, contracts and renegotiation in environ-
ments with complete information�, in: J.J. Laffont, ed., Advances in
Economic Theory (vol. I). Cambridge: Cambridge University Press.

Moore, J. and R. Repullo (1988), �Subgame perfect implementation�, Econo-
metrica, 56:1191-1220.

Moore, J. and R. Repullo (1990), �Nash implementation: A full character-
ization�, Econometrica, 58:1083-1100.

Moulin, H. (1979), �Dominance solvable voting schemes�, Econometrica,
47:1337-1352.

Moulin H. and B. Peleg (1982), �Cores of effectivity functions and imple-
mentation theory�, Journal of Mathematical Economics, 10:115-145.

Mount, K. and S. Reiter (1974), �The informational size of message spaces�,
Journal of Economic Theory, 8:161-192.

Muench, T. and M. Walker (1984), �Are Groves-Ledyard equilibria attain-
able?�, Review of Economic Studies, 50:393-396.

Muller, E. and M. Satterthwaite (1977), �The equivalence of strong posi-
tive association and strategy proofness�, Journal of Economic Theory,
14:412-418.

Myerson, R. (1979), �Incentive compatibility and the bargaining problem�,
Econometrica, 47:61-74.

Palfrey, T. (1992), �Implementation in Bayesian equilibrium: The multiple
equilibrium problem in mechanism design�, in: J.J. Laffont, ed., Ad-
vances in Economic Theory (vol. I). Cambridge: Cambridge University
Press.

48



Palfrey, T. and S. Srivastava (1989a), �Implementation with incomplete
information in exchange economies�, Econometrica, 57:115-134.

Palfrey, T. and S. Srivastava (1989b), �Mechanism design with incomplete
information: A solution to the implementation problem�, Journal of
Political Economy, 97:668-691.

Palfrey, T. and S. Srivastava (1991), �Nash implementation using undomi-
nated strategies�, Econometrica, 59:479-501.

Pattanaik, P.K. and K. Suzumura (1994), �Rights, welfarism and social
choice�, American Economic Review (Papers and Proceedings), 84:435�
439.

Peleg, B. (1984), Game Theoretic Analysis of Voting in Committees. Cam-
bridge: Cambridge University Press

Peleg, B. (1998), �Effectivity functions, game forms, games and rights�,
Social Choice and Welfare, 15:67-80.

Postlewaite, A. and D. Schmeidler (1986), �Implementation in differential
information economies�, Journal of Economic Theory, 39:14-33.

Postlewaite, A. and D. Wettstein (1989), �Continuous and feasible imple-
mentation�, Review of Economic Studies, 56:603-611.

Reichelstein, S. and S. Reiter (1988), �Game forms with minimal message
spaces�, Econometrica, 56:661-692.

Repullo, R. (1986), �The revelation principle under complete and incom-
plete information�, in: K. Binmore and P. Dasgupta, eds., Economic
Organization as Games. Oxford: Basil Blackwell.

Repullo, R. (1987), �A simple proof of Maskin�s theorem on Nash imple-
mentation�. Social Choice and Welfare, 4:39-41.

Roberts, K. (1979), �The characterization of implementable choice rules�,
in: J.J. Laffont, ed., Aggregation and Revelation of Preferences. Ams-
terdam: North-Holland.

Rubinstein, A. and A. Wolinsky (1992), �Renegotiation-proof implementa-
tion and time preferences�, American Economic Review, 82:600-614.

49



Saijo, T. (1988), �Strategy space reduction in Maskin�s theorem�, Econo-
metrica, 56:693-700.

Saijo, T. Y. Tatamitani and T. Yamato (1996), �Toward natural implemen-
tation�, International Economic Review, 37:949-980.

Samuelson, P. (1954), �The pure theory of public expenditure�, Review of
Economics and Statistics, 36:387-389.

Satterthwaite, M. (1975), �Strategy-proofness and Arrow�s conditions: Ex-
istence and correspondence theorems for voting procedures and social
welfare functions�, Journal of Economic Theory, 10:187-217.

Sato, F. (1981), �On the informational size of message spaces for resource
allocation processes in economies with public goods�, Journal of Eco-
nomic Theory, 24: 48-69.

Schmeidler, D. (1980), �Walrasian analysis via strategic outcome functions�,
Econometrica, 48:1585-1594.

Schmeidler, D. (1982), �A condition guaranteeing that the Nash allocation
is Walrasian�, Journal of Economic Theory, 28:376-378.

Segal, I. and M. Whinston (1998), �The Mirrlees approach to mechanism
design with renegotiation�, to appear in Econometrica.

Sen, A.K. (1970), Collective Choice and Social Welfare. San Francisco:
Holden-Day.

Sen, A. (1995), �The implementation of social choice functions via social
choice correspondences: A general formulation and a limit result�, So-
cial Choice and Welfare, 12:277-292.

Serrano, R. and R. Vohra (2001), �Some limitations of virtual Bayesian
implementation�, Econometrica, 69:785-792.

Sjöström, T. (1991), �On the necessary and sufficient conditions for Nash
implementation�, Social Choice and Welfare, 8:333-340.
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