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Abstract

In this paper, we examine the restrictions that any concept of ex-
tended anonymity must satisfy in order to be compatible with the
existence of a Paretian social welfare relation (SWR). We completely
characterize the class of permissible permutations associated with any
Paretian SWR; that is, those permutations with respect to which every
utility stream is pronounced to be indifferent to the corresponding per-
muted utility stream, according to the Paretian SWR. Based on the
characterization result, we propose a particular class of extensions of
anonymity, which allows comparisons of utility streams that are re-
lated to each other by an infinite number of permutations of a specific
type. The merits of this particular class of extensions are discussed.
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1 Introduction

In ranking social states which are specified by infinite utility streams, it is
customary to use a social welfare relation (SWR), a reflexive and transitive
binary relation on the social states, satisfying two widely accepted guiding
principles. The equal treatment of all generations, proposed by Ramsey
(1928), is formalized in the Anonymity Axiom. The positive sensitivity of
the social preference structure to the well-being of each generation is reflected
in the Pareto Axiom.

The Anonymity axiom says that if x = (x1, x2, . . .) and y = (y1, y2, . . .)
are infinite utility streams, and x can be obtained by applying a finite per-
mutation to y, then x should be declared indifferent to y. Many authors have
felt that a stronger notion than the Anonymity Axiom is needed to reflect in-
tergenerational equity in intertemporal preferences.1 This essentially means
that in comparing infinite utility streams, indifference would be postulated
for a larger class of permutations2, which would include finite permutations
as a special case.

The basic question that arises then is the following: how would one spec-
ify this larger class of permutations? An approach followed in the literature
has been to specify a class of infinite permutations and to argue that so-
ciety should be indifferent between utility streams when one stream can be
obtained from another by applying such an infinite permutation to it.3

The approach taken in this paper is somewhat different. We wish to iden-
tify the class of permutations that can be allowed, given the very structure
of the problem. That is, given that we seek a SWR which must satisfy the
Pareto axiom, we wish to analyze the restrictions (if any) on the class of
permutations with respect to which utility streams can be pronounced to be
indifferent. What is involved here is a logical consistency check rather than
any ethical principle.

1See, for example, Lauwers (1995, 1997), Liedekerke and Lauwers (1977), Fleurbaey
and Michel (2003).

2In what follows, we will use the terms “permutations” and “permutation matrices”
interchangeably. The connection between the two is the following. A permutation is a one
to one map from the natural numbers onto the natural numbers. Any such permutation
can be represented by a permutation matrix. See Section 2 for a discussion.

3See the papers by Lauwers (1995, 1998), where he considers a class of permutations
π (which he calls “bounded permutations”) which satisfy (π(n)/n) → 1 as n → ∞. It
is not quite clear, though, why this class is of special interest from the point of view of
intergenerational equity.
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The problem with postulating indifference with respect to arbitrary in-

finite permutations is, of course, that preference relations with this feature
would violate the Pareto axiom.4 Thus, it is clear that the class of permu-
tations, with respect to which indifference is postulated, would have to be
restricted in some way if it is to be compatible with any given Paretian SWR.
However, somewhat surprisingly, there is no systematic study in the literature
of the class of permutations which are permissible, in the sense that every
utility stream is pronounced to be indifferent to the corresponding permuted
utility stream, according to the given Paretian SWR.5

Our analysis reveals two clear-cut restrictions. Given a Paretian SWR,
and denoting the set of permissible permutations associated with it by Π,
we see that the Pareto axiom implies that the permutations in Π must be
cyclic. Further the transitivity property of the SWR implies that the set Π
(together with the operation of matrix mutliplication of infinite permutation
matrices) must be a group.6

These are significant restrictions, dictated entirely by the mathematical
structure of the problem. They also exhaust all the restrictions imposed by
the nature of the problem. That is, given any groupQ of cyclic permutations,
there is a Paretian SWR, such that the class Π of permissible permutations
associated with it coincides exactly with Q. Thus, we provide a complete
characterization of permissible permutations that are consistent with the
existence of a Paretian social welfare relation on infinite utility streams.7

As the proof of our (sufficiency) result shows, a social welfare relation that
suffices for this purpose is exactly of the type known as the Suppes-Sen grad-

ing principle, except that it is defined with respect to all the permutations

4This point is well-recognized in the literature. See, for example, Lauwers (1997), and
Asheim and Tungodden (2004).

5Fleurbaey and Michel (2003) have undertaken a very comprehensive study of
anonymity with respect to infinite permutations. However, their approach is to specify a
class of permutations (they consider fixed step, variable step and finite length permuta-
tions)and ask whether indifference with respect to this class is consistent with axioms like
Pareto or Weak Pareto or Continuity. Our approach treats the class of permutations as
a “choice variable” and seeks to characterize the class which is compatible with Paretian
SWRs.

6The terms “permissible permutations”,“cyclic permutations” and “group of permuta-
tion matrices” are formally defined in Section 2.

7The framework in which our result is established is, by now, the standard one, em-
ployed, for instance, in Diamond (1965), Svensson (1980) and Basu and Mitra (2003).
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in the specified group, instead of the class of finite permutations.8 Thus, the
social welfare relations we propose can be viewed as extended Suppes-Sen
grading principles.

In view of our characterization result, we introduce a notion of extended
anonymity in which the rearrangements of utility streams allowed in any pair-
wise comparison are restricted to a sequence of permutations within blocks
of time of equal length.9 These blocks of time might be considered to be ex-
tended “time periods” and permutations within each block might be treated
just like rearrangements in finite societies. We show that this class of per-
mutations is a group of cyclic permutations (and hence consistent with the
existence of a Paretian social welfare relation), which constitutes a strict
extension of the class of finite permutations.

2 Preliminaries

2.1 Notation

Let N denote, as usual, the set of natural numbers {1, 2, 3, ...}, and let R

denote the set of real numbers. Let Y denote the closed interval [0, 1] , and
let the set Y N be denoted by X . Then, X is the domain of utility sequences
that we are interested in. Hence, x ≡ (x1, x2, . . .) ∈ X if and only if xn ∈ [0, 1]
for all n ∈ N.

For y, z ∈ R
N, we write y ≥ z if yi ≥ zi for all i ∈ N ; and, we write y > z

if y ≥ z, and y �= z.

2.2 Definitions

A social welfare relation (SWR) is a binary relation, � , on X , which is
reflexive and transitive (a quasi ordering). We associate with� its symmetric
and asymmetric components in the usual way. Thus, we write x ∼ y when

8The grading principle is due to Suppes (1966). For a comprehensive analysis of it,
see Sen (1971). Svensson (1980) provides a formal definition of the Suppes-Sen grading
principle in the context of infinite utility streams. It can be characterized as the least
restrictive SWR satisfying the Pareto and Anonymity axioms; see d’Aspremont (1985)
and Asheim, Buchholz and Tungodden (2001).

9This is precisely the class of permutations, which are called fixed-step permutations
in Fleurbaey and Michel (2003).
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x � y and y � x both hold; and, we write x � y when x � y holds, but
y � x does not hold.

A SWR �A is a subrelation to a SWR �B if (a) x, y ∈ X and x �A y
implies x �B y; and (b) x, y ∈ X and x �A y implies x �B y.

2.3 Permutations

A permutation π is a one-to-one map from N onto N. Any x ∈ X can be
viewed as a map from N to Y, associating with each n ∈ N the element
xn ∈ Y. The composite map x ◦ π is then a map from N to Y, associating
with each n ∈ N an element π(n) through the map π, and then associating the
element xπ(n) ∈ Y through the map x. Thus, if x is written as the sequence
(x1, x2, . . .) ∈ X, then x ◦ π is written as the sequence (xπ(1), xπ(2), . . .) ∈ X.

Any permutation π can be represented by a permutation matrix. A per-

mutation matrix P = (pij)i∈N,j∈N, is defined as follows:

(i)For each i ∈ N, there is j(i) ∈ N, such that pij(i) = 1
and pij = 0 for all j �= j(i)

(ii)For each j ∈ N, there is i(j) ∈ N, such that pi(j)j = 1
and pij = 0 for all i �= i(j)

Given any permutation π, there is a permutation matrix, P, such that if
x ∈ X, then x ◦ π = (xπ(1), xπ(2), . . .) can be written as Px in the usual sense
of matrix multiplication. Notice that for any permutation matrix P and any
x ∈ X, the matrix multiplication is well-defined, since each row of P has
one non-zero entry. Conversely, given any permutation matrix P, there is a
permutation π defined by π = Pa, where a = (1, 2, 3, ...). We denote the set
of all permutation matrices by P.

A finite permutation π is a permutation, such that there is some N ∈ N,
with π(n) = n for all n > N. The set of all finite permutations10 is denoted
by F .

It is useful to recall some basic properties of permutation matrices.11 (i)
If P,Q ∈ P, then PQ ∈ P. (ii) The infinite identity matrix, I, belongs to
P, and for each P ∈ P, we have PI = IP = P. (iii) Given any P ∈ P, the
transpose of P, denoted by P ′, belongs to P, and PP ′ = P ′P = I, so that

10For basic properties of finite permutations, see, for example, Hohn (1973).
11Some of the basic properties of infinite permutation matrices can be found in Cooke

(1950).
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P ′ is the inverse of P. (iv) Finally, for P,Q,R ∈ P, we have:

P (QR) = (PQ)R

Thus, P is a group under the usual matrix multiplication operation.12

The n-th unit vector in X is the sequence in X with 1 in the n-th place
and 0 elsewhere, and is denoted by en for each n ∈ N. The set of unit vectors
{e1, e2, ...} is denoted by U.

If x ∈ X, then x can be written as:

x =
∞∑

n=1

xne
n

where the infinite sum is interpreted as the co-ordinate wise convergence limit
of the finite sum

∑N

n=1 xne
n as N → ∞.

If P ∈ P, and x ∈ X, then (in view of the above representation of x)
properties of the rearranged sequence Px can be studied by seeing how the
permutation P acts on the unit vectors of X. Note that given any en ∈ U,
the permutation P transforms the unit vector en to a unit vector (possibly
different from en). Thus, the permutation matrix P maps U to U. We can,
therefore, consider repeated applications of P to U, and these iterates would
also remain in U. Given any n ∈ N, we can consider the sequence:

(Pen, P 2en, ....)

generated by iterates of P applied to the unit vector en. The sequence is
called non-wandering if there exist i, j ∈ N, with i < j, such that P ien =
P jen. Otherwise, it is called wandering. As the name suggests, a wandering
sequence never revisits a point.

Non-wandering sequences can be characterized more simply as follows.
Denoting (j − i) by k, we see that by applying P ′ repeatedly ( i times) to
the equation P ien = P jen, we would get en = P ken. Thus, a non-wandering
sequence returns to en after a finite number of iterations. Its structure there-
fore is of the form of an infinitely repeated cycle (Pen, P 2en, ...., P ken(=

12A group is a set of objects, G, together with a binary operation ⊗ on G such that:
(i) If A,B ∈ G, then A⊗B ∈ G.

(ii) An identity element, I ∈ G, such that for every A ∈ G, I ⊗A = A⊗ I = A.

(iii) For every A ∈ G, there is A′ ∈ G, such that A⊗A′ = A′ ⊗A = I.

(iv) If A,B,C ∈ G, then A⊗ (B ⊗ C) = (A⊗B)⊗ C.
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en), Pen, P 2en, ...., en, ...). If m is the smallest integer for which Pmen = en,
then m is called the period of the cycle.

If P is a permutation such that for each unit vector en ∈ U, its iterates
generate a non-wandering sequence, then P is called cyclic. Thus, a cyclic
permutation P generates an infinitely repeated cycle, starting with every unit
vector. [Notice that, in general, the period of the cycle generated might be
different for different unit vectors].

A useful property of a cyclic permutation P is that its inverse is also
cyclic. To see this, consider an arbitrary unit vector ek ∈ U. Since P is
cyclic, there is some m ∈ N such that Pmek = ek. Applying Q = P ′ = P−1

to this equation repeatedly ( m times), we get ek = Qmek. Thus, Q is cyclic.

3 On Paretian SWRs with Extended Anonymity:

Necessary Conditions

Given a social welfare relation � onX, the set of its permissible permutations

is defined to be:

Π(�) = {P ∈ P : Px ∼ x for all x ∈ X}

That is, it is the class of permutations with respect to which every utility
stream is pronounced to be indifferent to the corresponding permuted utility
stream. Note that since the infinite identity matrix, I, belongs to P, and �
is reflexive, I belongs to Π(�), so that Π(�) is always non-empty.

The standard anonymity axiom may be stated as follows.

Axiom 1 (Anonymity) If x, y ∈ X, and there exist i, j in N , such that

xi = yj and xj = yi , while xk = yk for all k ∈ N , such that k �= i, j , then

x ∼ y.

It is easy to see that a SWR � satisfies the Anonymity axiom if and only
if for every finite permutation P ∈ F , and every x ∈ X, we have Px ∼ x.
That is, � satisfies the Anonymity axiom if F ⊂ Π(�).

The standard anonymity axiom suggests that we can write an extended
anonymity axiom in the following way, with respect to a class Q ⊂ P of
permutations, where F ⊂ Q.

Axiom 2 (Q−Anonymity) If F ⊂ Q ⊂ P, then for every x ∈ X, we have

Px ∼ x if P ∈ Q.
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That is, � satisfies Q-Anonymity (where F ⊂ Q ⊂ P) if Q ⊂ Π(�).
We are interested in SWRs on X, which satisfy the well-known Pareto

Axiom.

Axiom 3 (Pareto) If x, y ∈ X, and there is some j ∈ N, such that xj > yj,
while xk ≥ yk for all k �= j, then x � y.

SWRs, satisfying the Pareto axiom, are called Paretian SWRs.

3.1 Permissible Extensions of Anonymity: Two Re-

sults

The question we seek to address in this subsection is the following. Given a
Paretian SWR �, what properties are satisfied by the set of its permissible

permutations, Π(�)? Unlike the literature, we do not postulate any form of
anonymity axiom, but rather seek to identify the class of permutations under
which the given relation pronounces every utility stream to be indifferent to
the corresponding permuted utility stream.

We obtain two restrictions that Π must satisfy.13 First, every P ∈ Π
must be cyclic; second the set Π (together with the usual operation of matrix
multiplication) must constitute a group.14 We take up each of these results
in turn.

For the first result, we provide, in fact, a complete characterization of
cyclic permutations which might be of independent interest.15

13When there is no danger of confusion, we will denote Π(�) by Π, it being understood
that Π is associated with the SWR � given in the relevant context. This simplifies the
notation.

14Infinite permutation matrices have not been systematically studied in the mathematics
literature, which focuses almost exclusively on one problem: what is the class of rearrange-
ments which will preserve the sum of a conditionally convergent series? See Schaefer (1981)
and the references cited in his paper. This problem arose from a famous result of Rie-
mann that a rearrangement of a conditionally convergent series can be convergent to any
pre-specified number or even divergent.

15Finite permutations are always cyclic. Thus, the characterization result in Lemma 1
distinguishes the class of infinite permutation matrices from finite permutation matrices,
once one recognizes that there are infinite permutation matrices which are not cyclic (see
Example 1 discussed in the next subsection). For non-cyclic permutation matrices, the
well-known (homogeneous version of the) Farkas Lemma (see, for example, Gale (1960,
Theorem 2.9, p.48)) fails. There are, of course, infinite dimensional versions of the Farkas
Lemma (see, for example, Braunschweiger and Clark (1962)), but the conditions for their
validity rule out (as they must) non-cyclic permutation matrices.
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Lemma 1 A permutation P ∈ P is cyclic if and only if there is no x ∈ X
satisfying Px > x.

Proof. Suppose P ∈ P is cyclic, but there is some x ∈ X satisfying
Px > x. Then we can find a unit vector ek and a positive real number ε, such
that:

Px− x ≥ εek (1)

This yields the sequence of inequalities:

Px− x ≥ εek

P 2x− Px ≥ εPek

P 3x− P 2x ≥ εP 2ek

· · ·

(2)

Let m be the period of the cycle of P. Summing the inequalities in (2) for
N = sm, where s ∈ N,

PNx− x =
N∑

n=1

[P nx− P n−1x] ≥ εs[
m∑

n=1

P nek] (3)

Denoting the sequence (1, 1, 1, ...) by e, we have from (3),

(e/s) ≥ ε[
m∑

n=1

Pnek] for all s ∈ N (4)

But the vector on the left-hand side of (4) goes to zero as s → ∞, while
the right-hand side of (4) is a non-negative non-zero vector independent of
s. This contradiction establishes the necessity part of the result.

To establish sufficiency, suppose that P ∈ P is not cyclic. Then, denoting
the inverse of P by Q, we know that Q cannot be cyclic. Thus, there is some
unit vector ek ∈ U, for which the sequence (Qek, Q2ek, ...) is wandering. Each
vector in this sequence is a unit vector. Since the sequence is wandering,
any unit vector occurs at most once in the sequence. Thus, the sequence
(x(1), x(2), ...) defined by:

x(N) =
N∑

n=1

Qnek for N ∈ N (5)
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is a monotonic non-decreasing sequence inX, bounded above by e = (1, 1, 1, ...).
Consequently, x(N) has a (coordinatewise convergence) limit as N → ∞. De-
fine this limit by x; then x ∈ X.

Multiplying through in (5) by Q, we have:

Qx(N) =
N∑

n=1

Qn+1ek for N ∈ N (6)

Subtracting (6) from (5), for each N ∈ N,

x(N)−Qx(N) = Qek −QN+1ek (7)

Taking coordinatewise convergence limits in (7), we obtain:

x−Qx = Qek (8)

Multiplying through in (8) by P, we get:

Px− x = ek > 0

This completes the sufficiency part of the proof.
We now note a principal implication of this characterization of cyclic

permutations.

Proposition 1 Suppose � is a Paretian SWR. Then, every P ∈ Π(�) must

be cyclic.

Proof. Given�, denoteΠ(�) byΠ. Suppose, contrary to the proposition,
there is some P ∈ Π, which is not cyclic. Then, by Lemma 1, there is x ∈ X
such that Px > x. Since P ∈ Π, we must have Px ∼ x. But, since Px ∈ X
and Px > x, we must have Px � x because� is Paretian. This, contradiction
establishes the result.

The second result, while fairly straightforward to establish, provides a
restriction which is more involved and therefore harder to check.

Proposition 2 Suppose � is a Paretian SWR. Then, Π(�) is a group with

respect to the operation of matrix multiplication.
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Proof. Given �, denote Π(�) by Π. We check the four properties which
define a group. First, let P,Q belong to Π. Define R = PQ; we know that
R ∈ P. We have to show that R ∈ Π. Let x ∈ X be arbitrarily specified.
Then, since Q ∈ Π, we have Qx ∼ x. Denoting Qx by y, we note that y ∈ X,
and since P ∈ Π, we also have Py ∼ y. Thus, denoting Py by z, we note
that z ∈ X, and z ∼ y while y ∼ x, so that z ∼ x since � is transitive. Thus,
PQx = Py = z is indifferent to x. Thus, R = PQ must belong to Π.

Second, the identity matrix I ∈ Π (by definition of Π(�), since � is
reflexive) and given any P ∈ Π, we have PI = IP = P, since P ∈ P.

Third, if P ∈ Π, then P ′ ∈ P, and we have to show that P ′ ∈ Π. Let x be
an arbitrary point in X. Then, defining y = P ′x, we see that y ∈ X. Further,
multiplying both sides of this equation by P, we see that Py = PP ′x = x
(since P ′ is the inverse of P ). Since P ∈ Π, we must have Py ∼ y; this means
that x ∼ P ′x. Since x ∈ X was arbitrary, this shows that P ′ ∈ Π.

Finally, if P,Q,R ∈ Π, then P,Q,R ∈ P, and so (PQ)R = P (QR).

3.2 Permissible Extensions of Anonymity: Two Exam-

ples

The restrictions imposed by the above propositions on the set of permissible
permutations of Paretian SWRs are significant ones. The set of all permuta-
tions P is clearly a group, but not all elements of P are cyclic. Consider the
following example.

Example 1:

Let π be the permutation which maps N onto N as follows:

π(n) = n+ 2 for n even
π(n) = n− 2 for n > 1 and odd
π(1) = 2

⎫⎬
⎭ (9)

Note that if P is the permutation matrix associated with π then the iterates
of P, when applied to the first unit vector, e1, will generate the sequence
(e2, e4, e6, ....), clearly a wandering sequence. Thus, P is not cyclic, and
consequently P cannot belong to Π(�) if � is any Paretian SWR.

Perhaps a more transparent way to look at the permutation defined above
is to see the effect of it on a particular utility sequence x ∈ X :

x = (0, 1, 0, 1, 0, 1, 0, ...)
Px = (1, 1, 0, 1, 0, 1, 0, ...)

11



Clearly, what the permutation effectively does is to produce a Pareto superior
utility sequence.

Example 1 shows that the class C of cyclic permutations is a strict subset
of P, and Proposition 1 shows that for every Paretian SWR �, Π(�) must
be a subset of the class C of cyclic permutations. Thus, for every Paretian
SWR �, Π(�) must be a strict subset of P. One might wonder whether it
is possible to have a Paretian SWR �, for which Π(�) is C. Unfortunately,
C is not a group, as the following example shows. Thus, for every Paretian
SWR �, the set of permissible permutations Π(�) must exclude some cyclic
permutation, and Π(�) must be a strict subset of C.

Example 2:

Let π1 be a permutation, defined as follows:

π1(n) = n+ 1 if n is odd
π1(n) = n− 1 if n is even

}
(10)

Clearly the permutation matrix P1 associated with π1 is cyclic, with a cycle
of period 2 for each unit vector.

Let π2 be the permutation, defined as follows:

π2(1) = 1
π2(n) = n+ 1 if n is even
π2(n) = n− 1 if n > 1 and odd

⎫⎬
⎭ (11)

Clearly, the permutation matrix P2 associated with π2 is cyclic, with a cycle
of period 2 for each unit vector, starting with the second one; it has a cycle
of period 1 for the first unit vector.

While P1 and P2 belong to the set C of cyclic permutations, it is easy to
check that the composite permutation π2 ◦ π1 is precisely the permutation π
of Example 1, so that P2P1 = P is not cyclic.

Again, it is instructive to look at the effect of these permutations on a
specific utility sequence x ∈ X :

x = (0, 1, 0, 1, 0, 1, 0, ...)
P1x = (1, 0, 1, 0, 1, 0, 1, ...)
P2P1x = (1, 1, 0, 1, 0, 1, 0, ...)

If P1 and P2 both belong to Π(�), for some Paretian SWR �, then P1x ∼ x
and P2(P1x) ∼ (P1x), and one might not find either of these binary com-
parisons to be unacceptable. However, since the SWR � is transitive, we
must then have P2(P1x) ∼ x, and this is clearly unacceptable since P2(P1x)
is Pareto superior to x.

12



4 On Paretian SWRs with Extended Anonymity:

Sufficient Conditions

We have noted above that the very structure of our problem imposes signifi-
cant restrictions on the class of permissible permutations associated with any
Paretian SWR. Now, we ask whether the restrictions obtained in Proposi-
tions 1 and 2 exhaust all the restrictions on the class of permissible permuta-
tions associated with any Paretian SWR. In other words, if Q is an arbitrary

group of cyclic permutations, can we always define a Paretian SWR �, for
which the class of permissible permutations Π(�) coincides exactly with Q?
The answer to this question is (somewhat surprisingly) in the affirmative, so
that we have, in fact, a complete characterization of the class of permissible
permutations associated with any Paretian SWR.

Our demonstration of the above result consists in writing down a binary
relation � and checking that (i) it is a Paretian SWR, and that (ii) Π(�) =
Q. The particular binary relation we use is exactly of the form of the Suppes-
Sen grading principle, but with the set of finite permutations replaced by the
given group of cyclic permutations, Q. Thus, for every specification of a
group of cyclic permutations, we have a corresponding extended Suppes-Sen

grading principle.

Proposition 3 Let Q be a group of cyclic permutations. Then, there is a

Paretian social welfare relation �E such that Π(�E) = Q.

Proof. Define a binary relation �E as follows: if x, y ∈ X, then x �E y
if and only if there is some P ∈ Q such that Px ≥ y. The symmetric (∼E)
and asymmetric (�E) parts of �E are defined in the usual way.

We check first that the binary relation is reflexive and transitive, so that
it constitutes a social welfare relation.

Let x ∈ X. Since the identity matrix I ∈ Q, and Ix ≥ x, we have x �E x,
verifying that �E is reflexive.

Let x, y, z ∈ X with x �E y and y �E z. Then, there exist P ∈ Q and
Q ∈ Q such that Px ≥ y and Qy ≥ z. Since P,Q ∈ Q and Q is a group,
R ≡ QP ∈ Q . Applying the permutation Q to the inequality Px ≥ y, we
get QPx ≥ Qy, and using the inequality Qy ≥ z, we get QPx ≥ z. Thus, we
have R ∈ Q and Rx ≥ z, so that x �E z, establishing transitivity of �E .

We now show that �E is Paretian. Let x, y ∈ X with x > y. Then since
the identity matrix I ∈ Q, and Ix = x > y, we certainly have x �E y. We

13



claim now that y �E x does not hold. For, if y �E x, then there is some
P ∈ Q such that Py ≥ x. But, since x > y, we must then have Py > y. But,
by Lemma 1, this contradicts the fact that P is cyclic. Thus, x �E y holds
and y �E x does not hold, and so x �E y.

Finally, we show that Π(�E), the set of permissible permutations associ-
ated with �E, is equal to Q. This part of the proof can be split up into two
steps: (i) If P ∈ Q, then Px ∼E x for all x ∈ X; (ii) If P ∈ P, and Px ∼E x
for all x ∈ X, then P ∈ Q.

To prove (i), let P ∈ Q, and let x be an arbitrary point in X. Define
y ≡ Px. Since Px = y, we clearly have x �E y. Also, multiplying the
equation Px = y by P ′, we have x = P ′Px = P ′y. Since Q is a group,
P ′ ∈ Q, so we must have y �E x. Thus, y ∼E x; that is, Px ∼E x.

To prove (ii) let P ∈ P and suppose that Px ∼E x for all x ∈ X. Choose
x̄ = (x̄n), where x̄n = 1/2n−1 for all n ∈ N. Clearly x̄ ∈ X, and Px̄ ∼E x̄.
Define ȳ = Px̄; then ȳ ∈ X. Since ȳ ∼E x̄, there is Q ∈ Q and R ∈ Q such
that Qx̄ ≥ ȳ and Rȳ ≥ x̄. Multiplying the latter inequality by R′ ∈ Q, we
have ȳ ≥ R′x̄. Summarizing, we have:

z ≡ Qx̄ ≥ ȳ ≥ R′x̄ ≡ z′ (12)

We can write:
zn = z′n + (zn − z′n) for all n ∈ N (13)

and sum (13) from n = 1 to n = N, where N ∈ N, to obtain:

N∑
n=1

zn =
N∑

n=1

z′n +
N∑

n=1

(zn − z′n) (14)

Note that z and z′ are rearrangements of the sequence x̄ and since
∑N

n=1
x̄n

is absolutely convergent (as N → ∞) with a sum equal to 1,
∑N

n=1
zn and∑N

n=1
z′n must both converge to 1 as N → ∞. 16 Using (12),

∑N

n=1
(zn−z′n) is

a monotonically non-decreasing sequence (in N) bounded above by 1, and
must converge. Taking limits in (14), we must have

∑N

n=1
(zn−z′n) converging

to zero as N → ∞. But, since (zn − z′n) ≥ 0 for each n ∈ N, this is only
possible if (zn − z′n) = 0 for each n ∈ N. Thus, z = z′, and so by (12) we
have:

z ≡ Qx̄ = ȳ = R′x̄ = z′ (15)

16See, for example, Rudin (1976, p.78).
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In particular, we get ȳ = Qx̄ from (15). But by definition ȳ = Px̄. Thus, we
must have:

Px̄ = Qx̄ (16)

Since x̄i �= x̄j whenever i, j ∈ N with i �= j, (16) can hold only if Q = P.
Thus, P ∈ Q, finishing the proof of (ii), and hence of the Proposition.

Remark:

Given a group of cyclic permutationsQ, the extended Suppes-Sen grading
principle �E, defined in the proof of Proposition 3, is a Paretian SWR, which
satisfies Q-Anonymity. It can be shown that a SWR � satisfies the Pareto
axiom and the Q-Anonymity axiom if and only if �E is a subrelation to � .
That is, the extended Suppes-Sen grading principle is the least restrictive
SWR satisfying the Pareto axiom and the Q-Anonymity axiom. This result
has been obtained by Banerjee (2005).

5 On A Group of Cyclic Permutations

Our characterization of possible extensions of anonymity, consistent with a
Paretian SWR, has not addressed one central question. Is there a group
of cyclic permutations which is a strict extension of the class of finite per-
mutations? In this section, we address this question by specifying a group
of cyclic permutations, which has several attractive properties. First, it in-
cludes the class of finite permutations. Second, it strictly extends the class
of finite permutations by allowing infinite permutations which can essentially
be written as a sequence of finite permutations over blocks of time of equal
length. Third, it includes the class of infinite permutations that has most
commonly been proposed in extensions of the standard anonymity axiom.

Our class of permutations has to be carefully chosen in view of the restric-
tions imposed by Propositions 1 and 2. While the restriction of being cyclic
is relatively easy to check, the restriction of being a group is more subtle,
since it pertains to compositions of permutations. This difference between
the two (independent) restrictions is most clearly displayed in Examples 1
and 2. Note that Example 2 shows that even if we choose the class of per-
mutations Q to be the subset of C, consisting only of cyclic permutations
with the period of cycles uniformly bounded above (independent of the unit
vector chosen), it would not satisfy the second restriction.

We now proceed to define formally our class of permutations as follows.
Given a permutation matrix, P ∈ P, and n ∈ N, we denote the n×n matrix
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(pij)i,j∈{1,...,n} by P (n). Let S = {P ∈ P : there is some k ∈ N, such that for
each n ∈ N, P (nk) is a finite dimensional permutation matrix }.

If P,Q ∈ S, then there are k ∈ N, k′ ∈ N, such that for each n ∈ N, P (nk)
and Q(nk′) are finite dimensional permutation matrices. Define R = PQ.
Then R ∈ P. Further, defining k′′ = kk′, we can check that for each n ∈ N,
R(nk′′) is a finite dimensional permutation matrix. Thus, R ∈ S. Now, it is
easy to check that S is also a group.

If P ∈ S, then P is clearly cyclic since the iterates of P acting on any
unit vector will return to the unit vector in at most k iterations. Thus, S is
a group of cyclic permutations.

If P represents a permutation in F , then there is some k ∈ N such that
P (k) is a finite dimensional permutation matrix and pii = 1 for all i > k.
Thus, we ceratinly have P (nk) to be a finite dimensional permutation matrix
for each n ∈ N. Thus, S includes the class F of finite permutations.

One of the most common examples considered in proposing an extension
of the Anonymity axiom is the following:

x = (0, 1, 0, 1, 0, 1, 0, 1, ....)
y = (1, 0, 1, 0, 1, 0, 1, 0, ....)

Although x cannot be obtained from y (nor y from x) by applying a finite
permutation, it has been felt that x should be declared indifferent to y.
That is, at least this class of (infinite) permutation should be allowed in any
extended notion of Anonymity. We see that for the (infinite) permutation
P involved here, P (2n) is a finite dimensional permutation matrix for each
n ∈ N, and so P belongs to S.

We do not know whether S is a maximal group of cyclic permutations.
In fact, it would be useful to know whether there are other groups of cyclic
permutations, which have all the three properties stated above. If not, there
is a strong case for focusing exclusively on the group of cyclic permutations
proposed in this section, in discussions of extended anonymity.
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