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Abstract and Headnote

We analyze a banking system in which the class of feasible deposit contracts, or mechanisms, is

broad. The mechanisms must satisfy a sequential service constraint, but partial or full suspension

of convertibility is allowed. Consumers must be willing to deposit, ex ante. We show, by

examples, that under the so-called “optimal contract,” the post-deposit game can have a run

equilibrium. Given a “propensity” to run, triggered by sunspots, the optimal contract for the

full pre-deposit game can be consistent with runs that occur with positive probability. Thus,

the Diamond-Dybvig framework can explain bank runs, as emerging in equilibrium under the

optimal deposit contract.
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1 Introduction

The theoretical literature on bank runs is based on the early work of Bryant (1980) and the now classic

model of Diamond and Dybvig (1983) — henceforth DD. When simple deposit contracts are used, the

contract supporting the e¢cient allocation is shown to support a bank-run equilibrium as well. However, by

suspending convertibility, the bank-run equilibrium is eliminated. The current state of the art is Green and

Lin (2000a, 2000b), work inspired in part by Wallace (1988, 1990). Green and Lin allow for a broad class

of banking contracts. Because there is aggregate uncertainty, the sequential service constraint precludes

achieving the full-information …rst-best. They show that the mechanism that supports the constrained-

e¢cient allocation does not permit bank-run equilibria. Thus, the literature that started with DD is unable

to explain bank runs until now.

Bank runs are historical facts. If bank runs were impossible, then much of banking policy would be

directed toward a non-issue. Our goal is to put “runs” back in the bank runs literature. In particular,

we investigate the possibility of equilibrium runs on banks that can write sophisticated contracts in which

the current withdrawal depends on the history of withdrawals. We provide the …rst examples in the DD

literature in which a bank run can occur in equilibrium under the optimal deposit contract within a broad

class of mechanisms that includes suspension schemes.1 We show by examples that, for some parameters,

the mechanism that supports the constrained-e¢cient allocation for the post-deposit game also permits a

run equilibrium. The non-run equilibrium to the post-deposit game is also an equilibrium to the pre-deposit

game. The run equilibrium is not, because consumers would not make deposits if they knew that a bank

run would follow. If bank runs are triggered by sunspots, then the optimal contract to the pre-deposit game

can have a run equilibrium if the propensity to run is small. For greater propensities to run, the optimal

contract to the pre-deposit game is immune to runs, but the welfare of the constrained-e¢cient allocation

may not be achievable.

The intuition for our results is that the “optimal contract” maximizes welfare subject to an incentive

compatibility constraint, which requires a patient consumer weakly to prefer choosing period 2 to period 1.

1Diamond and Rajan (1998) develop a model in which the possibility of a bank run a¤ects bankers’ bargaining power in
renegotiating loan contracts with borrowers. If a run occurs, depositors capture the loans and renegotiate with borrowers
directly. However, it is the threat of a run that disciplines bankers, and a run can not occur in equilibrium.
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This incentive compatibility constraint presupposes that the other patient consumers choose period 2. If,

instead, the other patient consumers are believed to choose period 1, it is possible that our patient consumer

would prefer to choose period 1, in which case there is a run equilibrium to the post-deposit game.

There are some important distinctions between our model and the model of Green and Lin (2000a,b)

that explain the di¤erences in our results: (1) We allow the utility functions, of period-1 consumption for

the impatient and of period-2 consumption for the patient, to di¤er across the two types, which Green and

Lin do not. Thus, we allow the incentive compatibility constraint to bind at the optimal contract. (2)

Green and Lin assume that the consumer knows the clock time at which she arrives at the bank, which tells

her roughly her position in the queue. Knowing the time is crucial to their backwards induction argument.

We have no clock. Hence we assume that the only thing a consumer knows is whether she is impatient or

patient.

There is a di¤erence between Green and Lin and us that is not crucial for explaining the di¤erence in

our results. Green and Lin consider direct revelation mechanisms, where all consumers sequentially report

their types to the bank as they arrive in period 1. For example, when someone reports “patient,” the

bank can give her consumption in period 2, but use the information to a¤ect the period-1 consumption of

consumers arriving later in the queue and reporting “impatient.” In our model, consumers with no intention

of withdrawing money in period 1 do not contact the bank. We think of the mere arrival at the queue as

essentially a report of “impatient.” It is hard to imagine people visiting their bank for the purpose of telling

them that they are not interested in making any transactions at the present time. In our indirect mechanisms,

a consumer’s strategy is simply a choice of which period to visit the bank. However, in Appendix 2 we

adapt our basic model to incorporate complete reporting à la Green and Lin. We show by example that,

for some parameters, the direct-revelation mechanism supporting the (new) constrained-e¢cient allocation

also permits a run equilibrium.

In section 2, we describe the post-deposit game. In section 3, we present a two-consumer example in

which the constrained-e¢cient allocation is supported by a contract that also allows for a run equilibrium.

In section 4, we assume that consumers observe a sunspot variable after depositing, but before choosing

when to visit the bank. We show that there can be an equilibrium to the full pre-deposit game, based
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on the contract that supports the constrained-e¢cient allocation in the post-deposit game, that entails a

positive probability of runs. For the example of section 3, we calculate in section 4 the highest probability of

a bank run such that the bank cannot improve welfare by changing the mechanism to eliminate equilibrium

runs. Above this critical probability, the optimal contract to the pre-deposit game does not permit a run

equilibrium; however, welfare is lower than under the constrained-e¢cient allocation. In section 5, we make

our concluding remarks. In Appendix 1, we show that our basic result about the post-deposit game, namely

that the contract that supports the constrained-e¢cient allocation also permits a run equilibrium, extends to

the case with many consumers and correlated types. In Appendix 2, we show that our basic result is robust

to allowing direct revelation mechanisms à la Green and Lin, where patient as well as impatient consumers

contact the bank in period 1.

2 The Model

There are three periods and a …nite number of consumers (the potential bank depositors), N. In period 0,

each consumer is endowed with y units of the consumption good. Let ® denote the number of impatient

consumers: each of these derives utility only from consumption in period 1. The remaining consumers are

patient : each of these derives utility from consumption in period 2. Patient consumers can costlessly store

consumption across periods. Let c1 denote consumption received in period 1 and let c2 denote consumption

received in period 2. Impatient and patient consumers, respectively, have the utility functions u(c1) and

v(c1+c2). We assume that u and v are strictly increasing, strictly concave, twice continuously di¤erentiable,

and that the coe¢cients of relative risk aversion is less than ¡1, or

xu00(x)
u0(x)

< ¡1 and
xv00(x)
v0(x)

< ¡1 (1)

for each positive x. Impatient and patient consumers can have di¤erent utility functions, motivated by time

preference and/or the interpretation that impatient consumers face extraordinary consumption opportunities.

Let f(®) denote the probability that the number of impatient consumers is ®, for ® = 0; 1; :::; N . A

consumer’s type, impatient or patient, is her private information. In keeping with our assumption that
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consumers are identical, ex ante, assume that, conditional on a consumer being patient, the probability that

the number of impatient consumers is ®, denoted by fp(®), is the same for all consumers. Using Bayes’

rule, this can be calculated as

fp(®) =
(1¡ ®

N )f(®)PN¡1
®0=0(1¡ ®0

N )f(®
0)

for ® = 0; 1; :::; N . We have the following process in mind. First, nature chooses ® according to f . Then,

nature randomly chooses the set of impatient consumers so that, conditional on ®, each consumer is equally

likely to be impatient. Notice that this overall process allows for correlation among types, but also admits

the i.i.d. case.

The investment technology is described as follows. Investing 1 unit of period-0 consumption yields R > 1

units if held until period 2, and yields 1 unit if harvested in period 1. So far, the only main departure from

DD is that the utility function can depend on a consumer’s type.2

Following the literature, we focus for the moment on the post-deposit game, mindful of the fact that, if

a bank run is anticipated to occur with probability one, no consumer would be willing to deposit in period

0. In section 5, we introduce sunspots and analyze equilibrium runs in the full (pre-deposit) game.3 Here

is the timing of the post-deposit game. In period 0, the bank designs a deposit contract, which we call the

banking mechanism. We assume that the bank seeks to maximize the ex ante expected utility of consumers.

To the extent that banking is perfectly competitive, any bank attracting depositors must act in this manner.

At the beginning of period 1, each consumer learns her type and decides whether to arrive at the bank in

period 1 or period 2.

We require that the mechanism satisfy the following sequential service constraint. Consumers who choose

period 1 are assumed to arrive in random order. Let zj denote the position of consumer j in the queue.

Because of the sequential service constraint, consumption in period 1 must be allocated to consumers as

they arrive to the head of the queue, as a function of the history of transactions up until that point. We

further assume that consumer j’s withdrawal can only be a function of her position, zj : That is, we consider

2See also Jacklin (1987) for an extension in this direction.
3Diamond and Dybvig (1983) are aware of this point, and mention the possibility that sunspots could allow runs to occur

with small probability, thereby maintaining the incentive to deposit. See also Cooper and Ross (1998).
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indirect mechanisms, where a consumer’s strategy is a choice of round, as a function of her type. Arrival in

period 1 can be interpreted as a report that the consumer is impatient, but no explicit reports are made.

For z = 1; :::; N , let c1(z) denote the period-1 withdrawal of consumption by the consumer in arrival

position z. Since optimal mechanisms induce the patient consumers to choose period 2, and since giving

period-1 withdrawers more consumption in period 2 hurts incentive compatibility for the patient (and does

not help the impatient), remaining resources in period 2 are allocated to consumers who choose period

2. Because of the concavity of v, we can restrict attention to mechanisms that smooth second period

consumption. Therefore, let c2(®1) denote the second period consumption to those who choose to wait

until period 2, when the number of consumers choosing period 1 is ®1, for ®1 = 0; :::; N ¡ 1. (Under “truth

telling,” the impatient and only the impatient choose period 1, and we would then have ®1 = ®.) The

resource condition can be written as

c2(®1) =

£
Ny ¡P®1

z=1 c
1(z)

¤
R

N ¡ ®1 and c1(N) = Ny ¡
N¡1X
z=1

c1(z): (2)

Thus, the banking mechanism, m, could be described by the vector,

m = (c1(1); :::; c1(z); :::; c1(N); c2(0); :::; c2(N ¡ 1));

with the interpretation given above. Notice thatm satis…es the sequential service constraint, because the zth

consumer to arrive in period 1 receives consumption which depends solely on her place in line. In particular,

c1(z) does not require information about people behind her in line. Let the set of banking mechanisms be

denoted by M . Then we have

M = fm 2 <2N+ : (2) holds for ®1 = 0; :::; N ¡ 1g:

Our set of deposit contracts or mechanisms is fairly broad, and allows for partial or full “suspension of

convertibility.” However, our class of indirect mechanisms is di¤erent from the direct mechanisms considered

by Green and Lin (2000a,b). In Green and Lin (2000a,b), both patient and impatient consumers arrive
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at the bank in period 1, at random times, and report their type. In addition to resource constraints and

incentive compatibility, their mechanism must also satisfy sequential service. It is consistent with their

sequential service constraint to let c1 depend on how many patient as well as impatient reports have been

made earlier. We focus on indirect mechanisms, in which consumers choose when to arrive but do not

make explicit reports. Another di¤erence between our model and Green and Lin (2000) is that they assume

the existence of a “clock,” so that consumers roughly know their place in line. The clock allows Green

and Lin (2000) to rule out equilibrium bank runs, by iterated elimination of strictly dominated strategies.

Intuitively, a patient consumer who arrives with one second left on the clock will be last in line with high

probability. In that case, she prefers to report her type truthfully (i.e., receive consumption in period 2),

since whatever has not been harvested will yield the higher return, R. Then a patient consumer who arrives

with two seconds left on the clock will know that later-arriving consumers report truthfully, which they

show implies that this consumer should report truthfully. Then a patient consumer who arrives with three

seconds left on the clock will report truthfully, and so on. We assume that consumers choose when to arrive

knowing only whether they are patient or impatient, with no clock.

De…nition 1: Given a mechanism, m 2M , the post-deposit game is said to have a run equilibrium if there

is a perfect Bayesian equilibrium in which all consumers, patient as well as impatient, choose to withdraw

in period 1.

Given a mechanism, m = (c1(1); :::; c1(z); :::; c1(N); c2(0); :::; c2(N¡1)), and a corresponding equilibrium,

ex ante consumer welfare is de…ned as the sum of the expected utilities of the consumers. The mechanism

that supports the symmetric constrained-e¢cient allocation requires that impatient consumers choose period

1 and patient consumers choose period 2. When impatient consumers choose period 1 and patient consumers

choose period 2, we denote ex ante consumer welfare under mechanism m as cW (m). Using the resource

condition, (2), we can write ex ante consumer welfare as a function of (c1(1); :::; c1(N ¡ 1)), given by

cW (m) =
N¡1X
®=0

f(®)

"
®X
z=1

u(c1(z)) + (N ¡ ®)v
Ã£
Ny ¡P®

z=1 c
1(z)

¤
R

N ¡ ®

!#
(3)

+f(N)

"
N¡1X
z=1

u(c1(z)) + u

Ã
Ny ¡

N¡1X
z=1

c1(z)

!#
:
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When all patient consumers choose period 1, we denote ex ante consumer welfare under mechanism m

as W run(m), given by

W run(m) =
NX
®=0

f(®)

"
®

N

NX
z=1

u(c1(z)) +
N ¡ ®
N

NX
z=1

v(c1(z))

#
: (4)

The so-called “optimal contract” will induce the patient consumers to choose period 2, and therefore

must solve the following incentive compatibility constraint

N¡1X
®=0

fp(®)

"
1

®+ 1

®+1X
z=1

v(c1(z))

#
·
N¡1X
®=0

fp(®)v

Ã£
Ny ¡P®

z=1 c
1(z)

¤
R

N ¡ ®

!
: (5)

Thus, the “optimal contract” solves4

max
(c1(1);:::;c1(N¡1))

cW (m) (6)

subject to (5).

We place quotation marks around “optimal contract,” because we shall see that the solution to the planner’s

problem (6), which we denote as m¤, could have a run equilibrium. However, (6) presupposes that the run

equilibrium is never chosen. If the run equilibrium is chosen with positive probability, then m¤ may not be

optimal when the possibility of a run is taken into account. These issues are explored in section 4, where we

would call m¤ the zero-optimal mechanism, referring to the situation in which the propensity to run is zero.

Letting ¸ denote the Lagrangean multiplier on constraint, (5), in the planner’s problem (6), the necessary

conditions for an optimum are, for b® = 0; :::; N ¡ 1;

N¡1X
®=b® f(®)

"
u0(c1(b®))¡Rv0Ã£Ny ¡P®

z=1 c
1(z)

¤
R

N ¡ ®

!#
+ f(N)

£
u0(c1(b®))¡ u0(c1(N))¤ (7)

+¸

"
N¡1X
®=b® fp(®)

Ã
v0
"£
Ny ¡P®

z=1 c
1(z)

¤
R

N ¡ ®

#· ¡R
N ¡ ®

¸
¡ v0(c1(b®)) · 1

®+ 1

¸!#
= 0

4Of course, one must check that the nonnegativity constraints are satis…ed as well.
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and

¸

"
N¡1X
®=0

fp(®)v

Ã£
Ny ¡P®

z=1 c
1(z)

¤
R

N ¡ ®

!
¡
N¡1X
®=0

fp(®)

"
1

®+ 1

®+1X
z=1

v(c1(z))

##
= 0: (8)

Incentive compatibility when the other patient consumers choose period 2 is in general di¤erent from

incentive compatibility when the other patient consumers choose period 1. If a patient consumer prefers to

choose period 1 when other patient consumers choose period 1, we have a run equilibrium. Therefore, m¤

might have a run equilibrium, which occurs when we have

1

N

NX
z=1

v(c1(z)) ¸ v
Ã"
Ny ¡

N¡1X
z=1

c1(z)

#
R

!
: (9)

3 A Two-Consumer, I.I.D. Example

We now present an example for which we calculate the “optimal contract” m¤, and show that the corre-

sponding post-deposit game has a run equilibrium. There are two consumers, N = 2, where each consumer

is impatient with probability p and patient with probability 1¡ p. Types are uncorrelated. Letting c1(1)

be denoted by c, the expression for welfare simpli…es to

W = p2 [u(c) + u(2y ¡ c)] + 2p(1¡ p) [u(c) + v((2y ¡ c)R)] + 2(1¡ p)2v(yR): (10)

The incentive compatibility constraint (5) simpli…es to

p

·
v(c)

2
+
v(2y ¡ c)

2

¸
+ (1¡ p)v(c) · pv((2y ¡ c)R) + (1¡ p)v(yR); (11)

and the condition for a run equilibrium (9) simpli…es to

v(c)

2
+
v(2y ¡ c)

2
¸ v((2y ¡ c)R): (12)
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Proposition 1 For some economies, a run equilibrium exists at the “optimal contract,” m¤.

Proof: Let the utility functions be given by

u(x) =
Ax1¡a

1¡ a and v(x) =
x1¡b

1¡ b :

We will …nd parameters, A; a; b; p;R; and y, for which the …rst order conditions are necessary and su¢cient

for a solution to the planner’s problem. Then we will solve for the optimal mechanism and show that

condition (12) holds. Let A = 10; a = 1:01; b = 1:01; p = 1
2 ;R = 1:05; and y = 3. The solution to the

planner’s problem5 is given by

c = 3:1481; ¸ = 4:0795: (13)

Since the incentive compatibility constraint is binding and there is a single choice variable, c is found by

solving (11), expressed as an equation rather than an inequality.

It is easy to verify that, for these parameter values, the objective function is concave in c and the incentive

compatibility constraint (left side minus right side) is increasing in c. Because strictly monotonic functions

of a single variable are quasi-convex, it follows that the second order conditions are satis…ed. Thus, (13)

constitutes a solution to the planner’s problem. The left side of (12) exceeds the right side, the di¤erence

being 0:000597, so m¤ has a run equilibrium. ¤

The solution to planner’s problem (6), m¤, is given by:

c1(1) = 3:1481; c1(2) = 2:8519; c2(0) = 3:15; c2(1) = 2:9945:

There is a non-run equilibrium of the post-deposit game, where all patient consumers choose period 2.

The …rst impatient consumer would receive 3:1481 units of consumption in period 1, and the second impatient

consumer would receive 2:8519 units in period 1. Thus, we have partial suspension of convertibility, as in

Wallace (1990) and Green and Lin (2000a,b). Patient consumers receive 3:15 units in period 2 if there

5The computations were performed using Maple V, release 5.1. Details are available from the authors.
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are no impatient consumers, and 2:9945 units in period 2 if there is one impatient consumer. Welfare,

re-normalized to be cW + 1088, is given by cW (m¤) = :27396.

At the run equilibrium of the post-deposit game, consumers receive c1(1) = 3:1481 with probability 1
2 ,

and they receive c1(2) = 2:8519 with probability 1
2 . For these parameter values, re-normalized welfare can

be calculated as W run(m¤) = :00519.

Our example is very simple. There are only two consumers, and impatience is i.i.d. In Appendix 1,

we analyze an example with 300 consumers, with three possible realizations for ®. Thus, impatience is

correlated across consumers, and each consumer is small relative to the market. For appropriately chosen

parameters, we have as before that the optimal contract for cW (m) also permits a run equilibrium.
We do not allow the bank to ask people to wait in line to declare themselves to be patient. We believe

that to do so would be unrealistic. The question, then, is whether or not this is the source of run equilibria

for m¤. Appendix 2 answers this question in the negative. We redo our two-consumer, i.i.d. example to

require all consumers to join in the queue in period 1 and declare themselves to be impatient or patient.

For appropriately chosen parameters, the “optimal direct revelation mechanism” di¤ers from the “optimal

contract,” but it also permits a run equilibrium.

4 Sunspots and the Propensity to Run

Strictly speaking, run equilibria in DD are not equilibria at all, because consumers would not agree to the

original contract if they knew that a run would take place.6 DD suggest that a run could take place in

equilibrium with positive probability, triggered by some extrinsic random variable “sunspots,” as long as the

probability of the run is su¢ciently small. Here we formalize this notion by de…ning the pre-deposit game,

and calculate what “su¢ciently small” is for an example.7

Here is the timing of the pre-deposit game. In period 0, the bank announces its mechanism and

consumers decide whether or not to deposit.8 At the beginning of period 1, each consumer learns her type

6See Postlewaite and Vives (1987).
7Cooper and Ross (1998), restricting themselves to simpler contracts, also model runs being triggered by sunspots.
8A consumer could invest her endowment herself, instead of dealing with the bank. However, we do require that unharvested

“trees” cannot be traded. This is to rule out the case in which a patient depositor (claiming to be impatient) trades period-1
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after observing a sunspot variable, ¾, distributed uniformly on [0,1].9 Sunspots do not a¤ect preferences, the

likelihood of being impatient, endowments, or technology. Now the period in which a consumer arrives can

depend on the realization of the sunspot variable ¾ as well as the realization of her type. We assume that

the bank cannot make withdrawals depend on ¾.10 To facilitate the comparison between the pre-deposit

game and the post-deposit game, we take the space of mechanisms, M , to be the same in both games.11

De…nition 2: Given a mechanism, m 2M , the pre-deposit game is said to have a run equilibrium if there

is a perfect Bayesian equilibrium in which (i) consumers are willing to deposit, and (ii) all consumers, patient

as well as impatient, choose to withdraw in period 1, for some set of realizations of ¾ occurring with positive

probability.

Proposition 2 Consider a mechanism, m 2M , for which the post-deposit game has an equilibrium in which

all patient consumers choose period 2, yielding welfare strictly higher than welfare under autarky.12 Then

the pre-deposit game has a run equilibrium if and only if the post-deposit game has a run equilibrium.

Proof: Let the pre-deposit game have a run equilibrium under the mechanism, m. Then for some

realizations of ¾, all consumers choose period 1 in the subgame after deposits are made and ¾ is observed.

Since this subgame must be in equilibrium, and since the subgame is identical to the post-deposit game,

there must be an equilibrium to the post-deposit game in which all consumers choose period 1. Thus, the

post-deposit game has a run equilibrium.

Let the post-deposit game have a run equilibrium under the mechanism, m. Construct a run equilibrium

to the pre-deposit game as follows. First, consumers deposit their endowment. Next, consumers withdraw

consumption withdrawn from the bank for unharvested trees. Jacklin (1987) has shown that such a market undermines the
optimal contract, and his argument applies to our setting as well. Ruling out this asset market is merely to posit that only
banks can provide the liquidity necessary to pay for period 1 consumption.

9The uniformity assumption is without loss of generality.
10The bank cannot observe the event triggering the run. Either the bank cannot observe the sunspot variable itself, or it

does not know which values of ¾ will trigger a run equilibrium (if one exists).
11 Strictly speaking, a mechanism for the pre-deposit game should specify outcomes as a function of the number of depositors.

For the pre-deposit game we interpret m 2 M as providing autarky consumption (y in period 1 and Ry in period 2) unless all
N consumers deposit. Introducing more complicated mechanisms of the form m(n) does not change our results and does not
appear to add further insights, so we avoid this complication.
12Under autarky, an impatient consumer receives y units of consumption, and a patient consumer receives Ry units of

consumption.

13



as follows. For ¾ < s, all consumers choose period 1. For ¾ ¸ s, impatient consumers choose period 1

and patient consumers choose period 2. Each subgame, after deposits are made and ¾ is observed, is in

equilibrium. It is an equilibrium for all consumers to choose period 1 when we have ¾ < s, because the

post-deposit game has a run equilibrium. It is an equilibrium for impatient consumers to choose period 1

and patient consumers to choose period 2 when we have ¾ ¸ s, because the post-deposit game is assumed

to have an equilibrium in which all patient consumers choose period 2. Finally, for su¢ciently small s,

consumers are willing to deposit. This is because overall ex ante welfare is sW run(m)+(1¡s)cW (m), where
W run is welfare in the run equilibrium and cW is welfare in the no-run equilibrium. For su¢ciently small

s, welfare strictly exceeds welfare under autarky, so each consumer is willing to deposit if other consumers

deposit. ¤

If the planner is unable to choose the equilibrium he likes, the truly optimal mechanism should depend on

how consumers select among multiple equilibria to the post-deposit games. Since we are looking for optimal

mechanisms, we restrict attention to mechanisms with an equilibrium in which all patient consumers choose

period 2. We suppose that the economy has a propensity to run, in the following sense. Whenever we have

¾ < s, then all consumers choose to arrive at the bank in period 1, whenever the post-deposit game admits

a run equilibrium. If the post-deposit game does not have a run equilibrium, then all patient consumers

choose period 2. When we have ¾ ¸ s, the equilibrium is selected in which all patient consumers wait for

the second period. Such an economy is said to have a propensity to run s. The fully optimal mechanism

now depends on the parameter s.

De…nition 3: Given a mechanism m and a propensity to run s, ex ante welfare for the pre-deposit game,

denoted as W (m;s), is given by

W(m; s) = sW run(m) + (1¡ s)cW (m) if m has a run equilibrium, (14)

= cW (m) if m does not have a run equilibrium.

The mechanism that maximizes W (m; s) subject to the incentive compatibility constraint (5) is called the
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s-optimal mechanism.

We now show that, for the example of section 3, the s¡optimal mechanism has a run equilibrium for

su¢ciently small s. Furthermore, we will calculate the cuto¤ value of s below which the s¡optimal mech-

anism has a run equilibrium. This formalizes the idea that, if the probability of a run is su¢ciently small,

the optimal mechanism tolerates bank runs. Altering the mechanism to eliminate the possibility of a run

leads to lower welfare.

Proposition 3 For some economies with a su¢ciently small propensity to run, s, the optimal mechanism

for the pre-deposit game has a run equilibrium.

Proof: Consider the pre-deposit game for the economy of section 3. Since patient consumers choose period

2 when ¾ ¸ s, incentive compatibility condition (11) must hold. It is shown in section 3 that (11) holds as

an equality at the optimal mechanism to the post-deposit game, which is the 0¡optimal mechanism for the

pre-deposit game. Thus, incentive compatibility must bind and (11) must hold as an equality for su¢ciently

small s, by continuity. It follows that for su¢ciently small s, the s¡optimal mechanism is characterized

by the unique c solving (11), which is m¤, calculated in section 3. By continuity, W (m; s) can be made

arbitrarily close to :27396 for su¢ciently small s, which exceeds welfare under autarky, :066841. Thus,

consumers are willing to deposit. Since m¤ has a run equilibrium for the post-deposit game, it also has a

run equilibrium for the pre-deposit game. ¤

For general economies, computation of the s¡optimal mechanism might be di¢cult. Even if incentive

compatibility binds and s is small, the s¡optimal mechanism might depend on s (and di¤er slightly from

m¤). The proof of Proposition 3 is simpli…ed considerably by the fact that a mechanism, for the example of

section 3, is characterized by the single variable, c. A binding incentive compatibility constraint completely

pins down the mechanism, so the s¡optimal mechanism is independent of s for small s. Given the structure

of our example, we can determine the s¡optimal mechanism for all s 2 [0; 1] as follows.

For small s, the s¡optimal mechanism for our example economy is m¤, as argued in the proof of Propo-

sition 3. As s increases, the welfare under m¤ falls, because a bank run is more and more likely to occur
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in equilibrium. Eventually, the propensity to run becomes high enough so that m¤ is inferior to the best

mechanism that is immune to runs, characterized by the unique c for which (12) holds as an equality.13 We

denote this mechanism as mno¡run. The two mechanisms are compared in Table 1 below.

m¤

c1(1) = 3:1481; c1(2) = 2:8519;

c2(0) = 3:15; c2(1) = 2:9945:

Best Mechanism Immune from Runs: mno¡run

c1(1) = 3:1463; c1(2) = 2:8537;

c2(0) = 3:15; c2(1) = 2:9964:

Table 1

Under m¤, when the system is working appropriately and there is no bank run, welfare cW (m¤) is :27396.

However, the system is fragile, and when a run occurs, welfare W run(m¤) is :00519. Under mno¡run, the

system is immune from runs, and the unique equilibrium is for the patient consumers to choose period 2;

welfare cW (mno¡run) is :27158. When the propensity to run is small enough, the s¡optimal mechanism

overall will be m¤, since with high probability consumers select the equilibrium in which patient consumers

wait until period 2. The small probability of a run does not warrant the discrete reduction c1(1) so that the

condition for a run equilibrium, (12), is not satis…ed. However, if the propensity to run crosses a threshold,

the optimal mechanism switches to mno¡run.14 We are now in a position to calculate the cuto¤ value, s0,

where the s¡optimal mechanism is m¤ for s < s0, and the s¡optimal mechanism is mno¡run for s > s0.

For our example, we can calculate the largest propensity to run consistent with the s¡optimal mechanism

having a run equilibrium to the pre-deposit game. Solving

(1¡ s0)cW(m¤) + s0W run(m¤) = cW (mno¡run)

13 Since welfare is increasing in c for all c satisfying inequality (12), the best mechanism immune to runs must satisfy (12) as
an equality.
14A third possibility must be considered, where the mechanism admits a run equilibrium, but where incentive compatibility

does not bind and inequality (11) is strict. This is conceivable, because relaxing (11) is bene…cial when a run occurs. However,
for our example, any such mechanism is dominated by m¤ unless s is close to 1, in which case mno¡run is superior.
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yields s0 = :008848, so the economy will tolerate the occurrence of a bank run with probability :008848.

That is, if consumers have a propensity to run below :008848, the optimal mechanism accepts this, and the

equilibrium probability of a run, at the optimal mechanism, is :008848. On the other hand, if consumers

have a propensity to run above :008848, the s¡optimal mechanism is immune to runs, because the stronger

incentive compatibility constraint is imposed (i.e., (12) holds as an equality). This tradeo¤ between fragility

and e¢ciency is depicted in Figure 1. The downward sloping line depicts ex ante welfare based on random-

izing over the run and the no-run equilibria to m¤. The horizontal line depicts welfare based on the best

contract immune from runs, mno¡run. Welfare at the s¡optimal mechanism, as a function of s, is given by

the upper envelope of the two schedules in Figure 1.

0.271

.2715

0.272

.2725

0.273

.2735

0.274

.2745

W

0 0.002 0.004 0.006 0.008 0.01s

Figure 1: Welfare under m¤ (solid) and mno¡run (dotted)

All these calculations are based on a special assumption about consumer beliefs, as re‡ected in our notion

of propensity to run. Consumers expect a run with (exogenous) probability s if and only if the mechanism

has a run equilibrium. Other rational expectations are possible. For example, the probability of a run

might depend on the magnitude of the incentive to choose period 1. If a patient consumer has only a

17



slight preference for period 1 during a run, then the probability of a run might be reduced. In general, the

propensity to run could depend on the mechanism, which could enrich the problem of …nding the optimal

contract.

This discussion is related to the literature on …nancial fragility. The costs associated with occasional

equilibrium bank runs is the downside of …nancial fragility in our model. However, when the system is

working smoothly and the equilibrium in which patient consumers choose period 2 is selected, a fragile

system is more e¢cient. When the propensity to run is below s0, this trade-o¤ leads to tolerating a fragile

system. When the propensity to run is above s0, the cost of …nancial fragility is too high, and it is better

to establish a stable system. See the papers by Laguno¤ and Schreft (1998) and Allen and Gale (1998) for

an analysis of …nancial crises based on local interactions. See also Champ, Smith, and Williamson (1996)

for an analysis of banking panics, and Kiyotaki and Moore (1997) for a study of credit cycles.

5 Concluding Remarks

We have shown that the possibility of equilibrium bank runs does not depend on a simple and suboptimal

speci…cation of the deposit contract or mechanism. There are economies in which the optimal mechanism,

within a broad class that includes suspension schemes, induces a post-deposit game with a run equilibrium.

To eliminate this run equilibrium would require a sacri…ce of welfare, as compared to the equilibrium in

which the patient consumers wait. By introducing sunspots which trigger the bank run, we construct an

example in which the optimal mechanism tolerates a positive probability of a run. We calculate, for our

simple example, the highest probability of a run that can be tolerated, above which the planner should take

steps to eliminate runs. Equilibrium bank runs are consistent with large economies, and correlated types.

Which types of economies will tolerate runs? One requirement is that there be signi…cant uncertainty

about the aggregate number of impatient and patient consumers. If ® were known, suspension of convert-

ibility would eliminate the run equilibrium while preserving the no-run equilibrium.15 A second requirement

is that the utility functions re‡ect a high degree of “impulse demand” by the impatient consumers, relative

15For utility functions satisfying v(0) = ¡1, we require f(N ¡ 1) > 0 or f(N) > 0, or else the N ¡ 1st consumer could be
given zero period-1 consumption, which would not matter in the no-run equilibrium. No patient consumer would join a run
and face a positive probability of in…nite punishment.

18



to R. The impatient must be well treated at the constrained-e¢cient allocation, providing the temptation

to join a run. A third requirement is that a patient consumer’s incentive to choose period 1, when other

patient consumers choose period 1, is greater than a patient consumer’s incentive to choose period 1, when

other patient consumers choose period 2. Unfortunately, translating this condition on the optimal contract

to a condition on the parameters of the economy is di¢cult. Our simulations indicate that it is most likely

to be satis…ed when the coe¢cients of relative risk aversion are small in absolute value.

One factor that might be thought to work in favor of tolerating runs is the speci…cation that impatient

consumers “die” after period 1. If impatient consumers had a “consumption opportunity” in period 1, but

received utility from consumption in period 2 as well, the bank would have additional leverage because most

of the resources would be held until period 2. In an earlier version of this paper, Peck and Shell (1999),

we analyze a model with two technologies and where the bank can only hold the more liquid asset. We

impose additional restrictions on the mechanism, but continue to allow suspension schemes, and show that

equilibrium bank runs always exist in that framework.

The sophisticated contracts studied here and in Green and Lin (2000a,b) are apparently not observed

in practice. One explanation is that we ignore possible moral hazard problems faced by the bank. See

Calomiris and Kahn (1991) for an explicit analysis of moral hazard and embezzlement in banking. Also,

in our model, the choice of when to arrive replaces the requirement to report one’s type. If we introduced

an indivisibility in period-1 consumption opportunities, as in Peck and Shell (1999), then the equilibrium

contracts would indeed be fairly simple. Further research is needed on this issue, but the present paper

indicates that the possibility of run equilibrium does not melt away when more complicated contracts can

be introduced.

6 Appendix 1: Robustness to Many Consumers and Correlated

Types.

To show that a run equilibrium at the optimal mechanism extends beyond 2 consumers and i.i.d. types,

here we construct another example with many consumers and correlated types. In particular, we consider
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an example with three possible realizations of ®.

Example 2:

N = 300; y = 5; R = 1:05;

f(100) = 1
3 ; f(200) = 1

3 ; f(300) = 1
3 ;

fp(100) =
2
3 ; fp(200) =

1
3 ; fp(300) = 0;

u(x) = ¡100x¡1; v(x) = ¡x¡1:
Not surprisingly, the “optimal contract” provides the same period-1 consumption for each of the …rst 100

consumers, each of the second 100 consumers, and each of the third 100 consumers. Thus, let c1(z) ´ c1;1

for z = 1; :::; 100, let c1(z) ´ c1;2 for z = 101; :::; 200, and let c1(z) ´ c1;3 for z = 201; :::; 300. The necessary

…rst-order conditions, (7) and (8), can be solved for c1;1 and c1;2, yielding

c1;1 = 5:05955; c1;2 = 5:29658; and ¸ = 3899:3: (15)

From (15), we see that the incentive compatibility constraint is binding. The entire mechanism is determined

from (15). For the equilibrium in which the patient consumers wait, consumptions are:16

c1;1 = 5:05955; c1;2 = 5:29658; c1;3 = 4:64387;

c2(100) = 5:21873; c2(200) = 4:87606:

At the optimal contract, patient consumers are indi¤erent between choosing period 1 and period 2, when

all other patient consumers choose period 2. However, when all other patient consumers choose period 1,

it turns out that the remaining patient consumer strictly prefers to choose period 1. In other words, this

mechanism supports a run equilibrium to the post-deposit game.

7 Appendix 2: Direct Revelation Mechanisms

Here we adapt the post-deposit game to allow the planner to choose direct revelation mechanisms. As in

Green and Lin (2000a,b), consumers arrive at the bank in period 1 and report whether they are impatient or
16 It turns out that the incentive compatibility constraint is not quasi-convex for this problem. However, we can verify that

(15) determines the optimal mechanism. First, we analytically solve the incentive compatibility constraint for c1;2 as a function
of c1;1. Next, substitute into the expression for W to get welfare as a function of c1;1 only. This function is concave, and is
maximized at c1;1 = 5:05955. Finally, contradict the supposition that there can be a solution where incentive compatibility
does not bind.
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patient. The sequential service constraint requires period-1 consumption to be independent of the reports of

those arriving later in the queue. However, this sequential service constraint is di¤erent from that assumed

earlier. For example, now someone …rst in the queue and reporting “impatient” can receive a di¤erent level

of period-1 consumption from someone second in the queue and reporting “impatient” after the …rst person

reports “patient.” The model de…ned in section 2 cannot make this distinction, because someone wishing

to report “patient” can only wait until period 2. The queue in period 1 consisted only of those wishing to

receive consumption in period 1.

The following example is the same as that of section 3, with slightly di¤erent parameters. There are

two consumers, N = 2, where each consumer is impatient with probability p and patient with probability

1¡p. Types are uncorrelated. A mechanism speci…es period-1 consumption, as a function of the history of

reported types, and period-2 consumption, as a function of a consumer’s position in the period-1 queue and

the sequence of reported types. This speci…cation builds in the appropriate sequential service constraint.

The mechanism that maximizes welfare subject to resource and incentive compatibility constraints must

satisfy the following conditions. Consumers who report “impatient” receive no consumption in period 2.

Consumers who report “patient” receive no consumption in period 1, and if both consumers report “patient,”

they each receive the same consumption, yR, in period 2. Thus, we can characterize the optimal mechanism

by the period-1 consumption when the consumer …rst in the queue reports “impatient,” denoted by c, and the

period-1 consumption when the second consumer in the queue reports “impatient” after the …rst consumer

reports “patient,” denoted by bc. Thus, nonzero consumptions are given by
c1(I) = c;

c1(P; I) = bc;
c1(I; I) = 2y ¡ c;

c2(I; P ) = (2y ¡ c)R;

c2(P; I) = (2y ¡ bc)R; and

c2(P;P ) = yR:

21



The expression for welfare simpli…es to

W = p2 [u(c) + u(2y ¡ c)] + p(1¡ p) [u(c) + v((2y ¡ c)R)] + (16)

p(1¡ p) [u(bc) + v((2y ¡ bc)R)] + 2(1¡ p)2v(yR):
The incentive compatibility constraint simpli…es to

v(c)

2
+
pv(2y ¡ c) + (1¡ p)v(bc)

2
(17)

· 1

2
[pv((2y ¡ bc)R) + (1¡ p)v(yR)] + 1

2
[pv((2y ¡ c)R) + (1¡ p)v(yR)] ;

and the condition for a run equilibrium simpli…es to

v(c)

2
+
v(2y ¡ c)

2
¸ v((2y ¡ bc)R)

2
+
v((2y ¡ c)R)

2
: (18)

Let the utility functions be given by

u(c) =
Ac1¡a

1¡ a and v(c) =
c1¡b

1¡ b :

and let A = 10; a = 2; b = 2; p = 1
2 ; R = 1:05; and y = 3. The planner’s problem is to choose c and bc to

maximize (16), subject to the incentive compatibility constraint, (17). The solution17 is given by

bc = 3:20115; c = 3:09395, and ¸ = 1:94897. (19)

Although (17) is not necessarily quasi-convex, we can show that (19) constitutes a solution. We know that

(17) must hold as an equality, because the solution to the unconstrained planner’s problem violates incentive

compatibility. Given that (17) must hold as an equality, we can analytically solve (17) for bc as a function
of c. Substituting for bc in the welfare expression, (16), we transform the problem into the unconstrained

17The computations were performed using Maple V, release 5.1. Details are available from the authors.
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maximization of welfare, as a function of c. This problem is concave, and is maximized at c = 3:09395.

From (19), we determine the optimal mechanism as follows

c1(I) = 3:09395;

c1(P; I) = 3:20115;

c1(I; I) = 2:90605;

c2(I; P ) = 3:05135;

c2(P; I) = 2:93879; and

c2(P;P ) = 3:15:

In the equilibrium in which consumers report truthfully, welfare is ¡3:58303. Inequality (18) holds as

well, which implies that there is a run equilibrium, in which all consumers claim to be impatient. In the

run equilibrium, one consumer receives period-1 consumption of 3:09395, and the other consumer receives

period-1 consumption of 2:90605.

The parameters in this example are identical to the parameters in the example of section 3, except that

here we have a = b = 2, while in section 3 we have a = b = 1:01. Having a risk aversion parameter of 2

is empirically plausible and allows for an analytic solution. However, when we consider a = b = 2 in the

example of section 3, mechanism m¤ does not have a run equilibrium. For the example of this Appendix,

the optimal mechanism has a run equilibrium when we allow direct revelation mechanisms, but not when a

consumer’s strategy is to choose a round. Thus, the set of economies for which the “optimal” mechanism

admits a run equilibrium does not shrink when we allow for direct revelation mechanisms.18

18When we consider the optimal direct revelation mechanism for the parameters of section 3, with a = b = 1:01, a solution
to the …rst-order conditions is c = 3:09586 and bc = 3:19811, yielding (normalized) welfare of :275202. Not surprisingly, the
planner can improve welfare by utilizing the additional information of reports by those claiming to be patient. Although we
are convinced that this is the solution to the planner’s problem, we are unable to verify the second-order conditions, due to the
lack of quasi-convexity.
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