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Abstract

This paper presents results from a Monte Carlo study concerning inference with spatially dependent

data. We investigate the impact of location/distance measurement errors upon the accuracy of paramet-

ric and nonparametric estimators of asymptotic variances. Nonparametric estimators are quite robust

to such errors, method of moments estimators perform surprisingly well, and MLE estimators are very

poor. We also present and evaluate a speci�cation test based on a parametric bootstrap that has good

power properties for the types of measurement error we consider.

1 Introduction

Spatial econometric models have proven useful in many areas of economics.1 Economic models underpin-

ning empirical work in urban, environmental, development, industrial organization, and growth frequently

suggest that observed agents will have outcomes that are not independent. Often these models suggest a

suitable metric or a set of locations in some space that characterizes the structure of dependence among

agents. A spatial model is simply a data generating model that utilizes such a set of locations or distances

�The authors have bene�ted from comments by Badi Baltagi, Federico Bandi, Alan Bester, Riccardo DiCecio, Chris Hansen,

Hide Ichimura, George Jakubson, Nick Kiefer, Lung-Fei Lee, Morten Nielsen, Joris Pinkse, Jack Porter, Peter Robinson, Je¤

Russell, Tim Vogelsang, seminar participants at the 2003 Spatial and Social Interactions in Economics workshop sponsored

by the Center for Spatially Integrated Social Science at UCSB, the 2004 Spatial Econometrics Workshop at IFS, and seminar

participants at Cornell, Rice, and Texas A&M. Conley acknowledges support from the National Science Foundation SES-

9905720. Molinari acknowledges support from Northwestern University Dissertation Year Fellowship.
1Examples of work applying spatial models include Case (1991), Kelejian and Robinson (1992), Case, Hines, and Rosen

(1993), Elliott (1993), Moreno and Trehan (1997), Bollinger and Ihlanfeldt (1997), Bell and Bockenstael (2000), Conley and

Topa (2002), Topa (2001), Pinkse, Slade, and Brett (2002), Conley and Dupor (2003), and Kim, Phipps, and Anselin (2003).
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to de�ne the relationships between agents�variables. The notion of space can be general and is certainly

not con�ned to physical or geographic space.

Typical spatial models are parametric models of the dependence between agents, examples include

Whittle (1954), Ord (1975), Anselin and Gri¢ th (1988), Case (1991), and Kelejian and Prucha (1999).

The most prevalent models are for Gaussian data with a covariance structure that is a parametric function

of known locations. A smaller literature has focused on nonparametric methods for estimating covariance

structure both as a direct object of interest and to conduct inference about conditional mean estimates,

see e.g. Grenander and Rosenblatt (1957), Hall, Fisher, and Ho¤man (1994), Hall and Patil (1994), Conley

(1995, 1999), Conley and Dupor (2003). These nonparametric methods estimate covariances or their sum

with local averages. Some of these methods can be viewed as smoothed periodograms (e.g. Grenander and

Rosenblatt (1957) and Conley (1995, 1999)) and hence are directly related to the extensive literature on

spectral representations for time series and random �elds.2

The key ingredient in any spatial model is the choice of metric space and locations for the observed

agents. However, it is routinely the case that agents�locations are not known with certainty in data available

to the econometrician. It is very common for information about agents�physical locations to be imprecise,

e.g. locations to be known only within an area� census tract, zip code, county, or SMSA. At best this

will result in imprecise distance information between agents and if inter-agent distances are approximated

with measurements based on these areas, e.g. distance between centroids, errors will result. Moreover,

in many applications the most appropriate metric is not physical distance and must be either estimated

or approximated in some way. For example, the travel time between locations is often an appropriate

metric; it must be estimated or approximated and cannot be known with certainty. Thus it is common for

the econometrician�s measurements of locations/distances to be imprecise or measured with error. In this

paper we focus on the consequences of measurement errors in locations/distances for inference, leaving an

investigation of the consequences of imprecise location/distance information for future research.

Measurement error in locations/distances creates problems for parametric models of spatial covariance.

Unless they include an explicit treatment of the measurement error process, parametric models will gener-

ally be misspeci�ed and inconsistent when locations/distances are measured with error.3 There is a small

but growing body of work in spatial statistics that does explicitly model measurement error in physical

locations. Examples in geostatistics include Gabrosek and Cressie (2002), Cressie and Kornak (2003), and

Zhao and Wall (2004) who are concerned with the consequences of physical location measurement error

for prediction and estimation of covariances/variograms.4 To our knowledge, such an explicit modeling of

2See, e.g., Priestley (1981) for an excellent discussion of much of this literature.
3See Gri¢ th and Lagona (1998) for results on the inconsistency of MLE estimators of spatial correlations when locations

are misspeci�ed.
4Modeling errors in location has also been done in biostatistics in the study of the geometric form of organisms through

modeling deformations of �landmark� locations, e.g. points on the skull, see for example Bookstein (1986). Deformations of

mapped locations via GIS processing have been studied in the geography literature. See, e.g., Arbia, Gri¢ th, and Haining
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measurement errors has not been done in the econometrics literature.

Modeling errors in �economic distance�is di¢ cult and presents challenges distinct from those in geo-

statistics. In econometrics, measuring economic distance is very often not solely a matter of measuring

the physical coordinates of a location. Many metrics that are very well-motivated by the underlying eco-

nomic theory are inherently unobservable, making it impossible to obtain validation studies/experiments

like those that are potentially feasible for devices that measure physical locations. For example, economic

distances between observed �rms might be based on constructed measures of the similarity of their local

labor market conditions, the similarity of their technology, or their product markets.5 Moreover, mea-

surement errors in economic distances will routinely be endogenous, not independent of unobservables

in�uencing outcome variables of interest. For example, unobserved aspects of urban density/congestion

may in�uence both outcomes like wage and rent di¤erentials and economic distances based on travel time

estimates. Thus even for economic distances that are potentially observable like travel costs, endogenous

measurement errors may require estimation of a joint model for outcomes, true locations, and measured

locations. This is a substantially more complicated task than estimating the joint distribution of true and

measured physical locations. Finally, it is often su¢ cient in economic applications to estimate a sum of

an autocovariance function, an easier object to estimate in a manner that is robust to distance/location

errors than the whole covariance function itself which is often required in geostatistics.

The econometric di¢ culties in fully modeling economic distance/location measurement errors moti-

vate the development of inference methods that are robust to such measurement errors. In contrast to

parametric methods, the nonparametric inference procedure in Conley (1995, 1999) is robust to measure-

ment error in distances/locations. This class of asymptotic covariance matrix estimators remain consistent

with bounded, potentially endogenous measurement errors and are robust in practice. These estimators,

analogous to kernel Heteroskedasticity Autocorrelation Consistent (HAC) estimators in time series, can

be viewed as weighted sums of cross products of observations (sample covariances) and remain consistent

because bounded measurement errors change the form of the weights in the sum, but the altered form

still satis�es the requisite conditions for consistency. Robustness in practice results from the qualitative

features of the weights being largely una¤ected by small to moderately-sized location/distance mistakes,

even endogenous ones.

This paper presents a Monte Carlo study that investigates the impact of location/distance measure-

ment errors upon the accuracy of estimators of the asymptotic variance of a sample average, V; and the

performance of two new speci�cation tests for parametric estimators of V . Such asymptotic covariance

matrix estimators are a fundamental component of the large-sample approximations used in a large share

of applications. We compare the performance of two parametric V estimators to the nonparametric V

estimator of Conley (1995, 1999) when agents�locations are measured with di¤ering amounts of error. The

(1998)) who study the propagation of location errors for sequences of maps resulting from overlay operations.
5See Conley and Dupor (2003) for examples of economic metrics based on output market and technological similarity.
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parametric estimators we consider are the maximum likelihood estimator (MLE) and a method of moments

(MM) estimator with spatial correlations and variances as moments. Despite the fact that the parametric

models will be inconsistent, we expect them to outperform the nonparametric model in �nite samples with

amounts of measurement error that are small enough. We also anticipate that the MM estimator may be

considerably more robust to distance errors than the MLE, albeit at the cost of e¢ ciency when distances

are close to perfectly measured.

We present and investigate the performance of two types of speci�cation tests.6 The �rst type is based

on a comparison of the parametric and nonparametric estimates of V using a limiting distribution (in the

spirit of a Durbin-Wu-Hausman test). It remains feasible with only a partial speci�cation of the data

generating process (DGP), i.e. the autocovariance function. The second type of test is applicable when the

full data generating process is speci�ed. This test uses parameter estimates (which could come from MLE

or MM estimators) to conduct a parametric bootstrap, simulating the �nite sample distribution of the

nonparametric estimator of V; which provides an acceptance region for the nonparametric estimate under

the null hypothesis of a correct parametric speci�cation and no measurement errors in locations/distances.

It is important to note that these speci�cation tests are for the joint hypothesis of a correct parametric

model and no measurement error in distances, so they cannot be used as a test just for measurement error

in distances.

We use DGPs that are di¤erent from the simultaneous spatial autoregressive (SAR) model that is

most typically used in the spatial econometrics literature. Instead of taking the basic SAR approach of

specifying a known spatial weights matrix (and scalar parameter) in a simultaneous equations model, we

�rst specify agents�locations on a lattice and then specify the DGP for agents�variables in terms of their

lattice locations. We consider stationary, mixing data DGPs on both a one and a two-dimensional lattice

and use an increasing domain asymptotic approach. Speci�cally, our DGPs are �nite-order moving averages

with geometrically decreasing weights. Asymptotic covariances for averages of spatial data are sums of

spatial autocovariances, analogous to the asymptotic variance of averages of covariance stationary time

series. The key conditions for consistency for our nonparametric estimator are that the data are mixing

and measurement errors are limited, with bounded errors being a su¢ cient condition (see Conley (1999)).

The assumption of stationarity is not necessary and analogous HAC methods can be applied to weakly

dependent but nonstationary data (see Pinkse, Slade, and Brett (2002) and Kelejian and Prucha (2003)).

We don�t use the typical approach of specifying a simultaneous equations SAR weight matrix for three

main reasons. First and foremost, directly modeling agents� lattice locations facilitates our description

of the DGP for location/distance measurement errors. A clear description of the candidate models for

6There is of course a large literature on speci�cation testing in spatial models. However, most of the work known to us

involves testing for the presence of spatial correlation in cross section or panel models (e.g., Moran (1950), Kelejian and Prucha

(2001), Pinkse (1999), Baltagi et al. (2003)). We are unaware of prior work on speci�cation tests focusing on the asymptotic

variance of a sample mean.
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measurement error is of course crucial for this paper. Second, this is the most straightforward approach

when estimation is going to be nonparametric using a local average, or smoothed periodogram approach,

or a parameterization of only a covariance function rather than a full DGP.7 Finally, there are many

applications where the �two-step� modeling process of �rst specifying agents� locations/distances and

then modeling their random variables�dependence as a function of these locations is much easier than

simultaneously specifying an implicit functional form for covariances and set of locations as in the typical

SAR approach.8 For example, locations/metrics are often naturally suggested by the economics of the

application but plausible functional forms are not. In such circumstances, it is often much easier to

experiment with covariance speci�cations given the metric rather than indirectly specifying both through

simultaneous equations.

The e¤ect of the types of location errors we consider can be thought of as changing the true DGP�s

autocorrelation function. The general e¤ect of measurement error in distances will be to smooth the

true covariance function and extend the range of measured distances with nonzero covariances for �nite

order MAs. Our results show that measurement errors impact the performance of our estimators of the

asymptotic variance in di¤erent degrees, with the MLE estimator being the most sensitive to location errors,

the nonparametric estimators being the least sensitive, and the MM estimator performing surprisingly well

for some speci�cations. Our parametric bootstrap test displays good power properties, and performs well

across a range of kernel bandwidth choices for our nonparametric estimator.

The remaining sections of the paper are organized as follows. Section two presents the data generating

model and our estimators. Section three presents our design of data generating processes for data and

location/distance errors, as well as the speci�c forms for estimators and speci�cation tests. Our simula-

tion results are presented in Section four. We conclude by discussing future research suggested by our

experiments in Section �ve.

2 Econometric Model and Estimation Problem

The econometric model we use assumes there is a population of agents residing at d-dimensional integer

lattice locations with one individual per location. We focus on an expectation zero process Xs indexed on

this lattice that is assumed to be mixing (Xs andXr approach independence as the distance between s and r

grows). For simplicity, we also assume the process is stationary: the joint distribution of Xs for a collection

of locations is invariant to translation and so, assuming second moments exist, EfXsXs+hg = C(h): The
7There are of course also applications where it is more natural to take the SAR simultaneous modeling approach, e.g.

Pinkse, Slade, and Brett (2002). See Lee (2001a, 2001b, 2004) for an extensive characterization of SAR models under various

forms of asymptotic approximations.
8Applications adopting this �two-step�approach include Pulvino (1998), Conley, Flyer, Tsiang (1999), Manuszak (2001),

Conley and Dupor (2003), Bronnenberg, Dube, and Dhar (2003), Greenstone and Deschenes (2003), Vigfusson (2003), and

Rappaport and Sachs (2003).
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econometrician�s sample consists of realizations of agents�random variables Xs at a collection of locations

fsig inside a sample region �� . We use the notation j�� j to denote the number of agents in our sample
region and, for simplicity, assume that all locations in �� are sampled. When taking limits, we view ��
as one of a sequence of regions indexed by � that grow to include the whole lattice, an increasing domain

approach to asymptotic approximations.

We are interested in conducting inference about EX using the usual large-sample distribution approx-

imations for the sample average of points in �� : �X = 1
j�� j

Pj�� j
i=1 Xsi : To do this, we need to estimate the

asymptotic variance of a normalized sample mean. Using, for example, the central limit theorem due to

Bolthausen (1982) for stationary, mixing random �elds on regular lattices, we know that (under mixing

and moment conditions9) the normalized sample mean has a limiting normal distribution:

1p
j�� j

j�� jX
i=1

Xsi ) N (0; V ) :

The general form for the asymptotic covariance V is as an in�nite sum of an autocovariance function C(h):

Referring to the entries of the vector h individually as h1; h2; ::::; hd , V has the form:

V =
1X

h1=�1
:::

1X
hd=�1

C (h1; h2; ::::; hd) :

Thus if d = 1; the expression for V coincides with the asymptotic variance of a sample mean for a covariance

stationary time series: V =
P1
h1=�1C (h1) :

We are interested in comparing the performance of parametric and nonparametric estimators of V

when locations are measured with error. We examine an MM estimator that corresponds to an assumption

that the covariance function is known up to a �nite-dimensional parameter vector, so it can be written

as C(h; �). We compute a minimum distance estimator �̂ and then compute a V estimator by plugging

in the estimate �̂; and calculating the sum of C(h; �̂): For notational simplicity, we suppress reference

to � and refer to this estimator as V̂MM : We also examine the performance of the estimator implied by

the MLE for the process and (again suppressing �) we let V̂MLE be the corresponding estimate of V: In

the presence of measurement error in distances, C(h; �) and the likelihood will generally be misspeci�ed

and the resulting estimators V̂MM and V̂MLE inconsistent. However, in �nite samples with small enough

amounts of location measurement error one or both may still be preferable to a consistent but less precise

nonparametric estimator.

Our main nonparametric estimator of V is that proposed by Conley (1999). This method is a straight-

9Bolthausen (1982) provides sets of regularity conditions for � and �-mixing processes. These conditions are reported

in Appendix A for the interested reader. Central limit results under di¤erent mixing conditions are also available, see e.g.

Takahata (1983) or Goldie and Greenwood (1986). A survey of random �eld central limit results is given by Goldie and

Morrow (1986).
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forward generalization of well-known smoothed periodogram spectral density estimators.10 We estimate V

as:

V̂NP =
1

j�� j

j�� jX
i=1

j�� jX
j=1

K� (si � sj) �
�
Xsi � �X

�
�
�
Xsj � �X

�
where the dependence of V̂NP on sample size is notationally suppressed. K� (�) is a kernel which will be
used to weight the observations, and is such that K� (h) ! 1 for all h as � ! 1; slowly enough so that
the variance of V̂NP collapses to zero. If only distances and not locations were known, the kernel could of

course be chosen so that K� (si � sj) just depends on ksi � sjk :11

For the case of perfectly observed locations fsig; there are a variety of sets of su¢ cient conditions on
the process Xs and kernel K� (�) that imply that V̂NP will be consistent. For example, Grenander and
Rosenblatt (1957) provide conditions for Gaussian processes (see also Priestley (1981)). Conley (1999)

provides su¢ cient conditions for stationary, alpha-mixing processes for kernels K� (h) that are uniformly

bounded and equal to zero after a cuto¤ distance in each dimension. Letting Li;� denote a cuto¤ distance

and Ni;� denote the width of the sample region �� in one coordinate dimension, Conley demonstrates

consistency of V̂NP when Li;� = o(N
1=3
i;� ) for Xs processes that have slightly more than fourth moments

and satisfy a mixing rate condition.12 Neither stationarity nor our speci�c sampling framework is required

to show consistency for analogous HAC estimators. Recent papers providing conditions for consistency of

closely related HAC estimators with other forms of weakly dependent data, including SAR models, are

Pinkse, Slade, and Brett (2002) and Kelejian and Prucha (2003).

For the case of bounded location errors, Conley (1999) provides a consistency result for V̂NP with �scale

parameter�kernels K� (h) for processes on the plane K� (h1; h2) = K
h
h1
L1;�

; h2
L2;�

i
. We restate and slightly

extend this result to allow for a uniform kernel in Proposition 1, again con�ning attention to the plane for

ease of exposition.

Proposition 1 Suppose errors in locations are bounded and: (a) Xs is a stationary, mixing process

with (4 + �) th moments, � > 0; and with alpha mixing coe¢ cient �1;1(m); de�ned in Appendix A, s.t.

�1;1(m)�=(2+�) = o(m�4); (b) Each Li;� = o(N
1=3
i;� ); and K(�) is a continuous bounded function on [�1; 1]2

with K(0; 0) = 1; and such that either (i) K(�) has absolutely summable Fourier coe¢ cients, or (ii) K(�)
is a uniform function on [�1; 1]2: Then

V̂NP
p! V:

10See Priestley (1981) for an extensive discussion of the vast literature on spectral methods in time series, and some extensions

to random �elds. Spectral methods for random �elds/spatial processes date back to at least the 1950s, e.g. Whittle (1954),

Bartlett (1955), Grenander and Rosenblatt (1957), Priestley (1962). More recent contributions of kernel methods in covariance

estimation include Hall, Fisher, and Ho¤man (1994) and Oehlert (1993).
11 If the process were isotropic, it would be natural to specify K� as depending only on distances. However, isotropy is not

required for consistency with K� of this form.
12The speci�c regularlity conditions use Bolthausen�s speci�cation of alpha mixing coe¢ cients presented in Appendix A.

They are that the process have (4 + �) th moments and �1;1(m)
�=(2+�) = o(m�4):
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Proof. See Appendix B.

V̂NP remains consistent in the presence of bounded measurement error because all locations�displace-

ments h will eventually have a weight approaching one. Note that the location measurement errors need

not be exogenous, merely bounded for this result to hold. This estimator will also be robust to moderate

location/distance measurement errors in practice as mismeasured locations�weightings under the kernels

will often be close to the weight they would get with perfectly measured locations. The exceptions will

occur for pairs of observations near the cuto¤ parameters Li;� : For example, if K� is a uniform kernel equal

to one only for displacements with length less than L� in each dimension, only those pairs of observations

whose true displacement lengths are in a neighborhood around L� will have di¤erent weights from those for

true displacements. Typically these misweighted observations are small fraction of the total with moderate

measurement errors (See Figure 5).

It is well known that the kernelK� can be chosen so that V̂NP will be nonnegative in sample by choosing

from a class of kernels with nonnegative Fourier transforms.13 However, we have two sources of motivation

to investigate the small sample properties of a uniform kernel that is outside this class. The �rst is that

this kernel greatly facilitates both derivation and implementation for one of our speci�cation tests. Second,

it is a natural choice of kernel for our �nite�order moving average DGPs. It facilitates choice of a cuto¤

that is a little too small and one that is a little too large relative to the order of the moving average.

This allows us to concisely address the important issue of estimator performance for di¤ering smoothing

parameter choices. The potential drawback of this kernel returning negative estimates did not occur in

any of our approximately 50,000 simulations. We note that if our interest was in the entire covariance

structure, rather than just V; guaranteeing nonnegativity by kernel choice would be much more important.

We also consider an approximately unbiased estimator that is analogous to V̂NP : The bias in V̂NP
depends on the dimension d and is of order j�� j�1=d which, while negligible on the line, can be of great
importance for d � 2 (See e.g. Guyon (1982), Politis and Romano (1996)). In our simulations setup, it

is straightforward to construct an approximately unbiased estimator that simply adds up approximately

unbiased sample covariances, given by partial sums of demeaned observations at a given lag divided by the

number of observations at that lag. In practice, unbiased estimators may be di¢ cult to construct and/or

perform poorly since the true form of V is de�ned by the lattice structure which will be unknown and

distorted by measurement errors in locations/distances. In contrast V̂NP is easily constructed in practice,

therefore it is interesting to compare its performance with its unbiased version in our simulations.

13See e.g. Priestley (1981).
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3 Data Generating Processes for Simulations

This section describes the data generating processes (DGP) for Xs and the measurement error process for

locations that we use in our simulation experiments. We consider lattice processes indexed in both one

and two dimensions. While we expect that our results on the plane are more relevant for the majority

of applications, we found it very useful in understanding the nature of our measurement error process

to start with the simpler case on the line. We simulate a region su¢ ciently larger than �� and cut ��
from its interior to insure that boundary points have the appropriate marginal distribution. Rather than

calibrate a particular DGP and measurement error process to a single speci�c application, we use a simple

�nite-order moving average and a simple, stylized model of local mistakes in measured lattice locations.

This model is well motivated by an important class of applications (discussed below) and we hope that

by keeping the processes simple our results will be a useful starting point for thinking about the e¤ects of

location measurement error in other applications.

3.1 DGPs for X

The DGPs we consider for Xs are expectation zero �nite-order moving averages. Our DGP for Xs on the

line is a �nite-order two-sided moving average with geometrically declining weights:

Xs = �
mus�m:::+ �

2us�2 + �us�1 + us + �us+1 + �
2us+2 + :::�

mus+m

where us is IID N(0; �2): Since this process is a �nite-order moving average, V =
2mP

k=�2m
C (k) with C(k)

being given by:

C (k; �; �) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�2

 
1 + 2

mP
j=1

�2j

!
if k = 0;

�2

"
(jkj+ 1)�jkj + 2�2+jkj

m�jkj�1P
j=0

�2j

#
if jkj � m� 1;

�2 [(m+ 1) �m] if jkj = m;

�2(2m� jkj+ 1)�jkj if m+ 1 � jkj � 2m;

0 otherwise.

(1)

The DGP we consider for Xs on the plane is also a �nite-order moving average with weights that decline

geometrically with distance from s; until a distance of m, and then are set to zero:

Xs =
X

r:ks�rk�m
�ks�rkus�r

9



where us is IID N(0; �2): Explicit expressions for V and C (k) for the process that we use for our simulations

are provided in Appendix C.

Sample Size and Parameter Choices

We investigate sample sizes of 500 on the line and a square grid of 1600 observations on the plane.

These choices of sample sizes are meant to roughly correspond to those that would occur in applications

using census tract socioeconomic data in a medium to large US city, or typical household-level marketing

data for such a city, or �rm level data within certain industrial sectors.

In both our simulations on the line and the plane we choose m = 3: On the line, the explicit expression

for V for this process is:

V = �2
�
4�6 + 8�5 + 12�4 + 12�3 + 8�2 + 4�+ 1

�
: (2)

The expression for V on the plane is su¢ ciently inelegant that it is relegated to Appendix C. We illustrate

how V varies with the decay parameter � for both our process on the line and plane in Figures 1a and 1b.

The dotted and dot-dashed lines plot V as a function of � when �2 = 1 for our process on the line and

plane, respectively. For comparison, the solid line plots the asymptotic variance for a one-sided �rst-order

autoregression with correlation parameter � and an innovation variance of one.

We investigate � values of :3 and :45. Thus our DGPs are 6th order moving averages with Xs and Xr
independent when ks� rk > 6: Our choices of m and � are meant to re�ect small to medium spatial corre-

lation and are motivated by empirical work that suggests that this range is very relevant. In econometric

applications, spatial correlation in regression residuals is often only small to moderate, even when there

is a great deal of spatial correlation in the outcome, because typical regressors capture a good deal of the

correlation across space. Examples of applications where this occurs include Conley, Flyer, and Tsiang

(2003), Conley and Topa (2002), and Conley and Ligon (2002).

3.2 Measurement Error

We run simulation experiments with each DGP for Xs for di¤erent levels of measurement error in locations.

We model errors in locations/distances as erroneously measured positions fsig. We limit ourselves to
studying exogenous location errors in this paper, though one of the main motivations for nonparametric

estimators of V is that they are robust to endogenous distance/location errors. This is solely because we

want to understand exogenous measurement errors �rst, before moving on to more involved modeling of

endogenous errors. Also, we retain the feature that mismeasured lattice locations still have each agent

occupying a distinct location as it greatly facilitates both exposition of the nature of measurement error

and computations in our simulation experiments.14 This comes at the cost of not allowing us to investigate

14V can be represented as an integral of a covariance function against a measure on various lags in locations. Retaining

the same set of distinct locations under measurement error makes the �lag measure�equivalent under the true locations and

mismeasured locations. So the e¤ect of measurement error can be described by changes in the covariance function rather than
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the benchmark of independent location errors.15 In an e¤ort to remain close to this benchmark we use a

process that independently perturbs agents locations by adding a bounded measurement error, but then

remaps each back to a distinct integer lattice coordinate. Position shifts of some agents will necessarily

be dependent due to requiring one agent per location, but position shifts of agents whose true distance is

greater than a �xed amount are still independent.

We model location measurement errors on the line by perturbing locations with the following algorithm.

Agents are at consecutive integer coordinates from 1 to j�� j. Each agent�s integer location is independently
perturbed by adding a random amount � from a uniform distribution on [-v,v] : In other words agent i

is given a perturbed location ~si = si + �i: Then, each agent�s measured location is de�ned by assigning

the perturbed locations f~sig to integers from 1 to j�� j ; according to the rank order of the f~sig from
smallest to largest. The resulting measurement errors in location will be independent for observations with

true locations with distance of 2v or greater. We vary the amount of reshu ing of agents� locations by

examining seven di¤erent values for v.

We use an analogous process on the plane. Agents true locations are points in a square integer lattice

and are subjected to the same perturbation method as used on the line, independently for each coordinate.

Speci�cally, agent i is given a perturbed location ~si = si + �i; with �ij
IID� Unif [�v; v] ; i = 1; : : : ; j�� j ;

j = 1; 2:16 Then each coordinate of ~si is mapped to an integer coordinate according to the rank order of

the f~si1g and f~si2g : Again, we vary the amount of measurement error by choosing seven di¤erent values
of v (distinct from those on the line).

This DGP�s properties of independence across coordinates, and the measured coordinates being per-

turbed ranks are directly relevant for many applications with agents indexed by characteristics other than

their physical location. Such characteristics are routinely quite di¤erent things, measured in such di¤erent

ways, or even come from di¤erent data sources so that independence across their measurement errors is

plausible. For example, a study of �rm-level productivity could use coordinates derived from characteristics

like the input share of technology-intensive inputs for its SIC code, its investment in R&D, or computer

technology utilization measures. These three characteristics might well be measured using data from dif-

ferent sources, e.g.: benchmark input-output data, census of manufacturing data, and employee surveys.

Other examples include �rm coordinates of book to market and sales, or country coordinates based on

trade costs and ethnic/demographic composition. As for ranks being the object of interest, it is commonly

the case that agent characteristics can be measured in more than one way, e.g. �rm size by revenue, market

capitalization, or labor force. In many such situations, it is plausible that the researcher has much more

con�dence in the approximate rank order of the agents than the measurement of the cardinal gaps between

changes in both this function and the �lag measure.�
15 In the statistics literature known to us, independent location errors are the most studied, see e.g. Gabrosek and Cressie

(2002).
16Uniform measurement errors that are independent across coordinates is also investigated by Gabrosek and Cressie (2002),

though they work direcly with an analog of ~si instead of mapping to integer locations.
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them, as the latter would be much more likely to vary with di¤erent ways of measuring the characteristic.

Our DGP is a natural choice for localized errors in ranks.

We think our results will still be useful, even when our DGP is not of direct interest for the application.

We anticipate that the key question for most if not all applications will be the relative magnitude of

measurement error in locations/distances versus the strength of the spatial correlation in the data. By

using a simple DGP and location error process we hope to get a handle on at least rough thresholds for this

relative magnitude that determine relative ranking of our estimators. This information on rough thresholds

in terms of relative magnitude of measurement error (versus dependence) may prove valuable in disparate

applications, as researchers will often have a satisfactory idea of the precision of their constructed distance

measure relative to the strength of dependence in the data. For example, a researcher might have an idea

of the precision of travel-time-based economic distances and typical maximum commute times might serve

as a plausible upper bound for lags with appreciable spatial correlation.

Illustration of Measurement Error Processes

Table 1 and Figure 2 are meant to provide some sense of how much change in locations on the line is

induced by each level of measurement error. The percentages of agents�measured locations that are at

di¤erent displacements from their true locations are given in Table 1. Our smallest level of measurement

error leaves 75% of locations unchanged and the remainder moved only one unit. For a sixth-order moving

average, we think this is reasonably thought of as a small level of error. On the other extreme, our level 7

measurement errors shift a majority of the locations by two or more units and about 30% are shifted 3 or

more units. We consider this to be a substantial amount of error for an MA(6).

The e¤ect of location measurement error can be partially characterized as changing the autocorrelation

function of a process. Since our DGP for Xs has no trend (it is mean zero) the �rst moment of the

process at mismeasured locations will be of course unchanged. The sample covariance at a given distance

will converge to a weighted average of the true covariances of the process. The relative contributions of

covariances at other distances will depend on the measurement error process. For example, under level 1

measurement errors, observations measured as being 2 units apart will consist of many pairs that are really

2 units apart and some pairs whose true distances are 1, 3, and 4. Thus, the general e¤ect of measurement

error in distances will be to smooth out the true covariance function and extend the range of measured

distances with nonzero covariances for �nite order MAs.

This general e¤ect of the altered autocovariances �attening out as measurement error increases is

illustrated in Figure 2. In this Figure we plot the true autocorrelations for Xs with an approximation for

the autocorrelations at each measured distance under levels 1, 4, and 7 of measurement error (obtained by

Monte Carlo integration) for � = :3.17 The �attening out of the correlation function is consistent with the

results obtained by Gabrosek and Cressie (2002) and Cressie and Kornak (2003) for di¤erent DGPs.

17For location errors of level 1, Appendix D reports the exact analytic expression for the covariance function of the mismea-

sured process.
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Table 2 and Figures 3 and 4 present summaries of our measurement error process on the plane, analogous

to those above. Table 2 presents the values of v we use on the plane and a description of the Euclidean

distances from their true locations. The same value of v is used for both the vertical and horizontal

dimension. Our level 1 measurement error shifts only 20% of locations, and the new location is at most

at distance
p
2 from the original one. The discrepancy in the correlations at lags that di¤er in this range

can be inferred by looking at Figures 3 and 4. We consider this to be a small amount of error. On the

other extreme, our largest level of measurement errors shift 89% of the locations, and move about 40% of

them to new location that are at distance greater than 2 from the original ones. Given the true locations

correlation functions plotted in Figures 3 and 4, we consider this to be a substantial amount of error.

Our DGP on the plane is not isotropic, the covariance at distances that correspond to �diagonals�are

not the same as straight vertical or horizontal displacements, e.g. C([3 4]) 6= C([0 5]) (see Appendix C).
But the average covariances still o¤er a useful illustration of the e¤ect of measurement errors. Thus, we

plot the averages of correlations at each distance for the truth and measurement error of levels 1, 4 and 7

in Figure 3 for � = :3 and Figure 4 for � = :45 (error versions are obtained by Monte Carlo integration).

Again, these Figures illustrate the e¤ect of increases in this type of measurement error �attening out and

extending the altered autocorrelation function relative to the true autocorrelation function.

It appears that few generalizations can be made about the position of the altered covariance function

relative to the true covariance function at any given distance. If the true covariances are monotonically

decreasing, then the altered covariance at the shortest distance will of course be below the true covariance

at that distance for any measurement error process that is independent of the realizations ofXs: The altered

covariance can only include pairs of observations truly at the minimum distance or greater. But beyond

the fact that the altered covariance function must have the same integral as the true covariance function

(V is invariant to measurement error in locations), there does not seem to be any necessary relationship

between true and altered covariances for a general measurement error process and DGP.

3.3 V Estimators and Speci�cation Tests

Parametric Estimators

We compute the MLE for our Gaussian DGPs and an MM estimator.

On both the line and on the plane, our estimate of V for the MLE, V̂MLE ; is formed by plugging the MLE

point estimates for � and � into the analytic expression for V . Our process and sampling framework ensure

consistency and asymptotic normality of the MLE estimator.18 In particular, the following Proposition

holds:

18Other conditions for consistency and asymptotic normality of likelihood based estimators are provided, among others, by

Heijmans and Magnus (1986) and Cressie and Lahiri (1996).
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Proposition 2 For correctly measured distances, the Gaussian DGPs and sampling framework for the

fXsg process satisfy the conditions in Theorem 3 of Mardia and Marshall (1984). Hence the MLE estimator
is consistent and asymptotically normal.

Proof. See Appendix B.

The moments in the MM estimator are simply the nonzero autocorrelations ofX and its second moment:

For the DGP on the line, these correlations are: � (�) =
h
C(1;�;�)
C(0;�;�) ; :::;

C(6;�;�)
C(0;�;�)

i
: We obtain sample correla-

tions using unbiased covariance estimates Ĉ (�) and form �̂ =
h
Ĉ(1)

Ĉ(0)
; : : : ; Ĉ(6)

Ĉ(0)

i
; estimating �̂MM as:

�̂MM = argmin
�

h
� (�)� �̂

i0 h
� (�)� �̂

i
:

Once we have the estimate �̂MM , we can estimate �
2 by means of equation (1). In particular, we can use the

sample variance ofXs as an estimate of C (0), and then estimate �2 with �̂2MM = Ĉ (0)
h
1 + 2

Pm
j=1 �̂

2j
MM

i�1
:

Once we have these estimates, we can get V̂MM by plugging �̂MM and �̂2MM in (2).

The estimator used for the process on the plane is constructed in the same manner. The moments used

are again the nonzero correlations. Denoting these nonzero correlations by �(�) and their sample analogs

by �̂, we get our estimate �̂MM by solving:

�̂MM = argmin
�

h
�(�)� �̂

i0 h
�(�)� �̂

i
Once we have the estimate �̂MM , we again estimate �

2 by using the second moment and then obtain the

plug-in V̂MM estimator using �̂MM and �̂2MM : These MM estimators are special cases of GMM estimators

whose consistency is demonstrated in Conley (1999).

Nonparametric Estimators

The nonparametric estimator V̂NP takes the form

V̂NP =
1

j�� j

j�� jX
i=1

j�� jX
j=1

K� (si � sj) �
�
Xsi � �X

�
�
�
Xsj � �X

�
with

K� (si � sj) =
(
1 if jsi � sj j � L� ;
0 otherwise,

(3)

for the process on the line, and

K� (si � sj) =
(
1 if jsi1 � sj1j � L� ; jsi2 � sj2j � L� ;
0 otherwise,

(4)

for the process on the plane.
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Figure 5 illustrates the e¤ect measurement error in distances has upon the weighting function K� for

locations on the line. Similar e¤ects occur for locations on the plane. The weighting function with true

distances will be a uniform kernel putting weight 1 on all distances up to the cuto¤ amount L� and then

zero for larger distances. The introduction of measurement error can be interpreted as a change in the

kernel K� from one that puts the same weight on any pair of observations that have the same true distance

to a kernel that puts the weight 1 on a fraction of observations at each true distance given by the graph.

With distance measurement error, some observations will get a weight of 1 early relative to when they

would get this weight with true locations as � grows, and some will get a weight of 1 late. Eventually, all

observations will get weight 1 as � !1; so V̂NP remains consistent. The source of the robustness of V̂NP
to measurement error is also illustrated in this Figure, as even for higher levels of measurement error, the

large majority of observations will get the same weight with measurement error as they would with the

true distances.

Speci�cation Tests

We present two types of speci�cation tests that are joint tests for proper speci�cation of the parametric

estimators and correctly measured distances. The �rst uses the asymptotic distribution of the di¤erence

between parametric and nonparametric estimators and the second uses a parametric bootstrap procedure to

sample from the process implied by our MLE point estimates to approximate the �nite sample distribution

of our nonparametric estimator under the null hypothesis.

Our t-tests are based on the asymptotic distribution of the di¤erence between the parametric estimator

and a nonparametric estimator of V (V̂NP or its approximately unbiased analog, which with abuse of

terminology we will refer to as V̂NP unbiased). The parametric estimators converge at a faster rate than the

nonparametric estimators, therefore only the sampling variation in the nonparametric estimator is relevant

for the �rst-order asymptotic distribution of the di¤erence between the parametric and nonparametric

estimator. On the line we can apply the results of Anderson (1994), Theorem 9.4.1 and Corollary 9.4.1 to

obtain the the limiting distribution of the di¤erence between V̂NP and V̂i: On the plane, the asymptotic

distribution of the di¤erence between the parametric estimator and the nonparametric estimator of V is

derived building on Rosenblatt (1985, Chapter 5, Theorem 7) and Mardia and Marshall (1984, Theorem

3). We state these limiting distribution results as Proposition 3:

Proposition 3 Given our DGP for Xs on the line and correctly measured distances, the uniform kernel

function K� (x) in (3), and choosing L� so that L� !1 and L�
j�� j ! 0 as j�� j ! 1, it follows that:s

j�� j
L�

�
V̂NP � V̂i

�
! N

�
0; 4V 2

�
; i =MLE;MM:

Given our DGP for Xs on the plane and correctly measured distances, the uniform kernel function K� (x)
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in (4), and choosing L� so that L� !1 and L�
j�� j1=2

! 0 as j�� j ! 1, it follows that:s
j�� j
L2�

�
V̂NP � V̂i

�
d! N

�
0; 8V 2

�
; i =MLE; MM:

Proof. See Appendix B.

Based on this result, we construct two types of t�tests. On the plane they take the form:

t1 =

q
j�� j
L2�

�
V̂NP � V̂i

�
q
8V̂ 2i

; i =MLE; MM;

t2 =

q
j�� j
L2�

�
V̂NP � V̂i

�
q
8V̂ 2NP

; i =MLE; MM ;

their form on the line is analogous. These two t�statistics di¤er in the estimator used for the variance
of the limiting distribution. Under the joint null of proper speci�cation and correctly measured distances

both V̂NP are V̂i are of course consistent, so either could be used to estimate the denominator. Typical

practice in related tests is to use t1; due to its denominator�s faster convergence rate. We are motivated to

investigate t2 as well because, in the results below, with distance measurement error there is substantial

downward bias of the parametric V estimators. This heavily in�uences the �nite sample distribution of

the test statistic, in�ating the value of t1: The contribution to the power of the test from this downward

bias might not occur with other DGPs. V̂NP has better and more stable (as level of errors changes) bias

properties so the power properties of t2 may be more generalizable to other DGPs.

The second test is based on a parametric bootstrap.19 Under the joint null hypothesis of a correctly

speci�ed MLE and perfect location/distance information, our MLE estimates are consistent. Since we

have the full likelihood speci�cation, under the null hypothesis we can use our MLE estimates to obtain

simulated samples from a consistent estimate of the true DGP formed from the parametric distribution

speci�cation evaluated at the MLE point estimates. We use this distribution to simulate a large number

of independent bootstrap draws of the same size as the original data. We then obtain nonparametric V

estimates for each bootstrap sample. The resulting set of bootstrap V estimates provides critical values

for an acceptance region for the nonparametric estimate using the original data. In other words, to get

a 90% acceptance region for V̂NP we apply this estimator to each of our bootstrap simulations and our

acceptance region is between the 5th and 95th percentiles of these bootstrap estimates. The speci�cation

test then consists of simply observing whether V̂NP estimated with the original data is in this range. If V̂NP
is in this range, it is consistent with data generated from what is, under the null hypothesis, a consistent

estimate of the true DGP. If V̂NP lies outside the range, we reject the joint null hypothesis that the MLE

is properly speci�ed and locations/distances are correct.

19A similar parametric bootstrap is used by Conley, Hansen, and Liu (1997) in the context of di¤usion models.
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This parametric bootstrap has an advantage over tests based on the limiting distribution as the quality

of acceptance regions are not dependent on a good choice for bandwidth/kernel. Any choice of bandwidth

or kernel used in V̂NP will automatically be accounted for in the acceptance region as the same choices

will be applied to the bootstrap draws as used for the real data. Of course, the power of the test will be

a¤ected by bandwidth choice, so it is not irrelevant, but at least the reference distribution itself will be

appropriate regardless of bandwidth choice. Of course, the downside of this approach is that it requires

that the full DGP be speci�ed, rather than just the autocovariance function.

4 Simulation Results

This Section reports the results of 1000 repetitions of a Monte Carlo experiment based on a sample of size

j�� j equal to 500 on the line, and equal to a 40 by 40 grid on the plane. We present simulation results for
� = :3 on the line, and for � = :3; :45 on the plane, with � in each case adjusted so that the true value of

V = 1 in all simulations.20

Choice of smoothing parameter is a key decision in the application of kernel HAC estimators like V̂NP ,

so we are motivated to examine estimators performance under di¤erent smoothing parameters, L� . On the

plane we experiment with cuto¤ points from L� = 3 to L� = 7: This range includes cuto¤s that are �too

small�to those that are �too large�given our DGP. In particular, with L� = 3 several cross products of

observations with non-zero covariance are left out of the weighted average giving the estimate of V:21 On

the other hand, L� = 5 is roughly the ideal cuto¤ value: the only cross products with non-zero covariance

left out of the weighted average are those between Xs and Xs�[0;6], or Xs and Xs�[6;0]; each observation

has only four neighbors at these locations, and the corresponding covariance is very close to zero both for

� = :3 and � = :45: Additionally, just a few cross-products with covariance equal to zero are added to the

weighted average.22 Hence, we expect L� = 5 to be the cuto¤ point giving us the best performance for the

nonparametric estimator. On the other hand, L� = 7 is a cuto¤ that is a little too large relative to the

order 6 of our moving average. In particular, a relatively large number of cross-products with covariance

equal to zero are added to the weighted average.23 To conserve space, we report only results on the line

for a cuto¤ of L� = 8 a little �too large�relative to our DGP.

20Additionally, we experimented with values of � = :6; :9 and a sample size of 1000 and with di¤erent cuto¤ points on the

line, and with � = :6; :9 on the plane. Qualitatively, as we change sample size and amount of spatial correlation, the results are

the same as those obtained with smaller sample size on the line, and those obtained with medium amount of spatial correlation

on the plane. These results are available from the authors upon request.
21To be precise, 53% of the cross products involving a su¢ ciently interior point (at least 6 units from the boundary) with

non-zero expectation are left out of the weighted average with L� = 3:
2216% of the cross products involving a su¢ ciently interior point and entering the weighted average with L� = 5 have

expectation equal to zero.
2349% of the cross products involving a su¢ ciently interior point and entering the weighted average with L� = 7 have

expectation equal to zero.
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4.1 Locations On the Line

V Estimator Performance

Table 3 collects the results obtained when the locations are perfectly measured and when we have

location errors of level one through seven, for � = :3. The Table reports Bias and Root Mean Squared

Error (RMSE) for V̂MLE ; V̂MM ; V̂NP and its unbiased analog, as well as coverage probabilities for 95%

con�dence intervals for EX constructed using the alternative variance estimators.

The �rst four columns of Table 3 show that when the true locations are used, the bias associated with

V̂NP is bigger (in absolute terms) than that associated both with V̂MLE and V̂MM . As expected, V̂MLE has

the smallest bias (in absolute terms) among the estimators we are considering, and the unbiased analog of

V̂NP has a smaller bias than V̂NP ; although this di¤erence is negligible on the line (See Guyon (1982)). As

the level of the location errors ranges from one to seven, the bias of V̂MLE increases sharply (in absolute

terms), and with errors of level 1 it is already substantially bigger than that of V̂NP and V̂MM . The bias

of V̂MM also increases sharply with the level of location errors, although not as rapidly as that of V̂MLE ;

and it surpasses the bias of V̂NP (and its unbiased analog) for errors of level 2 and higher. On the other

hand, the bias of the nonparametric estimators is relatively constant with respect to the di¤erent levels of

location errors.

Similar patterns can be observed when looking at the RMSE: the RMSE associated with V̂NP (and

its unbiased analog) is higher than that associated with V̂MLE and V̂MM with true locations. However, if

locations are incorrectly measured, the nonparametric estimators�performance varies little as the level of

location errors increases. In contrast, the RMSE of V̂MLE deteriorates rapidly, and at errors of level 2 and

higher it becomes worse than that of the nonparametric estimator. The RMSE of V̂MM does not increase

as rapidly as that of V̂MLE . However, as soon as location errors of level 4 and higher are introduced, both

the bias and the RMSE of V̂MM get worse than that of the nonparametric estimators.

The behavior of the RMSE of the four estimators can be better understood by looking at the deciles

of their distributions. When the locations are accurately measured and � = :3; the 10th percentile-90th

percentile range for V̂MLE is [0:84; 1:18], that for V̂MM is [0:81; 1:21], and that for V̂NP and its unbiased

analog are both [0:67; 1:30]. Once we introduce location errors of level 7, the 10th-90th percentile range

becomes [0:42; 0:61] for V̂MLE , [0:45; 0:79] for V̂MM , while that for V̂NP and its unbiased analog is virtually

unchanged at [0:67; 1:28]. The distribution of V̂MLE remains tight, but shifts to the left, with a downward

bias for the estimate of V: The distributions of the V̂MM also shifts to the left, but less than that of

V̂MLE : The distributions of the nonparametric estimators are relatively una¤ected by the introduction of

the location errors.

Perhaps the best measure of these estimators�performance is their coverage probabilities. The 95%

con�dence intervals for EX constructed using V̂NP cover its true value of zero in approximately 95%

of the Monte Carlo draws for all levels of location errors. In contrast, the coverage probabilities of the

95% con�dence intervals constructed using V̂MLE deteriorate substantially with a rise in the level of the
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location errors. While the coverage probability is 96:5% with correctly measured locations, it goes down

to 84:8% with location errors of level seven. At correctly measured locations, the coverage probability of

95% con�dence intervals constructed using V̂MM is 96:4%. In the presence of location errors of level 7, the

results mirror the 10-90th percentile ranges described above: the coverage probability goes down to 88%:

Speci�cation Tests

Table 4 reports the results of our speci�cation tests. The left section of this table reports the results of

the t�tests, both when the variance of the limiting distribution is estimated using V̂i; i =MLE;MM; and
when it is estimated using V̂NP : The t-test comparing the nonparametric and the MM estimates performs

poorly, both in terms of size and power of the test, especially when the variance of the limiting distribution

is estimated using V̂NP . This result is not surprising, considering that V̂MM is not greatly a¤ected by the

presence of moderate levels of location errors. On the other hand, the t-test comparing V̂NP and V̂MLE

seems to have desirable properties when the variance of the limiting distribution is estimated using V̂MLE :

However, as can be seen by looking at the same test when the variance of the limiting distribution is

estimated using V̂NP ; this result is in part driven by the fact that in the presence of location errors, V̂MLE

tends to underestimate V:24

The right section of Table 4 presents parametric bootstrap test results. Our speci�c procedure for

each Monte Carlo simulation, is to �rst use the corresponding estimates (�̂MLE ; �̂MLE) to construct the

variance-covariance matrix of the vector [Xs; s 2 �� ] ; �:We then draw j�� j observations from a distribution
N (0;�), and estimate V̂ BNP for the simulated bootstrap sample B. Following this procedure, we construct

200 bootstrap samples for each Monte Carlo repetition, and check whether V̂NP estimated with that

repetition�s original data is in the acceptance region given by the 5th to 95th percentile range of the

bootstrap estimates. In contrast to the tests using the asymptotic distribution, the parametric bootstrap

test comparing V̂NP and V̂MLE appears to have good properties. Both using the nonparametric estimator

and its unbiased analog, the test has a size closer to the desired one, and has good power properties.

4.2 Locations On Plane

V Estimator Performance

Tables 5 and 6 collect the results obtained when the locations are perfectly measured and when we

have location errors of level one through seven, for � = :3 and � = :45 respectively. Each table reports

Bias and Root Mean Squared Error (RMSE) for V̂MLE ; V̂MM ; V̂NP and its unbiased analog estimated

with three cuto¤ points, L� = 3; 5; 7, as well as coverage probabilities for 95% con�dence intervals for EX

constructed using the alternative variance estimators. Several of the results reported below are similar to

those obtained with locations on the line.
24An analogous downward bias is also evident with V̂MM : However the t�test involving V̂MM does not have good power

properties even when V̂MM is used in the denominator of the t�statistic.
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Tables 5a and 6a show that when the true locations are used, the bias associated with V̂NP is bigger

(in absolute terms) than that associated both with V̂MLE and V̂MM , both for small and medium amounts

of spatial correlation. As expected, V̂MLE has the smallest bias (in absolute terms) among the estimators

we are considering. The unbiased analog of V̂NP has a smaller bias than V̂NP ; and now that the locations

are on the plane, this di¤erence is more substantial (See Guyon (1982)). As the level of the location

errors ranges from one to seven, the bias of V̂MLE increases sharply (in absolute terms), and even with

errors of level 1 it is substantially bigger than that of V̂NP and V̂MM . This occurs both for � = :3 and

� = :45: At small levels of spatial correlation (� = :3), the bias of V̂MM also increases sharply with the

level of location errors, although not as rapidly as that of V̂MLE ; and it surpasses the bias of V̂NP (and

its unbiased analog) for errors of level 3 and higher. For medium levels of spatial correlation (� = :45) the

bias of V̂MM remains surprisingly low as the level of location errors increases. Both for � = :3 and � = :45;

the bias of the nonparametric estimators with L� � 5 is relatively constant with respect to the di¤erent

levels of location errors. When the cuto¤ parameter is equal to 3, the bias of V̂NP is more sensitive to

errors in locations, and it increases with the level of locations error, especially for � = 0:45; although not

as sharply as that of V̂MLE (or V̂MM with � = 0:3). This is because with L� = 3 many cross-products with

non-zero covariances are left out of the weighted average giving the estimate of V:With correctly measured

locations, the covariances of the cross products left out are relatively small, and therefore their in�uence

on the bias is not much higher than what we have with larger cuto¤ points. However, when locations are

measured with error some of the cross products left out have a fairly high covariance, and therefore the

bias is higher.

The RMSE associated with V̂NP (and its unbiased analog) is higher than that associated with V̂MLE

and V̂MM with true locations, both at small and medium levels of spatial correlation. However, if locations

are incorrectly measured, the nonparametric estimators�performance varies little as the level of location

errors increases (especially for L� � 5). In contrast, the RMSE of V̂MLE deteriorates rapidly, and at errors

of level 1-2 and higher it becomes worse than that of the nonparametric estimators. The RMSE of V̂MM

does not increase as rapidly as that of V̂MLE . However, for � = :3, as soon as location errors of level 4 and

higher are introduced, both the bias and the RMSE of V̂MM become worse than that of the nonparametric

estimators with cuto¤ point L� � 5; the same happens for errors of level 6 and 7 when the cuto¤ point

of the nonparametric estimators is L� = 7. For � = :45, the RMSE of V̂MM becomes worse than that of

both nonparametric estimators with cuto¤ point L� � 5 when location errors of level 4 and higher are

introduced. However, it remains similar or better than that of the nonparametric estimators with cuto¤

point L� = 7 despite the presence of location errors.

Again it is informative to look at the deciles of our estimators�distributions. When the locations are

accurately measured and � = :45, the 10th-90th percentile range for V̂MLE is [0:93; 1:06] and that for V̂MM

is [0:74; 1:25] : The corresponding ranges for V̂NP across the di¤erent cuto¤ parameters are

[0:64; 1:06], [0:55; 1:25] and [0:39; 1:32] for L� = 3; 5; 7 respectively. With location errors of level 7, the
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10th-90th percentile range becomes [0:15; 0:23] for V̂MLE and [0:41; 1:41] for V̂MM . For V̂NP they become

[0:49; 0:85] ; [0:54; 1:18] ; and [0:41; 1:30] for L� = 3; 5; 7 respectively. Hence, as we observed for locations on

the line, when location errors are introduced the distribution of V̂MLE remains tight, but shifts dramatically

to the left. In contrast, the distribution of V̂MM spreads out, but it remains relatively centered around

the true value of V: For L� = 5; 7 the percentile ranges of V̂NP are also centered around the true value of

V: These ranges are relatively una¤ected by the introduction of location errors. On the other hand, for

L� = 3 the 10th-90th percentile range is centered below the true value of V; and this feature becomes more

pronounced as location errors are introduced, but of course not as severely as for V̂MLE . Unsurprisingly,

the spread of the 10th-90th percentile range for V̂NP increases with L� :25

When � = :3; the distribution of V̂MM is more a¤ected by measurement error. With correct locations,

the 10th-90th percentile range for V̂MM is [0:78; 1:20] ; while that of V̂MLE is [0:86; 1:12] : The 10th-90th

percentile ranges of V̂NP are [0:67; 1:12] ; [0:55; 1:27] ; and [0:38; 1:34] for L� = 3; 5; 7 respectively. When

errors of level 7 are introduced, the 10th-90th percentile range for V̂MLE becomes [0:19; 0:28] ; while those

for V̂NP become [0:55; 0:93] ; [0:54; 1:18] ; and [0:42; 1:33] for L� = 3; 5; 7 respectively.26 This behavior is

similar to what we observed for � = :45: On the other hand, the 10th-90th percentile range for V̂MM

becomes [0:37; 0:71] : Hence the distribution of V̂MM remains tight, but in contrast to what happened for

� = :45; it shifts to the left, with a downward bias for the estimate of V:

Looking at the coverage probabilities of these estimators, we observe that the 95% con�dence intervals

for EX constructed using V̂NP cover zero in approximately 89 to 94% of the Monte Carlo draws when

� = :3, and in approximately 90 to 94% for � = :45: Most of this variation is across cuto¤ parameters,

and does not depend on the level of location errors. In contrast, the coverage probabilities of the 95%

con�dence intervals constructed using V̂MLE deteriorate with a rise in the level of the location errors.

While the coverage probability is approximately 95% with correctly measured locations, it goes down to

68% with location errors of level seven when � = :3, and to 62% when � = :45. The performance of the

MM estimator varies substantially with the value of �: When � = :3 the coverage probability deteriorates

with the increase of the level of measurement error, though not as severely as V̂MLE (going from 95:3%

with true locations to 84:3% with level 7 location errors). When � = :45 the coverage probability falls only

slightly, going from 95:3% to 92:1%.

We �nd it helpful in understanding the reason the MM estimator performs so surprisingly well for

� = :45 to think of V as the product of two terms: V = C(0)
h
V
C(0)

i
: The �rst term is C(0) which depends

on both � and �; the second term is the ratio V
C(0) ; which is a function of � alone. The MM estimator uses

25The unbiased versions of V̂NP have almost the same percentile ranges as V̂NP : For correctly measured locations, these are

[0:68; 1:13], [0:57; 1:35] ;and [0:37; 1:44] for L� = 3; 5; 7 respectively. With location errors of level 7, they become [0:53; 0:91],

[0:59; 1:30], and [0:43; 1:46] for L� = 3; 5; 7 respectively.
26Also in this case the unbiased versions of V̂NP have almost the same percentile ranges as V̂NP : For correctly measured

locations, these are [0:70; 1:19], [0:55; 1:37], and [0:35; 1:46] for L� = 3; 5; 7 respectively. With location errors of level 7, they

become [0:58; 1:00], [0:58; 1:31], and [0:45; 1:49] for L� = 3; 5; 7 respectively.
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the sample variance to estimate C(0); and matches sample correlations to get an estimate of � which is

then plugged into the analytic expression for V
C(0) to get an estimate of this term. V̂MM is then just the

product of the estimates of C(0) and V
C(0) :

The good performance of V̂MM for � = :45 is a consequence of three things. First, obviously the

estimation of C (0) using the sample variance is not a¤ected by measurement error. Second, V
C(0) is a

nonlinear function of � and for values of � above about 1/3 there is more than one value of � that returns

the same value of V
C(0) : In addition, it turns out that when there is measurement error, the argument

minimizing the minimum distance criterion function happens very often to be near a value of � that

implies a value of V
C(0) that is very close to the true value of

V
C(0) for � = :45: The limiting (population)

minimum distance criterion function is not in fact minimized at a value of � that gives exactly the same
V
C(0) as � = :45; but they are close enough to be practically indistinguishable in samples of the size we

consider.

It is important to note that the MM estimator achieves this good performance with � = :45 by picking

values of � and � that are often not close to the true parameter values. When the true values of � and �

are respectively :45 and :1423; the estimates (�̂MM ; �̂MM ) are quite a¤ected by the presence of location

errors. If we look at the deciles of their distributions, we observe that for accurately measured locations

the 10th-90th percentile range for �̂MM is [:39; :51] and for �̂MM it is [:13; :16] ; while for location errors of

level 7 they become, respectively, [:26; 2:55] and [:005; :19] : If all that is needed is an estimate of V , this is

of no consequence. However, it is relevant if � or � is of independent interest.

Speci�cation Tests

Table 7 reports the results of the speci�cation t�tests, both when the variance of the limiting distrib-
ution is estimated using the parametric V estimator and when it is estimated using V̂NP : Our results for

these t-tests are very similar in nature across di¤erent values of � and cuto¤s L� : Therefore, to conserve

space we report results in Table 7 for a representative choice of � = :3 and for the cuto¤ L� = 7: All the

tests involving V̂MM have low power, which is not surprising given the good performance of V̂MM as an

estimator of V described above. The only case where the t�test has good power is when V̂MLE is used for

the denominator. The pronounced downward shift in the distribution of V̂MLE in the presence of measure-

ment error appears to lead to the reasonable power performance for this case. An important caveat to this

apparent power is that this magnitude or sign of shift may not occur with other DGPs. Using V̂NP in the

denominator to provide robustness across DGPs choices does not appear to be worthwhile as all t�tests
with this denominator have very poor performance.

The test based on the parametric bootstrap is constructed in a manner analogous to that used on the

line. For each Monte Carlo simulation, we construct 200 bootstrap draws from the distribution corre-

sponding to the DGP at �̂MLE ; �̂MLE : For each Monte Carlo replication we check whether V̂NP estimated

with that replication�s original data is in the acceptance region given by the 5th to 95th percentile of the

bootstrap estimates.
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Table 8 reports the results of these bootstrap speci�cation tests, for � = :3; and � = :45; with two cuto¤

parameter choices L� = 3; 7: We present full results for only two cuto¤s to conserve space; these two were

chosen as the largest and smallest with which we experimented. They allow us to examine performance of

our test with too small and too large a cuto¤ parameter. When � = :45; the test has roughly the desired

size with both cuto¤ parameters. It has outstanding power with the smaller cuto¤ of L� = 3, with rejection

probabilities of 90% and higher with any level of measurement error. Power is decreased when L� = 7

though rejections still reach about 60% by error level 2. With the smaller persistence parameter � = :3;

when L� = 7 the test remains about properly sized with rejection probabilities not rising quite as fast,

reaching about 60% at error level 3. For � = :3 and L� = 3 the test displays high rejection probabilities

with measurement error but does begin to become oversized, which is unsurprising with a cuto¤ parameter

that is too small. However, even though L� = 3 is too small a cuto¤, the size is only distorted 5% above

its nominal level of 10%. For cuto¤ parameters between 3 and 5 the performance of the test is even better

than the results in Table 8. The best performance obtains with L� = 5; when the test is properly sized and

rejects the false null in 90% of the cases for error levels 3 and above, for either � value. We are particularly

encouraged however, that even without an ideal choice of cuto¤ this test seems to be performing well.

Comparison Between V̂NP and its Unbiased Analog on the Plane

As expected, the unbiased analog of V̂NP has a smaller bias (in absolute terms) than V̂NP , with a bias

ranging from 35% (for L� = 5) to 85% (for L� = 3) of the bias of V̂NP . However, in terms of RMSE, coverage

probabilities, and parametric bootstrap test power, the two estimators present fairly similar properties,

across all levels of location errors and both values of �:

5 Conclusions and Future Research

This paper has reported results of a Monte Carlo experiment assessing the e¤ects of errors in locations

or distances upon the accuracy of parametric and nonparametric estimators of asymptotic variances with

spatially dependent data. We studied the �nite sample properties of four estimators, an MLE, an MM,

the nonparametric estimator suggested by Conley (1999), and its unbiased analog. Our results suggest

that MLE estimators perform poorly when the locations of the observations are not perfectly measured.

Not only does the bias and root mean squared error of V̂MLE increase rapidly as location errors are

introduced, but the coverage probabilities of its associated con�dence intervals decline substantially from

their nominal level. When � = :3, the MM estimator also su¤ers from the presence of location errors,

presenting an increase in its bias and RMSE for location errors of level 3 and above, and a substantial

decrease in the coverage probabilities of the associated con�dence intervals for location errors of level 5

and above. However, when the amount of spatial correlation in the residuals is moderate (� = :45), the

performance of the MM estimator is surprisingly good in terms of bias, root mean squared error, and

coverage probability of the associated con�dence intervals. In contrast, the nonparametric estimator (and

23



its unbiased analog) are very robust to the presence of location errors of all levels.

Our speci�cation test based on the parametric bootstrap has displayed good power properties for the

types of measurement error we consider. Since, by its nature, this test uses critical values that are speci�c

to the true DGP (under the null), we have every reason to expect that its good power properties will

generalize to other DGPs. In contrast, the t�tests based on the asymptotic distribution appeared to
display desirable power properties only when V̂MLE is used in the denominator, likely because of its severe

downward bias. We have less con�dence in the generalizability of this result to other DGPs, because

other DGPs might have biases of di¤erent magnitude or even sign. We think our results strongly suggest

that the parametric bootstrap test should be routinely used in conjunction with MLE inference, given the

potentially poor performance of such inference in the presence of location errors.

We think there are several interesting directions for future research. A better understanding of the

e¤ect of endogeneity in locations/distance errors would be very useful given its relevance for many applica-

tions. Additionally, we would like to extend our analysis to the case in which the locations are correctly but

imprecisely measured. In particular, it is common for information about agents�physical locations to be

known only within an area�census tract, zip code, county, or SMSA. This type of imperfect distance infor-

mation will pose less of a problem for parametric estimators than the case of errors in location/distances,

provided the appropriate calculations are done to infer the properties of the aggregated process from that

assumed for individuals. Yet, spatial aggregation will undoubtedly reduce the available information and

thus the precision of parametric estimators. Of course, a reduction in precision will occur for nonparametric

estimators as well, though it may be less severe for estimators that require only broad de�nitions of near

and far sets of observations in order to de�ne a weighting kernel.
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A Bolthausen CLT

Letting �(s1; s2) denote maximum across coordinates of js1 � s2j, de�ne a distance measure between sets
�(�1;�2) = inff�(s1; s2) : s1 2 �1; s2 2 �2g: For a mean zero stationary random vector Xs s 2 Zd; let
F�denote the sigma algebra generated by Xs; s 2 �; � � Zd: De�ne mixing coe¢ cients as:

�k;l(n) = supfjP (a1 \ a2)� P (a1)P (a2)j : a1 2 F�1 ; a2 2 F�2 ; j�1j � k; j�2j � l; �(�1;�2) � ng

�(n) = supfjcov(b1; b2)j : b1 2 L2(F�1); b2 2 L2(F�2); kb1k2 � 1; kb2k2 � 1; �(�1;�2) � ng

Theorem 4 (Bolthausen 1982)

If
P1
m=1m

d�1�k;l(m) <1; k + l � 4; �1;1(m) = o(m�d) and if

1P
m=1

md�1�(m) <1

or

for some � > 0; kXsk2+� <1 and
1P
m=1

md�1�1;1(m)
�=(2+�) <1;

then
P
s2Zd jcov(X0; Xs)j <1: If additionally �2 =

P
s2Zd cov(X0; Xs) > 0; and �� is a �xed sequence of

�nite subsets of Zd that increases to Zd and is such that

lim
�!1

jboundary(�� )j=j�� j = 0;

Then
1

�j�� j1=2
X
s2��

Xs ) N(0; 1)

B Proofs of Propositions

B.1 Proof of Proposition 1

The proposition using conditions (a) and (b-i) is Proposition 5 in Conley (1999). Here we provide a proof

using (b-ii).

The strategy for proving consistency in the presence of bounded measurement errors in location can

be cast in terms of showing that V̂NP ; obtained using the uniform kernel with cuto¤ L and mismeasured

locations, is asymptotically equivalent to an infeasible estimator that uses true locations and a smaller

cuto¤ point.
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It will be convenient in this proof to explicitly refer to each coordinate of s = (m;n); let the sample

region � be an M by N rectangle, suppressing the index � . Let the bound on measurement error in each

dimension be denoted B so that for each point jmtrue �mmeasuredj < B and jnntrue � nmeasuredj < B: We
index points throughout this proof with their true indexes. The kernel weight for the product of points

(m;n) and (m+ j; n+ k) is denoted ~KMN (m;n; j; k): These weights will be zero and one, but depend on

the measurement errors at both locations (m;n) and (m+ j; n+ k):

V̂NP =
2

MN

PLM+2B
j=0

PLN+2B
k=0

PM
m=j+1

PN
n=k+1

~KMN (m;n; j; k)Xm;nXm�j;n�k

� 1
MN

PM
m=1

PN
n=1X

2
m;n

De�ne ~V as the infeasible, consistent estimator with displacements that are small enough that they still

get weight one:
~V = 2

MN

PLM�2B
j=0

PLN�2B
k=0

PM
m=j+1

PN
n=k+1Xm;nXm�j;n�k

� 1
MN

PM
m=1

PN
n=1X

2
m;n

Conley (1999), Proposition 3 directly implies that ~V ! V in probability. Therefore, it su¢ ces to show

here that the di¤erence R between V̂NP and ~V vanishes. Let R � V̂NP � ~V :

R =
2

MN

LM+2BP
j=0

LN+2BP
k=0

MP
m=j+1

NP
n=k+1

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)Xm;nXm�j;n�k

The result follows from a demonstration that R! 0 in mean square. ER = 0 for LN ; LM large enough since

Xm;n is a �nite-order moving average, so showing var(R)! 0 is su¢ cient. We �rst show E(R�ER)2 ! 0

and then ER! 0:

To simplify notation let Xm;n = 0 for non-positive values of either index. De�ne an array ZMN;mn:

ZMN;mn =

LM+2BP
j=0

LN+2BP
k=0

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)(Xm;nXm�j;n�k �EXm;nXm�j;n�k);

so R� ER = 2
MN

PM
m=1

PN
n=1 ZMN;mn: Hence,

varf
MP
m=1

NP
n=1

ZMN;mng =
���� MP
m=1

NP
n=1

MP
m0=1

NP
n0=1

EZMN;mnZMN;m0n0

���� :
The triangle inequality implies:

varf
MP
m=1

NP
n=1

ZMN;mng �
(

MP
m=1

NP
n=1

P
jm�m0j�2(LM+2B)

P
jn�n0j�2(LN+2B)

��EZMN;mnZMN;m0n0
��+

MP
m=1

NP
n=1

P
m0;n0:jm�m0j>2(LM+2B)orjn�n0j>2(LN+2B)

��EZMN;mnZMN;m0n0
��) ;

(5)
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having divided the terms into close ones (within 2(LM + 2B) and 2(LN + 2B) in each direction) and far

ones (farther than 2(LM + 2B) or 2(LN + 2B)). Note that if the sample region were not rectangular, the

EZMN;mnZMN;m0n0 terms could still be divided into close and far groups of terms.

First look at the close terms. No matter what the shape of the sample region, the maximum number of

points within 2(LM +2B); 2(LN +2B) in each direction from any point is (4LM +8B+1)(4LN +8B+1):

Therefore:
MP
m=1

NP
n=1

P
jm�m0j<2(LM+2B)

P
jn�n0j<2(LN+2B)

��EZMN;mnZMN;m0n0
�� �

MN(4LM + 8B + 1)(4LN + 8B + 1) sup
1�m0�M;1�n0�N

ZMN;m0n0
2
2
:

The next step is to bound sup1�m0�M;1�n0�N
ZMN;m0n0

2
2
. Minkowski�s inequality implies:

kZMN;mnk2 �nPLM+2B
j=0

PLN+2B
k=0 [1� 1(j < LM � 2B)1(k < LN � 2B)] � : : :

~KMN (m;n; j; k) kXm;nXm�j;n�k � EXm;nXm�j;n�kk2
o
:

(6)

Xm;n has �nite (4+�)thmoments which implies that supj;k kXm;nXm�j;n�k � EXm;nXm�j;n�kk2 is bounded,
~KMN (m;n; j; k) are uniformly bounded, and the number of terms where [1 � 1(j < LM � 2B)1(k <
LN � 2B)] = 1 is [(LM + 2B + 1)(LN + 2B + 1)� (LM � 2B + 1)(LN � 2B + 1)] = 4B(LM + LN + 2):

Hence

kZMN;mnk2 � c1(LM + LN + 2)

for some constant c1: Thus giving the following bounds:

kZMN;mnk22 � c
2
1(LM + LN + 2)

2

Therefore the near terms satisfy:

MP
m=1

NP
n=1

P
jm�m0j<2LM

P
jn�n0j<2LN

��EZMN;mnZMN;m0n0
�� � c21MN(4LM+8B+1)(4LN+8B+1)(LM+LN+2)2:

(7)

Next consider the far apart terms.

MP
m=1

NP
n=1

P
m0;n0:jm�m0j>2LMorjn�n0j>2LN

��EZMN;mnZMN;m0n0
��

A mixing inequality from Ibragimov and Linnik (1971) chapter 17 gives a bound on
��EZMN;mn; ZMN;m0n0

��:��EZMN;mn; ZMN;m0n0
�� � c2�1;1(min(2(LM + 2B); 2(LN + 2B))

�=(2+�) sup
m;n

kZMN;mnk22+�
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and an argument identical to that above for (6) implies kZMN;mnk2�2+� � c23(LM + LN + 2)
2 for some

constants c2; c3: Combining these terms give a bound on the far terms of:

MP
m=1

NP
n=1

P
m0;n0:jm�m0j>2LMorjn�n0j>2LN

��EZMN;mnZMN;m0n0
�� �

c4M
2N2�1;1(min(2(LM + 2B); 2(LN + 2B))

�=(2+�)(LM + LN + 2)
2

Combining the bounds on near and far terms yields:

varf
MP
m=1

NP
n=1

ZMN;mng � c21MN(4LM + 8B + 1)(4LN + 8B + 1)(LM + LN + 2)
2+

c4M
2N2�1;1(min(2(LM + 2B); 2(LN + 2B))

�=(2+�)(LM + LN + 2)
2 + o(1):

The rate conditions on Li;� and the mixing condition in parts (a) and (c) imply that the right side of this

expression converges to zero as M;N !1.
Consider now ER :

ER =

= 2
MN

LM+2BP
j=0

LN+2BP
k=0

MP
m=j+1

NP
n=k+1

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)EXm;nXm�j;n�k

= 2
LM+2BP
j=0

LN+2BP
k=0

[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)
(M�j)(N�k)

MN EXm;nXm�j;n�k

Using the same mixing inequality to bound EXm;nXm�j;n�k :

jERj �

c5
LM+2BP
j=0

LN+2BP
k=0

���[1� 1(j < LM � 2B)1(k < LN � 2B)] ~KMN (m;n; j; k)
(M�j)(N�k)

MN

����1;1(max(j; k)) �
(2+�)

� c5
LM+2BP
j=0

LN+2BP
k=0

j[1� 1(j < LM � 2B)1(k < LN � 2B)]j�1;1(max(j; k))
�

(2+�) :

P1
j=0

P1
k=0 �1;1(max(j; k))

�=(2+�) < 1 since �1;1 = o(m�4); so the dominated convergence theorem

implies

c5
LM+2BP
j=0

LN+2BP
k=0

j[1� 1(j < LM � 2B)1(k < LN � 2B)]j�1;1(max(j; k))�=(2+�) ! 0

since j[1� 1(j < LM � 2B)1(k < LN � 2B)]j ! 0; all j; k:
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B.2 Proof of Proposition 2

Notation

We �rst introduce some notation that will be used in the remaining proofs. Let �� be the hypercube

(in d�dimensional Euclidean space) of lattice points s with all components integers si; 1 � si � N , so that
Nd = j�� j : Given our DGP, fXsg is a random �eld with EXs � 0 and cumulant functions up to order

eight absolutely summable. Denote by

f (!) � 1

(2�)d

1P
s1=�1

: : :
1P

sd=�1
rse

�is�!

the spectral density of fXsg, where rs � C (s) = E (XsXu+s) ; !=(!1; : : : ; !d) 2 [��; �]d ; and (s � !) =Pd
h=1 sh!h is the inner product in d�dimensional Euclidean space. For locations on the plane, d = 2: Let

� denote the variance-covariance matrix of the vector [Xs; s 2 �� ] : Let

�� =
@�

@�
; ��2 =

@�

@�2
;

#ij = tr
�
��1�i�

�1�j
�
; i; j = �; �2:

Let � =
�
�; �2

�
denote the true values of the parameters in the DGP. Let �̂MLE =

�
�̂MLE ; �̂

2
MLE

�
denote

the MLE estimator of �:

Proof.

Mardia and Marshall (1984, Theorem 3) show that �̂MLE is consistent and asymptotically normal,

provided that C
�
k; �; �2

�
and its �rst and second derivatives are absolutely summable, and that

aij = lim
#ij

(#ii#jj)
1
2

exists, i; j =
�
�; �2

�
;

det (A) = det

 "
a�� a��2

a��2 a�2�2

#!
6= 0:

The covariance functions C
�
k; �; �2

�
are polynomials in � and �2 for each k 2 �� ; and therefore their

derivatives exist and are continuous. Absolute summability is ensured by the fact that the processes we

consider are �nite order moving averages, and thereforeP
k2Z2

��C �k; �; �2��� = P
k2Z2:kkk�3

��C �k; �; �2��� <1;
with similar considerations for the �rst and second derivatives of C

�
k; �; �2

�
:

From the above considerations it follows that there exists a positive �nite constant �1 such thatP
k2Z2

(1 + jklj)
���C �k; �; �2��� < �1; l = 1; 2
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where kl denotes the l�th component of k; and � denotes either the identity operator 1, one of the

�rst order di¤erential operators @=@�i; or one of the second order operators @2=@�i@�j i; j = 1; 2: Hence,���(2�)2�f (!)��� < �1: Moreover, given our choice of an MA(6) process, and our values of � = 0:3; 0:45; it
follows that there exists a positive �nite constant �2 such that:

1

(2�)2 f (!)
< �2:

This implies that the conditions for Theorem 1 and Lemmas 3.1-3.2, 4.1-4.3 in Kent and Mardia (1996)

are satis�ed, and therefore

tr
�
��1�i�

�1�j
�
=
j�� j
(2�)2

Z
fi (!) fj (!)

f (!)2
d! +O

�p
j�� j

�
where fi (!) =

@f(!)
@�i

: Hence, for i; j = 1; 2

lim
j�� j!1

#ijp
(#ii#jj)

= lim
j�� j!1

j�� j
(2�)2

R fi(!)fj(!)

f(!)2
d! +O

�p
j�� j

�
r�

j�� j
(2�)2

R fi(!)
2

f(!)2
d! +O

�p
j�� j

���
j�� j
(2�)2

R fj(!)
2

f(!)2
d! +O

�p
j�� j

��
=

R fi(!)fj(!)

f(!)2
d!r�R fi(!)

2

f(!)2
d!
��R fj(!)

2

f(!)2
d!
� :

The above limits exist. Given our analytic forms for the spectral densities and its derivatives with

respect of � and �2; direct computations show that det (A) 6= 0:

B.3 Proof of Proposition 3

Notation.

We use the same notation as in the proof of Proposition 2.

Proof.

The result for locations on the line follows trivially from the results of Anderson (1994), Theorem 9.4.1

and Corollary 9.4.1. Here we prove the result for locations on the plane.

1. Asymptotic Distribution of Spectral Density Estimator on the Plane

Let r̂s denote an estimate of rs � C (s) = E (XsXu+s) given by

r̂s =
1

j�� j
P

u;u+s2��
XsXu+s;

Notice that

E (r̂s) =

dQ
h=1

(N � jshj)

j�� j
rs;
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An estimate f̂ (!) of f (!) is then given by

f̂ (!) =
1

(2�)d
P

js1j;:::;jsdj�N
K

�
s1
L1
;
s2
L2
; : : : ;

sd
Ld

�
r̂se

�is�!;

where K (0) = 1; and K (x) is assumed to be an even (K (x) = K (�x)) function, uniformly bounded and
square integrable. Given Nd = j�� j ; let Li ! 1 and Li

N ! 0 as N ! 1; i = 1; : : : ; d. Rosenblatt (1985)
Theorem 7 p. 157 is as follows:

Theorem 5 (Rosenblatt (1985)) Let fXsg be a strictly stationary strongly mixing random �eld with

EXs � 0: Assume that the cumulant functions up to eighth order are absolutely summable. Also let the

spectral density estimate f̂ (!) have weights K (�) satisfying the condition speci�ed above. It then follows
that r

j�� j
Ld

h
f̂ (!)� E

�
f̂ (!)

�i
d! N (0;
) ;

where


 = (2�)d f1 + � (2!1) : : : � (2!d)g f2 (!)
Z
W 2 (�) d�;

� (�) =

(
1 if � = 2m�; m integer

0 otherwise.

W (�) =
1

(2�)d

Z
K (u) e�iu��du

�

Hence at frequency zero, under the above assumptions,r
j�� j
Ld

h
f̂ (0)� E

�
f̂ (0)

�i
d! N

�
0; (2�)d 2f2 (0)

Z
W 2 (�) d�

�
:

Recall that V = 2�f (0) ; and that we use the uniform kernel in (4). Our DGP satis�es the assumptions

of Theorem 5. Additionally,

V = C (0) + 4C (1) + 4C
�p
2
�
+ 4C (2) + 8C

�p
5
�
+ 4C

�p
8
�
+ 4C (3) + :::

+8C
�p
10
�
+ 8C

�p
13
�
+ 4C (4) + 8C

�p
17
�
+ 4C

�p
18
�
+ 8C

�p
20
�
+ :::

+4C ([0; 5]) + 8C ([3; 4]) + 8C
�p
26
�
+ 8C

�p
29
�
+ 4C

�p
32
�
+ 4C (6)

Therefore,

�
E
�
V̂NP

�
� V

�
= Op

�
j�� j�1=2

�
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Hence

lim
N!1

r
j�� j
L2

[E (fN (0))� f (0)] = 0;

from which r
j�� j
L2

h
f̂ (0)� f (0)

i
d! N

�
0; (2�)2 2f2 (0)

Z
W 2 (�) d�

�
: (8)

2. Asymptotic Distribution of Speci�cation Test on the Plane

We want to show thatr
j�� j
L2

�
V̂NP � V̂i

�
d! N

�
0;

1

(2�)2
2V 2

Z �R
K (x) e�ix��dx

�2
d�

�
; i =MLE;MM:

It is then easy to verify that with a uniform kernel 1
(2�)2

R �R
K (x) e�ix��dx

�2
d� = 4:

Consider �rst the MLE estimator. The goal is to show that
q

j�� j
L2

�
V̂MLE � V

�
p! 0; then the desired

result will follow from (8). As shown in Lemma 2, our model with � = 0:3 and � = 0:45 satis�es the

conditions of Theorem 3 of Mardia and Marshall (1984). Hencep
j�� j

�
�̂MLE � �

�
d! (0;H) ;

where H is the variance-covariance matrix of �: Since V̂MLE is given by the product of �̂2MLE and a

polynomial in �̂MLE ; the desired result follows.

Consider now the MM estimator. Since our MM estimator uses unbiased covariances, Guyon�s (1982)

results ensure that
q

j�� j
L2

�
�̂MM � �

�
p! 0; from which the result follows.

C Analytic Expressions for the Covariance Function and the Asymp-

totic Variance on the Plane

The DGP for Xs is

Xs =
X

r:ks�rk�3
�ks�rkus�r

where us is IID N(0; �2): One can verify that:

V = C (0) + 4C (1) + 4C
�p
2
�
+ 4C (2) + 8C

�p
5
�
+ 4C

�p
8
�
+ 4C (3) + :::

+8C
�p
10
�
+ 8C

�p
13
�
+ 4C (4) + 8C

�p
17
�
+ 4C

�p
18
�
+ 8C

�p
20
�
+ :::

+4C ([0; 5]) + 8C ([3; 4]) + 8C
�p
26
�
+ 8C

�p
29
�
+ 4C

�p
32
�
+ 4C (6) ;

and

C (0) = �2
�
1 + 4�2 + 4�2

p
2 + 4�4 + 8�2

p
5 + 4�2

p
8 + 4�6

�
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C (1) = �2
�
2�+ 4�1+

p
2 + 2�3 + 4�

p
2+
p
5 + 4�2+

p
5 + 4�

p
5+
p
8 + 2�5

�
C
�p
2
�
= �2

�
2�
p
2 + 4�1+

p
5 + 2�2 + 4�2+

p
2 + 2�

p
2+
p
8 + 4�3+

p
5 + 2�2

p
5
�

C (2) = �2
�
3�2 + 4�1+

p
5 + 2�4 + 4�2+

p
8 + 2�2

p
2 + 2�2

p
5
�

C
�p
5
�
= �2

�
2�
p
5 + 2�1+

p
2 + 2�3 + 2�1+

p
8 + 2�

p
2+
p
5 + 2�2+

p
5 + 2�3+

p
2 + 2�3+

p
8
�

C
�p
8
�
= �2

�
4�1+

p
5 + 2�

p
8 + 2�4 + �2

p
2 + 4�3+

p
5
�

C (3) = �2
�
4�3 + 4�

p
5+
p
2 + 4�

p
5+
p
8
�

C
�p
10
�
= �2

�
2�1+

p
5 + 2�2+

p
2 + 2�4 + 2�

p
8+
p
2 + 2�2

p
5
�

C
�p
13
�
= �2

�
2�1+

p
8 + 2�

p
2+
p
5 + 2�2+

p
5 + 2�5

�
C (4) = �2

�
3�4 + 2�2

p
5 + 2�2

p
8
�

C
�p
17
�
= �2

�
2�
p
8+
p
5 + 2�2+

p
5 + 2�3+

p
2
�

C
�p
18
�
= �2

�
2�6 + 2�2

p
5 + 2�

p
8+
p
2
�

C
�p
20
�
= �2

�
2�2+

p
8 + 2�3+

p
5 + �2

p
5
�

C ([0 5]) = 2�2�5

C ([3 4]) = 2�2�
p
5+
p
8

C
�p
26
�
= 2�2�3+

p
5

C
�p
29
�
= 2�2�3+

p
8

C
�p
32
�
= �2�2

p
8

C (6) = �2�6

38



D Covariance function of the Mismeasured Process on the Line, for

Location Errors of Level 1

When locations are measured with error, the moments of the mismeasured process are given by a convex

combination of the moments of the correctly measured process. Since the process we consider does not

have a trend and is mean zero, this implies that the mean of the mismeasured process is also equal to zero.

Hence, our interest centers on the covariance function of the mismeasured process. While the calculations

for the general case are very tedious and not particularly enlightening, in this Section we show what this

function is for processes on the line and location errors of level 1.

Recall our algorithm for the measurement error process: Each agent�s integer location is independently

perturbed by adding a random amount � from a uniform distribution on [-v,v] : In other words agent i is

given a perturbed location ~si = si+�i: Then, each agent�s measured location (zi) is de�ned by a re-labeling

of the perturbed locations f~sig from 1 to j�� j ; according to the rank order of the f~sig from smallest to

largest.

Denote by Xs the process observed at correct locations, and by C (j) its covariance function at lag j;

denote by Xz the process observed at mismeasured locations, and by ~C (k) its covariance function at lag

k. Observe that with errors of level 1, i.e. v = 1, each observation can be reshu ed by at most one unit;

this implies that ~C (jkj) 6= 0 for jkj = 1; : : : ; 8 (of course, ~C (0) = C (0) > 0). Moreover, for each lag k the
following relation holds:

~C (jkj) =

8><>:
6P
j=1

C (jjj) Pr ( jzi � zj j = k j jsi � sj j = j) for jkj = 1; : : : ; 8;

0 for jkj > 8:

The main task is to calculate the misclassi�cation probabilities Pr ( jzi � zj j = k j jsi � sj j = j) for each
value of k and j: This task is greatly simpli�ed by the fact that only reshu ing by one unit is possible.

The reshu ing of one unit will occur with probability

p � Pr ( ~si < ~si�1j fsig) = Pr
�
�i � �i�1 < �1

�� fsig� = 1

8
;

where the last equality follows from our assumptions about �:

Consider Pr ( jzi � zj j = 1j jsi � sj j = 1) : Given that each observation can be reshu ed of only one
unit, two observations that were originally adjacent will remain adjacent unless: (a) only one of them is
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reshu ed, say only zi; or (b) zi is not reshu ed, but zj is. In formulas,

Pr ( jzi � zj j = 1 j jsi � sj j = 1)

= 1� Pr ( jzi � zj j 6= 1 j jsi � sj j = 1)

= 1� Pr (zi = si � 1; zj = sj j jsi � sj j = 1)� :::

(1� Pr (zi = si � 1; zj = sj j jsi � sj j = 1))Pr (zi = si; zj = sj + 1 j jsi � sj j = 1)

= 1� p� (1� p) p = (1� p)2 :

By repeating a similar reasoning, one can verify that

Pr ( jzi � zj j = k j jsi � sj j = j) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(1� p)2 for fk; jg = f1; 1g ;
2p (1� p) for fk; jg = f(1; 2) ; (2; 1)g ;
(1� p)

�
2p2 � 3p+ 1

�
for fk; jg = f2; 2g ;

1� 4p (1� p)2 � 2p2 for k = j; j � 3;
2p (1� p)2 for fk; jg = f3; 2g ;
2p (1� p)2 for k = j � 1; j � 3;
p2 for fk; jg = (f3; 1g ; f4; 2g)
p2 for k = j � 2; j � 3:

Replacing the value of p; we get2666666666666664

~C (1)

~C (2)

~C (3)

~C (4)

~C (5)

~C (6)

~C (7)

~C (8)

3777777777777775
=

2666666666666664

0:7656 0:2188 0:0156 0 0 0

0:2188 0:5742 0:1914 0:0156 0 0

0:0156 0:1914 0:6016 0:1914 0:0156 0

0 0:0156 0:1914 0:6016 0:1914 0:0156

0 0 0:0156 0:1914 0:6016 0:1914

0 0 0 0:0156 0:1914 0:6016

0 0 0 0 0:0156 0:1914

0 0 0 0 0 0:0156

3777777777777775

26666666664

C (1)

C (2)

C (3)

C (4)

C (5)

C (6)

37777777775
;

where the exact formulas for C (j) ; j = 1; : : : ; 6 were provided in equation (1).
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Table 1: Degree of Deviations of Measured from True Locations

v Percentage at 1 Unit 2 Units 3 Units 4 Units 5 Units 6 Units

True Location O¤ (%) O¤ (%) O¤ (%) O¤ (%) O¤ (%) O¤ (%)

Level 1 Errors 1:0 75:0% 25:0% 0% 0% 0% 0% 0%

Level 2 Errors 1:5 51:8% 42:0% 6:2% 0% 0% 0% 0%

Level 3 Errors 2:0 36:8% 45:5% 15:9% 1:8% 0% 0% 0%

Level 4 Errors 2:5 27:5% 42:7% 23:1% 6:2% 0:5% 0% 0%

Level 5 Errors 3:0 21:5% 37:9% 26:5% 11:5% 2:4% 0:2% 0%

Level 6 Errors 3:5 17:6% 33:0% 26:9% 15:9% 5:6% 1:0% 0%

Level 7 Errors 4:0 14:7% 28:9% 25:7% 18:5% 9:1% 2:7% 0:4%

Table 2: Distance by Which Measured Locations Deviate from True Locations on the Plane

v Percentage at Dist. 2 [1; 2) Dist. 2 [2; 3) Dist. 2 [3; 4) Dist. � 4
True Location (%) (%) (%) (%)

Level 1 Errors 0:75 80:0% 20:0% 0% 0% 0%

Level 2 Errors 1:00 56:7% 43:3% 0% 0% 0%

Level 3 Errors 1:25 40:2% 55:9% 3:9% 0% 0%

Level 4 Errors 1:50 28:4% 60:0% 11:6% 0% 0%

Level 5 Errors 1:75 20:8% 58:8% 19:5% 0:1% 0%

Level 6 Errors 2:00 14:5% 55:2% 27:0% 3:3% 0%

Level 7 Errors 2:25 11:0% 48:5% 33:2% 6:8% 0:5%



Table 3: Bias, Root MSE and 95% CI Coverage Probabilities for V Estimators with True and Error-Ridden Locations,
On the Line, rho = 0.3, sigma = 0.5453

Bias Root MSE 95% CI Coverage Probability

MLE MM NP
NP-

Unbiased
MLE MM NP

NP-
Unbiased

MLE MM NP
NP-

Unbiased
True Locations 0.000 -0.003 -0.030 -0.028 0.133 0.164 0.259 0.261 0.965 0.964 0.952 0.952
Level 1 Errors -0.181 -0.030 -0.031 -0.029 0.214 0.177 0.258 0.260 0.938 0.959 0.953 0.953
Level 2 Errors -0.292 -0.081 -0.032 -0.029 0.308 0.196 0.257 0.258 0.913 0.953 0.954 0.954
Level 3 Errors -0.365 -0.150 -0.031 -0.030 0.376 0.240 0.254 0.256 0.893 0.943 0.954 0.952
Level 4 Errors -0.412 -0.218 -0.031 -0.028 0.420 0.294 0.250 0.251 0.880 0.929 0.949 0.952
Level 5 Errors -0.447 -0.281 -0.031 -0.026 0.454 0.350 0.248 0.252 0.868 0.910 0.952 0.953
Level 6 Errors -0.473 -0.330 -0.037 -0.032 0.480 0.402 0.246 0.247 0.858 0.893 0.954 0.951
Level 7 Errors -0.493 -0.368 -0.044 -0.037 0.498 0.438 0.246 0.245 0.848 0.880 0.954 0.953
Table notes: sample size = 500, true value of V = 1. 1000 Monte Carlo replications.

Table 4: Rejection Probabilities for Tests at the 10% Level, On the Line, rho = 0.3, sigma = 0.5453

t-test Using the Asymptotic Distribution Parametric Bootstrap, Using MLE
NP NP-Unbiased

NP NP-UnbiasedMLE MLE MM MM MLE MLE MM MM
[a] [b] [c] [d] [a] [b'] [c] [d']

True Locations 0.05 0.10 0.01 0.06 0.05 0.11 0.01 0.06 0.07 0.07
Level 1 Errors 0.18 0.04 0.01 0.04 0.18 0.04 0.01 0.04 0.16 0.17
Level 2 Errors 0.43 0.09 0.01 0.02 0.44 0.11 0.01 0.03 0.41 0.42
Level 3 Errors 0.65 0.25 0.05 0.01 0.64 0.25 0.05 0.01 0.62 0.63
Level 4 Errors 0.76 0.42 0.17 0.01 0.75 0.43 0.18 0.00 0.74 0.73
Level 5 Errors 0.86 0.53 0.40 0.05 0.86 0.54 0.41 0.05 0.84 0.84
Level 6 Errors 0.90 0.63 0.61 0.14 0.90 0.64 0.61 0.16 0.89 0.89
Level 7 Errors 0.93 0.70 0.76 0.23 0.93 0.70 0.76 0.28 0.92 0.92

Table notes: sample size = 500, true value of V = 1. 1000 Monte Carlo replications, 200 Bootstrap repetitions. (a) Denominator in the t-test given by
the MLE estimator; (b) Denominator in the t-test given by the nonparametric estimator; (c) Denominator in the t-test given by the MM estimator; (d)
Denominator in the t-test given by the nonparametric estimator. (b') and (d') Denominator in the t-test given by the unbiased nonparametric estimator.



Table 5a: Bias for V Estimators with True and Error-Ridden Locations, 
On the Plane, rho = 0.3, sigma = 0.2456

Bias

MLE MM
NP NP-Unbiased

L = 3 L = 5 L = 7 L = 3 L=5 L = 7
True Locations -0.005 -0.015 -0.109 -0.112 -0.169 -0.061 -0.066 -0.130
Level 1 Errors -0.329 -0.055 -0.119 -0.112 -0.169 -0.069 -0.064 -0.127
Level 2 Errors -0.502 -0.103 -0.129 -0.110 -0.166 -0.078 -0.057 -0.120
Level 3 Errors -0.600 -0.156 -0.146 -0.106 -0.161 -0.094 -0.049 -0.111
Level 4 Errors -0.662 -0.217 -0.167 -0.108 -0.160 -0.114 -0.046 -0.105
Level 5 Errors -0.705 -0.292 -0.196 -0.106 -0.153 -0.143 -0.040 -0.092
Level 6 Errors -0.740 -0.364 -0.231 -0.112 -0.155 -0.178 -0.042 -0.088
Level 7 Errors -0.766 -0.447 -0.268 -0.118 -0.147 -0.217 -0.043 -0.074

Table 5b: Root MSE for V Estimators with True and Error-Ridden Locations, 
On the Plane, rho = 0.3, sigma = 0.2456

Root MSE

MLE MM
NP NP-Unbiased

L = 3 L = 5 L = 7 L = 3 L=5 L = 7
True Locations 0.104 0.167 0.203 0.303 0.419 0.195 0.327 0.462
Level 1 Errors 0.338 0.177 0.206 0.301 0.417 0.196 0.323 0.459
Level 2 Errors 0.505 0.201 0.210 0.299 0.416 0.196 0.321 0.458
Level 3 Errors 0.602 0.269 0.219 0.295 0.412 0.201 0.317 0.452
Level 4 Errors 0.663 0.339 0.232 0.292 0.407 0.208 0.312 0.445
Level 5 Errors 0.707 0.395 0.250 0.290 0.404 0.220 0.309 0.441
Level 6 Errors 0.741 0.457 0.274 0.287 0.401 0.240 0.303 0.435
Level 7 Errors 0.766 0.505 0.306 0.287 0.401 0.270 0.300 0.436

Table 5c: 95% CI Coverage Probabilities for V Estimators with True 
and Error-Ridden Locations, On the Plane, rho = 0.3, sigma = 0.2456

95% CI Coverage Probability

MLE MM
NP NP-Unbiased

L = 3 L = 5 L = 7 L = 3 L=5 L = 7
True Locations 0.952 0.953 0.935 0.921 0.890 0.944 0.931 0.892
Level 1 Errors 0.904 0.947 0.934 0.924 0.892 0.941 0.930 0.896
Level 2 Errors 0.847 0.937 0.929 0.925 0.892 0.941 0.932 0.894
Level 3 Errors 0.782 0.931 0.928 0.928 0.901 0.937 0.934 0.900
Level 4 Errors 0.752 0.918 0.924 0.932 0.902 0.936 0.934 0.904
Level 5 Errors 0.716 0.902 0.926 0.930 0.904 0.930 0.935 0.913
Level 6 Errors 0.692 0.876 0.919 0.930 0.902 0.925 0.940 0.911
Level 7 Errors 0.679 0.843 0.910 0.928 0.908 0.916 0.939 0.911

Table notes: sample size = 40x40, and true value of V = 1. 1000 Monte Carlo Repetitions.



Table 6a: Bias for V Estimators with True and Error-Ridden Locations, 
On the Plane, rho = 0.45, sigma = 0.1423

Bias

MLE MM
NP NP-Unbiased

L = 3 L = 5 L = 7 L = 3 L=5 L = 7
True Locations -0.001 -0.013 -0.157 -0.124 -0.180 -0.103 -0.067 -0.129
Level 1 Errors -0.481 -0.035 -0.171 -0.125 -0.180 -0.117 -0.065 -0.127
Level 2 Errors -0.605 -0.056 -0.187 -0.126 -0.179 -0.133 -0.063 -0.122
Level 3 Errors -0.673 -0.074 -0.210 -0.129 -0.178 -0.156 -0.063 -0.118
Level 4 Errors -0.723 -0.072 -0.237 -0.133 -0.178 -0.184 -0.063 -0.113
Level 5 Errors -0.758 -0.062 -0.269 -0.139 -0.177 -0.216 -0.066 -0.108
Level 6 Errors -0.788 -0.033 -0.302 -0.147 -0.178 -0.251 -0.071 -0.103
Level 7 Errors -0.810 -0.048 -0.338 -0.160 -0.178 -0.289 -0.081 -0.098

Table 6b: Root MSE for V Estimators with True and Error-Ridden Locations, 
On the Plane, rho = 0.45, sigma = 0.1423

Root MSE

MLE MM
NP NP-Unbiased

L = 3 L = 5 L = 7 L = 3 L=5 L = 7
True Locations 0.051 0.217 0.224 0.297 0.413 0.202 0.314 0.449
Level 1 Errors 0.483 0.226 0.233 0.296 0.412 0.207 0.311 0.446
Level 2 Errors 0.607 0.251 0.243 0.293 0.409 0.215 0.308 0.442
Level 3 Errors 0.675 0.297 0.259 0.293 0.409 0.227 0.306 0.440
Level 4 Errors 0.724 0.351 0.280 0.292 0.404 0.244 0.302 0.433
Level 5 Errors 0.759 0.386 0.305 0.290 0.402 0.267 0.297 0.429
Level 6 Errors 0.789 0.401 0.333 0.290 0.398 0.293 0.292 0.422
Level 7 Errors 0.811 0.408 0.364 0.293 0.394 0.324 0.290 0.417

Table 6c: 95% CI Coverage Probabilities for V Estimators with True 
and Error-Ridden Locations, On the Plane, rho = 0.45, sigma = 0.1423

95% CI Coverage Probability

MLE MM
NP NP-Unbiased

L = 3 L = 5 L = 7 L = 3 L=5 L = 7
True Locations 0.959 0.953 0.931 0.930 0.898 0.940 0.935 0.901
Level 1 Errors 0.860 0.949 0.929 0.929 0.901 0.939 0.936 0.904
Level 2 Errors 0.785 0.942 0.925 0.929 0.900 0.936 0.939 0.904
Level 3 Errors 0.751 0.936 0.923 0.930 0.898 0.932 0.935 0.906
Level 4 Errors 0.705 0.934 0.920 0.932 0.899 0.925 0.937 0.909
Level 5 Errors 0.687 0.930 0.913 0.931 0.901 0.921 0.939 0.909
Level 6 Errors 0.650 0.925 0.908 0.927 0.901 0.918 0.940 0.912
Level 7 Errors 0.624 0.921 0.896 0.923 0.909 0.909 0.931 0.918

Table notes: sample size = 40x40, and true value of V = 1. 1000 Monte Carlo Repetitions.



Table 7: Rejection Probabilities for t-Tests Using the Asymptotic Distribution at the 10% Level, 
On the Plane, rho = 0.3, sigma = 0.2456, L = 7
NP NP-Unbiased

MLE MLE MM MM MLE MLE MM MM
[a] [b] [c] [d] [a] [b'] [c] [d']

True Locations 0.02 0.24 0.01 0.20 0.06 0.25 0.03 0.22
Level 1 Errors 0.15 0.08 0.01 0.19 0.20 0.10 0.03 0.19
Level 2 Errors 0.38 0.03 0.01 0.15 0.43 0.05 0.04 0.16
Level 3 Errors 0.58 0.01 0.02 0.09 0.61 0.03 0.04 0.11
Level 4 Errors 0.72 0.01 0.03 0.07 0.74 0.03 0.07 0.09
Level 5 Errors 0.81 0.03 0.08 0.04 0.82 0.07 0.14 0.05
Level 6 Errors 0.89 0.06 0.17 0.02 0.89 0.10 0.25 0.03
Level 7 Errors 0.92 0.11 0.31 0.01 0.92 0.18 0.41 0.01
Table notes: sample size = 500, true value of V = 1. 1000 Monte Carlo replications, 200 Bootstrap repetitions. (a) Denominator in the t-test
given by the MLE estimator; (b) Denominator in the t-test given by the nonparametric estimator; (c) Denominator in the t-test given by the MM
estimator; (d) Denominator in the t-test given by the nonparametric estimator. (b') and (d') Denominator in the t-test given by the unbiased
nonparametric estimator.

Table 8: Rejection Probabilities for The Parametric Bootstrap, Using MLE, at the 10% Level, On the Plane

rho = 0.3, sigma = 0.2456 rho = 0.45, sigma = 0.1423
NP NP-Unbiased NP NP-Unbiased

L = 3 L = 7 L = 3 L = 7 L = 3 L = 7 L = 3 L = 7

True Locations 0.15 0.09 0.15 0.09 0.11 0.09 0.11 0.10
Level 1 Errors 0.59 0.21 0.58 0.19 0.91 0.39 0.90 0.37
Level 2 Errors 0.91 0.41 0.91 0.39 0.99 0.61 0.99 0.58
Level 3 Errors 0.98 0.61 0.98 0.57 1.00 0.76 1.00 0.73
Level 4 Errors 1.00 0.74 1.00 0.69 1.00 0.86 1.00 0.83
Level 5 Errors 1.00 0.81 1.00 0.78 1.00 0.91 1.00 0.89
Level 6 Errors 1.00 0.88 1.00 0.85 1.00 0.95 1.00 0.93
Level 7 Errors 1.00 0.92 1.00 0.90 1.00 0.98 1.00 0.97
Table notes: sample size = 40x40, true value of V = 1. 1000 Monte Carlo replications, 200 Bootstrap repetitions. 
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Figure 1a: Asymptotic Variance of an AR(1)
vs. V on the Line
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Figure 1b: Asymptotic Variance of an AR(1)
vs. V on the Plane
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                    Figure 2: Correlations with Different Levels of Location Errors on the Line, ρ = 0.3
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                     Figure 3: Correlations with Different Levels of Location Errors on the Plane, ρ = 0.3
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                     Figure 4: Correlations with Different Levels of Location Errors on the Plane, ρ = 0.45
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