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Abstract
We propose inference procedures for partially identified population features for which the

population identification region can be written as a transformation of the Aumann expectation
of a properly defined set valued random variable (SVRV). An SVRV is a mapping that asso-
ciates a set (rather than a real number) with each element of the sample space. Examples of
population features in this class include sample means and best linear predictors with interval
outcome data, and parameters of semiparametric binary models with interval regressor data.
We extend the analogy principle to SVRVs, and show that the sample analog estimator of the
population identification region is given by a transformation of a Minkowski average of SVRVs.
Using the results of the mathematics literature on SVRVs, we show that this estimator con-
verges in probability to the identification region of the model with respect to the Hausdorff
distance. We then show that the Hausdorff distance between the estimator and the population
identification region, when properly normalized by

√
n, converges in distribution to the supre-

mum of a Gaussian process whose covariance kernel depends on parameters of the population
identification region. We provide consistent bootstrap procedures to approximate this limiting
distribution. Using similar arguments as those applied for vector valued random variables, we
develop a methodology to test assumptions about the true identification region and to calculate
the power of the test. We show that these results can be used to construct a confidence collec-
tion, that is a collection of sets that, when specified as null hypothesis for the true value of the
population identification region, cannot be rejected by our test.

JEL Classifications: C14.
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1 Introduction

This paper contributes to the growing literature on inference for partially identified population

features. These features include vectors of parameters or of statistical functionals characterizing a

population probability distribution of interest, for which the sampling process and the maintained

assumptions reveal that they lie in a set — their identification region — which is not necessarily

a singleton (Manski (2003)). Much of this literature focuses on cases in which the population

identification region is an interval on the real line (e.g., Manski (1989)), or can be defined as the set

of minimizers of a criterion function (e.g., Chernozhukov, Hong & Tamer (2004)). In these cases

the analogy principle is applied to replace either the extreme points of the interval or the criterion

function with their sample analogs, to obtain an estimator for the identification region. Limit

theorems for sequences of scalar or vector valued random variables are then employed to establish

consistency of these estimators, and to construct confidence sets that asymptotically cover each

point in the identification region (Imbens & Manski (2004)) or the entire identification region

(Chernozhukov et al. (2004)) with at least a prespecified probability.

In this paper, we introduce a novel approach for estimation and inference for a certain class of

partially identified population features. The key insight that leads to our approach is the observation

that, within this class, the identification region of the vector of parameters (or statistical functionals)

of interest is given by the “expectation” of a measurable mapping that associates a set (rather than a

real number or a real vector) with each element of the sample space. In the mathematics literature,

this measurable mapping is called a set valued random variable (SVRV). Just as one can think of

the identification region of a parameter vector as a set of parameter vectors, one can think of an

SVRV as a set of random variables (Aumann (1965)). We extend the analogy principle to SVRVs

and estimate the identification region, which is the “expectation” of an SVRV, by its sample analog,

which is a “sample average” of SVRVs. The expressions “expectation” and “sample average” used

above are in quotation marks because when working with sets, a particular expectation operator

needs to be used, the Aumann expectation. Similarly, a particular summation operator needs to

be used, the Minkowski summation, in order to get the set analog of the sample average, which

is called Minkowski sample average.1 Approaching the problem from this perspective is beneficial

because it allows the researcher to perform, in the space of sets, operations which are analogs to

1These concepts are formalized in Section 2.
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those widely used in the space of vectors. In particular, we show how to use limit theorems for

SVRVs to conduct inference for the entire identification region of a population feature of interest,

in a way that is completely analogous to how inference would be conducted if this feature were

point identified.

Overview. Our methodology applies to the class of partially identified population features for

which the identification region is equal to a transformation of the Aumann expectation of a properly

defined SVRV. Examples of population features in this class include means and best linear predictors

with interval outcome data, and parameter vectors characterizing semiparametric binary models

with interval regressor data (under the assumptions of Magnac & Maurin (2005)). The SVRVs

whose Aumann expectation is equal to the identification region of the population feature of interest

can be constructed from observable random variables.

The mathematics literature on SVRVs provides Laws of Large Numbers and Central Limit

Theorems for the Hausdorff distance between the Minkowski average of a random sample of SVRVs,

and their Aumann expectation. Using these results, we show that our estimator of the identification

region, which is given by a transformation of the Minkowski average of a random sample of SVRVs,

is
√
n−consistent, in the sense that the Hausdorff distance between the estimated set and the

population identification region converges to zero at the rate Op (1/
√
n) . This result does not

depend on whether the random variables used to construct the SVRVs have a continuous or a

discrete distribution. When the Hausdorff distance between our estimator and the population

identification region is properly normalized by
√
n, it converges in distribution to the supremum of

a Gaussian process whose covariance kernel depends on parameters of the population identification

region which can be consistently estimated.

Having an asymptotic distribution for the Hausdorff distance between the estimated set and

the population identification region allows us to perform hypotheses testing. In particular, we

introduce a test which is consistent against any fixed alternative. We then extend the notion of

local alternatives to partially identified models, derive the asymptotic distribution of our test against

these local alternatives, and show that the test is locally asymptotically unbiased. Our test statistic

is given by the Hausdorff distance between the estimated set and the population identification

region, and the test rejects a particular null hypothesis for the population identification region if

this statistic exceeds a critical value. We show that this critical value can be consistently estimated
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using bootstrap methods.

The test can be inverted to construct what we call a confidence collection for the population

identification region. The confidence collection is given by the collection of all sets that, when

specified as null hypothesis for the true value of the population identification region, cannot be

rejected by our test. Its main property is that (asymptotically) the population identification region

is one of its elements with a prespecified confidence level (1− α) .

Hence for this class of problems there is a complete analogy, at the level of estimation and infer-

ence, between the approach usually adopted for point identified parameters and the approach that

we propose for partially identified parameters. In particular, when point identified, the parameters

of interest can be consistently estimated using a transformed sample average of the data. The

resulting estimator has an asymptotically normal distribution. The confidence region for the para-

meter vector is given by a collection of vectors — that is, a collection of points in the relevant space

— and can be obtained through the inversion of a properly specified test statistic. In the partially

identified case, our results show that the identification region of each of these parameter vectors can

be consistently estimated using a transformed Minkowski average of the data. The Hausdorff dis-

tance between this estimator and its population counterpart has an asymptotic distribution which

is a function of a Gaussian process. The confidence region for the population identification region

is given by a collection of sets (rather than points) and can be obtained through the inversion of

the test statistic that we propose.

Our inferential approach targets the entire identification region of a partially identified popu-

lation feature, and provides asymptotically exact size critical values with which to test hypotheses

and construct confidence collections. However, there are applications in which the researcher might

want to test hypotheses and construct confidence sets for the “true” value of the population fea-

ture of interest, following the insight of Imbens & Manski (2004). For this case, we show that

our methodology can be modified to conduct conservative tests of hypotheses, and construct con-

servative confidence sets that asymptotically cover each point in the identification region with a

prespecified probability (details in Section 6.2).

Structure of the Paper. Because the literature on SVRVs has never been used before in econo-

metrics, we devote the first part of the paper (Section 2) to introducing the main ingredients of

this theory. In Section 3, we propose our test statistic, establish its properties, provide a consis-
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tent bootstrap procedure to estimate its limiting distribution, show how the test statistic can be

inverted to obtain the confidence collection, and provide a simple characterization of the collection.

In Section 4, we apply our results to the simple problem of inference for the mean of a random

variable for which only interval data are available. In Section 5, we introduce a
√
n−consistent

estimator of the population identification region for the best linear predictor parameters when only

interval data are available for the outcome variable, but the covariates are perfectly observed. We

then derive the asymptotic distribution of the Hausdorff distance between this estimator and the

population identification region, and provide a consistent bootstrap procedure to obtain its critical

values. Section 6 describes extensions of the results in Sections 3-5. In particular, it outlines how

to conduct inference for the semiparametric binary model with interval regressor data of Magnac

& Maurin (2005), and how to construct confidence sets that asymptotically cover each point in

the identification region with at least a prespecified probability. Section 7 presents Monte Carlo

results evaluating the finite sample performance of our estimators and test statistics, and Section

8 concludes. An Appendix contains all the proofs.

Related Literature. Consistent estimators for specific partially identified population features

have been proposed, among others, by Manski (1989), Horowitz and Manski (1997, 1998, 2000),

Manski & Tamer (2002), Chernozhukov et al. (2004), Honoré & Tamer (2004), Andrews, Berry & Jia

(2004), and Chernozhukov, Hahn & Newey (2005). The development of methodologies that allow for

the construction of confidence regions for partially identified population features is a topic of current

research. Horowitz and Manski (1998, 2000) consider the case in which the identification region of

the parameter of interest is an interval whose lower and upper bounds can be estimated from sample

data, and propose confidence intervals that asymptotically cover the entire identification region

with fixed probability. For the same class of problems, Imbens & Manski (2004) suggest shorter

confidence intervals that (asymptotically) uniformly cover each point in the identification region,

rather than the entire region, with at least a prespecified probability (1− α). Chernozhukov et al.

(2004) are the first to address the problem of construction of confidence sets for identification regions

of parameters obtained as the solution of the minimization of a criterion function. They provide

methods to construct confidence sets that cover the entire identification region with probability

asymptotically equal to (1− α) , as well as confidence sets that asymptotically cover each point in

the identification region with at least probability (1− α) . They also develop resampling methods

4



to implement these procedures. Shaikh (2005) analyzes the same problem, and proposes various

subsampling procedures. Andrews et al. (2004) consider economic models of entry in which the

equilibrium conditions place a set of inequality restrictions on the parameters of the model. These

restrictions may only allow the researcher to identify a set of parameter values consistent with the

observable data. They suggest a procedure to obtain confidence regions that asymptotically cover

the identified set with at least probability (1 − α) by looking directly at the distribution of the

inequality constraints. Pakes, Porter, Ho & Ishii (2005) consider single agent and multiple agent

structural models in which again equilibrium conditions impose moment inequality restrictions

on the parameters of interest. They suggest a conservative specification test for the value of the

estimated parameters. Rosen (2006) considers related models in which the parameter of interest is

partially identified by a finite number of moment inequalities. He establishes a connection between

these models and the literature on multivariate one-sided hypothesis tests, and shows that for

this class of models, conservative confidence sets can be constructed by inverting a statistic that

tests the hypothesis that a given element of the parameter space satisfies the restrictions of the

model. Guggenberger, Hahn & Kim (2006) further explore specification tests for parameter vectors

obtained as the solution of moment inequalities. Molinari (2005) considers misclassification models

in which the identification region for the distribution of the misclassified variable can be calculated

using a nonlinear programming estimator, the constraints of which depend on parameters that

can be consistently estimated. She proposes conservative confidence sets given by the union of

the identification regions obtained through the nonlinear programming estimator by replacing the

estimated parameters with the elements of their Wald confidence ellipsoid. Galichon & Henry

(2006) propose a specification test for partially identified structural models based on an extension

of the Kolmogorov-Smirnov test for Choquet capacities.

2 Background: Asymptotic Theory for Set Valued Random Vari-
ables

In this section we provide a succinct presentation of the theory of SVRVs, following closely the treat-

ment in Molchanov (2005) (limit theorems for SVRVs are also discussed in Li, Ogura & Kreinovich

(2002)). We first rigorously define an SVRV and describe the basic operations on sets that we use

in the paper. Then we review how SVRVs can be represented as elements of a functional space.
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Similarly, we review how the Hausdorff distance between SVRVs can be represented as a transfor-

mation of elements of a functional space. For the purposes of this paper, this is the key result of

the literature on SVRVs: it enables us to derive the asymptotic properties of partially identified

models using functional Laws of Large Numbers and Central Limit Theorems which are of familiar

use in econometrics.

Notation. Throughout the paper (with a few exceptions), we reserve the use of capital Latin

letters to sets and SVRVs; we use lower case Latin letters for random variables and boldface lower

case Latin letters for random vectors. We denote sets of parameters by capital Greek letters, scalar

valued parameters by lower case Greek letters and vector valued parameters by boldface lower case

Greek letters.

Set Valued Random Variables, Basic Operations, Norm of a Set and Distance between

Sets

Let (Ω,A) be a measurable space and letK
¡
<d
¢
be the collection of all non-empty closed subsets

of <d. In what follows, <d denotes the Euclidean space, equipped with the Euclidean norm (which

is denoted by k·k). As the name suggests, an SVRV is a measurable mapping F : Ω→ K
¡
<d
¢
that

associates a set to each point in the sample space. However, “measurable” in this context has a

slightly different meaning than in the case of random variables.

Definition 1 A map F : Ω → K
¡
<d
¢
is called a set valued random variable (SVRV) if for

each closed subset C of <d, F−1 (C) = {ω ∈ Ω : F (ω) ∩ C 6= ∅} ∈ A.

The measurability concept used above is different from the more familiar one for vector valued

random variables because it must be “restrictive enough to ensure that all functionals of interest

[of the SVRV] become random variables” (Molchanov (2005), page 1). An example of a relevant

functional of SVRVs which, given Definition 1, is a random variable, is the Hausdorff distance

(formally defined below) between two SVRVs. A few examples can help clarify the concept of an

SVRV:

Example 1

a) (Trivial) Consider a random variable y. Then the singleton {y} is an SVRV.

b) If y is a random variable, then F ≡ (−∞, y] is an SVRV.
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=⊕ 

A B C 

Figure 1: Minkowski summation of a ball (A) and a square (B).

c) If y1, y2 are random variables, then F ≡ [y1, y2] is an SVRV.

d) If y is a random vector, and x is a random variable, then the random ball Bx (y) is an SVRV.

The basic operations on sets that we use are as follows.

Definition 2 Let A and B be two sets in <d, let c be a vector in <d and let λ be a scalar in <.

Then,

a) c+A =
©
r ∈ <d : r = c+ a, a ∈ A

ª
(translation),

b) λA =
©
r ∈ <d : r = λa, a ∈ A

ª
(dilation or homothety),

c) A⊕B =
©
r ∈ <d : r = a+ b, a ∈ A, b ∈ B

ª
(Minkowski summation).

The Minkowski summation is a commutative and associative operation. If at least one of the

summands is empty, the summation is empty. In general A⊕A ⊇ 2A, with equality holding if A is

a convex set. If A and B are convex sets, then A⊕ B is a convex set (for additional properties of

the Minkowski summation, see Molchanov (2005), page 397). Notably, the Minkowski summation

is not an invertible operation: given two sets A and B, it might be impossible to find a set C such

that A⊕ C = B. For example, if A is a ball and B is a rectangle, there cannot exist a set C such

that A⊕C = B, because the Minkowski summation of A and C smooths out the vertices of C (see

Figure 1). We return to this issue when discussing the limit theorems for SVRVs.

In what follows, we denote the Minkowski summation of a sequence of sets Ai, i = 1, . . . , n

by
Ln

i=1Ai, and reserve the notation
Pn

i=1 ai ( or
Pn

i=1 ai) to regular summations of scalars (or

vectors). We refer to 1
n

Ln
i=1Ai as the Minkowski average of the sets Ai, i = 1, . . . , n.
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A

B

Figure 2: Hausdorff distance between the sets A and B (solid line), and Hausdorff norm of the set
A and of the set B (dashed lines).

Other important concepts are the distance between a point and a set, the distance between two

sets, and the norm of a set:

Definition 3 Let A and B be two subsets of <d and c be a vector in <d. Then we denote:

a) The distance between a point and a set as d (c, A) = infa∈A ka− ck,

b) The Hausdorff distance between two sets as

H (A,B) = max

½
sup
a∈A

inf
b∈B

ka− bk , sup
b∈B

inf
a∈A

ka− bk
¾
,

c) The Hausdorff norm of a set as

kAkH = H (A, {0}) = sup {kak : a ∈ A} .

Figure 2 illustrates the Hausdorff distance between two sets, and the Hausdorff norm of a set.

We notice that if A and B are unbounded subsets of <d, H (A,B) may be infinite. However,

denoting by Kk

¡
<d
¢
the set of non-empty compact subsets of <d, the space

¡
Kk

¡
<d
¢
,H (·, ·)

¢
is a

complete and separable metric space (Li et al. (2002), Theorems 1.1.2 and 1.1.3). Observing that
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p

F

s(p,F)

Figure 3: Support function of F at p.

the set Kkc

¡
<d
¢
of non-empty compact and convex subsets of <d is a subset of Kk

¡
<d
¢
, we obtain

the same conclusion for
¡
Kkc

¡
<d
¢
,H (·, ·)

¢
.

Support Function

Limit theorems for SVRVs are presented in Theorems 2.2 and 2.3 below. These theorems rely

on representing sets as elements of a functional space. In this section we illustrate how this is

accomplished by means of the support function of a set.

Definition 4 Let F ∈ K
¡
<d
¢
. Then the support function of F at p ∈ <d, denoted s (p, F ) , is

given by

s (p, F ) = sup
f∈F

hp, fi .

In Definition 4, h·, ·i denotes the inner product in <d. To gain insight on the support function,

assume that p is such that ||p|| = 1. Then, Schneider (1993, page 37) provides the following useful

intuition: “the support function s(p, F ) is the signed distance of the support plane to F with

exterior normal vector p from the origin; the distance is negative if and only if p points into the

open half space containing the origin” (see Figure 3).
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The importance of the support function for our purposes can be more easily appreciated if we

consider compact convex sets. A set in this class is given by the intersection of its supporting

halfspaces: if F ∈ Kkc

¡
<d
¢
, then (Rockafellar (1970), Chapter 13)

F =
T

p∈<d
{f : hp, fi ≤ s (p, F )} .

Hence such a set can be conveniently described by specifying the position of its support planes,

given their exterior normal vectors. This is accomplished by the support function.

It is easy to show that the support function of a (not necessarily convex or bounded) set in

K
¡
<d
¢
is sublinear, and that for two SVRVs F1, F2 ∈ K

¡
<d
¢
it satisfies2

s (p, F1 ⊕ F2) = s (p, F1) + s (p, F2) ,(2.1)

s (p, λF ) = λs (p, F ) , λ ∈ <+.(2.2)

Equations (2.1)-(2.2) allow one to convert the Minkowski average of a sequence of sets Fi, i =

1, . . . , n into the average of the corresponding support functions. In particular,

s

µ
p,
1

n

nL
i=1

Fi

¶
=
1

n

nP
i=1

s (p, Fi) .

The support function is instrumental in understanding how the solution to a problem of maxi-

mizing a linear objective function under convex constraints changes as the coefficients of the linear

objective function change (see Rockafellar (1970), Chapter 13). As such, the support function is

an important tool in economic analysis.3

For our purposes, the support function provides the first step towards establishing a connection

between SVRVs and elements of a functional space. In particular, an SVRV F : Ω → Kkc

¡
<d
¢

can be represented through the support function of its realizations; this (as discussed in the next

section) results in a random variable whose realizations are continuous functions. Similarly, a

Minkowski average of SVRVs Fi : Ω → Kkc

¡
<d
¢
, i = 1, . . . , n, can be represented through the

sample average of the corresponding support functions s (p, Fi) , i = 1, . . . , n.

2Additionally, one can show that the support function of a bounded set F ∈ K <d is Lipschitz with Lipschitz
constant kFkH , that is

|s (p, F )− s (q, F )| ≤ kFkH kp− qk , p,q ∈ <d

(Molchanov (2005), Theorem F.1).
3 Indirect utility functions, expenditure functions, cost functions and profit functions are examples of support

functions. See Mas-Collel, Whinston & Green (1995) (especially Chapter 3) for a discussion of support functions in
the context of Duality Theory and Demand Analysis.
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In the next section we discuss how to represent the Hausdorff distance between SVRVs as a trans-

formation of the difference between elements of a functional space. This is accomplished through

Hörmander’s Embedding Theorem, which establishes the relation between the set of continuous

functions on the unit sphere and the set of convex, compact non-empty sets in <d.

Hörmander’s Embedding Theorem and Shapley-Folkman’s Theorem

Define S =
©
p ∈ <d : kpk = 1

ª
and B =

©
p ∈ <d : kpk ≤ 1

ª
to be, respectively, the unit sphere

and the unit ball in <d. Equation (2.2) implies that when considering the support function of a

set, it suffices to restrict attention to vectors p ∈ S. Let C (S) be the set of continuous functions

from S to <, and let C (B) be the set of continuous functions from B to <. For h ∈ C(S), let

khkC(S) = supp∈S |h(p)| be the C (S)-norm, and for g ∈ C(B), let kgkC(B) = supp∈B |g(p)| be the

C (B)-norm. Hörmander’s Embedding Theorem (Li et al. (2002), Theorem 1.1.12) ensures that¡
Kkc

¡
<d
¢
,H (·, ·)

¢
can be isometrically embedded into a closed convex cone in C (S) (or in C (B)).

In particular, whenever F ∈ Kkc

¡
<d
¢
, its support function s (p, F ) is a continuous function of p

and belongs to C (S) (and to C (B)). For any F, F1, F2 ∈ Kkc

¡
<d
¢
the map j : F → s (·, F ) has

the properties given in equations (2.1)-(2.2), and additionally

(2.3) H (F1, F2) = ks (·, F1)− s (·, F2)kC(S) = ks (·, F1)− s (·, F2)kC(B)

A simple proof (based on the work of Hörmander (1954)) of the result in (2.3) is given in Giné, Hahn

& Zinn (1983), Lemma 1.1. Hence the mapping j is an isometry and it preserves the operations

of closed addition and multiplication by non-negative scalars. Therefore j
¡
Kkc

¡
<d
¢¢
is a convex

cone in C (S) (and in C (B)) and it is closed since
¡
Kkc

¡
<d
¢
,H (·, ·)

¢
is closed.

If F : Ω → Kkc

¡
<d
¢
is an SVRV, then s (·, F (·)) is a C (S)-valued (as well as a C (B)-valued)

random variable (measurability follows from Lemma 5.1 in Artstein (1972); continuity follows from

Hörmander’s Embedding Theorem). Formally, a C (S)-valued random system is defined as follows:

Definition 5 A mapping T : S×Ω→ < is called a C (S)-valued random system if

a) T·,ω ≡ T (·, ω) is a function in C (S) for every ω ∈ Ω,

b) Tp,· ≡ T (p, ·) is a random variable for every p ∈ S.

The C (S)-norm of a random system kTkC(S) =
n
kT·,ωkC(S)

o
ω∈Ω

is a mapping from Ω to < defined

by ω 7→ kT·,ωkC(S). The expectation function of a C (S)-valued random system is τ : S→ < such

11



that τ (p) = E (Tp,·). The covariance kernel of a C (S)-valued random system is γ : S× S → <

such that γ (p,q) = Cov (Tp,·, Tq,·) for (p,q) ∈ S× S.

A special type of C (S)-valued random system is a C (S)-valued Gaussian system where Tp,·

is a Gaussian random variable. The limit theorems for SVRVs presented below involve Gaussian

processes on the unit sphere.

For the analysis in this paper, the importance of Hörmander’s Embedding Theorem lies in

the fact that Laws of Large Numbers and Central Limit Theorems are available for C (S)-valued

random variables. Hence these limit theorems can be translated to limit theorems for the Hausdorff

distance between compact convex SVRVs. The requirement in Hörmander’s Embedding Theorem

that the SVRVs need to be convex valued is actually not restrictive, as Theorem 2.1 below shows.

Let coA denote the convex hull of a set A.

Theorem 2.1 (Shapley-Folkman) Let Ai ∈ Kk

¡
<d
¢
, i = 1, . . . , n such that kAikH ≤ c. Then

H

µ
nL
i=1

Ai,
nL
i=1

coAi

¶
≤ c
√
d.

Proof. Starr (1969).

This result is crucial because it shows that Minkowski averaging SVRVs which are compact valued

but not necessarily convex is asymptotically “convexifying,” as noted by Artstein & Vitale (1975).

In particular, the Hausdorff distance between the Minkowski average of a sequence of SVRVs

{Fi}ni=1 and the Minkowski average of their convex hulls goes to zero at the rate 1
n .

Expectation of an SVRV and Independently and Identically Distributed (i.i.d) SVRVs

In order to introduce a Strong Law of Large Numbers and a Central Limit Theorem for SVRVs,

we need to define the notion of expectation of SVRVs. We start by defining a set of functions that

are used in the definition of the expected value of an SVRV. Let (Ω,A, µ) be a probability space.

Definition 6 For any SVRV F, a (measurable) selection of F is a random vector f (taking values

in <d) such that f(ω) ∈ F (ω) µ-a.s. We denote by S (F ) the set of all selections from F .

The concept of selection of an SVRV goes back to Aumann’s (1965) idea of thinking of SVRVs

(or random correspondences in Aumann’s work) as bundles of random variables — the selections of

the SVRVs. We observe that if F is a measurable closed-valued almost surely non-empty SVRV in

12



K
¡
<d
¢
, S (F ) is non-empty (Aumann (1965); see also Li et al. (2002), Theorem 1.2.6). Denoting

by L1 = L1
¡
Ω,<d

¢
the space of A-measurable random variables with values in <d such that the

L1-norm

kξk1 = E (kξk)

is finite, we obtain that for an SVRV F defined on (Ω,A) the family of all integrable selections of

F is given by

S1 (F ) = S (F ) ∩ L1.

We now turn to defining integrably bounded SVRVs:

Definition 7 A SVRV F : Ω→ K
¡
<d
¢
is called integrably bounded if kFkH = sup {kfk : f ∈ F}

has a finite expectation.

Observe that for any f ∈ S (F ) , kfk ≤ kFkH . Hence, all selections of an integrably bounded

SVRV are integrable (and S1 (F ) = S (F )). Moreover, by Hörmander’s Embedding Theorem

ks (·, F )kC(S) = kFkH . Hence, if F is integrably bounded, then E [|s (p, F )|] is finite for all p ∈ S.

To build intuition on the connection between the upcoming limit theorems for SVRVs and the limit

theorems for random variables, notice that the concept of an integrably bounded SVRV corresponds

to the concept of an absolutely integrable random variable.

We are now ready to introduce the expectation of an SVRV F , which is based on the Aumann

integral and is referred to as Aumann expectation (Aumann (1965)). We denote this expectation

by E [F ], and reserve the notation E [·] for the expectation of random variables and random vectors.

Definition 8 The Aumann expectation of an SVRV F is given by

E [F ] =
½Z

Ω
f dµ : f ∈ S1 (F )

¾
where

R
Ω f dµ is taken coordinate wise. If F is integrably bounded, then

E [F ] =
½Z

Ω
f dµ : f ∈ S (F )

¾
Clearly, since S (F ) is non-empty, the Aumann expectation of an integrably bounded SVRV

is non-empty. Moreover, if F is an integrably bounded random compact set on a non-atomic

probability space, or if F is an integrably bounded random convex compact set, then E [F ] is

convex and coincides with E [coF ] , and E [s (p, F )] = s (p,E [F ]) (Artstein (1974)).

13



Finally we need to introduce the concept of independently and identically distributed SVRVs.

Let B
¡
K
¡
<d
¢¢
be the Borel field ofK

¡
<d
¢
with respect to the Hausdorff metric H. Then it follows

from Definition 1 that an SVRV F : Ω→ K
¡
<d
¢
is B

¡
K
¡
<d
¢¢
-measurable (this result is stated in

Molchanov (2005), Theorem 1.2.3; for a proof see Castaing & Valadier (1977) or Li et al. (2002),

Theorem 1.2.3). Define

AF = σ
n
F−1 (A) : A ∈ B

³
K
³
<d
´´o

to be the σ-algebra generated by inverse images of sets in B
¡
K
¡
<d
¢¢
. Also let µF (A) = µ

¡
F−1 (A)

¢
for A ∈ B

¡
K
¡
<d
¢¢
denote the distribution of F.

Definition 9 Let F1 and F2 be two B
¡
K
¡
<d
¢¢
-measurable SVRVs defined on the same measurable

space Ω. F1 and F2 are independent if AF1 and AF2 are independent, F1 and F2 are identically

distributed if µF1 and µF2 are identical.

Limit Theorems

We are now ready to state the Strong Law of Large Numbers (SLLN) and the Central Limit

Theorem (CLT) for SVRVs. Similarly to the familiar results for vector valued random variables,

these limit theorems relate the Minkowski average of an i.i.d. sample of SVRVs to their Aumann

expectation.4 Observe that having a sequence of independent random elements ensures that the

relevant (product) probability space is nonatomic, so that the Aumann expectation is a convex set.

Theorem 2.2 (SLLN) Let {F,Fi : i ∈ N} be i.i.d. non-empty, integrably bounded, compact valued

SVRVs in Kk

¡
<d
¢
. Then

lim
n→∞

H

µ
1

n

nL
i=1

Fi,E [F ]
¶
= 0 µ− a.s.

Proof. Artstein & Vitale (1975).

The proof in Artstein & Vitale (1975) uses the triangle inequality to show that

(2.4) H

µ
1

n

nL
i=1

Fi,E [F ]
¶
≤ H

µ
1

n

nL
i=1

Fi,
1

n

nL
i=1

coFi

¶
+H

µ
1

n

nL
i=1

coFi,E [F ]
¶

4There are also Laws of Large Numbers for independent but not identically distributed SVRVs, and for set valued
martingales. See Molchanov (2005).
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An application of the Shapley-Folkman’s Theorem then implies that the first term on the right

hand side of (2.4) converges to zero a.s. as n → ∞. The second term converges to zero a.s. by

Hörmander’s Embedding Theorem and because

s

µ
p,
1

n

nL
i=1

coFi

¶
=
1

n

nP
i=1

s (p, coFi)
a.s→ E [s (p, coF )] = s (p,E [coF ]) = s (p,E [F ])

by the Strong Law of Large Numbers in Banach spaces (e.g. Mourier (1955)).

Theorem 2.2 states that the Minkowski average of an i.i.d. sample of SVRVs converges in

the Hausdorff distance to their Aumann expectation as n → ∞. We are now left to discuss the

rate at which this convergence occurs, as well as to find the limiting distribution. When working

with random variables this is achieved by taking the difference between the sample average of the

variables and their expectation, and normalizing it with a growing sequence. But as discussed

in Molchanov (2005, pages 213-214), the Minkowski addition is not an invertible operation. One

cannot get around this problem by considering SVRVs with Aumann expectation equal to the

singleton zero, because all integrable random compact sets with Aumann expectation equal to zero

are singletons (Molchanov (2005), Proposition 2.1.30). However, one can avoid having to deal with

subtraction by considering the normalized Hausdorff distance
√
nH

¡
1
n

Ln
i=1 Fi,E [F ]

¢
. The limit

of this sequence is a random variable equal to the supremum of a Gaussian random function on S.

Theorem 2.3 presents this result.

Theorem 2.3 (CLT) Let {F,Fi : i ∈ N} be i.i.d. non-empty, compact valued SVRVs such that

E
h
kFk2H

i
<∞. Then,

√
nH

µ
1

n

nL
i=1

Fi,E [F ]
¶

d→ kzkC(S)

where z is a Gaussian random system with (a) τ(p) = 0 for all p ∈ S, and (b)

γ (p,q) = E [s (p, F ) s (q, F )]−E [s (p, F )]E [s (q, F )] .

Proof. Weil (1982) and Giné et al. (1983).

The (independently developed) proofs in Weil (1982) and in Giné et al. (1983) use the triangle

inequality and Shapley-Folkman’s Theorem to show that

√
n

¯̄̄̄
H

µ
1

n

nL
i=1

Fi,E [F ]
¶
−H

µ
1

n

nL
i=1

coFi,E [F ]
¶¯̄̄̄
≤
√
nH

µ
1

n

nL
i=1

Fi,
1

n

nL
i=1

coFi

¶
p→ 0.
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Hörmander’s Embedding Theorem implies that

√
nH

µ
1

n

nL
i=1

coFi,E [F ]
¶
=

°°°°√nµ1n nP
i=1

s (·, coFi)−E [s (·, F )]
¶°°°°

C(S)

and the Central Limit Theorem for C (S)-valued random variables of Jain & Marcus (1975) implies

that
√
n

µ
1

n

nP
i=1

s (p, coFi)−E [s (p, F )]

¶
d→ z (p) ,

where z (p) satisfies (a) and (b) in Theorem 2.3. Hence, the result follows by the continuous

mapping theorem and because

E [s (p, F ) s (q, F )]−E [s (p, F )]E [s (q, F )] = E [s (p, coF ) s (q, coF )]−E [s (p, coF )]E [s (q, coF )] .

3 Testing and Confidence Collections

Hypothesis Testing

Given a non-empty, compact and convex (non-random) set Ψ0, in order to test the null hypoth-

esis

H0 : E [F ] = Ψ0

against the alternative

HA : E [F ] 6= Ψ0

at a prespecified significance level α ∈ (0, 1) , we propose the following criterion:

Reject H0 if
√
nH

µ
1
n

nL
i=1

coFi,Ψ0

¶
> cα,

Do not Reject H0 if
√
nH

µ
1
n

nL
i=1

coFi,Ψ0

¶
≤ cα,

where cα is chosen so that

(3.1) Pr
n
kzkC(S) > cα

o
= α.

Observe that the test statistic uses the Hausdorff distance between Ψ0 and 1
n

Ln
i=1 coFi, rather

than the Hausdorff distance between Ψ0 and 1
n

Ln
i=1 Fi. Using

Ln
i=1 coFi rather than

Ln
i=1 Fi to

construct the test statistic improves the small sample properties of the test without changing its

asymptotic behavior. By Theorem 2.2, 1
n

Ln
i=1 coFi is a consistent estimator of E [F ] , and by
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Theorem 2.3,
√
nH

¡
1
n

Ln
i=1 coFi,E [F ]

¢
and

√
nH

¡
1
n

Ln
i=1 Fi,E [F ]

¢
have the same asymptotic

distribution. In a finite sample, when the sets Fi, i = 1, . . . , n, are not convex, their Minkowski

average needs not be a convex set, although of course it converges to a convex set as the sample size

increases. In a finite sample this can lead to rejecting a null hypothesis which is true, only because

a non-convex Minkowski average is compared to a convex set Ψ0. This can result in an oversized

test. Our choice for the test statistic avoids this problem.

Since the limiting distribution of our test statistics depends on parameters to be estimated, we

obtain the critical values using the following bootstrap procedure:

Algorithm 3.1

1) Generate a bootstrap sample of size n, {F ∗i : i = 1, . . . , n} , such that F ∗i , i = 1, . . . , n, are i.i.d.

and µ∗ (F
∗
1 = Fj) =

1
n for each j = 1, . . . , n, where µ∗ denotes the bootstrap probability law.

2) Compute

(3.2) r∗n (p) ≡
√
nH

µ
1

n

nL
i=1

coF ∗i ,
1

n

nL
i=1

coFi

¶
.

3) Use the results of b repetitions of Steps 1-2 to compute the empirical distribution of r∗n at a point

t, denoted by Jn (t).

4) Estimate the critical value cα defined in equation (3.1) by

(3.3) ĉαn = inf {t : Jn (t) ≥ 1− α} .

The results of Giné & Zinn (1990), along with an application of the continuous mapping theorem,

guarantee the validity of this bootstrap procedure. In particular, the following result holds:

Proposition 3.1 Let the assumptions of Theorem 2.3 hold. Then r∗n
d→ kzkC(S) , where r∗n is

defined in equation (3.2) and z is a Gaussian random system with τ(p) = 0 for all p ∈ S,

and with covariance kernel γ (p,q) = E [s (p, F ) s (q, F )] − E [s (p, F )]E [s (q, F )] . If in addition

V ar (z (p)) > 0 for each p ∈ S, then

(3.4) ĉαn = cα + op (1) ,

where ĉαn is defined in (3.3).

Proof. See Appendix.
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Alternatively we could obtain a consistent estimator of the critical value cα using the following

procedure. Simulate the distribution of the supremum of a Gaussian random system with mean

function equal to zero for each p ∈ S and covariance kernel equal to

γ̂ (p,q) =
1

n

nP
i=1

s (p, Fi) s (q, Fi)−
1

n

nP
i=1

s (p, Fi)
1

n

nP
i=1

s (q, Fi) .

Observe that the supremum is to be taken over p ∈ S, hence over a known set (the unit sphere)

which does not need to be estimated. It then follows from the Strong Law of Large Numbers in

Banach spaces of Mourier (1955) that

γ̂ (p,q)
a.s.→ E [s (p, F ) s (q, F )]−E [s (p, F )]E [s (q, F )] .

Therefore, by the same argument as in the proof of Proposition 3.1, if V ar (z (p)) > 0 for each

p ∈ S, the critical values of the simulated distribution consistently estimate the critical values of

kzkC(S) .

We now show that our test is consistent against any fixed alternative hypothesis in HA.

Theorem 3.2 Let {F,Fi : i ∈ N} be i.i.d. non-empty, compact valued SVRVs such that E
h
kFk2H

i
<

∞, and let ΨA be a non-empty, compact and convex valued set such that E [F ] = ΨA 6= Ψ0. Let

V ar (z (p)) > 0 for each p ∈ S, where z (p) is defined in Theorem 2.3. Then

lim
n→∞

Pr

½√
nH

µ
1

n

nL
i=1

coFi,Ψ0

¶
> ĉαn

¾
= 1 µ− a.s.

Proof. See Appendix.

We conclude the discussion of our test by determining its power against local alternatives at

distance (proportional to) 1/
√
n from the null hypothesis. Suppose we are interested in the power

of our test of H0 against a sequence of non-empty, compact and convex alternative sets {ΨAn} such

that

(3.5) ΨAn ∈ Kkc

³
<d
´
: ΨAn ⊕

1√
n
∆1 = Ψ0 ⊕

1√
n
∆2,

where ∆1 and ∆2 are (non-random) non-empty, compact and convex sets and

κ = H (∆2,∆1) =
√
nH

µ
Ψ0 ⊕

1√
n
∆2,Ψ0 ⊕

1√
n
∆1

¶
(3.6)

=
√
nH

µ
ΨAn ⊕

1√
n
∆1,Ψ0 ⊕

1√
n
∆1

¶
=
√
nH (ΨAn,Ψ0) <∞,
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with the second equality following from the properties of the Hausdorff distance between two sets

(see, e.g., DeBlasi & Iervolino (1969)). As κ increases, the local alternatives get farther away from

the null, with a resulting increase in the power of the test.

This choice of local alternatives encompasses the case in which ∆1 = {0} , ∆2 6= {0} and the

sets ΨAn shrink and/or shift to become equal to Ψ0, and the case in which ∆1 6= {0} , ∆2 = {0}

and the sets ΨAn enlarge and/or shift to become equal to Ψ0. This allows us to consider a large

class of deviations from the null hypothesis. In particular, our results apply both to the case in

which the null is a subset of the true identification region, and to the case that it is a superset of

it. The asymptotic distribution of our test under these local alternatives is given by the following

theorem.

Theorem 3.3 Let {F,Fi : i ∈ N} be i.i.d. non-empty, compact valued SVRVs such that E
h
kFk2H

i
<

∞, let Ψ0 be a non-empty, compact and convex valued set, and let {ΨAn} be the sequence of sets

defined in (3.5). Then
√
nH

µ
1

n

nL
i=1

coFi,Ψ0

¶
d→ kwkC(S)

under ΨAn, where w is a Gaussian random system with

a) τ(p) = s (p,∆2)− s (p,∆1) for all p ∈ S, and

b) γ (p,q) = E [s (p, F ) s (q, F )]−E [s (p, F )]E [s (q, F )].

Proof. See Appendix.

It then follows from Anderson’s Lemma (Anderson (1955)) and the discussion in Section 6 of

Andrews (1997) that our test is asymptotically locally unbiased, i.e.

lim
n→∞

Pr

½√
nH

µ
1

n

nL
i=1

coFi,Ψ0

¶
> ĉαn

¾
= Pr

n
kwkC(S) > cα

o
≥ Pr

n
kzkC(S) > cα

o
= α,

where we have assumed that the law of kzkC(S) is continuous and strictly increasing at cα.

Confidence Collections

We now propose a procedure to construct what we call a “confidence collection,” that is the

collection of all sets that, when specified as null hypothesis for the true value of the population

identification region, cannot be rejected by our test. We denote this collection by CCE[F ]. The

confidence collection is based on exploiting the duality between confidence regions and hypothesis
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tests that is of familiar use for point identified models, and it has the property that asymptotically

the set E [F ] is a member of such collection with a prespecified confidence level 1− α.

Inverting the test statistic described above, we construct CCE[F ] as

CCE[F ] =

½
Ψ̃ ∈ Kkc

³
<d
´
:
√
nH

µ
1

n

nL
i=1

coFi, Ψ̃

¶
≤ ĉαn

¾
,

where ĉαn is defined in equation (3.3). Hence if the law of kzkC(S) is continuous

lim
n→∞

Pr
n
E [F ] ∈ CCE[F ]

o
= 1− α.

In practice, it can be computationally challenging to calculate all the sets that belong to the

confidence collection. However, the union of all sets in CCE[F ] can be calculated in a particularly

simple way. The following Theorem shows how.

Theorem 3.4 Let Un =
Sn
Ψ̃ : Ψ̃ ∈ CCE[F ]

o
, Bĉαn =

½
b ∈ <d : kbk ≤ ĉαn√

n

¾
, =n =

1
n

Ln
i=1 coFi⊕

Bĉαn . Then Un = =n.

Proof. See Appendix.

This result implies that one can check whether a specific vector, say ψ is a plausible value for the

parameter of interest by checking whether it is included in =n. If ψ ∈ =n, it means that there exists

a set Ψ̃ ∈ CCE[F ] such that ψ ∈ Ψ̃. An interesting consequence of Theorem 3.4 is that the union

of all sets in CCE[F ] is also included in CCE[F ], and thus represents the biggest set that cannot be

rejected as a null hypothesis.

4 Population Mean with Interval Data

Suppose that one is interested in the population mean of a random variable y, E (y) . Suppose

further that one does not observe the realizations of y, but rather the realizations of two real

valued random variables yL, yU such that Pr {yL ≤ y ≤ yU} = 1. Let

(4.1) Y = [yL, yU ] .

Assume that {(yiL, yiU )}ni=1 are i.i.d random vectors. Let Yi be the mapping defined as in (4.1)

using (yiL, yiU ) . Then we have the following result:
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Theorem 4.1 Let {(yiL, yiU )}ni=1 be i.i.d real valued random vectors such that Pr {yiL ≤ yi ≤

yiU} = 1. Then {Y, Yi : i ∈ N} are i.i.d. SVRVs. If in addition E (|yL|) < ∞, E (|yU |) < ∞,

then

lim
n→∞

H

Ã
1

n

nM
i=1

Yi,E [Y ]

!
= 0 µ− a.s.

Proof. See Appendix.

Manski (1989) and Manski & Tamer (2002) show that [E (yL) , E (yU )] is the sharp bound for E [y].

The following theorem shows that the Aumann expectation of the SVRV Y defined in equation

(4.1) is the sharp bound.

Theorem 4.2 E [Y ] = [E (yL) , E (yU )].

Proof. See Appendix.

We are now ready to state the CLT result for this problem. Since in this application we operate

in <1, S = {−1, 1}.

Theorem 4.3 Let {(yiL, yiU )}ni=1 be i.i.d real valued random vectors such that Pr {yiL ≤ yi ≤

yiU} = 1. Assume that E
¡
y2L
¢
<∞, E

¡
y2U
¢
<∞. Then,

√
nH

Ã
1

n

nM
i=1

Yi,E (Y )

!
d→ max {|z−1|, |z1|}

where

(4.2)
µ

z−1
z1

¶
∼ N

µ∙
0
0

¸
,

∙
V ar (yL) −Cov (yL, yU )

−Cov (yL, yU ) V ar (yU )

¸¶
.

Proof. See Appendix.

The random variable appearing on the right-hand side of the limit in Theorem 4.3 is the max-

imum of the absolute value of two random variables with the joint distribution given in (4.2).

Replacing the covariance matrix in (4.2) with a consistent estimator, both the cumulative distribu-

tion function and the probability density function of max {|z−1|, |z1|} can be easily evaluated (they

both have closed form expressions that are easy to derive), and critical values for α ∈ (0, 1) can be

obtained from the implied quantile function.

Remark 4.4 The result of Theorem 4.3 can be extended to the entire class of models that give in-

terval bounds (in <) for the parameter of interest, provided that one can derive the joint asymptotic
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distribution of the endpoints of the interval. This observation was already made by Chernozhukov

et al. (2004). In our context, denoting by [α, β] the population bound, by
h
α̂, β̂

i
the estimated bound,

and by an a growing sequence, if

an

µ
α̂− α

β̂ − β

¶
d→
µ

u−1
u1

¶

then anH
³h
α̂, β̂

i
, [α, β]

´
= anmax

n
|α̂− α| ,

¯̄̄
β̂ − β

¯̄̄o
d→ max {|u−1|, |u1|} .

5 Best Linear Prediction with Interval Outcome Data

Suppose that one is interested in the parameters of the Best Linear Predictor (BLP) of a random

variable y conditional on a random vector x. Suppose further that one does not observe the re-

alizations of y, but rather the realizations of two real valued random variables yL, yU such that

Pr {yL ≤ y ≤ yU} = 1. Let Y be defined as in equation (4.1). Throughout this Section, we maintain

the following Assumption:

Assumption 5.1 Let (y, yL, yU ,x) be a random vector in <×<×<×<d such that Pr {yL ≤ y ≤ yU}

= 1. The researcher observes a random sample {(yiL, yiU ,xi) : i = 1, . . . , n} from the joint distrib-

ution of (yL, yU ,x) .

The proofs of the Propositions and Theorems for this section, given in the Appendix, consider

the general case of x ∈ <d. To simplify the notation, in this section we introduce ideas restricting

attention to the case that x ∈ < (though our assumptions are written for the general case d ≥ 1).

To simplify the notation in what follows, let

Σ ≡
∙

1 E (x)
E (x) E

¡
x2
¢ ¸ , Σ̂n ≡

∙
1 x̄

x̄ x2

¸
.

Assume the following:

Assumption 5.2 E (|yL|) <∞, E (|yU |) <∞, E (|yLxk|) <∞, E (|yUxk|) <∞, k = 1, . . . , d.

Assumption 5.3 Σ is of full rank.
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Then in the point identified case the population best linear predictor [θ1, θ2] solves the equations

E (y) = θ1 + θ2E (x) ,

E (xy) = θ1E (x) + θ2E
¡
x2
¢
,

and its sample analog
h
θ̂1, θ̂2

i
solves the equations

1

n

nP
i=1

yi = θ̂1 + θ̂2
1

n

nP
i=1

xi,

1

n

nP
i=1

xiyi = θ̂1
1

n

nP
i=1

xi + θ̂2
1

n

nP
i=1

x2i .

In the interval outcomes case Y is an SVRV. We first introduce some additional notation to

accommodate set valued variables. Let

G (ω) =

½µ∙
y (ω)

x (ω) · y (ω)

¸
: y (ω) ∈ Y (ω)

¶¾
,

Gi (ω) =

½µ∙
yi (ω)

xi (ω) · yi (ω)

¸
: yi (ω) ∈ Yi (ω)

¶¾
.

Lemma A.3 in the Appendix shows that G and Gi, i ∈ N, are SVRVs.

We define the population set-valued best linear predictor as

(5.1)

Θ =

∙
1 E (x)

E (x) E
¡
x2
¢ ¸−1 E [G]

=

(∙
θ1
θ2

¸
:

∙
θ1
θ2

¸
=

∙
1 E (x)

E (x) E
¡
x2
¢ ¸−1 ∙ E (y)

E (xy)

¸
,

∙
y
xy

¸
∈ S1 (G)

)
.

Before proceeding to deriving the estimator of Θ and its asymptotic properties, we show that the

identification region Θ defined in (5.1) is identical to the identification region for the BLP obtained

following the approach in Manski (2003) and denoted by ΘM :

(5.2) ΘM =

½∙
θM1
θM2

¸
:

∙
θM1
θM2

¸
= argmin

Z
(y − θ1 − θ2x)

2 dη, η ∈ Pyx

¾
,

where

(5.3)
Pyx = {η : Pr (yL ≤ t, x ≤ x0) ≥ η ((−∞, t] , (−∞, x0]) ≥ Pr (yU ≤ t, x ≤ x0) ∀t ∈ <,∀x0 ∈ <,

η ((−∞,+∞) , (−∞, x0]) = Pr (x ≤ x0) ∀x0 ∈ <} .

Proposition 5.1 Suppose that one observes real valued random variables yL, yU , x such that

Pr {yL ≤ y ≤ yU} = 1 and S1 (G) 6= ∅. Let Θ and ΘM be defined respectively as in (5.1) and

(5.2)-(5.3). Then Θ = ΘM .
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Proof. See Appendix.

Given these preliminaries, we apply the analogy principle and define the sample analog of Θ as

(5.4) Θ̂n =

∙
1 x̄

x̄ x2

¸−1
1

n

nL
i=1

Gi,

where x̄ = 1
n

Pn
i=1 xi, x

2 = 1
n

Pn
i=1 x

2
i .

Observe that by construction Θ, as defined in equation (5.1), is a convex set. Lemma A.7 in

the Appendix describes further its geometry, showing that when x has an absolutely continuous

distribution and G is integrably bounded, Θ is a strictly convex set, that is, it doesn’t have a flat

face. The estimated set Θ̂n is a convex polytope, because it is given by a finite Minkowski sum of

segments in <d (also called a zonotope, see Molchanov (2005) page 204).

Theorem 5.2 below shows that under mild regularity conditions on the moments of (yL, yU ,x) as

in Assumption 5.2, Θ̂n is a consistent estimator of Θ. Under the additional Assumption 5.4 below,

this convergence occurs at the rate Op

³
1√
n

´
.

Assumption 5.4 E
³
|yL|2

´
<∞, E

³
|yU |2

´
<∞, E

³
|yLxk|2

´
<∞, E

³
|yUxk|2

´
<∞, E

³
|xk|4

´
<

∞, k = 1, . . . , d.

Theorem 5.2 Let Assumptions 5.1, 5.2, and 5.3 hold. Define Θ and Θ̂n as in (5.1) and (5.4)

respectively. Then H
³
Θ̂n,Θ

´
a.s.→ 0. If in addition Assumption 5.4 holds, then H

³
Θ̂n,Θ

´
=

Op

³
1√
n

´
.

Proof. See Appendix.

The proof of Theorem 5.2 is based on an extension of Slutsky’s Theorem to SVRVs, which we

provide in Lemma A.5 in the Appendix. The rate of convergence that we obtain is 1√
n
irrespective

of whether x has a continuous or a discrete distribution. To derive the asymptotic distribution of

H
³
Θ̂n,Θ

´
we need to impose an additional condition on the distribution of x :

Assumption 5.5 The distribution of x is absolutely continuous with respect to Lebesgue measure

on <d+1.

Theorem 5.3 gives the asymptotic distribution of
√
nH

³
Θ̂n,Θ

´
.
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Theorem 5.3 Let Assumptions 5.1, 5.3, 5.4, and 5.5 hold.

(i) Then
√
nH

³
Θ̂n,Θ

´
d→ kvkC(S) where v is a linear function of a vector Gaussian random system

with E [v(p)] = 0 for all p ∈ S, and

E [v(p)v(q)] = E
£
s
¡
p,Σ−1G

¢
s
¡
q,Σ−1G

¢¤
−E

£
s
¡
p,Σ−1G

¢¤
E
£
s
¡
q,Σ−1G

¢¤
(5.5)

−
­
ξp,κq,p

®
−
­
κp,q, ξq

®
+
­
ξp, Vp,qξq

®
,

where for p, q ∈ S the singleton ξp = Θ∩
©
ϑ ∈ <d+1 : hϑ,pi = s (p,Θ)

ª
, and the matrix Vp,q and

the vector κp,q are given, respectively, in equations (A.8) and (A.9) in the Appendix.

(ii) Assume in addition that V ar (yL|x) , V ar (yU |x) ≥ σ2 > 0 P (x)− a.s. Then V ar (v(p)) > 0

for each p ∈ S, and therefore the law of kvkC(S) is absolutely continuous with respect to Lebesgue

measure on <.

Proof. See Appendix.

The difficulty in obtaining the asymptotic distribution of
√
nH

³
Θ̂n,Θ

´
lies in the fact that

there are two sources of randomness in Θ̂n = Σ̂
−1
n

1
n

Ln
i=1Gi, which we need to disentangle. The

first source of randomness is the SVRV 1
n

Ln
i=1Gi, while the second one is the random matrix

Σ̂−1n . If instead of the random matrix Σ̂−1n we had the non-random matrix Σ−1 premultiplying

1
n

Ln
i=1Gi, then a straightforward extension of Theorem 2.3 could be applied. Because there is

no analog of Slutsky’s Theorems in the SVRVs literature (except, to the best of our knowledge,

for the result that we establish in Lemma A.5, which however only provides an upper bound on

H
³
Θ̂n,Θ

´
), to prove Theorem 5.3 we proceed in steps. First, we use Hörmander’s embedding

theorem to express
√
nH

³
Θ̂n,Θ

´
in terms of the uniform distance between the support functions

of (a transformation of) Θ̂n and Θ. Then we focus on the support functions of (a transformation of)

these sets, and rewrite them as the sum of two (not necessarily independent) elements. We derive

their joint asymptotic distribution using an application of the Delta Method to C (S)−valued

random variables. However, the use of this Functional Delta Method (as it is explained in the

Appendix) requires differentiability of the support function of Θ; Lemma A.7 in the Appendix

shows that this condition is satisfied when x has an absolutely continuous distribution.

Alternatively (for example if x has a discrete distribution5) an extremely simple approxima-

tion allows the researcher to circumvent the randomness in Σ̂n at the cost of a slower rate of
5When x has a discrete distribution, even the population identification region Θ is a polytope, given by a Minkowski

sum of segments. As a result, when x is discrete the support function of Θ is not differentiable and the Functional
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convergence. The approximation is as follows: let mn be a sequence of integers which goes to

infinity slower than n : mn → ∞ and mn
n → 0 as n → ∞ (for example, mn =

j
n

logn

k
). Let

Ḡmn =
1
mn
(G1 ⊕G2 ⊕ . . .⊕Gmn) be a Minkowski average of a random subsample of size mn from

the n observations of G (that is, the mn observations are independently and identically distributed,

each with selection expectation E [G]). Let

(5.6) Θ̂n,mn = Σ̂
−1
n Ḡmn .

Corollary 5.4 Let Assumptions 5.1, 5.3, and 5.4 hold. Pick a random subsample of size mn such

that mn → ∞ and mn
n → 0 as n → ∞. Define Θ and Θ̂n,mn as in (5.1) and (5.6) respectively.

Then
√
mnH

³
Θ̂n,mn ,Θ

´
d→ kzkC(S) where z is a Gaussian random system with E [z(p)] = 0 for

all p ∈ S, and

(5.7) E [z(p)z(q)] = E
£
s
¡
p,Σ−1G

¢
s
¡
q,Σ−1G

¢¤
−E

£
s
¡
p,Σ−1G

¢¤
E
£
s
¡
q,Σ−1G

¢¤
.

Assume in addition that V ar (yL|x) , V ar (yU |x) ≥ σ2 > 0 P (x) − a.s. Then V ar (z(p)) > 0

for each p ∈ S, and therefore the law of kzkC(S) is absolutely continuous with respect to Lebesgue

measure on <.

Proof. See Appendix.

Similarly to the discussion in Section 3, the asymptotic distribution of our test statistics de-

pends on parameters to be estimated. Hence we again obtain the critical values using bootstrap

procedures. Here we detail a bootstrap procedure for the approximation of the critical values of

the limiting distribution in Theorem 5.3 (those for the limiting distribution in Corollary 5.4 can be

obtained similarly):

Algorithm 5.1

1) Generate a bootstrap sample of size n, {(y∗iL, y∗iU , x∗i ) : i = 1, . . . , n} , by drawing a random sample

from the joint empirical distribution of the vector {(yiL, yiU , xi) : i = 1, . . . , n} , denoted P̂n, with

replacement. Use this sample to construct bootstrap versions of Gi, denoted G∗i , and Σ̂
−1
n , denoted

Σ̂−1∗n .

2) Compute r∗n ≡
√
nH

³
Σ̂−1∗n · 1n

Ln
i=1G

∗
i , Θ̂n

´
.

Delta Method cannot be applied. In this case, tedious calculations allow one to express the extreme points of Θ as

functions of moments of (yL, yU , x) . Hence the exact asymptotic distribution of H Θ̂n,Θ can be derived.
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3) Use the results of b repetitions of Steps 1-2 to compute the empirical distribution of r∗n at a point

t, denoted by Jn
³
t, P̂n

´
.

4) Estimate the critical value cBLPα such that Pr
n
kvkC(S) > cBLPα

o
= α by

(5.8) ĉBLPαn = inf
n
t : Jn

³
t, P̂n

´
≥ 1− α

o
.

The asymptotic validity of this procedure follows by an application of the Delta Method for the

bootstrap (in the case of the bootstrap algorithm that one would use to approximate the critical

values of the limiting distribution in Corollary 5.4, its validity follows easily from Theorem 2.4 of

Giné & Zinn (1990)). In particular, the following result holds:

Proposition 5.5 Let the assumptions of Theorem 5.3-(i) hold. Then r∗n
d→ kvkC(S) , where v is a

linear function of a vector Gaussian random system with E [v(p)] = 0 for all p ∈ S, and with the

covariance kernel given in equation (5.5). If in addition the assumptions of Theorem 5.3-(ii) hold,

then ĉBLPαn = cBLPα + op (1) , where ĉBLPαn is defined in (5.8).

Proof. See Appendix.

Alternatively we could obtain consistent estimates of cBLPα by simulating the distribution of the

supremum of a linear function of a vector Gaussian random system with mean function equal to

zero for each p ∈ S and with a covariance kernel which consistently estimates the covariance kernel

in (5.5). The formal result is as follows:

Proposition 5.6 Let the assumptions of Theorem 5.3 hold. Let v̂ be a linear function of a vector

Gaussian random system with E [v̂(p)] = 0 for all p ∈ S, and with covariance kernel given by

E [v̂(p)v̂(q)] =
1

n

nP
i=1

s
³
p, Σ̂−1n Gi

´
s
³
q, Σ̂−1n Gi

´
− 1

n

nP
i=1

s
³
p, Σ̂−1n Gi

´ 1
n

nP
i=1

s
³
q, Σ̂−1n Gi

´
−
D
ξ̂p, κ̂q,p

E
−
D
κ̂p,q, ξ̂q

E
+
D
ξ̂p, V̂p,qξ̂q

E
,

where V̂p,q and κ̂p,q are the sample analogs of Vp,q and κp,q, and

ξ̂p ∈ Ξ̂n,p = Θ̂n ∩
n
ϑ ∈ <d+1 : hϑ,pi = s

³
p, Θ̂n

´o
,p ∈ S.

Then if V ar (v (p)) > 0 for each p ∈ S, inf
³
t : Pr

n
kv̂kC(S) > t

o
≥ 1− α

´
= cBLPα + op (1) , where

cBLPα is defined in step 4 of Algorithm 5.1.

Proof. See Appendix.
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6 Extensions

In this Section we briefly outline how the general methodology proposed in Section 3 can be (i)

applied to problems (other than inference for the population mean and the BLP with interval

outcome data) in which the identification region is defined through moment conditions that are

linear in the Aumann expectation of an SVRV, and (ii) modified to test hypotheses about the

“true” value of a partially identified population feature. The first extension is exemplified looking

at the semiparametric binary model with interval regressor data analyzed by Magnac & Maurin

(2005). For the sake of brevity, the discussion below omits rigorous proofs of the results.6

6.1 Semiparametric Binary Models with Interval Regressor Data

Magnac & Maurin (2005) study identification in semi-parametric binary regression models of

the form y = I (x0β + v + ε > 0) , where I (·) is the indicator function of the event in brack-

ets, x is a vector of potentially endogenous regressors, and only interval data (vL, vU ) such that

Pr (vL ≤ v ≤ vU ) = 1 are available on v. Under a suitable set of assumptions (in the spirit of Lewbel

(2000)), the identification region of β is defined through moment conditions which are linear in the

Aumann expectation of a properly specified SVRV.

Magnac & Maurin (2005) assume that the support of (vL, vU ) is finite, so that v belongs to one

of k − 1 intervals. They denote by v∗ the number of the interval in which v lies. The support of v

conditional on (x, z, v∗ = j) is assumed to be [vj , vj+1[ . The overall support is [v1, vk[ , where v1 and

vk are finite. The error term ε is assumed to have the following properties: it is uncorrelated with a

set of instruments z; it is independent of v and v∗ conditionally on x and z; and it has a conditional

support sufficiently smaller than the support of v (see Magnac & Maurin (2005), Assumption L in

Section 2, and Assumption ID in Section 4.1). Under these assumptions, Magnac & Maurin (2005,

Theorem 6) show that the identification region for β is given by a set with a structure very similar

to that in equation (5.1), although in their case the analog of Y is a random segment whose extreme

points are a function of (x, z) . In particular, denote by

φ̄ (x, z) =
P

j=1,...,k−1
[Pr (y = 1|x, z, v∗ = j + 1)− Pr (y = 1|x, z, v∗ = j)] (vj+1 − vj) ,

φ (x, z) =
P

j=1,...,k−1
[Pr (y = 1|x, z, v∗ = j)− Pr (y = 1|x, z, v∗ = j − 1)] (vj+1 − vj) ,

6Which can be obtained from the authors upon request.

28



where by convention Pr (y = 1|x, z, v∗ = j) = 0 for j = 0, and Pr (y = 1|x, z, v∗ = j) = 1 for j = k.

Magnac and Maurin show that the identification region for β, denoted B, is

B =

½
β ∈ <d+1 : E

∙
z

µ
x0β−

µ
(vv∗+1 − vv∗)

P (v∗|x, z) y − vk

¶¶¸
= E [zu (x, z)] , u (x, z) ∈

¤
φ (x, z) , φ̄ (x, z)

£¾
.

This implies that

B ⊂
£
E
¡
zx0
¢¤−1

E

∙
z

µ
(vv∗+1 − vv∗)

P (v∗|x, z) y − vk

¶¸
⊕
£
E
¡
zx0
¢¤−1 E [M ] ,(6.1)

M =
©¡
z · u (x, z) : u (x, z) ∈

£
φ (x, z) , φ̄ (x, z)

¤¢ª
,

where M is the closure of the SVRV
©
[zu (x, z)] , u (x, z) ∈

¤
φ (x, z) , φ̄ (x, z)

£ª
which appears in

Magnac & Maurin.

As a subject of work in progress we are exploring the possibility of estimating the set B by

replacing the expectations in equation (6.1) with the corresponding sample averages, and the Au-

mann expectation in equation (6.1) with a Minkowski sample average of random segments. The

distribution functions P (v∗|x, z) and Pr (y = 1|x, z, v∗) are estimated by kernel methods. Denote

the resulting estimator by B̂n. Our work in progress studies suitable regularity conditions under

which consistency of B̂n (with respect to the Hausdorff distance) can be established by combining

standard methods for semiparametric two-step estimators, with the result in Theorem 5.2 above.

Similarly, we are exploring suitable regularity conditions under which one can obtain the asymp-

totic distribution of H
³
B̂n, B

´
combining the result in Theorem 5.3 above with the argument of

Theorem 8.11 in Newey & McFadden (1994).

6.2 Testing Procedure and Confidence Sets for Points in the Identification Re-
gion

Our inferential approach as introduced in Section 3 targets the entire identification region of a

partially identified population feature, and provides asymptotically exact size critical values with

which to test hypotheses and construct confidence collections. However, there are applications

in which the researcher is interested in testing hypotheses and construct confidence sets for the

“true” value of the population feature, following the insight of Imbens & Manski (2004). For this

case, our methodology can be modified to conduct conservative tests of hypotheses, and construct

conservative confidence sets that asymptotically cover each point in the identification region with

a prespecified probability.
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Hypothesis Testing

Given a real valued vector ψ0, suppose that one wants to test the null hypothesis

H0 : ψ0 ∈ E [F ]

against the alternative

HA : ψ0 /∈ E [F ]

at a prespecified significance level α ∈ (0, 1) . Under the null hypothesis,

(6.2) d (ψ0,E [F ]) = inf
f∈E[F ]

kf −ψ0k = 0.

Hence, by the triangle inequality and Theorem 1.1.9 in Li et al. (2002),

d

µ
ψ0,

1

n

Ln
i=1 Fi

¶
≤ d (ψ0,E [F ]) + sup

f∈E[F ]
d

µ
f ,
1

n

Ln
i=1 Fi

¶
(6.3)

= sup
f∈E[F ]

d

µ
f ,
1

n

Ln
i=1 Fi

¶
= sup

p∈B

½
s (p,E [F ])− s

µ
p,
1

n

Ln
i=1 Fi

¶¾
= sup

p∈B

½
−
µ
1

n

nP
i=1

s (p, Fi)−E [s (p, Fi)]

¶¾
.

where the first equality follows from equation (6.2). Based on the last equality in the expression

above, under the same assumptions of Theorem 2.3 one can show that

√
n sup
f∈E[F ]

d

µ
f ,
1

n

nL
i=1

Fi

¶
d→ sup
p∈B

{−z (p)}

where z is a Gaussian random system with E [z (p)] = 0 for all p ∈ B, and E [z (p) z (q)] =

E [s (p, F ) s (q, F )]− E [s (p, F )]E [s (q, F )] .

Hence, letting F̄n ≡ 1
n

nL
i=1

coFi, one can test H0 against HA using the following criterion:7

Reject H0 if
√
nd
¡
ψ0, F̄n

¢
> c̃α,

Do not Reject H0 if
√
nd
¡
ψ0, F̄n

¢
≤ c̃α,

where c̃α is chosen so that

(6.4) Pr

(
sup
p∈B

{−z (p)} > c̃α

)
= α.

7As in Section 3, using n
i=1 coFi rather than

n
i=1 Fi to construct the test statistic improves the small sample

properties of the test without changing its asymptotic behavior.
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By construction, given the result in equation (6.3),

lim
n→∞

Pr
©√

nd
¡
ψ0, F̄n

¢
> c̃α

ª
≤ lim

n→∞
Pr

(
√
n sup
f∈E[F ]

d
¡
f , F̄n

¢
> c̃α

)
= α.

This testing procedure is therefore conservative, but one can show that it preserves the property of

rejecting a false null hypothesis with probability approaching 1 as the sample size increases. The

critical value c̃α can be consistently estimated through a bootstrap procedure similar to the one in

Algorithm 3.1 (we denote this estimator by b̃cαn).
Confidence Sets

Exploiting the duality between confidence sets and hypothesis tests that is of familiar use for

point identified models, we can invert the test statistic described above to construct a confidence set

with the property that it covers each point in the identification region with at least a prespecified

probability. In particular, we construct the set CIψ as

CIψ =
n
ψ̃ ∈ <d :

√
nd
³
ψ̃, F̄n

´
≤ b̃cαno .

Hence if the law of sup
p∈B

{−z (p)} is continuous, for each ψ̃ ∈ E [F ] ,

lim
n→∞

Pr
n
ψ̃ ∈ CIψ

o
≥ 1− α.

For the case of partially identified scalar valued parameters for which the identification region is

an interval, Imbens & Manski (2004) propose confidence sets which asymptotically cover the true

value of the parameter uniformly across different values for the width of the bound. The derivation

of conditions under which the coverage of the confidence sets described in this Section is uniform

is the subject of work in progress.

Similarly to the case of the union of all the sets in the confidence collection CCE[F ] introduced

in Section 3, the (exact) set CIψ can be calculated in a particularly simple way. One can show

that

CIψ = F̄n ⊕Bc̃αn
⊂ Un,

where Bc̃αn
=

(
b ∈ <d : kbk ≤

b̃cαn√
n

)
and Un is defined in Theorem 3.4. This result confirms what

one might have intuitively expected: when the researcher is interested in a confidence set for the

“true” value of the population feature of interest, the set CIψ gives a smaller (and therefore less

conservative) confidence region than the one obtained as the union of all sets in CCE[F ].
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Table 1: Size and rejection rates of the test against local alternatives (nominal level = 0.05) — E(y)
sample size δ

0 0.5 1 2 4 8 16
n = 100 0.0464 0.0504 0.0710 0.1681 0.5328 0.9764 1.0000
n = 200 0.0462 0.0520 0.0721 0.1671 0.5276 0.9808 1.0000
n = 500 0.0509 0.0553 0.0773 0.1665 0.5268 0.9820 1.0000
n = 1000 0.0473 0.0542 0.0743 0.1654 0.5186 0.9823 1.0000
n = 2000 0.0497 0.0555 0.0767 0.1706 0.5249 0.9833 1.0000

7 Monte Carlo Results

In this section we conduct a series of Monte Carlo experiments to evaluate the properties of the test

proposed in Section 3, as applied to the problem of inference for the mean and for the parameters

of the BLP with interval outcome data. We use the same data set as in Chernozhukov et al.

(2004) to conduct inference for (i) the mean (logarithm of) wage, and (ii) the returns to education,

for men between the ages of 20 and 50. The data are taken from the March 2000 wave of the

Current Population Survey (CPS), and contain 13,290 observations on income and education. The

wage variable is artificially bracketed to create interval-valued outcomes. A detailed description

of the data construction procedure appears in Chernozhukov et al. (2004, Section 4). Denote the

logarithm of the lower bound of the wage, the logarithm of the upper bound of the wage, and the

level of education in years, by yL, yU and x respectively. We treat the empirical joint distribution

of (yL, yU , x) in the CPS sample as the population distribution and draw small samples from it.

The first Monte Carlo experiment looks at the asymptotic properties of the estimator for the

population mean with interval data (see Section 4). Denote by Y = [yL, yU ] the interval-valued log

of wages. The population identification region is

Ψ0 = E(Y ) = [4.4347, 4.9674].

We draw 25, 000 small samples of sizes 100, 200, 500, 1000, and 2000 from the CPS “population.”

For each sample, we estimate the critical value cα, α = 0.05, implementing Algorithm 3.1 with

2000 bootstrap repetitions.8 We build the local alternatives using equation (3.5) with ∆1 = {0}
8Matlab and Fortran 90 codes for computing the Minkowski sample average of intervals in < and <2, the Hausdorff

distance between polytopes in <2, and for implementing Algorithm 3.1 and Algorithm 5.1 are available upon request
from the authors.
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Figure 4: The population identification region of the parameters of the BLP

and ∆2 = δ {0.5}√
n
. More specifically, the local alternatives are defined as ΨAn (δ) = Ψ0 ⊕ δ {0.5}√

n
for

δ ∈
©
0, 12 , 1, 2, 4, 8, 16

ª
, where 0.5 is the width (approximated to the first decimal point) of E(Y ).

In terms of equation (3.6), the Hausdorff distance between the local alternative and the null is

κ = 1
2δ. Results for this Monte Carlo experiment appear in Table 1.

9 As the first column of this

Table shows, the empirical size of our test is quite close to the nominal level of 0.05. As δ (and

therefore κ) increases, the rejection rates increase for each given sample size, and for a given δ, the

rejection rates are stable across sample sizes. These results are invariant with the width of E(Y ).

The second Monte Carlo experiment uses both the interval valued information on the logarithm

of wage and the information about education. Here we implement the test at the 0.05 level for the

best linear predictor of the logarithm of wage given education. Figure 4 depicts Θ, the population

identification region of the parameters of the BLP given in equation (5.1).

To trace the increase in power as we get farther away from the null, we again use a se-

quence of local alternatives. The local alternatives are defined as ΨAn (δ) = Ψ0 ⊕
{(3,0.3)}√

n
for

δ ∈
©
0, 12 , 1, 2, 4, 8, 16

ª
, where Ψ0 = Θ is the polytope in Figure 5, and the vector (3, 0.3) gives

9We also conducted Monte Carlo experiments in which the critical value cα is obtained by simulations. We
considered both the case in which the covariance kernel was known (i.e., it was the covariance kernel obtained
from the entire CPS “population”), and the case in which it was replaced by a consistent estimator. The results
are comparable to those reported in Table 1. However, the procedure in Algorithm 3.1 is computationally less
burdensome.
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Table 2: Size and rejection rates of the test against local alternatives (nominal level = 0.05) — BLP
sample size δ

0 0.5 1 2 4 8 16
n = 100 0.0663 0.0759 0.0930 0.1518 0.3516 0.8644 1.0000
n = 200 0.0660 0.0757 0.0927 0.1502 0.3488 0.8807 1.0000
n = 500 0.0613 0.0686 0.0830 0.1344 0.3361 0.8901 1.0000
n = 1000 0.0569 0.0632 0.0772 0.1262 0.3283 0.8934 1.0000
n = 2000 0.0539 0.0589 0.0726 0.1201 0.3245 0.9006 1.0000

the width (approximated to the first decimal point) of the projection of Θ on each axis. In terms

of equation (3.6) the distance between the local alternative and the null is κ = 3.015 · δ. We

draw 25, 000 small samples of sizes 100, 200, 500, 1000, and 2000 from the CPS “population.” For

each sample, we estimate the critical value cα, α = 0.05, implementing Algorithm 5.1 with 2000

bootstrap repetitions. The rejection rates of the null and local alternatives are shown in Table

2. As the first column of this Table shows, for small samples (e.g., n = 100) the test is a little

oversized; however, as n increases this size distortion disappears. As δ (and therefore κ) increases,

the rejection rates increase for each given sample size.

In summary, our Monte Carlo experiments show that the test described in section 3 performs

well even with samples of size as small as 100. The rejection rates of the null are very close to 0.05.

The power against the local alternatives grows rapidly as the alternatives get far away from the

null.

8 Conclusions

This paper introduces a methodology to conduct estimation and inference for partially identified

population features in a completely analogous way to how estimation and inference are conducted

when the population features is point identified. In particular, we show that for a certain class

of partially identified population features, which include means and best linear predictors with

interval outcome data, the identification region is given by a transformation of the Aumann ex-

pectation of an SVRV. Extending the analogy principle to SVRVs, we prove that this expectation

can be
√
n−consistently estimated (with respect to the Hausdorff distance) by a transformation of

the Minkowski average of a sample of SVRVs which can be constructed from observable random
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variables. When the Hausdorff distance between the proposed estimator and the population iden-

tification region is normalized by
√
n, this statistic converges in distribution to the supremum of a

Gaussian process whose covariance kernel depends on parameters of the population identification

region. We introduce consistent bootstrap procedures to estimate the quantiles of this distribution.

The asymptotic distribution result allows us to introduce a procedure to test whether the

population identification region is equal to a particular set. This test procedure is consistent

against any fixed alternative, and is locally asymptotically unbiased. A Monte Carlo exercise shows

that our test performs well even with samples of size as small as 100. The rejection rates of the null

are very close to the nominal level, and the power of the test against local alternatives grows rapidly

as the alternatives get far away from the null. The test statistic can be inverted to construct a

confidence collection for the population identification region. The confidence collection is given by

the collection of all sets that, when specified as null hypothesis for the true value of the population

identification region, cannot be rejected by our test. Its main property is that (asymptotically) the

population identification region is one of its elements with a prespecified confidence level (1− α) .
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A Appendix: Lemmas and Proofs

We first define the notation that we use throughout the appendix. Let h·, ·i denote the inner product in <d.

In this appendix, we use the capital Greek letters Π and Σ to denote matrices, and we use other capital

Greek letters to denote sets of parameters. It will be obvious from the context whether a capital Greek

letter refers to a matrix or to a set of parameters. For a finite d × d matrix Π and a set A ⊂ <d let

ΠA =
©
r ∈ <d : r = Πa, a ∈ A

ª
, and observe that s(p,ΠA)= s(Π0p, A) , where Π0 denotes the transposed

matrix. We denote the matrix norm induced by the euclidean vector norm (i.e., the 2-norm) as kΠk =

max
kpk=1

kΠpk =
√
λmax, where λmax is the largest eigenvalue of Π0Π; observe that the eigenvalues of a given

matrix are a continuous function of the elements of that matrix (Meyer (2000), Chapter 5). This matrix

norm is compatible with its underlying vector norm (i.e. the euclidean norm), so that kΠak ≤ kΠk kak .

A.1 Proofs for Section 3

A.1.1 Proof of Proposition 3.1

Proof. To establish the asymptotic validity of this procedure, observe that by Theorem 2.4 in Giné & Zinn

(1990) for each p ∈ S,
√
n

∙
1

n

nP
i=1

s (p, coF ∗i )−
1

n

nP
i=1

s (p, coFi)

¸
d→ z (p) .

The result then follows by the continuous mapping theorem using standard arguments (e.g., Politis, Romano

& Wolf (1999) Chapter 1).

For the processes considered in this paper, it follows from Theorem 1 in Tsirel’son (1975) and from the

Corollary in Lifshits (1982) that V ar (z (p)) > 0 for each p ∈ S is a sufficient condition for the law of kzkC(S)
to be absolutely continuous with respect to Lebesgue measure on <. The result then follows by standard

arguments.

A.1.2 Proof of Theorem 3.2

Proof. By triangle inequality,

H (ΨA,Ψ0) ≤ H

µ
1

n

nL
i=1

coFi,Ψ0

¶
+H

µ
1

n

nL
i=1

coFi,ΨA

¶
Hence,

lim
n→∞

Pr

½√
nH

µ
1

n

nL
i=1

coFi,Ψ0

¶
> ĉαn

¾
≥ lim

n→∞
Pr

½√
nH (ΨA,Ψ0)−

√
nH

µ
1

n

nL
i=1

coFi,ΨA

¶
> ĉαn

¾
= lim

n→∞
Pr

½
H (ΨA,Ψ0) > H

µ
1

n

nL
i=1

coFi,ΨA

¶
+

cα + op (1)√
n

¾
= Pr {H (ΨA,Ψ0) > 0} = 1
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where the second to last equality follows from Theorem 2.2 and because ĉαn
p→cα <∞ (see equation (3.4)),

and the last equality follows because H (ΨA,Ψ0) is a positive constant.

A.1.3 Proof of Theorem 3.3

Proof. To simplify the notation, let F̄n = 1
n

Ln
i=1 coFi. By Hörmander’s embedding theorem,

√
nH

¡
F̄n,Ψ0

¢
=
√
nsup
p∈S

¯̄
s
¡
p, F̄n

¢
− s (p,Ψ0)

¯̄
.

Let

h (·) = s (·, F )− s (·,Ψ0) = s (·, F )− s

µ
·,ΨAn ⊕

1√
n
∆1

¶
+ s

µ
·,ΨAn ⊕

1√
n
∆1

¶
− s (·,Ψ0)

= s (·, F )− s (·,ΨAn)− s

µ
·, 1√

n
∆1

¶
+ s

µ
·,Ψ0 ⊕

1√
n
∆2

¶
− s (·,Ψ0)

= s (·, F )− s (·,ΨAn) + s

µ
·, 1√

n
∆2

¶
− s

µ
·, 1√

n
∆1

¶
.

Similarly,

hk (·) = s (·, Fk)− s (·,Ψ0) = s (·, Fk)− s (·,ΨAn) + s

µ
·, 1√

n
∆2

¶
− s

µ
·, 1√

n
∆1

¶
.

Hence under the local alternative h, h1, h2, . . . are C (S)− valued i.i.d. random variables with

E [h (p)] =
1√
n
s (p,∆2)−

1√
n
s (p,∆1) .

The result then follows from Proposition 3.1.9 in Li et al. (2002).

A.1.4 Proof of Theorem 3.4

Proof. We first show that =n ⊂ Un. This follows because =n is a convex compact set (the Minkowski sum
of convex sets is convex), and because

√
nH

µ
1

n

nL
i=1

coFi,=n
¶

=
√
nH

µ
1

n

nL
i=1

coFi,
1

n

nL
i=1

coFi ⊕Bĉαn

¶
=
√
nH ({0} , Bĉαn) = ĉαn

where the last equality follows from the definition of Bĉαn . Hence =n∈CCE[F ]. We now show that Un ⊂ =n.
Take any f̃ ∈ Un. Then by definition ∃Ψ̃ ∈ CCE[F ] such that f̃ ∈ Ψ̃ and

√
nH

³
1
n

Ln
i=1 coFi, Ψ̃

´
≤ ĉαn.

Choose f̄ ∈ F̄n =
1
n

Ln
i=1 coFi such that

f̄ = arg inf
f∈F̄n

°°°f̃ − f°°°
Let b̃ = f̃ − f̄ ; then by construction f̃ = f̄ + b̃, and b̃ ∈ Bĉαn because°°°b̃°°° = °°°f̃ − f̄°°° = inf

f∈F̄n

°°°f̃ − f°°° ≤ sup
g∈Ψ̃

inf
f∈F̄n

kg − fk ≤ ĉαn√
n
,

where the last inequality follows because
√
nH

³
1
n

Ln
i=1 coFi, Ψ̃

´
≤ ĉαn. Hence f̃ ∈ =n.
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A.2 Proofs for Section 4

A.2.1 Proof of Theorem 4.1

This result can be easily proved by using the following Lemmas.

Lemma A.1 Let Y = [yL, yU ] , where yL, yU are real valued random variables such that Pr (yL≤ yU )= 1.

Then Y is a compact valued non-empty SVRV.

Proof. Theorem 1.2.5 in Molchanov (2005) implies that Y is an SVRV iff s (p, Y ) is a random variable
for each p ∈ {−1, 1}. Since yL (ω) ≤ yU (ω) µ− a.s.,

s (p, Y (ω)) = max {pyL (ω) , pyU (ω)} =
½

yU (ω) if p = 1,
−yL (ω) if p = −1.

From the fact that yL and yU are random variables, also s (p, Y ) is a random variable and the claim follows.

The fact that Y takes almost surely compact values follows because yL and yU are real valued random

variables. The fact that Y is non-empty follows because Pr {yL ≤ yU}= 1.

Lemma A.2 Given an i.i.d. sequence {yiL, yiU}ni=1 , where yiL, yiU are real valued random variables

such that Pr (yiL≤ yiU )= 1 for each i, let Yi = [yiL, yiU ]. Then {Yi : i ∈ N} are i.i.d SVRVs.

Proof.

(i) {Yi}ni=1 are identically distributed. For A ∈ B (K (<)), µYi (A) = µ
¡
Y −1i (A)

¢
= Pr {[yiL, yiU ] ∩A 6= ∅}.

Since {(yiL, yiU )}ni=1 are i.i.d., µYi = µYj for all i and j.

(ii) {Yi}ni=1 are independent. For all C1, ..., Cn in Kk (<),

µ
¡
Y −11 (C1) , ..., Y

−1
n (Cn)

¢
= µ (Y1∩C1 6= ∅, ..., Y n∩Cn 6= ∅)

= Pr {[y1L, y1U ]∩C1 6= ∅, ..., [ynL, ynU ]∩Cn 6= ∅}

=
nQ
i=1
Pr {[yiL, yiU ]∩Ci 6= ∅}

where the last equality comes from the fact that {(yiL, yiU )}ni=1 are independent. The result then follows by

Proposition 1.1.19 in Molchanov (2005).

Proof. Of Theorem 4.1.

Lemmas A.1 and A.2 show that {Y, Yi : i ∈ N} are i.i.d. compact valued non-empty SVRVs. To verify that

the SVRVs are integrably bounded, observe thatR
kY kH dµ ≤ E (|yL|)+E (|yU |) <∞,

where the last inequality follows from the assumptions in Theorem 4.1. All the conditions of Theorem 2.2

are therefore satisfied.
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A.2.2 Proof of Theorem 4.2

Proof. Let f(ω) ∈ Y (ω) = [yL (ω) , yU (ω)] µ − a.s. Then
R
Ω
f dµ ∈ [E(yL), E (yU )]. This implies,

E [Y ] ⊂ [E(yL), E (yU )]. Conversely, since [E(yL), E (yU )] is a convex set, any b ∈ [E(yL), E (yU )] can be
written as b = αE(yL) + (1− α)E(yU ) for some α ∈ [0, 1]. Define

fb (ω) = αyL (ω) + (1− α) yU (ω) .

Then
R
Ω
fb (ω) dµ = b and fb ∈ S (Y ), and therefore [E(yL), E (yU )] ⊂ E [Y ].

A.2.3 Proof of Theorem 4.3

Proof. Our random sets are i.i.d., compact valued (i.e. inKk (<)) and non-empty by Lemmas A.1 and A.2.

We know that
R
Ω
kY (ω)k2H dµ ≤

R
Ω
yL (ω)

2 dµ+
R
Ω
yU (ω)

2 dµ, which is finite by assumption. Therefore, all

the conditions in Theorem 2.3 are satisfied. Then, by Theorem 2.3,

(i) E (z−1) = E (z1) = 0,

(ii) E (zp · zq) = E [s (p, Y ) s (q, Y )]−E [s (p, Y )] ·E [s (q, Y )] where p, q ∈ {−1, 1}.
By the definition of the support function,

s (p, Y ) (ω) =

½
yU (ω) if p = 1,
−yL (ω) if p = −1.

The covariance kernel in the theorem follows by simple algebra.

A.3 Proofs for Section 5

In the text we defined Θ, ΘM , and the relevant set valued random variables for the simple case x ∈ <. Here

we extend these definitions for the case of a column vector x ∈ <d, and then prove all the results for this

more general case:

G (ω) =

½µ∙
y (ω)

x (ω) · y (ω)

¸
: y (ω) ∈ Y (ω)

¶¾
,(A.1)

Gi (ω) =

½µ∙
yi (ω)

xi (ω) · yi (ω)

¸
: yi (ω) ∈ Yi (ω)

¶¾
,(A.2)

(A.3)

Θ =

∙
1 E (x0)

E (x) E (xx0)

¸−1
E [G]

=

(
θ ∈ <d+1: θ =

∙
1 E (x0)

E (x) E (xx0)

¸−1 ∙
E (y)
E (xy)

¸
,

∙
y
xy

¸
∈ S1 (G)

)
,

Σ ≡
∙

1 E (x0)
E (x) E (xx0)

¸
, Σ̂n ≡

∙
1 x0

x xx0

¸
.
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and

(A.4) ΘM =

½
θM ∈ <d+1: θM = argmin

Z ¡
y − θ1 − θ02x

¢2
dη, η ∈ Pyx

¾
,

where

(A.5)
Pyx =

©
η : Pr (yL ≤ t,x ≤ x0) ≥ η ((−∞, t] , (−∞,x0]) ≥ Pr (yU ≤ t,x ≤ x0) ∀t ∈ <,∀x0 ∈ <d,

η ((−∞,+∞) , (−∞,x0]) = Pr (x ≤ x0) ∀x0 ∈ <d
ª
.

and the notation x ≤ x0 indicates that each element of x is less than or equal to the corresponding element

of x0.

Lemma A.3 G and {Gi}ni=1 as defined in equations (A.1)-(A.2) are non-empty compact valued SVRVs.

Proof. By Lemma A.1, Y is a non-empty, compact valued SVRV. By Theorem 1.2.7 in Li et al. (2002)

there is a countable selection {fi}∞i=1 such that fi (ω) ∈ Y (ω), fi ∈ S (Y ) for all i and cl{fi (ω)} = Y (ω)

for all ω ∈ Ω. Therefore, it is easy to see that for each λ ∈ <, λY is an SVRV and for each set A,

Y ⊕ A is an SVRV. Observe that x is a random vector defined on the same probability space as Y. Then

(x · Y ) (ω) = {x (ω) f (ω) : f (ω) ∈ Y (ω)} = cl{x (ω) · fi (ω)} for each ω ∈ Ω. Hence,
½

fi
x · fi

¾
spans the

set G as defined in (A.1) and therefore G is an SVRV by Theorem 1.2.7 in Li et al. (2002). The fact that G

is non-empty and compact valued follows from the same arguments as in Lemma A.1.

Lemma A.4 Under Assumption 5.1, {Gi}ni=1 as defined in equation (A.2) is a sequence of i.i.d. SVRVs.

Proof. (i) {Gi}ni=1 are identically distributed. For A ∈ B
¡
K
¡
<d+1

¢¢
,

µGi
(A) = µ

¡
G−1i (A)

¢
= µ

⎛⎜⎜⎜⎝ω : ∃ yi (ω) ∈ Yi (ω) , (a1, . . . , ad+1) ∈ A s.t.

⎡⎢⎢⎢⎣
y−1i (a1) = ω

(x1iyi)
−1
(a2) = ω
...

(xdiyi)
−1
(ad+1) = ω

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ .

Since {(Yi,xi)}ni=1 are identically distributed, µGi
= µGj

for all i and j.

(ii) {Gi}ni=1 are independent. For all sets C1, ...Cn in Kk

¡
<d+1

¢
,

µ
¡
G−11 (C1) , ..., G

−1
n (Cn)

¢
= µ (G1∩C1 6= ∅, ..., Gn∩Cn 6= ∅)

= Pr

½µ∙
y1
x1y1

¸
: y1∈[y1L, y1U ]

¶
∩C1 6= ∅, ...,

µ∙
yn
xnyn

¸
: yn∈[ynL, ynU ]

¶
∩Cn 6= ∅

¾
=

nQ
i=1
Pr

½µ∙
yi
xiyi

¸
: yi ∈ [yiL, yiU ]

¶
∩Ci

¾
,

where the last equality comes from the fact that {(yiL, yiU ,xi)}ni=1 are independent. The result then follows

by Proposition 1.1.19 in Molchanov (2005).
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A.3.1 Proof of Proposition 5.1

Proof. With x a column vector in <d, the sets Θ, ΘM are non-empty convex and compact subsets of <d+1.

For any vector θ ∈ Θ or θM ∈ ΘM , let the first entry of such vector correspond to the constant term and be

denoted, respectively, by θ1 and θM1 , and the remaining d entries be denoted, respectively, by θ2 and θ
M
2 .

We start by showing that ΘM ⊂ Θ. Pick a vector
∙
θM1

³
θM2

´0¸0
∈ ΘM . Then there exists a distribution

for (y,x) with x−marginal P (x) denoted ηM0 such that
∙
θM1

³
θM2

´0¸0
is a minimizer of the problem in

(A.4)-(A.5). Let
¡
yM ,x

¢
be a random vector with distribution ηM0 . It follows that yM (ω) ∈ Y (ω) µ− a.s.,

and therefore
£
yM (ω) x0yM (ω)

¤0 ∈ G (ω) µ− a.s., from which
∙
θM1

³
θM2

´0¸0
∈ Θ.

Conversely, pick a vector
£
θ1 (θ2)

0¤0 ∈ Θ. Then there exists a random vector [y yx0]0 ∈ G such that∙
θ1
θ2

¸
=

∙
1 E (x0)

E (x) E (xx0)

¸−1 ∙
E (y)
E (xy)

¸
.

We show that the corresponding vector (y,x) has an admissible probability distribution η ∈ Pyx. Because
(y,x) is a selection from (Y,x) , it follows from Theorem 2.1 in Artstein (1983) that for any t ∈ <, x0 ∈ <d

η (y ≤ t,x ≤ x0) ≤ µ (Y ∩ (−∞, t] 6= ∅,x ≤ x0) = Pr (yL ≤ t,x ≤ x0) ,
η (y ≥ t,x ≤ x0) ≤ µ (Y ∩ [t,+∞) 6= ∅,x ≤ x0) = Pr (yU ≥ t,x ≤ x0) .

The fact that the marginal of η (y,x) is P (x) follows easily. Hence
£
θ1 (θ2)

0¤0 ∈ ΘM .

A.3.2 Proof of Theorem 5.2

Theorem 5.2 can be easily proved by using the following Lemma.

Lemma A.5 Let {F,Fi : i ∈ N} be i.i.d. non-empty compact valued, integrably bounded SVRVs. Let
{Πi : i ∈ N} be i.i.d. random d × d matrices on (Ω,A, µ) such that Πi a.s.→ Π element-by-element, where
Π is a d× d non-stochastic matrix with finite elements and Πi has finite elements w.p.1. Then

H

µ
Πn
1

n

nL
k=1

Fk,ΠE [F ]
¶

a.s.→ 0.

Proof. This is a version of Slutsky’s theorem for d-dimensional SVRVs. We interpret vectors in <d as

being column vectors. For simplicity write F̄n = 1
n

Ln
k=1 Fk. Then,
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H
¡
ΠnF̄n,ΠE [F ]

¢
= max

(
sup
fn∈F̄n

inf
f∈E[F ]

kΠnfn −Πfk , sup
f∈E[F ]

inf
fn∈F̄n

kΠnfn −Πfk
)

≤ max

(
sup
fn∈F̄n

inf
f∈E[F ]

(kΠnfn −Πnfk+ kΠnf −Πfk) , sup
f∈E[F ]

inf
fn∈F̄n

(kΠnfn −Πnfk+ kΠnf −Πfk)
)

≤ max

(
sup
fn∈F̄n

inf
f∈E[F ]

(kΠnk kfn − fk+ kfk kΠn −Πk) , sup
f∈E[F ]

inf
fn∈F̄n

(kΠnk kfn − fk+ kfk kΠn −Πk)
)

≤ kΠnkmax
(
sup
fn∈F̄n

inf
f∈E[F ]

kfn − fk , sup
f∈E[F ]

inf
fn∈F̄n

kfn − fk
)
+ kΠn −Πk sup

f∈E[F ]
kfk = oa.s. (1) ,

because kΠnk a.s.→ kΠk < ∞ by Slutsky’s theorem, max

(
sup
fn∈F̄n

inf
f∈E[F ]

kfn − fk , sup
f∈E[F ]

inf
fn∈F̄n

kfn − fk
)

a.s.→ 0

by the LLN for SVRVs, kΠn −Πk
a.s.→ 0 by the continuous mapping theorem, and sup

f∈E[F ]
kfk< ∞ because

all selections of an integrably bounded SVRV are integrable.

Proof. Of Theorem 5.2.

The result follows directly from Lemma A.5, replacing Σ̂−1n = Πn, Σ
−1 = Π, Fi = Gi, and F = G. This is

because Lemmas A.3 and A.4 show that {G,Gi : i ∈ N} are i.i.d. non-empty compact valued SVRVs. To

verify that these SVRVs are integrably bounded, observe that

R
kGkH dµ ≤ E (|yL|)+E (|yU |) +

dP
k=1

[E (|xkyL|)+E (|xkyU |)] <∞,

where the last inequality follows from Assumption 5.2. If in addition Assumption 5.4 is satisfied, then

max

(
sup
fn∈F̄n

inf
f∈E[F ]

kfn − fk , sup
f∈E[F ]

inf
fn∈F̄n

kfn − fk
)
= Op

µ
1√
n

¶
by the CLT for SVRVs, because

R
kGk2H dµ ≤ E

³
|yL|2

´
+E

³
|yU |2

´
+

dP
k=1

h
E
³
|xkyL|2

´
+E

³
|xkyU |2

´i
<∞,

and kΠn −Πk = Op

³
1√
n

´
by the continuous mapping theorem.

A.3.3 Proof of Theorem 5.3

Before giving this proof, we introduce a Definition and two Lemmas that are used in the last step of the

proof of Theorem 5.3.
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Definition 10 Let w be a random vector in <d. Its zonoid, Λw, is the Aumann expectation of the random

segment in <d with the endpoints being the origin (0) and the d−dimensional vector w. The lift zonoid,10

Λ̃w, of w is the Aumann expectation of the random segment in <d+1 with the endpoints being the origin and

the (d+ 1)−dimensional vector (1,w0) .

In the following Lemma, for p ∈ [1,∞), denote by LpA = Lp
¡
Ω,A,<d

¢
the space of A-measurable random

variables with values in <d such that the Lp-norm

kξkp = [E (kξk
p)]

1
p

is finite, and for an SVRV F defined on (Ω,A) denote by SpA (F ) the family of all selections of F from LpA,
so that

SpA (F ) = S (F ) ∩ L
p
A.

Lemma A.6 Let A be an integrably bounded SVRV defined on (Ω,A, µ). For each σ−algebra A0 ⊂ A
there exists a unique integrable A0−measurable SVRV B, denoted by B = E [A| A0] and called the conditional
Aumann expectation of A, such that

S1A0
(B) = cl

©
E [a| A0] : a ∈ S1A (A)

ª
,

where the closure is taken with respect to the norm in L1A0
. Since A is integrably bounded, so is B.

Proof. Molchanov (2005), Theorem 2.1.46

Using the definition of a lift zonoid and the properties of conditional expectations of SVRV, we prove

the following result:

Lemma A.7 Define Θ as in (5.1). Under Assumptions 5.2 and 5.5, Θ is a strictly convex set.

Proof. The random set G can be represented as the convex hull of points with coordinates
£
y x0y

¤0
where y (ω) ∈ Y (ω) . Define

ζ = yU − yL

η =

∙
yL
x · yL

¸
Then one can represent G as

G = η ⊕ L̃

L̃ = co
n
0,
£
ζ x0 · ζ

¤0o
10The lift zonoid is a mathematical concept introduced by Bolker (1969) and used in Economics by Ko-

shevoy & Mosler (1996) to extend the notions of the Lorenz curve and the Lorenz order to several attributes
(for a monograph on the lift zonoid and its applications in Economics see Mosler (2002)).
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Hence, by Theorem 2.1.17 in Molchanov (2005), E [G] is the sum of the expectation of η (a random vector)

and the Aumann expectation of the random set L̃ being the convex hull of the origin (0) and
£
ζ x0 · ζ

¤0
=

ζ
£
1 x0

¤0
.

If ζ were degenerate and identically equal to 1, then the Aumann expectation E
h
L̃
i
would be the lift

zonoid of x, Λ̃x. In our case ζ is a nondegenerate random variable. By Theorem 2.1.47(ii)-(iii) in Molchanov
(2005) we can use the properties of the conditional expectation of SVRVs to get

E [G| ζ] = E (η| ζ)⊕ E
h
L̃
¯̄̄
ζ
i
= E (η| ζ)⊕ ζE

h
co
³
0, [1 x0]

0
´¯̄̄

ζ
i
.

E
£
co
¡
0, [1 x0]0

¢¯̄
ζ
¤
is a lift zonoid, and therefore E [G| ζ] is a (rescaled by ζ) lift zonoid shifted by the vector

E (η| ζ) . It then follows by Corollary 2.5 in Mosler (2002) that since x has an absolutely continuous distrib-

ution with respect to Lebesgue measure on <d, E [G| ζ] is a strictly convex set P (ζ)− a.s. Premultiplying

G by the non-random matrix Σ−1, we obtain that also E
£
Σ−1G

¯̄
ζ
¤
is a strictly convex set P (ζ) − a.s.

Therefore by Corollary 1.7.3 in Schneider (1993) s
¡
·,E

£
Σ−1G

¯̄
ζ
¤¢
is Fréchet differentiable on <d+1\{0}

P (ζ) − a.s. By Theorem 2.1.47(iv) in Molchanov (2005), s
¡
p,E

£
Σ−1G

¯̄
ζ
¤¢
= E

£
s
¡
p,Σ−1G

¢¯̄
ζ
¤
.

Observing that by Corollary 1.7.3 in Schneider (1993) the gradient of s
¡
p,E

£
Σ−1G

¯̄
ζ
¤¢
is given by

∇s
¡
p,E

£
Σ−1G

¯̄
ζ
¤¢
= E

£
Σ−1G

¯̄
ζ
¤
∩
n
ϑ∈ <d+1 : hϑ,pi = s

¡
p,E

£
Σ−1G

¯̄
ζ
¤¢o

,

we can apply Theorem 2.1.47(v) in Molchanov (2005) to the sets {0} and Σ−1G (which is absolutely

integrable because by assumption G is absolutely integrable, see the proof of Theorem 5.2), to obtain

E
°°∇s ¡p,E £Σ−1G¯̄ ζ¤¢°° ≤ E

£°°E £Σ−1G¯̄ ζ¤°°
H

¤
= E

£
H
¡
E
£
Σ−1G

¯̄
ζ
¤
, {0}

¢¤
≤ E

£
H
¡
Σ−1G, {0}

¢¤
= E

£°°£Σ−1G¤°°
H

¤
<∞.

Hence

s (p,Θ) = s
¡
p,E

£
Σ−1G

¤¢
= E

£
s
¡
p,Σ−1G

¢¤
=

Z
E
£
s
¡
p,Σ−1G

¢¯̄
ζ
¤
dP (ζ)

is differentiable at p∈ <d+1\{0}. The final result follows because the support set in each direction p∈S of

a set which has a differentiable support function contains only one point (Schneider (1993), Corollary 1.7.3).

Proof. Of Theorem 5.3. (i) This part of the proof proceeds in steps.

Step 1. Derivation of the fact that
√
nH

³
Θ̂n,Θ

´
A
=
√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´
, where Ḡn ≡ 1

n

Ln
i=1Gi.

From the definition of Θ̂n and the fact that Θ = Σ̂
−1
n Σ̂nΘ it follows that

H
³
Θ̂n,Θ

´
= H

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
.
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By definition,

√
nH

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
=
√
nmax

(
sup

gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°° , sup
θ∈Θ

inf
gn∈Ḡn

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°) ,

√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´

=
√
nmax

(
sup

gn∈Ḡn

inf
θ∈Θ

°°°Σ−1 ³gn − Σ̂nθ´°°° , sup
θ∈Θ

inf
gn∈Ḡn

°°°Σ−1 ³gn − Σ̂nθ´°°°) .

Without loss of generality, let
√
nH

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
=
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°° .
(A similar argument applies if

√
nH

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
=
√
nsup
θ∈Θ

inf
gn∈Ḡn

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°.) Then,
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°−√nH ³Σ−1Ḡn,Σ
−1Σ̂nΘ

´
≤
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ΣΣ−1 ³gn − Σ̂nθ´°°°−√n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1 ³gn − Σ̂nθ´°°°
≤
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n Σ°°°°°°Σ−1 ³gn − Σ̂nθ´°°°−√n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1 ³gn − Σ̂nθ´°°°
=

³°°°Σ̂−1n Σ°°°− 1´√n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1 ³gn − Σ̂nθ´°°° = op (1) ·Op (1) = op (1) ,

where the last equality follows from the following facts: (1) Σ̂−1n Σ
p→ I, where I is the identity matrix of

appropriate dimensions; (2) the 2-norm of the identity matrix is 1, and the norm is a continuous function;

(3) by a similar argument as in the proof of Lemma A.5,
√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´
= Op (1) . Hence,

√
nH

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
−
√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´
≤ op (1) .

We now need to show that the other direction of the inequality also applies. Without loss of generality, let
√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´
=
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1 ³gn − Σ̂nθ´°°° .
Then,

√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1 ³gn − Σ̂nθ´°°°−√nH ³Σ̂−1n Ḡn, Σ̂
−1
n Σ̂nΘ

´
≤
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1Σ̂nΣ̂−1n ³
gn − Σ̂nθ

´°°°−√n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°
≤
√
n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ−1Σ̂n°°°°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°−√n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°
=

³°°°Σ−1Σ̂n°°°− 1´√n sup
gn∈Ḡn

inf
θ∈Θ

°°°Σ̂−1n ³
gn − Σ̂nθ

´°°°
≤

¯̄̄³°°°Σ−1Σ̂n°°°− 1´¯̄̄ °°°Σ̂−1n °°°√n sup
gn∈Ḡn

inf
θ∈Θ

°°°³gn − Σ̂nθ´°°° = op (1) ·Op (1) = op (1) ,

where the last inequality follows because of the same facts as above, and because
°°°Σ̂−1n °°°→ °°Σ−1°° <∞ by

Slutsky Theorem. Hence,
√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´
−
√
nH

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
≤ op (1) ,

45



which implies that ¯̄̄√
nH

³
Σ̂−1n Ḡn, Σ̂

−1
n Σ̂nΘ

´
−
√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´¯̄̄

p→ 0.

Step 2. Derivation of the asymptotic distribution of
√
n
h ¡

s
¡
p,Σ−1Ḡn

¢
− s (p,Θ)

¢ ³
Σ̂n − Σ

´
Σ−1p

i0
.

Lemmas A.3 and A.4 show that {G,Gi : i ∈ N} are i.i.d. non-empty compact valued SVRVs. Observe that

by the assumptions of Theorem 5.3

R
kGk2H dµ ≤ E

³
|yL|2

´
+E

³
|yU |2

´
+

dP
k=1

h
E
³
|xkyL|2

´
+E

³
|xkyU |2

´i
<∞,

and E
³
|x|4

´
<∞. Using the same argument as in the proof of Theorem 3.1.8 of Li et al. (2002), it follows

by the Central Limit Theorem for C (S)-valued random variables of Jain & Marcus (1975) that

(A.6)
√
n

"
s
¡
p,Σ−1Ḡn

¢
− s (p,Θ)³

Σ̂n − Σ
´
Σ−1p

#
d→
µ

z (p)
u (p)

¶
,

where for each p ∈ S, (z (p) u (p)) is a d+ 2 dimensional normal random vector with

E [z (p)] = 0,

E [u (p)] = 0.

Regarding the covariance kernel, denote by
©
ρij
ª
, i, j = 1, . . . , d+ 1 the elements of Σ−1. Then,

E

"µ
z (p)
u (p)

¶µ
z (p)
u (p)

¶0#
=

"
E
h¡
s
¡
p,Σ−1G

¢¢2i−E
£
s
¡
p,Σ−1G

¢¤2
κ0p,p

κp,p Vp,p

#

where Vp,p = E
h¡
(Πx − Σ)Σ−1p

¢ ¡
(Πx − Σ)Σ−1p

¢0i
and

(A.7) Σ̂n =
1

n

nP
i=1
Πxi and Πxi ≡

⎡⎢⎢⎢⎣
1 x1i . . . xdi
x1i x21i . . . x1ixdi
...

...
. . .

...
xdi x1ixdi . . . x2di

⎤⎥⎥⎥⎦ ,
and κp,p is a (d+ 1)× 1 vector with first element

κ1,(p,p) =
d+1P
k=1

d+1P
i=2

£¡
E
£
xi−1s

¡
p,Σ−1G

¢¤
− s (p,Θ)E (xi−1)

¢¤
ρikpk.

and j−th element (j = 2, . . . , d+ 1)

κj,(p,p) =

∙¡
E
£
xj−1s

¡
p,Σ−1G

¢¤
− s (p,Θ)E (xj−1)

¢ d+1P
l=1

ρ1lpl

+
d+1P
l=1

d+1P
i=2

¡
E
£
xj−1xi−1s

¡
p,Σ−1G

¢¤
− s (p,Θ)E (xj−1xi−1)

¢
ρilpl

¸
.

46



with xj the j−th element of x.
For the next step in this proof it is also useful to observe that

E [z (p) z (q)] = E
£
s
¡
p,Σ−1G

¢
s
¡
q,Σ−1G

¢¤
−E

£
s
¡
p,Σ−1G

¢¤
E
£
s
¡
q,Σ−1G

¢¤
,

(A.8) E [u (p)u (q)] = Vp,q = E
h¡
(Πx − Σ)Σ−1p

¢ ¡
(Πx − Σ)Σ−1q

¢0i
and

E [z (p)u (q)] = κp,q,

where κp,q is a (d+ 1)× 1 vector with 1−st and j−th element (j = 2, . . . , d+ 1) given respectively by

(A.9)

κ1,(p,q) =
d+1P
k=1

d+1P
i=2

£¡
E
£
xi−1s

¡
p,Σ−1G

¢¤
− s (p,Θ)E (xi−1)

¢¤
ρikqk,

κj,(p,q) =

∙¡
E
£
xj−1s

¡
p,Σ−1G

¢¤
− s (p,Θ)E (xj−1)

¢ d+1P
l=1

ρ1lql

+
d+1P
l=1

d+1P
i=2

¡
E
£
xj−1xi−1s

¡
p,Σ−1G

¢¤
− s (p,Θ)E (xj−1xi−1)

¢
ρilql

¸
.

Step 3. Derivation of the asymptotic distribution of
√
n
h
s
¡
p,Σ−1Ḡn

¢
− s

³
p,Σ−1Σ̂nΘ

´i
.

Observe that
√
n
h
s
¡
p,Σ−1Ḡn

¢
− s

³
p,Σ−1Σ̂nΘ

´i
=
√
n
n£
s
¡
p,Σ−1Ḡn

¢
− s (p,Θ)

¤
−
h
s
³
p,Σ−1Σ̂nΘ

´
− s (p,Θ)

io
.

Recall that by Lemma A.7, since x has an absolutely continuous distribution with respect to Lebesgue
measure on <d, Θ is a strictly convex set. Hence, its support set in the direction p ∈ S is a singleton given
by

ξp = Θ ∩
©
ϑ ∈ <d+1 : hϑ,pi = s (p,Θ)

ª
.

By Corollary 1.7.3 of Schneider (1993) it follows that s (p,Θ) is (Fréchet) differentiable at p∈ <d+1\{0}
with gradient equal to ξp, and therefore the Functional Delta Method (Van der Vaart (2000), Theorem 20.8)
implies that

√
n
h
s
³
p,Σ−1Σ̂nΘ

´
− s (p,Θ)

i
=
√
n
h
s
³
Σ̂nΣ

−1p,Θ
´
− s (p,Θ)

i
=
√
n
h
s
³
p+

³
Σ̂n − Σ

´
Σ−1p,Θ

´
− s (p,Θ)

i
=

s
³
p+ 1√

n

h√
n
³
Σ̂n − Σ

´
Σ−1p

i
,Θ
´
− s (p,Θ)

1√
n

d→
­
ξp,u (p)

®
,

where u (p) was given in equation (A.6). It then follows by another application of the Functional Delta
Method that √

n
h
s
¡
p,Σ−1Ḡn

¢
− s

³
p,Σ−1Σ̂nΘ

´i
d→ z (p)−

­
ξp,u (p)

®
,

with z (p) and u (p) given in equation (A.6) are such that

E
£
z (p)−

­
ξp,u (p)

®¤
= 0
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and

E
£¡
z (p)−

­
ξp,u (p)

®¢ ¡
z (q)−

­
ξq,u (q)

®¢¤
= E

£
s
¡
p,Σ−1G

¢
s
¡
q,Σ−1G

¢¤
−E

£
s
¡
p,Σ−1G

¢¤
E
£
s
¡
q,Σ−1G

¢¤
−
­
ξp,κq,p

®
−
D
κp,q, ξq

E
+
­
ξp, Vp,qξq

®
,

where Vp,q and κp,q were given in (A.8)-(A.9).
Finally, by Hörmander’s Embedding Theorem,

√
nH

³
Σ−1Ḡn,Σ

−1Σ̂nΘ
´
=
√
n sup
p:kpk=1

¯̄̄
s
¡
p,Σ−1Ḡn

¢
− s

³
p,Σ−1Σ̂nΘ

´¯̄̄
.

Letting v (p) ≡ z (p)−
­
ξp,u (p)

®
for each p ∈ S, the result follows by the continuous mapping theorem.

(ii) The fact that Σ is of full rank implies that Σ−1p 6= 0 for each p ∈ S. Let

(A.10) f (xi) =

*
p,Σ−1

⎡⎣ 1

xi

⎤⎦+ .

Then

s
¡
p,Σ−1Gi

¢
= sup

⎧⎨⎩
*
p,Σ−1

⎡⎣ yi

xi · yi

⎤⎦+ :
⎡⎣ yi

xi · yi

⎤⎦ ∈
⎛⎝⎡⎣ yi

xi · yi

⎤⎦ , yi (ω) ∈ Yi (ω)

⎞⎠⎫⎬⎭
= yiLI (f (xi) < 0) f (xi) + yiU I (f (xi) ≥ 0) f (xi) ,

where I (·) is the indicator function of the event in brackets. Because s (p,Θ) is Fréchet differentiable for

any p ∈ <d+1\ {0} with gradient ξp, it follows that for each p ∈ S,

√
n
h
s
¡
p,Σ−1Ḡn

¢
− s

³
p,Σ−1Σ̂nΘ

´i
=
√
n
h
s
¡
p,Σ−1Ḡn

¢
− s (p,Θ) + s (p,Θ)− s

³
p,Σ−1Σ̂nΘ

´i
=
√
n
£
s
¡
p,Σ−1Ḡn

¢
− s (p,Θ)

¤
−
D
ξp,
√
n
³
Σ̂n − Σ

´
Σ−1p

E
+ op (1)

=
√
n

∙
1

n

nP
i=1

s
¡
p,Σ−1Gi

¢
− s (p,Θ)

¸
− 1

n

nP
i=1

√
n
­
ξp, (Πxi − Σ)Σ−1p

®
+ op (1)

=
√
n
1

n

nP
i=1

£
s
¡
p,Σ−1Gi

¢
− s (p,Θ)−

­
ξp, (Πxi − Σ)Σ−1p

®¤
+ op (1) ,

where Πxi and f (xi) were defined in (A.7) and (A.10), and s
¡
p,Σ−1Gi

¢
− s (p,Θ)−

­
ξp, (Πxi − Σ)Σ−1p

®
is a sequence of i.i.d. C (S)−valued random variables satisfying the conditions of the Central Limit Theorem

of Jain & Marcus (1975) (see also Theorem 3.1.8 of Li et al. (2002)). Hence, for each p ∈ S,

V ar (v(p)) = V ar
¡
s
¡
p,Σ−1Gi

¢
− s (p,Θ)−

­
ξp, (Πxi − Σ)Σ−1p

®¢
= V ar

¡
yiLI (f (xi) < 0) f (xi) + yiU I (f (xi) ≥ 0) f (xi)−

­
ξp,ΠxiΣ

−1p
®¢
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It follows from the Law of Iterated Expectations that

V ar (v(p)) ≥ E
£
V ar

¡
yiLI (f (xi) < 0) f (xi) + yiU I (f (xi) ≥ 0) f (xi)−

­
ξp,ΠxiΣ

−1p
®¯̄
xi
¢¤

= E
h
(f (xi))

2 I (f (xi) < 0)V ar (yiL|xi) + (f (xi))2 I (f (xi) ≥ 0)V ar (yiU |xi)
i

≥ σ2E
h
(f (xi))

2 I (f (xi) < 0) + (f (xi))2 I (f (xi) ≥ 0)
i

= σ2E

⎡⎢⎣*p,Σ−1
⎡⎣ 1

xi

⎤⎦+2
⎤⎥⎦ = σ2

­
p,Σ−1ΣΣ−1p

®
> 0 for each p ∈ S,

where the second inequality follows because by assumption V ar (yL|x) , V ar (yU |x) ≥ σ2 > 0 P (x)− a.s.,

and the last equality follows because Σ is of full rank by assumption. Hence V ar (v(p)) > 0 for each p ∈ S,

and by the same argument as in the proof of Proposition 3.1 the law of kvkC(S) is absolutely continuous with

respect to Lebesgue measure on <.

A.3.4 Proof of Corollary 5.4

Proof. By triangle inequality,

√
mn

¯̄̄
H
³
Σ̂−1n Ḡmn ,Σ

−1E [G]
´
−H

¡
Σ−1Ḡmn ,Σ

−1E [G]
¢¯̄̄

≤ √
mnH

³
Σ̂−1n Ḡmn ,Σ

−1Ḡmn

´
≤ √mn

°°°Σ̂−1n − Σ−1°°° sup
gmn∈Ḡmn

kgmnk

=
√
mn Op

³
n−

1
2

´
sup

p:kpk=1

¯̄̄̄
1

mn

mnP
i=1

s (p, Gi)

¯̄̄̄
= op (1) ,

where the last equality follows because the G0is are integrably bounded. The result then follows directly

from Theorem 2.3. Absolute continuity with respect to Lebesgue measure on < of the law of kvkC(S) follows

by the same argument as in the proof of Theorem 5.3-(ii).

Lemma A.8 Let Θ be defined as in (A.3) and Θ̂n = Σ̂−1n
1

n

nL
i=1

Gi. Let the Assumptions of Theorem 5.2

and Assumption 5.5 be satisfied. Let ξp = Θ ∩
©
ϑ ∈ <d+1 : hϑ,pi = s (p,Θ)

ª
, p ∈ S, and denote by

Ξ̂n,p = Θ̂n ∩
n
ϑ ∈ <d+1 : hϑ,pi = s

³
p, Θ̂n

´o
, p ∈ S. Then H

³
Ξ̂n,p,

©
ξp
ª´ a.s.→ 0.

Proof. Theorem 5.2 guarantees thatH
³
Θ̂n,Θ

´
a.s.→ 0. This implies that s

³
p, Θ̂n

´
a.s.→ s (p,Θ) uniformly

in p ∈ S, and therefore
n
ϑ ∈ <d+1 : hϑ,pi = s

³
p, Θ̂n

´o
converges to

©
ϑ ∈ <d+1 : hϑ,pi = s (p,Θ)

ª
with

respect to the Hausdorff distance for each p ∈ S. Observe that Ξ̂n,p 6= ∅ for each n ∈ N and each p ∈ S.

Moreover, if Ξ̂n,p contains a convergent subsequence ξ̂njp, j ∈ N, then ξ̂njp
a.s.→ ξp. Such a convergent

subsequence almost surely exists. This is because any sequence ξ̂np ∈ Ξ̂n,p is a sequence in Θ̂n. The

sequence of sets Θ̂n converges to the compact set Θ, and therefore ξ̂np is almost surely a bounded sequence.
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Hence ξ̂np almost surely contains a convergent subsequence. The result then follows from Theorem 1.8.7 in

Schneider (1993).

A.3.5 Proof of Proposition 5.5

Proof. By a similar argument to the one in Step 1 of the proof of Theorem 5.3, since Σ̂−1∗n is a consistent

estimator of Σ−1,

√
nH

µ
Σ̂−1∗n

1

n

nL
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G∗i , Θ̂n

¶
A
=
√
nH

µ
Σ−1

1

n

nL
i=1

G∗i ,Σ
−1Σ̂∗nΘ̂n

¶
,

so that by Hörmander’s Embedding Theorem

r∗n
A
=
√
n

°°°° 1n nP
i=1

s
¡
·,Σ−1G∗i

¢
− s

³
·,Σ−1Σ̂∗nΘ̂n

´°°°°
C(S)

.

Observe that

√
n

∙
1

n

nP
i=1

s
¡
p,Σ−1G∗i

¢
− s

³
p,Σ−1Σ̂∗nΘ̂n

´¸
=
√
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µ∙
1

n
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¢
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s
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´
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s
¡
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¢¸¶
.

Recalling that Θ̂n = Σ̂−1n Ḡn, where Ḡn =
1
n

Ln
i=1Gi, we get that

s
³
p,Σ−1Σ̂∗nΘ̂n

´
− 1

n

nP
i=1

s
¡
p,Σ−1Gi

¢
= s

³
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³
Σ̂∗n − Σ̂n

´
Σ−1p,Σ−1Ḡn

´
− s

¡
p,Σ−1Ḡn

¢
.

By Theorem 3.3.1 and the discussion on p. 160 of Schneider (1993), any non-empty, convex and compact

subset of <d+1 can be approximated arbitrarily accurately by a non-empty, strictly convex and compact sub-

set of <d+1. Hence, for any εn = op

³
1√
n

´
we can find a sequence of non-empty, strictly convex and compact

sets Γ̄n such that H
¡
Σ−1Ḡn,Σ

−1Γ̄n
¢
< εn = op

³
1√
n

´
, which implies that

¯̄
s
¡
p,Σ−1Ḡn

¢
− s

¡
p,Σ−1Γ̄n

¢¯̄
=

op

³
1√
n

´
uniformly in p ∈ <d+1. Under the assumptions of Theorem 5.3, s (p,Θ) is Fréchet differentiable at

p ∈ <d+1\ {0} with gradient equal to ξp. Similarly, because Σ−1Γ̄n is a strictly convex set, s
¡
p,Σ−1Γ̄n

¢
is

Fréchet differentiable at p ∈ <d+1\ {0} with gradient equal to ς̄n,p. Hence
√
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¶
+
√
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¤¯̄̄
+ op (1)

= op (1) ,
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where the last inequality follows from the fact that s
¡
p,Σ−1Γ̄n

¢
and s (p,Θ) are Fréchet differentiable for

any p ∈ <d+1\ {0} . The last equality follows because
³
ΣΣ̂−1n

³
Σ̂∗n − Σ̂n

´
Σ−1p

´
= Op

³
1√
n

´
and because

by an argument similar to the one used to prove Lemma A.8, ς̄n,p − ξp = op (1) .

By Theorem 2.4 of Giné & Zinn (1990) and standard arguments
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´
Σ−1p

⎤⎦ d→

⎛⎝ z (p)

u (p)

⎞⎠
where (z (p) u (p)) is the d+2 dimensional normal random vector in (A.6). Therefore an application of the

Delta Method for the bootstrap (Van der Waart & Wellner (2000), Theorem 3.9.11) implies that
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s
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d→ z (p)−

­
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®
.

By the continuous mapping theorem

r∗n
d→ kvkC(S) ,

where v (p) ≡ z (p) −
­
ξp,u (p)

®
for each p ∈ S. It then follows by the same argument as in the proof of

Proposition 3.1 that since V ar (v (p)) > 0 for each p ∈ S, the critical values of the simulated distribution

consistently estimate the critical values of kvkC(S) , that is ĉBLPαn = cBLPα + op (1) .

A.3.6 Proof of Proposition 5.6

Proof. For each p,q ∈ S, by Lemma A.8 ξ̂p
p→ ξp, and by Theorem 5.2
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Next we want to show that
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Observe that

1

n

nP
i=1

s
³
p, Σ̂−1n Gi

´
s
³
q, Σ̂−1n Gi

´
−E

£
s
¡
p,Σ−1G

¢
s
¡
q,Σ−1G

¢¤
=

1

n

nP
i=1

s
³
p, Σ̂−1n Gi

´
s
³
q, Σ̂−1n Gi

´
− 1

n

nP
i=1

s
¡
p,Σ−1Gi

¢
s
¡
q,Σ−1Gi

¢
(A.11)
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By the Strong Law of Large Numbers in Banach spaces of Mourier (1955),
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so that we can concentrate on the first two terms in (A.11). Observe that given any two sets A and B, if

A ⊂ B then s (p, A) ≤ s (p, B) . Moreover,
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where the third inequality follows because for any matrix Π of proper dimensions, by the Cauchy-Schwartz

inequality

|s (p,ΠGi)| ≤ kpk kΠGikH ≤ kpk kΠk kGikH ;

the second to last equality follows because kpk = kqk = 1; and the last equality follows by Slutsky Theorem,

since 1
n

nP
i=1

kGik2H
p→ E

h
kGik2H

i
by the Strong Law of Large Numbers in Banach spaces and E

h
kGik2H

i
<∞

by assumption,
°°°Σ̂−1n °°° p→

°°Σ−1°° <∞ by assumption, and
°°°Σ̂−1n − Σ−1°°° = op (1).

A similar argument guarantees that κ̂p,q
p→ κp,q. The fact that V̂p,q

p→ Vp,q follows by standard

arguments. It then follows by the same argument as in the proof of Proposition 3.1 that since V ar (v (p)) > 0

for each p ∈ S, the critical values of the simulated distribution consistently estimate the critical values of

kvkC(S) .
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