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Abstract

A model selection procedure based on a general criterion function, with an example of the

Kullback-Leibler Information Criterion (KLIC) using quasi-likelihood functions, is considered

for dynamic non-nested models. We propose a robust test which generalizes Lien and Vuong’s

(1987) test with a Heteroscadasticity/Autocorrelation Consistent (HAC) variance estimator.

We use the fixed-b asymptotics developed in Kiefer and Vogelsang (2005) to improve the asymp-

totic approximation to the sampling distribution of the test statistic. The fixed-b approach is

compared with a bootstrap method and the standard normal approximation in Monte Carlo

simulations. The fixed-b asymptotics and the bootstrap method are found to be markedly

superior to the standard normal approximation. An empirical application for foreign exchange

rate forecasting models is presented.

JEL classification: C12, C14, C15, C52

Keywords: Kullback-Leibler Information Criterion (KLIC), quasi-likelihood,

dynamic models, fixed-b asymptotics, bootstrap method, Monte Carlo simulation.

∗hc269@cornell.edu. 404 Uris Hall, Department of Economics, Cornell University, Ithaca, NY, 14850, USA.
†nmk1@cornell.edu. 490 Uris Hall, Department of Economics and Department of Statistical Science, Cornell

University, Ithaca, NY, 14850, USA.

1



1 Introduction

Since Cox (1961, 1962), many methods for distinguishing separate families of hypotheses for model

selection have been developed. Model selection is quite different from nested hypothesis testing.

The null hypothesis in nested hypothesis testing is well defined but the alternative hypothesis can

be arbitrarily close to, though different from, the null, and therefore difficult to detect. Further,

these close alternatives may not be importantly different from the null in any practical sense. In

contrast, non-nested hypothesis testing has clear separation between candidate models but presents

the difficulty of choosing a sensible null hypothesis. Cox used centered log likelihood ratios between

two non-nested models under the null hypothesis that one of the models is true. A test for non-

nested linear regression models was developed in Pesaran (1974). Along the tradition of the nesting

approach of Atkinson (1970) which sets up a general model that contains the candidate models,

the J test of Davidson and MacKinnon (1981) is popular (McAleer (1995)). See Gourieroux and

Monfort (1999) for a summary.

There is a different approach that does not assume the true model is among the candidates.

Vuong (1989) considered a selection criterion based on the difference in the Kullback-Leibler In-

formation Criterion (KLIC, Kullback and Leibler (1951)) between the (unknown) true model and

the competing models, and the null hypothesis is that two models are equivalent in KLIC. This

approach has the advantage of treating two competing models symmetrically and it does not re-

quire the specification of a nesting model. Vuong’s approach is sometimes called model selection in

contrast to non-nested hypothesis testing (Davidson and MacKinnon (2004)). It has recently been

extended for dynamic models using different criterion functions (see Rivers and Vuong (2002)).

In non-nested hypothesis testing, the usual asymptotic approximation to the distribution of the

J test statistic is known to be poor even with large samples (Godfrey and Pesaran (1983), McAleer

(1995)) and the bootstrap is an attractive alternative in these cases (see Fan and Li (1995), Godfrey

(1998), Davidson and MacKinnon (2002), and Choi and Kiefer (2005)). But in model selection, less

is known about the performance of the asymptotic approximations of the Vuong (1989) and Rivers

and Vuong (2002) test.
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This paper proposes a generalized model selection test for dynamic models using a Heteroscadas-

ticity/Autocorrelation Consistent (HAC) estimator of the long run variance as in Rivers and Vuong

(2002), and using Kiefer-Vogelsang-Bunzel (KVB) fixed-b asymptotics (Kiefer, Vogelsang, and Bun-

zel (2000), Kiefer and Vogelsang (2002a,b, 2005)) to approximate the finite sample distribution of

our test statistic. Our approach is applicable to general criterion functions and robust to un-

known (nonparametric) serial correlation in the data. Specifically, we represent the idea using a

model selection criterion based on quasi-likelihood functions and the resulting test statistic forms a

difference-in-KLIC measure. Many general criterion functions can be interpreted as quasi-likelihood

functions. The quasi-likelihood functions were used for Monte Carlo study of performance of our

test statistic. Our method is compared with a bootstrap method and the conventional standard

normal approximation and shown to be remarkably superior to the standard normal approximation.

We also considered a prediction accuracy measure for an empirical application. Our approach

was used for two competing exchange rate forecasting models. In the forecasting model comparison

literature, a bootstrap method is also used by White (2000). White considers a “benchmark”

model and a group of alternative models. The null is that none of the other models dominates

the benchmark. The differences between the forecast errors from the benchmark model and all

alternatives are arranged in a vector. Then, the test is that the maximum of these differences is

negative, so no model dominates the benchmark. The distribution of this maximum is obtained

by the stationary bootstrap of Politis and Romano (1994). Thus, this test is like ours, but the

null is different, favoring a benchmark model, and of course there is no HAC estimator or fixed-b

approximation. Hansen (2005b) also considers comparing a benchmark model with a number of

alternatives. He tests the superiority of the benchmark model and uses the stationary bootstrap

methods as in White (2000). Hansen (2005b) differs from White (2000) in that he studentizes

the statistic before taking the maximum. White is essentially using the null that is closest to the

alternative. Hansen estimates the null mean, rather than using zero.

Instead of testing a superiority of prediction accuracy, the idea of testing equivalence in a

criterion function is used in Diebold and Mariano (1995) (DM test). The DM test compares forecast

accuracy of two competing models, where the accuracy is measured by some criterion function (such
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as a goodness of fit measure) and the null is that the forecasts are equally accurate. It is similar

to Vuong (1989), except the likelihood is not used, rather a fairly general function of the fit. The

variance estimator in the DM test is also a HAC estimator. Harvey, Leybourne, and Newbold

(1997) attempted to improve finite sample performance of the DM test by using a correction factor

to the DM test statistic (MDM (Modified DM) test).

Our approach is applicable to the DM test. An empirical application for the DM test is presented

for testing equality of predictive accuracy of the foreign exchange rate forecasting models considered

in Diebold and Mariano (1995) using USD/EURO and YEN/USD exchange rate data. Although

we aim to improve the finite sample properties of the DM test statistic, our approach is different

from the MDM test in two aspects. First, our test considers a better approximation to the whole

distribution of the test statistic whereas the MDM test considers the scaled normal approximations

only. Second, our approximation depends on the kernel function and bandwidth used in a HAC

estimator whereas MDM is derived for a particular kernel function (the uniform kernel) and a

bandwidth (a forecasting horizon) used in the DM test.

2 KVB fixed-b asymptotics

HAC variance estimators are used frequently in econometrics for test statistics involving serially

correlated observations. The standard (normal) approximation to the sampling distributions of

HAC estimators assumes that the long-run variance is known and equal to its estimated value.

The resulting distribution does not depend on the kernel or bandwidth used in variance estimation

and is known to give a poor approximation to the sampling distribution, especially for size calcula-

tion. Kiefer, Vogelsang, and Bunzel (2000), Kiefer and Vogelsang (2002a,b, 2005) proposed a new

asymptotic approximation to the sampling distribution of HAC estimator (and test statistic). They

proposed to generate the approximate distribution by fixing the ratio M/T = b > 0 as T goes to

infinity. (In the conventional approach, b converges to zero.) Under this new set-up, the limit of

HAC estimator does not converge to the long-run variance but to the long-run variance multiplied

by a functional of a Brownian bridge. This approach is called the ‘fixed-b’ approach in comparison

4



to the conventional ‘small-b’ approach.

Let V̂T be a HAC estimator (used in the denominator of a test statistic) given by

V̂T =
T−1∑

j=1−T

K

(
j

M

)
γ̂(j), (2.1)

where K (x) is the kernel with support [−1, 1], T is the sample size, M is the number of lags or the

truncation number, and

γ̂(j) =
1
T

T∑
t=j+1

(ût − ū)(ût−j − ū), (2.2)

where {ût} is the estimated values of the stochastic process of interest, for example, residuals, scores,

or other criteria used in a test statistic, and ū is the sample mean of ût (Often we have ū = 0 as

in residuals from linear regression with a constant term or scores). The limiting distribution of V̂T

under the fixed-b asymptotics assumption M/T = b as T → ∞ depends on the kernel function

K(x) and the bandwidth b. When the functional central limit theorem (FCLT) holds for the partial

sum, i.e.

T−1/2

[rT ]∑
t=1

ut ⇒ λW (r), (2.3)

where λ2 =
∑∞

j=−∞ γ(j) and W (r) is the standard Brownian motion defined on C[0, 1], and when

the Bartlett (triangular) kernel is used, we have

V̂T ⇒ 2λ2

b

[∫ 1

0

W̃ (r)2 dr −
∫ 1−b

0

W̃ (r + b)W̃ (r) dr

]
, (2.4)

where W̃ (r) is a Brownian bridge defined as W̃ (r) = W (r)− rW (1), under the assumption M/T =

b > 0 as T → ∞. In testing applications, λ2 is cancelled out with the asymptotic variance of the

numerator of a test statistic making the test statistic pivotal.

Conditions for the FCLT are slightly weaker than the assumptions required for the consistency

of HAC estimator. A discussion of the assumptions imposed for the FCLT is given in Kiefer and

Vogelsang (2005). Cases with different kernel functions are also in Kiefer and Vogelsang (2005).

A simple example is in Choi and Kiefer (2005). We assume a FCLT applies to the related partial
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sums in this paper.

3 Dynamic Model Selection Testing

3.1 The test statistic and limiting distributions

Let p1(z1, θ1) and p2(z2, θ2) be two models to compare, and (zi, θi) are the variables and the

parameter vector used in the model i = 1, 2.

Assumption 3.1 The stochastic process zi = {zit}∞t=−∞ is weakly stationary for i = 1, 2.

We consider {z1t, z2t}T
t=1 are the available data used for the model comparison (and estimation

of the parameter vectors).

Assumption 3.2 For i = 1, 2, the estimator θ̂i of θi converges to a fixed vector θ∗i in probability,

i.e.

θ̂i
p→ θ∗i . (3.1.1)

The limits θ∗i (i = 1, 2) are called pseudo-true values when the models are misspecified. This

high-level assumption can itself be based on assumptions about the objective function (for example

identification) and the parameter space (for example compactness in the case of an extremum esti-

mator). We assume 3.2 directly, noting that there are many routes to the result such as (quasi) max-

imum likelihood estimation (MLE), generalized method of moments (GMM), minimum divergence

estimators (MDE), generalized empirical likelihood (GEL), and other parametric, semiparametric

methods.

We consider a model selection procedure that compares Qi (of a criterion function) from model

i = 1, 2, then chooses the model that has the smallest Qi. We assume that Qi satisfies the following

assumption.

Assumption 3.3 (Weak law of large numbers) Let the value of the model selection criterion

at pseudo-true values θ∗i be Qi = Qi(zi, θ
∗
i ) for models i = 1, 2. We have a function Q̂iT =
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QiT ({zit}T
t=1, θ̂i) of the data available that satisfies

Qi = plim
T→∞

Q̂iT . (3.1.2)

Denoting Q̂T
it = Qi(t, {zis}T

s=1, θ̂i), we have

plim
T→∞

T∑
t=1

Q̂T
it/T

p→ Qi,

and when Q1 = Q2, we also have an approximation of
√

T (Q̂2T − Q̂1T ) given by

[√
T (Q̂2T − Q̂1T ) −

T∑
t=1

(Q̂T
2t − Q̂T

1t)/
√

T

]
p→ 0. (3.1.3)

Assumption 3.3 allows us to calculate the asymptotic variance of (Q̂2T − Q̂1T ) using {Q̂T
2t −

Q̂T
1t}T

t=1 under Q1 = Q2. This assumption is satisfied in many model selection criterion including

lack of fit measures such as the mean squared error (Q̂T
it = (yit − ŷit)2) or mean absolute error

(Q̂T
it = |yit − ŷit|). When the criterion function is a quasi-likelihood, we use first order Taylor

expansion of Q̂iT = ln σ̂2
i around the pseudo-true value (σ∗

i )2 and get

Q̂T
it =

[
ln(σ∗

i )2 +
û2

it

(σ∗
i )2

− 1
]

, (3.1.4)

where σ̂2
i =

∑T
t=1 û2

it/T and ûit are residuals from the quasi-maximum likelihood estimation

(QMLE) of the models i = 1, 2. This approach was used in Lien and Vuong (1987).

We introduce an additional assumption on Q̂T
it for asymptotic approximation of the sampling

distribution of our test statistic to be described later.

Assumption 3.4 (Functional Central Limit Theorem) Let {v̂t}T
t=1 = {Q̂T

2t − Q̂T
1t}T

t=1. We

have

T−1/2

[rT ]∑
t=1

v̂t ⇒ λW (r), (3.1.5)

where W (r) is a standard Brownian motion defined on C[0, 1] and λ2 is the long run variance of

7



{v̂t}.

Assumption 3.4 holds under a variety of regularity conditions and permits conditional het-

eroscadasticity in {v̂t} but rules out most form of unconditional heteroscadasticity. A set of suffi-

cient conditions can be found in Phillips and Durlauf (1986) which require that the process {v̂t} is

weakly stationary, satisfies α-mixing conditions, and each element v̂t has a finite moment greater

than two. The condition holds for stationary and invertible ARMA processes with innovations with

finite fourth moments (Hall and Heyde (1980), see Kiefer, Vogelsang, and Bunzel (2000) for further

discussion).

Our null hypothesis is that the competing models are asymptotically “equal”, i.e.

Q1 − Q2 = 0, (3.1.6)

and the test statistic is given by

τT =
∑T

t=1(Q̂
T
2t − Q̂T

1t)/
√

T√
V̂T

, (3.1.7)

where V̂T is the HAC variance estimator of the serially correlated process {v̂t} = {Q̂T
2t − Q̂T

1t} given

by

V̂T =
T−1∑

j=1−T

K

(
j

M

)
γ̂(j), (3.1.8)

where K (x) is the kernel function, M is the bandwidth used in the kernel estimation and the

autocovariance function estimator γ̂(j) is given by

γ̂(j) =
1
T

T∑
t=j+1

(v̂t − v̄)(v̂t−j − v̄), (3.1.9)

where

v̄ =
1
T

T∑
t=1

v̂t. (3.1.10)
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This approach does not specify a correct model and treats two competing models symmetrically.

Also it is directional, under an alternative, favoring the model 1 when τT
a.s.→ +∞ and vice versa,

if we exclude the cases where Qi is not defined under the alternative.

Theorem 3.5 Under the assumption 3.1−3.4, the limiting distribution of the test statistic τT under

M/T → b > 0 is given by the KVB fixed-b asymptotics. For example, with the Bartlett kernel and

for a bandwidth M/T → b ∈ (0, 1], we have

τT
d−→ N (0, 1)√

2
b

[∫ 1

0
W̃ (r)2 dr − ∫ 1−b

0
W̃ (r + b)W̃ (r) dr

] . (3.1.11)

Proof. The result directly follows from Theorem 1 in Kiefer and Vogelsang (2005).

Different kernels give different denominators in the limiting distribution, thus our approximating

distribution depends both on the kernel and bandwidths used.

3.2 Quasi-likelihood criterion

In general, the selection criterion Qi should also be the objective function used in estimation, but

this is not necessary. See Rivers and Vuong (2002) for a discussion of using a different model

selection criterion than the estimation criterion. See also Pötscher (1991) and Hansen (2005a) for

how a model selection step can affect the inference for the models.

We consider the quasi-likelihood function for both the estimation and selection criteria as an

example (Many other estimation methods have QMLE interpretation). The quasi-likelihood we

specify is the likelihood under normality with independent observations (Heyde (1997)). The quasi-

likelihood method leads to consistent parameter estimation under certain conditions (for example,

OLS with exogenous regressors and serially correlated errors is consistent). When it is not con-

sistent, its probability limits are pseudo-true values. Using quasi-likelihood also gives our model

selection criterion a KLIC interpretation. See Vuong (1989).

We define the model selection criterion QiT = −2 ln pi(θi). The test statistic τT is based on the
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quasi-log likelihood ratio

ln p1(θ̂1) − ln p2(θ̂2) =
T

2
ln(σ̂2

2/σ̂2
1), (3.2.1)

and given by

τT =
√

T ln(σ̂2
2/σ̂2

1)√
V̂T

, (3.2.2)

The HAC variance estimator V̂T for

v̂t = Q̂T
2t − Q̂T

1t (3.2.3)

=
[
ln(σ∗

2)2 − ln(σ∗
1)2 +

û2
2t

(σ∗
2)2

− û2
1t

(σ∗
1)2

]
, (3.2.4)

is given by plugging v̂t into eq. (3.1.9) and using the estimated σ̂2
i for (σ∗

i )2 in eq. (3.2.4). The

sampling distribution of the test statistic τT is approximated by different fixed-b asymptotic ap-

proximations depending on the kernel function and the bandwidth.

If the data are i.i.d., this test can be implemented easily (see Lien and Vuong (1987) and Vuong

(1989)). Our approach is similar to Lien and Vuong (1987), but we consider serial correlation in

v̂t. Our approach includes Lien and Vuong (1987) as a special case M = 1. It should be noted that

our quasi-likelihood function is applicable to nonlinear models, and our approach in general can be

used for any model selection criteria satisfying the assumption 3.3 such as the lack of fit criterion,

mean squared prediction error (used in Rivers and Vuong (2002)) or mean absolute error (used

in Diebold and Mariano (1995)). Our test statistic is also similar to the one considered in Rivers

and Vuong (2002). But we use a different approximate distribution given by the KVB approach.

We use the quasi-likelihood criterion and show by Monte Carlo simulations that the KVB fixed-b

approach gives a superior approximation to the standard normal approximation based on the usual

HAC asymptotics.
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3.3 The bootstrap method

Bootstrap methods are popular alternatives to the conventional asymptotic approximation in econo-

metrics. In the non-nested hypothesis context, the bootstrap is known to improve the approximation

of the sampling distributions of test statistics. See Fan and Li (1995), Godfrey (1998), Davidson

and MacKinnon (2002), and Choi and Kiefer (2005).

We used a bootstrap method for our test statistic in a similar way to the method in Hall and

Horowitz (1996) and White (2000). In the fixed-b asymptotics, the leading term in the asymptotic

expansion is not normal, and the validity of the bootstrap is an open question. Recently, Gonçalves

and Vogelsang (2006) showed that the “naive” block bootstrap has the same limiting distribution as

the fixed-b asymptotics. The argument proceeds by writing the test statistic and the bootstrap test

statistic as the same functions of the data and the bootstrap data respectively. Using appropriate

assumptions on the bootstrap data and the continuous mapping theorem gives the result that the

limit distributions are identical. Showing that the resulting distribution is an improvement on the

normal approximation is more difficult. Gonçalves and Vogelsang (2006) are able to obtain this

result for a special case (estimation of a normal mean). See also Jansson (2004) who shows that the

fixed-b asymptotics can improve on the normal approximation in terms of rate of error in rejection

probability (ERP). Our simulation results indicate that the bootstrap is practically useful in our

settings.

Our null hypothesis does not assume a specific form of the true model, therefore we can not use

the explanatory variables as given and generate bootstrap samples. This implies that since neither

of the candidate models is correct, we should not bootstrap from one particular model. Instead, we

should bootstrap from the joint empirical distribution of the dependent variable and the explanatory

variables (sampling together (yt, xt) for example). Consequently, when the bootstrap samples are

drawn from the original samples which may happen to be a realization in favor of one model over

the other, the distribution of the bootstrap test statistic will be biased and give inaccurate critical

values. This happens because it is hard to implement the null hypothesis in generating bootstrap

samples in our setting. We correct the bootstrap test statistics using the statistics from the original
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sample as standard in bootstrap literature. We use the quasi-likelihood criterion and the bootstrap

test statistics is given by

tb =

√
T
(
ln(σ̃2

2/σ̃2
1) − C0

)√
ṼT

, (3.3.1)

where σ̃2
1 and σ̃2

2 are the variance estimators calculated with the bootstrap samples, and

C0 = ln
σ̂2

2

σ̂2
1

, (3.3.2)

where σ̂2
1 and σ̂2

2 are variance estimators from the original sample, and ṼT is calculated from eq.

(3.1.8) and (3.1.9) with

ṽt =
[
ũ2

2t

σ̂2
2

− ũ2
1t

σ̂2
1

− D1

]
, (3.3.3)

where

D1 =
σ̃2

2

σ̂2
2

− σ̃2
1

σ̂2
1

. (3.3.4)

We have applied the bootstrap method to our examples in the simulation section of this paper.

Direct (without modification) bootstrap is not recommended in any case. For all examples, we

considered block bootstraps with the block sizes one (the i.i.d. bootstrap) and five.

We also emphasize that a special concern is required for the candidate models with lagged

variables. Since the bootstrap cannot be semi-parametric for the nature of the problem, it is hard

to generate the bootstrap {yt} sequentially. We propose to use non-parametric bootstrap with

{yt, yt−j , xt} , where yt−j is the vector of all the lagged variable used as explanatory variables in

the candidate models and xt is the vector of all the other explanatory variables, and we drop the

first J observation where J is the highest lagged number used. We used this method for our MA(2)

example later in this paper.
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3.4 Linear models: A Curious Result

We consider a special case in which the true model is linear when the quasi-likelihood criterion is

used. The true model is

yt = w′
tδ + x′

tα1 + z′tα2 + ut (t = 1, ..., T ), (3.4.1)

where {ut} is a mean zero weakly stationary process with autocovariance function γ(j), and wt, xt, zt

are weakly stationary and correlated each other. The competing models are

H1 : yt = w′
tδ1 + x′

tβ1 + u1t, (3.4.2)

H2 : yt = w′
tδ2 + z′tβ2 + u2t, (3.4.3)

where t = 1, ..., T (T is the number of observations), wt is the (l × 1) vector of common regressors,

and xt, zt are (k1 × 1) and (k2 × 1) explanatory variables respectively. The parameters (δi, βi, σ
2
i )

are conditional mean and variance parameter vectors for model Hi. As typical for economic data,

wt, xt and zt are serially correlated and the unknown true model’s errors are also serially correlated.

We rule out data generating processes (DGPs) for which the models H1 and H2 are identical (δ1 = δ2

and β1 = β2 = 0 for our example), as in this case there is no real testing problem. Let (δ∗1 , δ∗2) be

the pseudo true values of (δ1, δ2) and (β∗
1 , β∗

2 ) be the pseudo true values of (β1, β2) .

Assumption 3.6 With ξt = (wt, xt, zt) , two processes, {ut} and {ξt} , are independent.

Assumption 3.7 The regressors wt, xt, and zt are serially uncorrelated but possibly correlated

contemporaneously.

Assumption 3.8 Two competing models are equal in quasi-likelihood criterion from the true model,

i.e. plim σ̂2
1 = plim σ̂2

2 .

We have the following theorem under the above assumptions.

Theorem 3.9 Under assumptions 3.6, 3.7 and 3.8, the autocovariance function Cov(Ut, Ut−j) of

Ut = u2
2t − u2

1t is zero for all j �= 0.
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Proof. We have

Ut = u2
2t − u2

1t

= (yt − w′
tδ

∗
2 − z′tβ

∗
2 )2 − (yt − w′

tδ
∗
1 − x′

tβ
∗
1)2

= {w′
t (δ∗1 − δ∗2) + x′

tβ
∗
1 − z′tβ

∗
2} [2yt − {w′

t (δ∗1 + δ∗2) + x′
tβ

∗
1 + z′tβ

∗
2}]

= {w′
t (δ∗1 − δ∗2) + x′

tβ
∗
1 − z′tβ

∗
2} [2 (ut + w′

tδ + x′
tα1 + z′tα2) − {w′

t (δ∗1 + δ∗2) + x′
tβ

∗
1 + z′tβ

∗
2}]

= {w′
t (δ∗1 − δ∗2) + x′

tβ
∗
1 − z′tβ

∗
2} [2ut + w′

t {2δ − (δ∗1 + δ∗2)} + x′
t(2α1 − β∗

1 ) + z′t(2α2 − β∗
2 )]

= 2ut {w′
t (δ∗1 − δ∗2) + x′

tβ
∗
1 − z′tβ

∗
2}

+ {w′
t (δ∗1 − δ∗2) + x′

tβ
∗
1 − z′tβ

∗
2} [w′

t {2δ − (δ∗1 + δ∗2)} + x′
t(2α1 − β∗

1) + z′t(2α2 − β∗
2)] .

Under assumption 3.8 we have

E (Ut) = 0,

therefore

Cov (Ut, Ut−j) = E (Ut, Ut−j) .

If we put

At = {w′
t (δ∗1 − δ∗2) + xtβ

∗
1 − ztβ

∗
2} ,

Bt = {w′
t (δ∗1 − δ∗2) + x′

tβ
∗
1 − z′tβ

∗
2} [w′

t {2δ − (δ∗1 + δ∗2)} + x′
t(2β1 − β∗

1 ) + z′t(2β2 − β∗
2)] ,

we have

E (Ut, Ut−j) = E (2utAt + Bt) (2ut−jAt−j + Bt−j)

= 4E (utut−jAtAt−j) + E (BtBt−j)

= 4γ(j)γA(j) + γB(j), (3.4.4)
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from the independence between ut and At by the assumption 3.6. Assumption 3.7 implies γA(j) = 0

and γB(j) = 0 for all j �= 0. Therefore we have Cov(Ut, Ut−j) = 0 for j �= 0.

Theorem 3.9 implies that under the assumptions 3.6 and 3.8, autocorrelation in ut does not affect

the asymptotic variance of the numerator of our statistic unless the regressors are autocorrelated.

The Monte Carlo simulations supported this.

3.5 Power of the test

For the comparison of two different test statistics, size corrected power is often used. Since we

have proposed different approximations to the distribution of the same test statistic, size corrected

power comparisons are not applicable. To check the finite sample power properties of the fixed-b

approximation, we did the following experiments.

• For different sample sizes, compare the powers as a function of the levels implied by the fixed-

b approximating distributions given a fixed alternative, a kernel function, and a bandwidth.

We considered T = 50, 100, 200.

• For the different sample sizes, compare the local powers given a level, a kernel function, and

a bandwidth.

• For different kernel functions, compare the local powers given a level, a bandwidth, and

a sample size. We considered five different kernels, Bartlett, Parzen, Quadratic spectral,

Daniell, and Bohman. In the fixed-b approach, different kernels give different approximating

distributions. We calculated the critical values using the formula given in Kiefer and Vogelsang

(2005) for each kernel.

Note that the asymptotic power was not available for the traditional standard normal approx-

imation, since the test statistic’s (traditional) limiting distribution under the local alternative is

identical regardless of the choice of kernels and bandwidths. The fixed-b asymptotics makes possi-

ble comparison of the asymptotic powers for different kernels and bandwidths as shown in Kiefer

and Vogelsang (2005). Our finite sample power comparison showed that the fixed-b asymptotic

15



power comparison can be useful in understanding the actual difference in the finite sample powers

among kernels and bandwidth choices. The simulation in the next section showed that the fixed-b

approximation has reasonable power.

4 Monte Carlo Study

We consider two data generating processes. An MA(2) model, and linear regression with autocor-

related regressors and errors.

4.1 Size Comparison

4.1.1 MA(2) model

Consider the following MA(2) true data generating process

yt = εt + 0.5εt−1 + εt−2 (t = 1, ..., T ), (4.1.1)

where εt ∼ i.i.d. N(0, 1). The competing models are AR models

H1 : yt = α1 + βyt−1 + ε1t, (4.1.2)

H2 : yt = α2 + δyt−2 + ε2t, (4.1.3)

where ε1t and ε2t are assumed to be white noises. The true model has γ(1) = γ(2), and we know

β̂
p−→ γ(1)/γ(0) and δ̂

p−→ γ(2)/γ(0). Thus we have the same pseudo true values, β∗ = δ∗. From this

fact we can easily show

plim σ̂2
1 = plim σ̂2

2 , (4.1.4)

which implies they are equivalent in our quasi-log likelihood criterion function. The variance σ̂2
1

and σ̂2
2 were calculated based on T −1 observations in H1 and T −2 observations in H2 respectively,

and the HAC denominator was based on T − 2 residuals from H1 and H2 (we dropped out the first
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residual from H1). The test statistic is given by

τT =

√
T − 2 ln

(
σ̂2

2/σ̂2
1

)√
V̂T

. (4.1.5)

The number of iteration of the simulation was 5, 000. We used four sample sizes T = 12, 27, 52, 102

for the convenience of the bootstrap. The test are 5% level two tail tests. For the bootstrap tests,

we resampled the lagged variables {yt, yt−1, yt−2} together, dropping the first two observations.

Therefore the bootstrap sample size is T−2, and our choice of sample sizes makes the block bootstrap

simple. We used two different block sizes, one (the i.i.d. bootstrap) and five. Of course the i.i.d.

bootstrap ignores the serial dependence in the data. The bootstrap critical values were obtained

from the 2.5% and 97.5% quantiles of the empirical distribution of the 1, 200 bootstrap iterations.

The empirical rejection rates of the standard normal, fixed-b, i.i.d. bootstrap (‘boot(1)’),and block

bootstrap (‘boot(5)’) are shown in Figure 1.

The fixed-b asymptotics showed great improvement upon the standard normal approximation

especially when a large M is used for all sample sizes considered. Also the i.i.d. bootstrap approach

was better than the block bootstrap and similar to, but a little bit worse than, the fixed-b approx-

imation. For large sample sizes (T = 52, 102) the block bootstrap improves, but in all cases the

fixed-b approximation was better than the others. We surmise that a more sophisticated bootstrap

approach is required in this setting.

4.1.2 Linear regression model

We generated the following variables for t = 1, ..., T

ut = αut−1 + εt, εt ∼ i.i.d.N (0, 1), (4.1.6)

wt = ρwt−1 + ζ1t, (4.1.7)

xt = ρxt−1 + ζ2t, (4.1.8)

zt = ρzt−1 + ζ3t, (4.1.9)
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and ⎛⎜⎜⎜⎜⎝
ζ1t

ζ2t

ζ3t

⎞⎟⎟⎟⎟⎠ ∼ i.i.d. N

⎛⎜⎜⎜⎜⎝0,

⎡⎢⎢⎢⎢⎣
1 κ1 κ1

κ1 1 κ2

κ1 κ2 1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ , (4.1.10)

where α, ρ, κ1, κ2 are parameters we choose for the simulation. We consider two cases as true models

Case I : yt = wt + 0.5xt + 0.5zt + ut, (4.1.11)

Case II : yt = wt + 0.5xt + 0.5zt + 0.5yt−1 + ut. (4.1.12)

Note that we have lagged dependent variable in the second case. The competing models are

H1 : yt = α1 + wtδ1 + xtβ1 + u1t, (4.1.13)

H2 : yt = α2 + wtδ2 + ztβ2 + u2t. (4.1.14)

In Case I, our competing models are missing one variable, but in Case II, both models are missing

one variable and one lagged dependent variable. We generated T = 50 observations. We have

chosen κ1 = κ2 = 0.5 and ρ = 0,±0.5, 0.9, α = 0,±0.5, 0.9. The number of iterations was 5, 000

for each case. For the bootstrap tests we have used the modified bootstrap we proposed with block

size one and five as in the previous example. We performed 5% level two tail tests. But note that

the test can be directional. For example, in the right tail test, the rejection favors the model H1

over H2. The results under Case I are shown in Figures 2 − 5. The results under Case II are in

Figures 6 − 9.

As shown in the theorem 3.9, if regressors are serially uncorrelated (ρ = 0), the value of α

does not make much difference in the distribution of the test statistic although there were cases

with under rejection due to the fact that we have to estimate the pseudo-true values. For ρ = 0

of course, it’s perhaps best to ignore possible autocorrelation. In all cases, if a robust test is

used when unnecessary (ρ = 0) then the normal approximation is a disaster and both fixed-b

approximation and bootstrap method are better, with very similar performance, although i.i.d.
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bootstrap seems a little better than block bootstrap. With positive autocorrelation in regressors

and errors (the expected case), the robust test is required and the normal approximation is bad.

The fixed-b and bootstrap methods beat the normal approximation and are about the same, except

when both correlations are quite strong (ρ = α = 0.9), in which case the bootstrap methods

outperform the fixed-b approach. The ranking of the i.i.d. and block bootstrap when the regressors

are highly autocorrelated depends on the actual value of the error autocorrelation, with the block

bootstrap performing better with high autocorrelation. Perhaps this is understandable, since the

block bootstrap was designed for this case. However it is interesting that the i.i.d. bootstrap

is better with moderate error autocorrelation (α = 0.5). This is true with and without lagged

dependent variables (Case II and I respectively). With negative regressor autocorrelation, as

might arise from differencing the regressors, the bootstrap and fixed-b methods perform similarly

and dominate the normal approximation. In the case of lagged dependent variables and strong

positive error autocorrelation as well, the fixed-b tends to under-reject relative to both i.i.d. and

block bootstraps. In all cases of negative error autocorrelation, the fixed-b and bootstrap methods

perform similarly and dominate the normal approximation.

Although not shown in the figures, we found that when the common regressor wt is strongly

correlated with the other regressors the power of the test is reduced since the wrong model still

contains much information through wt about the true model.

4.2 Power Comparison

4.2.1 MA(2) model

For the power comparison, we used the same candidate models as in the size comparison and the

true DGP,

yt = εt + 0.5(1 + c)εt−1 + εt−2, (4.2.1)

where c ∈ [0, 1] is the deviation parameter (c = 0 gives the null hypothesis) and the errors are from

the i.i.d. standard normal distribution. We generated 300 observations and truncated the first 100

observations. Figures 10− 12 are the power comparisons from 5,000 iterations for each of following
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experiments.

Experiment 1 (Figure 10): For the sample sizes T = 50, 100, 200, compare the powers as a

function of the levels implied by the fixed-b approximating distributions given a fixed alter-

native c = 0.6, Bartlett kernel, and bandwidths b = 0.02, 0.25, 0.5, 1.

Experiment 2 (Figure 11): For the sample sizes T = 50, 100, 200, compare the local powers

given 5% level, Bartlett kernel, and bandwidths b = 0.02, 0.25, 0.5, 1.

Experiment 3 (Figure 12): For the five different kernel functions, Bartlett, Parzen, Quadratic

spectral, Daniell, and Bohman, compare the local powers given 5% level, bandwidths b =

0.02, 0.25, 0.5, 1, and the sample size T = 200.

The first experiment showed the type II errors (1 − Power) for various levels of the test given

by fixed-b asymptotic distributions. The power improves as the sample size increases. Larger

bandwidths decreased the power but they gave better size behavior. Note that the critical values

from the standard normal approximations are smaller than the fixed-b asymptotics critical values

thus they will imply larger power at the cost of larger actual size.

The second experiment showed the local power curves with respect to the deviation parameter c

ranging from zero to one. Clearly, the power curves are steeper with larger sample sizes. We could

also see that smaller bandwidths gave better powers.

In the third experiment, we can see the clear difference between two groups of kernels. The

quadratic spectral (QS) and Daniell kernels behaved very similarly and the Bartlett, Parzen, and

Bohman kernels gave similar results. The local power curves from the QS and Daniell kernels are

sensitive to the bandwidth and large bandwidth decreases the power more than the other kernels.

But they showed good size. The power curve of the Bartlett kernel was robust to the bandwidth,

and the Parzen and Bohman were also robust but less than the Bartlett kernel. This supports the

asymptotic power comparison given in Kiefer and Vogelsang (2005). Small bandwidths increased

power as also shown in Kiefer and Vogelsang (2005).
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4.2.2 Linear regression model

We use the same candidate models as in the size comparison and the power of the tests was compared

with the true DGP

Case I : yt = wt + 0.5(1 + c)xt + 0.5(1 − c)zt + ut, (4.2.2)

Case II : yt = wt + 0.5(1 + c)xt + 0.5(1 − c)zt + 0.5yt−1 + ut, (4.2.3)

where c ∈ [0, 1] is the deviation parameter. We set ρ = 0.5, α = 0.5 for the regressors and the error

DGP specification in the size comparison section and the other settings are the same. We generated

300 observations and dropped the first 100 observations. Figures 13 − 15 (CASE I) and Figures

16− 18 (CASE II) are the power comparisons from 5,000 iterations for the three experiments as in

the MA(2) model power comparison.

We got similar results to the MA(2) power results. The first experiment showed the type II

error decreases (the power increases) as sample size becomes larger and small bandwidths give

better powers. In the second experiment, larger sample size and smaller bandwidths give better

local power. The third experiment shows the Bartlett kernel is robust to the bandwidth for detecting

the local alternatives. The QS and Daniell kernels had low local powers when the bandwidth is

close to one, but they showed good size in small bandwidths. It is notable that the QS and Daniell

kernels behave very similarly and the Parzen and Bohman kernels show close power curves. If we

compare CASE I and II, in CASE II where the candidate models are missing the lagged dependent

variable yt−1, the powers decreased in all experiments. The power decrease is more severe when

we increase the AR(1) coefficient for yt. We found that the Bartlett kernel has a reasonably good

size property with very robust power behavior. Choosing small bandwidth leads to good power

but larger size distortion, and a large bandwidth reduces size distortion but lowers the power. The

power decrease can be mitigated by using the Bartlett kernel.

Though not shown in figures in the paper, we found that the regressor and the error serial

correlation ρ and α affect the power. The power gets worse as serial correlation gets stronger and

the effect of α is greater than that of ρ.

21



5 Exchange Rates

Diebold and Mariano (1995) considered a test for equality of predictive accuracy of two exchange

rate models in forecasting 3-months ahead spot rates. They considered a random walk model (no

difference in 3 months) and forward exchange rate model (current 3-months forward rate). The

accuracy is compared with mean absolute error criterion. We revisit their analysis using New York

Federal reserve bank’s USD/EURO and YEN/USD, end of month, noon-buying rates (spot rates)

and 3-months forward rates. The data range from 1999.1 to 2006.7 and all changes are measured

with difference in logs of exchange rates.

The selection criterion is the mean absolute error,

E|eit| = E|yt+3 − ŷit|, for i = 1, 2, (5.0.1)

where yt+3 = log(st+3/st) is the change in (actual) spot rates in 3 months, {st} is the spot exchange

rate process, and ŷit is the prediction from model i = 1, 2. The prediction from the model 1 is

ŷ1t = log(ft/st), where ft is 3-months forward rate at t, and the model 2 gives a random walk

prediction ŷ2t = 0. The null hypothesis is E [dt] = E [|e1t| − |e2t|] = 0 and our HAC robust test

statistics is the same as the DM test given by

τT =

√
T d̄√
V̂T

, (5.0.2)

where d̄ is the sample mean of {dt} and V̂T is the HAC variance estimator for {dt} with v̂t =

|e1t| − |e2t| in eq. (3.1.9), but we use the fixed-b approximation.

Figure 19 shows the actual changes of USD/EURO and YEN/USD rates, predictions from the

forward rate and the random walk models. The average absolute error in the forward rate model for

USD/EURO (YEN/USD) is 0.0194 (0.0173) and for the random walk model, 0.0187 (0.0163). In

both currencies, the random walk model wins. We test the statistical significance of the superiority

of the random walk model.

Figure 20 is the autocovariance function for the {dt} showing a strong serial correlation in low
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lags and varying degree of correlation in higher order lags. The DM test uses (h− 1) as a choice of

bandwidths for the h-step ahead forecasting problem (in our case, h = 3) and the uniform kernel.

We use the Bartlett kernel and explore all bandwidths.

Figure 21 shows the values of our test statistic for a range of bandwidths and the critical values

from the fixed-b approximations with 5% level two sided tests. For USD/EURO, we could reject

the null for small bandwidths but could not reject for large bandwidths at 5% level (two sided).

The tests for YEN/USD could not reject the null for most of the bandwidths. We can see that

if we used the standard normal approximation, using large bandwidths will reject the null in the

both currencies, and this rejection may have come from the size distortion of the conventional

approximation. Also for YEN/USD, the standard normal approximation rejects the null for very

low bandwidth but could not reject the null for a wide range of bandwidths up to about M/T = 1/2,

then rejects the null again for large bandwidths. This confirms the fact that the DM test shows

over rejection as the forecasting horizon h gets larger since it uses a bandwidth equal to (h − 1)

(Harvey, Leybourne, and Newbold (1997)). The fixed-b approximation properly addresses the size

distortion problem by giving larger critical values for larger bandwidths.

6 Conclusion

For comparing non-nested dynamic models, a robust test statistic was proposed based on a general

criterion function or a quasi-log likelihood ratio using a HAC variance estimator. The test treats

two competing models symmetrically and does not assume a true model. The test procedure is

directional, favoring one over the other. In the special cases of linear models where regressors are

serially uncorrelated, serial correlation in the errors has little impact on the distribution of the test

statistic. An important improvement in the finite sample properties was made by using the KVB

asymptotics. We have shown by Monte Carlo simulations that KVB fixed-b asymptotics corrects

the size distortion especially when a large truncation number M is used. A bootstrap method is

compared with the normal and fixed-b approximations. It shows similar performance to the fixed-b

asymptotics. The fixed-b approach showed reasonable local power in our examples especially when
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the Bartlett kernel is used. There is a trade-off between size and power in the bandwidth selection

and the Bartlett kernel gave robust power and reasonably good size. The power is influenced by

the correlation in the regressors and the errors and also by the degree of misspecification.

Using the standard normal approximation for dynamic model selection test is not desirable

unless the regressors are not correlated and small M is used for linear models. In general cases,

the robust test should be used and the normal approximation should not. The KVB and bootstrap

approximations are practical alternatives.
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Figure 1: MA(2) DGP with two competing AR(1) models
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Figure 2: ( CASE I ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = 0,
of the errors is α.
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Figure 3: ( CASE I ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = 0.5,
of the errors is α.
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Figure 4: ( CASE I ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = −0.5,
of the errors is α.
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Figure 5: ( CASE I ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = 0.9,
of the errors is α.
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Figure 6: ( CASE II ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = 0,
of the errors is α.
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Figure 7: ( CASE II ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = 0.5,
of the errors is α.
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Figure 8: ( CASE II ) Two Competing Linear Models. AR(1) coefficient of the regressors is
ρ = −0.5, of the errors is α.
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Figure 9: ( CASE II ) Two Competing Linear Models. AR(1) coefficient of the regressors is ρ = 0.9,
of the errors is α.
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Figure 10: ( MA(2) ) Type II error (1 − Power) as a function of the level α implied by the fixed-b
approximating distribution. b = M/T is the bandwidth and T is the sample size.
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Figure 11: ( MA(2) ) Local power curves for different sample sizes T . b = M/T is the bandwidth.
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Figure 12: ( MA(2) ) Local power curves for different kernel functions. b = M/T is the bandwidth.
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Figure 13: ( CASE I ) Type II error (1−Power) as a function of the level α implied by the fixed-b
approximating distribution. b = M/T is the bandwidth and T is the sample size.
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Figure 14: ( CASE I ) Local power curves for different sample sizes T . b = M/T is the bandwidth.

42



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
( CASE I )  b = 0.02

Deviation from the null

P
ow

er

Bartlett
Parzan
QS
Daniell
Bohman

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
( CASE I )  b = 0.25

Deviation from the null

P
ow

er

Bartlett
Parzan
QS
Daniell
Bohman

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
( CASE I )  b = 0.5

Deviation from the null

P
ow

er

Bartlett
Parzan
QS
Daniell
Bohman

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
( CASE I )  b = 1

Deviation from the null

P
ow

er

Bartlett
Parzan
QS
Daniell
Bohman

Figure 15: ( CASE I ) Local power curves for different kernel functions. b = M/T is the bandwidth.
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Figure 16: ( CASE II ) Type II error (1−Power) as a function of the level α implied by the fixed-b
approximating distribution. b = M/T is the bandwidth and T is the sample size.
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Figure 17: ( CASE II ) Local power curves for different sample sizes T . b = M/T is the bandwidth.
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Figure 18: ( CASE II ) Local power curves for different kernel functions. b = M/T is the bandwidth.
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Figure 19: Three months change of exchange rates (monthly data). The solid line is actual changes,
the dashed is from the 3-months forward rate model, and the dotted is from the random walk
prediction (no change).
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Figure 20: Autocovariance function of the difference in absolute prediction error, {|e1t| − |e2t|},
where e1t =actual change−forward rate model and e2t =actual change−random walk model.
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Figure 21: Values of the test statistic with various bandwidth and the Bartlett kernel. The solid
line is two sided 5% level critical values from the fixed-b approximation. The fixed-b critical value
at zero bandwidth is equal to the critical value from the standard normal approximation.
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