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that, under a weak condition, there exist districtings that generate this ideal relationship. The paper then
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implementing optimal districting. This is applied to analyze the districting plans used to elect U.S. state
legislators during the 1990s.

�This paper combines research reported in \Socially Optimal Districting" (NBER Working Paper #11462)
and \Socially Optimal Districting: An Empirical Investigation" (NBER Working Paper #12313). We are greatly
indebted to Jim Snyder for providing the data on state legislative elections used in this study. For helpful comments
and encouragement we thank three anonymous referees, Alan Auerbach, Robert Barro, Tim Besley, Doug Bernheim,
Allan Drazen, Andrew Gelman, Alan Gerber, Richard Holden, Antonio Merlo, Tom Romer and seminar participants
at NYU, UC Berkeley, Princeton, Rutgers, Stanford, Yale, Stockholm University, the 2006 NBER fall public
economics meetings, and the 2005 PIER conference on political economy. We thank the National Science Foundation
(Grant SES-0452561) for �nancial support.



I. INTRODUCTION

The decennial redrawing of district lines used in electing candidates to federal, state, and local

legislatures in the United States has generated intense interest among voters, politicians, and

parties alike. The intensity of this interest in redistricting, as witnessed through both political and

legal battles, should come as no surprise. Districting is a critical determinant of the representation

of parties in legislatures. To illustrate, consider a legislature with 10 seats and suppose that 50%

of the population always vote Democrat and 50% always vote Republicans. Then, while the

\unbiased" seat share for the Democrats is 5, the actual share can vary from 1 to 9 depending

upon the districting. For example, the Democrats can get 9 seats by creating 9 districts that

contain 51% Democrat voters.

The public interest in redistricting has given rise to a large empirical literature in political

science analyzing redistricting plans and the redistricting process.1 In this literature, redistricting

plans are typically characterized by the implied relationship between seats in the legislature and

support for parties among voters. In particular, the seat-vote curve relates the fraction of seats

won by (say) the Democratic Party to their support among voters across all districts. Formally,

the seat-vote curve is a function S(V ) where V is the aggregate fraction of votes received by the

Democrats and S is the fraction of seats in the legislature that they hold. The key properties of

a seat-vote curve are its partisan bias and responsiveness. Partisan bias - de�ned most simply as

S(1=2) � 1=2 - measures how the districting advantages one or the other party.2 Responsiveness

- de�ned as �S=�V - measures how the composition of the legislature changes in response to

changes in citizens' voting behavior. Researchers have developed statistical methods to estimate

seat-vote curves and to measure the associated responsiveness and partisan bias parameters. Basic

questions are then how responsiveness and bias are altered following the redrawing of district lines

and also how di�erent institutional arrangements for redistricting inuence these changes.

While this literature is certainly very interesting from a positive perspective, the normative

lessons to be drawn from it are unclear. Is partisan bias necessarily a bad thing from the per-

spective of voters? What is the optimal degree of responsiveness? More generally, how should

voters be allocated across districts? Furthermore, how do the districting schemes that are used

in practice compare with optimal schemes and what would be the welfare gains from optimal

districting? Our purpose in this paper is to explore these questions.
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We begin by developing a simple micro-founded model of legislative elections that provides a

framework for investigating the districting problem which is consonant with the existing literature.

There are three types of voters: Democrats, Republicans, and Independents. Democrats and Re-

publicans have �xed ideologies, while Independents' are swing voters whose ideologies vary across

elections. There are two political parties, one representing Democrats and the other Republicans.

These parties �eld candidates in each district and the candidates with the most votes are elected

to the legislature. Citizens care about the ideological make-up of the legislature which in turn

depends upon the share of seats each party holds. The allocation of voter types across districts

determines the seat-vote curve; i.e., the relationship between the Democratic seat share and their

aggregate vote share.

In the context of this model, we analyze the problem of a districting authority who seeks to

maximize expected social welfare. We assume that the authority can observe citizens' types (i.e.,

whether they are Democrats, Republicans, or Independents) and we abstract from geographical

constraints in the ability to craft districts. We approach the problem by characterizing the optimal

seat-vote curve, which describes the ideal relationship between seats and votes. We then develop

a condition under which the optimal seat-vote curve is implementable in the sense that there exist

districtings that generate this optimal relationship between seats and votes. These underlying

districtings are socially optimal districtings, and we describe their composition.

We then use the model to develop an empirical methodology for assessing how actual districting

plans compare with optimal plans and for computing the welfare gains from implementing optimal

districting. This methodology has four distinct components: (i) a method for estimating actual

seat-vote curves, (ii) a method for computing optimal seat-vote curves, (iii) a way of checking the

condition for implementability and, (iv) a way of estimating the welfare gains from implementing

optimal seat vote curves. Finally, we apply this methodology to analyze the districting plans

used to elect U.S. state legislators during the 1990s. We estimate actual and optimal seat-vote

curves, check the condition for implementability, and then compute the welfare gains from optimal

districting. We also compare actual and optimal seat-vote curves with those that would emerge

under a system of proportional representation or with at-large elections.

Despite its importance, the problem of optimal districting has attracted scant attention.3 The

bulk of existing theoretical work on districting focuses on the partisan gerrymandering problem:

that is, how to craft political districts with the aim of maximizing a party's expected seat share.4
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The motivation is the purely positive one of shedding light on how partisan redistricting commit-

tees might further their political objectives.5 The few normative papers that have been written

work with very di�erent underlying political models and objective functions than used in this

paper. In work done independently, Gilligan and Matsusaka [2005] look at the optimal district-

ing problem from a median voter perspective. In Downsian fashion, they assume that candidates

adopt the ideology of the median voter in their districts and that policy outcomes depend upon the

ideology of the median legislator. Their social objective is thus to minimize the distance between

the median legislator's ideology and the median voter's ideology. Epstein and O'Hallaran [2004]

focus on the racial gerrymandering problem, under which the planner attempts to maximize the

welfare of minority groups.6 More generally, we are not aware of either any normative work on

districting that is consistent with the seat-vote curve approach of the empirical literature or any

work that evaluates the gains from optimal districting empirically.7

Our paper contributes to the literature on the estimation of seat-vote curves. Our key point

of departure from this literature is the development of a micro-founded model that guides our

empirical methodology. The only other work we are aware of that explores the micro foundations

of seat-vote curves is the independent work of Besley and Preston [2006]. These authors are

interested in understanding how districting impacts the strategic platform choices of political

parties. They develop a similar micro-founded model that generates an equilibrium relationship

between seats and votes. Their main theoretical point is to show that the partisan bias of the

seat-vote curve is a key determinant of parties' electoral incentives to be responsive to swing

voters with respect to their platform choices. They provide empirical evidence in favor of their

theory by showing that local government policy choice in the United Kingdom is related to the

parameters of the local seat-vote curve in the way the theory predicts. Their work therefore

identi�es a theoretical mechanism by which the form of the seat-vote curve (and hence districting)

matters for citizens' welfare and provides evidence for this. By contrast, our model, which assumes

�xed party ideologies, reects the conventional view that districting matters because it determines

which party gets the most seats and hence the ideological composition of the legislature.

More generally, our paper contributes to the growing literature applying contemporary polit-

ical economy modelling and welfare economic methods to explore the optimal design of political

institutions. This literature includes e�orts to understand the relative merits of di�erent electoral

systems (e.g., Lizzeri and Persico [2001] and Myerson [1999]); systems of campaign �nance (e.g.,
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Coate [2004] and Prat [2002]); and methods of choosing policy-makers (e.g., Maskin and Tirole

[2004]). It also includes analyses of the desirability of citizens' initiatives (e.g., Matsusaka and

McCarty [2001]); the optimal allocation of functions across layers of government (e.g., Lockwood

[2002]); and the relative merits of presidential and parliamentary systems (e.g., Persson, Roland

and Tabellini [2000]). The districting problem is somewhat di�erent from these constitutional

design questions in that it must be done on an on-going basis in any political system with geo-

graphically based districts. This makes the problem particularly salient.

The paper proceeds as follows. Section II outlines the model, describes the optimal districting

problem, and explains how we tackle it. Section III presents the key theoretical results. Section

IV develops our empirical methodology and Section V applies this methodology to U.S. state

legislative elections. Section VI concludes with a summary of the main results of the analysis.

II. THE MODEL

Consider a state in which there are three types of voters - Democrats, Republicans, and

Independents. Voters di�er in their political ideologies which are measured on a 0 to 1 scale.

Democrats and Republicans have ideologies 0 and 1, respectively. Independents have ideologies

that are uniformly distributed on the interval [m� �;m+ � ] where � > 0. These voters are \swing

voters" and so the ideology of the median Independent may vary across elections. Speci�cally,

m is the realization of a random variable uniformly distributed on [1=2 � "; 1=2 + "], where " 2

(0; �) and " + � � 1=2: The latter assumption guarantees that Independents are always between

Democrats and Republicans, while the former guarantees that some Independents lean Democrat

and some lean Republican. The fractions of voters statewide who are Democrats, Republicans,

and Independents are, respectively, �D, �R and �I .

Policy choices in the state are determined by an n-seat legislature. Legislators' policy choices

are inuenced by their ideologies and, hence, citizens care about the ideological make up of their

legislature. Speci�cally, if the average ideology of the legislature is x0, a citizen with ideology x

experiences a quadratic payo� given by � � (x � x0)2. The parameter � is the surplus a citizen

would obtain from having a legislature that is perfectly congruent with his own ideology and the

parameter  measures the rate at which this surplus is dissipated as the ideology of the legislature

diverges from that of the citizen. The ratio =� will play an important role in the welfare analysis

and can be interpreted as the fraction of the surplus a partisan (i.e., a Democrat or Republican)
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obtains from having a perfectly congruent legislature that is dissipated by having a legislature

composed entirely of the opposing ideology. This ratio is assumed to be bounded between zero

and one (=� 2 [0; 1]).8

There are two political parties in the state: the Democrats and the Republicans. These

parties are made up of collections of citizens who share the same political ideology, so that the

membership of the Democrat Party are Democrats and the membership of the Republican Party

are Republicans. Legislators are all a�liated with one or the other party.

To select legislators, the state is divided into n equally-sized (in terms of population) political

districts indexed by i 2 f1=n; 2=n; :::; 1g. Each district then elects a representative to the legis-

lature. Candidates are put forward by the two political parties. Following the citizen-candidate

approach (Besley and Coate [1997] and Osborne and Slivinski [1996]), there is no commitment so

that candidates cannot credibly promise to run on an ideology di�erent from their true ideology.

Accordingly, Democratic candidates are associated with the ideology 0 and Republican candidates

with the ideology 1. Elections are held simultaneously in each of the n districts and the candidate

with the most votes wins. In each district, every citizen votes sincerely for the representative

whose ideology is closest to his own.

II.A. Districtings

A districting is a division of the population into n districts. Formally, a districting is described

by (�D(i); �I(i); �R(i))
1
i=1=n where �D(i) represents the fraction of Democrats in district i, �R(i)

the fraction of Republicans, and �I(i) the fraction of Independents. The districting is chosen

by a districting authority that knows the group membership of citizens and faces no geographic

constraints in terms of how it can group citizens. Thus, any districting (�D(i); �I(i); �R(i))
1
i=1=n

such that the average fractions of voter types equal the actual is feasible. Let 
 denote the set of

feasible districtings and, to simplify notation, let � 2 
 denote a generic feasible districting.

II.B. Seat-vote Curves

Any feasible districting � = (�D(i); �I(i); �R(i))
1
i=1=n implies a relationship between the De-

mocratic seat share in the legislature and their statewide vote share. Note �rst that if the median

independent has ideology m, the fraction of voters in district i voting for the Democrat candidate

is

V (i;m) = �D(i) + �I(i)[
1=2� (m� �)

2�
]: (1)
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This group consists of all the Democrats and those Independents whose ideologies are less than

1=2. The statewide vote share of the Democrat Party is therefore

V (m) = �D + �I [
1=2� (m� �)

2�
]: (2)

Let V and V denote, respectively, the maximum and minimum statewide Democrat vote shares;

i.e., V = V (1=2� ") and V = V (1=2 + ").

Now, for any feasible statewide vote share V 2 [V ; V ], let m(V ) denote the ideology of the

median Independent that would generate the vote share V ; i.e., m(V ) = V �1(V ). From (2), we

have that

m(V ) =
1

2
+ � [

�I + 2�D � 2V
�I

]. (3)

Substituting this into (1), we obtain

V (i;m(V )) = �D(i) + �I(i)[
V � �D
�I

]: (4)

District i elects a Democrat if V (i;m(V )) � 1=2; or, equivalently, if

V � V �(i) = �D + �I [
1=2� �D(i)
�I(i)

]; (5)

where V �(i) is the critical statewide vote threshold above which district i elects a Democrat.

District i is a safe Democrat (safe Republican) seat if V �(i) � V (V �(i) � V ). A seat which is not

safe is competitive.

Without loss of generality, order the districts so that V �(1=n) � V �(2=n) � :::: � V �(1): Then,

the fraction of seats the Democrats receive when they have vote share V is

S(V j� ) = maxfi : V �(i) � V g: (6)

This is the seat-vote curve associated with the districting �.

II.C. Socially Optimal Districtings

We are interested in the problem of a districting authority who desires to maximize expected

aggregate utility.9 Aggregate utility when the median Independent has ideology m and the De-

mocrats have seat share S is given by:

W (S;m) = � � [�D(1� S)2 + �RS2 + �I
Z m+�

m��
(1� S � x)2 dx

2�
]: (7)
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If the Democratic vote share is V , the median Independent has ideology m(V ) and hence expected

aggregate utility under the districting � is given byZ V

V

W (S(V j� );m(V )) dV

V � V
: (8)

The districting authority's problem is therefore to choose a districting � to solve the problem

max
R V
V
W (S(V j� );m(V )) dV

V�V

s.t. � 2 
:
(9)

A districting � that solves this problem is a socially optimal districting.

The authority's problem is complicated by the fact that there is not a one-to-one mapping

between districtings and seat-vote curves. The seat-vote curve is determined by the pattern of

critical vote thresholds across districts. As is clear from (5), the same pattern of critical vote

thresholds could in principle be achieved by many di�erent districtings. To solve the problem,

therefore, it is simpler to think of the districting authority as directly choosing a seat-vote curve

but subject to the implementability constraint that there exists a districting that generates it.

Thus, we recast the districting authority's problem as choosing a seat-vote curve S(V ) to solve

the problem

max
R V
V
W (S(V );m(V )) dV

V�V

s.t. S(V ) = S(V j� ) for some � 2 
.
(10)

The socially optimal districtings will then be those associated with the constrained optimal seat-

vote curve.

The di�culties of handling the constraint that a seat-vote curve be generated by some feasible

districting make this a challenging problem. Accordingly, we begin the analysis by characterizing

the optimal relationship between seats and aggregate votes - the optimal seat-vote curve - ignoring

the constraint that it be generated by some feasible districting. We then investigate whether there

exist districtings that generate this optimal seat-vote curve. If there do exist such districtings,

these will clearly be optimal. This two-stage procedure will not totally eliminate the need to

consider the grand constrained optimization, but appears to do so in the empirically relevant

cases.

II.D. Discussion of the Model
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In developing a model in which to analyze optimal districting, we faced many di�erent mod-

elling choices. In order for the reader to understand the reasons for the choices we have made, we

briey discuss the key ones here.

A �rst question was how to assume that the ideological composition of the legislature impacted

citizens' payo�s. Tractability obviously dictated the use of a simple summary statistic of the

distribution of legislator ideologies. The median voter theorem not withstanding, we choose the

average rather than the median. This choice was motivated by two main considerations. First, the

median assumption corresponds to the idea that the party with the majority of seats is completely

decisive and minority party members have no inuence at all. We feel this is unrealistic. A real

world state legislature makes numerous decisions on many di�erent areas of policy. Many of these

decisions will be made by small sub-committees of legislators. This gives a legislator inuence

even if he is not in the majority party. Reecting this, we seriously doubt that voters would be

indi�erent between a state legislature that is 51% Democrat and one that is 100% Democrat. In

an empirical analysis of policy outcomes in U.S. states, Besley and Case [2003] provide evidence

in support of this general view; in particular, conditional on the Democrats controlling the state

legislature, a 10% increase in the fraction Democrat in both the Lower and Upper House leads

to a $10 per-capita increase in government spending (in 1982 dollars). Second, we wanted to be

consistent with the existing literature which, given its focus on the properties of seat-vote curves,

clearly distinguishes between state legislatures with di�erent sized majorities. Thus, we needed

the form of the seat-vote curve over its entire domain to matter for citizens' welfare. But, under

the median assumption, the properties of the seat-vote curve are irrelevant for welfare over almost

all of its domain. All that matters is the vote share at which the Democrats become the majority

party.10

A second key modelling choice concerned the strategic choices faced by parties and candidates.

We abstract from such considerations by assuming: (i) that each party simply puts up candidates

who are party members and (ii) that members all share the same ideology. Moreover, we employ

the citizen-candidate assumption, so that candidates have no choice but to e�ectively run on their

true ideologies.11 While it would certainly be interesting to extend the model to allow parties

some exibility in candidate choice, we believe that assuming away strategic choices is the natural

place to start.12 The �rst reason is that, under a Downsian vision of political competition in which

candidates adopt the ideology that makes them most likely to win, it is not possible to consider
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the problem in terms of seat-vote curves.13 Both parties' candidates in each district would adopt

the position of the expected median voter and which candidate won would have no signi�cance

for welfare. Thus, the seat-vote curve and the ideas of partisan bias or responsiveness would cease

to have much meaning. The second point to note is that, once again, we feel that it is implicit

in the literature on estimating seat-vote curves that legislators from the same party have similar

ideologies. If this were not the case, the notions of responsiveness and bias would be much more

complicated. To illustrate, suppose that Democratic candidates came in two types - moderate

and extreme. Then, whether a given aggregate Democratic vote increase led to the election of

more moderate or more extreme Democrats would be very relevant for the true responsiveness

of the system. Accordingly, responsiveness could not simply be measured by the slope of the

seat-vote curve. Similarly, if Democrats get more seats when voters are evenly divided between

the parties, then the true bias would naturally depend upon how Democratic seats are divided

between moderates and extremists.

A third modelling choice concerned what to assume about citizens' voting behavior. It is

important to note that an Independent voter who leans Democrat may be better o� when his

district elects a Republican if other districts disproportionately elect Democrats. For if his district

elected a Republican, the average legislator ideology would be closer to his ideal point. We

decided nonetheless to assume sincere voting (i.e., voting for the ideologically closest candidate)

for two reasons. First, assuming sophisticated voting would substantially complicate the analysis

because voters' optimal decisions would be strategic and determined as part of a statewide voting

equilibrium. This equilibrium (which need not be unique) would of course be inuenced by the

districting. Second, as an empirical matter, it is not clear that most voters are this sophisticated.

Similar incentives to diverge from voting for the candidate closest to one's own ideology arise

when voters are electing Congressional and Presidential candidates and policy outcomes depend

upon the ideologies of both Congress and the President (Alesina and Rosenthal [1995] and Fiorina

[1992]). However, using a data set on voting behavior in these elections, Degan and Merlo [2006]

show that sincere voting can explain virtually all individual-level observations.

A fourth issue was how to introduce uncertainty into citizens' voting behavior. Our model

incorporates individual uncertainty, which is de�ned as variation in voting behavior across Inde-

pendents in a given election and is captured by the parameter � , as well as aggregate uncertainty,

which is de�ned as variation in voting behavior of a given Independent across elections and is cap-
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tured by the parameter ". It is clear that aggregate uncertainty is required in order to generate

a seat-vote curve.14 But rather than assume that all voters are subject to a uniform ideological

swing, we choose to assume that only Independents' preferences were uncertain. We took this

approach for two reasons. First, with a uniform swing impacting all voters, our citizen-candidate

framework would imply that candidate ideologies would also shift and thus votes and seats would

be unchanged; this would clearly thwart our objective of generating a seat-vote curve. Second,

in our empirical analysis, as will be clear below, the year-to-year variation in voting returns is

used to identify the degree of variation in the ideology of Independent voters. Changes in partisan

ideology, by contrast, are not reected in voting patterns if, for example, left-leaning Republicans

nonetheless vote for the Republican over the Democrat and thus it is not clear how the variation

in partisan ideology would be identi�ed empirically.

A �fth choice was to assume that the districting authority could both observe group mem-

bership and could form districts freely with no geographic constraints. The former assumption

seems reasonable as a �rst approximation, since information about voters' ideological attachments

is available through voter registration data or the study of past voting patterns (see the discus-

sion in Altman, Mac Donald and McDonald [2005]).15 The latter assumption is more di�cult to

defend on realism grounds and the neglect of the requirement that districts be connected subsets

of some geographic space is certainly a weakness of the analysis. However, we feel that given the

di�culty of knowing how to model geographic constraints, it makes sense to �rst understand what

optimal districtings look like without them. Moreover, as we will see below, when the optimal

seat-vote curve is implementable it can typically be implemented by a large class of districtings,

some of which look quite \straightforward". Hence geographic constraints may actually be easily

accommodated.

The �nal choice involved working with very speci�c assumptions on citizens' political prefer-

ences. Speci�cally, we assume that citizens have quadratic loss functions and that the distribution

of Independents' ideologies is uniform across its support. These assumptions are made to both

keep the theoretical problem tractable and to facilitate the development of an empirical method-

ology tightly tied to the theory. A key role of these assumptions is to ensure that the welfare

function de�ned in (7) has a quadratic form. As we will see in the next section, this results in

the optimal seat-vote curve having a simple linear form. This linearity is of great help when

deriving the condition under which there exist districtings that make the seat-vote curve optimal.

10



Furthermore, the quadratic form of the welfare function is key to enabling us to solve for optimal

districtings when this condition is violated. Obviously, it would be desirable to work with a more

general model, but both our assumptions (i.e., quadratic preferences and uniformly distributed

ideologies) are common in contemporary political economy models. Moreover, our formulation of

the problem and the concepts we introduce are general and the considerations that our analysis

identi�es will be present in more general models.

III. SOME THEORETICAL RESULTS

This section explores the theory of socially optimal districting. It begins by characterizing the

optimal seat-vote curve. It then derives a necessary and su�cient condition for this seat-vote curve

to be implementable. Next it describes what the districtings that generate the optimal seat-vote

curve look like when this condition is satis�ed. It then briey characterizes optimal districting

when the implementability condition is not satis�ed. Finally, it derives a useful formula for the

welfare gains from optimal districting.

III.A. The Optimal Seat-vote Curve

The optimal seat-vote curve So(V ) describes the ideal relationship between Democratic seats

and aggregate votes ignoring the constraint that this relationship be generated by some feasible

districting. To avoid tedious integer concerns, we assume that the number of districts is very

large, so that we can treat S as a continuous variable de�ned on the unit interval [0; 1]. Then, we

obtain the following simple characterization of the optimal seat-vote curve:

PROPOSITION 1. The optimal seat-vote curve So : [V ; V ]! [0; 1] is given by

So(V ) = 1=2 + (�D � �R)(1=2� �) + 2�(V � 1=2): (11)

Proof. The optimal seat-vote curve So(V ) is such that for all V 2 [V ; V ]

So(V ) = arg max
S2[0;1]

W (S;m(V )):

Assuming an interior solution, So(V ) satis�es the �rst order condition: @W (So;m(V ))=@S = 0.

Di�erentiating (7) yields

@W (S;m)=@S = 2f�D + �I(1�m)� Sg:
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Thus, @W (So;m(V ))=@S = 0 if and only if So = �D + �I(1 � m(V )): In addition, note that

@2W (S;m)=@S2 < 0 so that the �rst order condition is su�cient for So to be optimal. Substituting

in the expression for m(V ) from (3) yields the result. �

Proposition 1 tells us that the optimal seat-vote curve is of the same linear form that has been

estimated in some of the early empirical literature; that is, S(V ) = 1=2 + b+ r(V � 1=2) where b

measures partisan bias and r measures responsiveness (see, for example, Tufte [1973]).16 The bias

of the optimal curve is (�D ��R)(1=2� �) and its responsiveness is 2� . In sharp contrast to what

is implicitly assumed in the districting literature, the optimal curve exhibits partisan bias, and

this bias is in favor of the party with the largest partisan base. The responsiveness of the optimal

curve depends on the degree of variation in the preferences of swing voters.

The optimal seat-vote curve is illustrated in Figure I. The horizontal axis measures the aggre-

gate Democratic vote and the vertical the Democrats' share of seats. Since � < 1=2, the slope of

the optimal seat-vote curve is less than 1 meaning that the fraction of Democrat seats increases

at a constant but less than proportional rate as the aggregate Democrat vote increases. The

seat-vote curve intersects the 45o line when the aggregate vote is �D + �I=2: Thus, when exactly

half the Independents lean Democrat, the optimal share of Democratic seats is �D+�I=2. Notice

also that So(V ) > 0 and So(V ) < 1 so that there are safe seats for both parties.

To understand why the optimal responsiveness is 2� , note �rst that the welfare maximizing

Democratic seat share must be such that the social gains from increasing it marginally just equal

the social losses. With the quadratic preferences, this marginal condition implies that the Demo-

cratic seat share must be such as to make the ideology of the average legislator equal the average

ideology in the population. Thus, when the mean (which equals the median) Independent has

ideology m, the optimal Democrat seat share should be �D + �I(1�m) because this would make

the average ideology in the legislature equal to the population average - which is �R+�Im. When

the aggregate Democrat vote share increases marginally, the change in the mean Independent's

ideology is dm=dV = �2�=�I (see (3)) and hence the increase in the optimal Democrat seat share

is just 2� . Recall that � measures the diversity of views among Independents, so that respon-

siveness is positively correlated with this diversity. This is because the greater the diversity of

Independent views, the greater the change in mean Independent ideology signalled by any given

increase in vote share.
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To understand why the optimal seat-vote curve is biased, consider the case when the Democrats

get exactly half the aggregate vote (V = 1=2). If the optimal seat-vote curve were unbiased then

the Democrats should get half the seats (So(1=2) = 1=2). This would indeed be optimal if the

average ideology in the population were 1=2. However, while the median voter in the population

must have ideology 1=2 in this case, the average voter's ideology will only equal 1=2 when the

fractions of Democrats and Republicans are equal. To see this, note from (3) that when V = 1=2,

the median Independent's ideology must be m(1=2) = 1=2 + �(�D � �R)=�I which implies that

the average ideology in the population is 1=2 + (�R � �D)(1=2 � �). Thus, to make the average

legislator's ideology equal to the population average it will be necessary to have the Democratic

seat share greater than 1=2 if �D exceeds �R. Fundamentally, then, the bias in the optimal seat-

vote curve stems from the fact that the ideology of the median voter will typically di�er from

that of the average voter. This in turn reects the fact that partisans feel more intensely about

ideology than do swing voters.

III.B. When is the Optimal Seat-vote Curve Implementable?

Having understood the nature of the optimal seat-vote curve, we now turn to the question

of implementability; that is, whether there exist districtings � such that S(V j� ) = So(V ). Such

a districting would make the composition of the legislature such that average legislator ideology

always equals the population average. Clearly, this cannot be achieved by making each district a

microcosm of the community as a whole, because then all districts would vote in the same way and

the legislature would be either all Democrat or all Republican. However, with appropriate district

level heterogeneity, implementability seems possible. While the conditions that might guarantee

it are by no means obvious, it is apparent that the fraction of Independents must matter. For, if

there were no Independents, then the optimal seat-vote curve would be a single point and could be

implemented, for example, by creating a fraction �R districts majority Republican and a fraction

�D districts majority Democrat. On the other hand, if the entire population were Independents,

then all districts would necessarily be identical and the optimal seat-vote curve is clearly not

implementable.17

Reecting the importance of the fraction of Independents, we have the following key result:

PROPOSITION 2. The optimal seat-vote curve is implementable if and only if

�I(
"

2�
+ "� (� + ") ln(1 + "

�
)) � minf�D; �Rg: (12)
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Proof. See Appendix.

The condition in Proposition 2 is that there be \enough" Republicans and Democrats relative

to Independents. There are several points to note about the condition. First, for all � , the

coe�cient multiplying the fraction of Independents (i.e., "
2� + "� (� + ") ln(1 +

"
� )) is increasing

in " and converges to zero as " converges to zero. Thus, the optimal seat-vote curve is necessarily

implementable when the degree of aggregate uncertainty is su�ciently small. Intuitively, even

though the districting authority cannot predict how any individual Independent voter will vote, it

can predict the fraction of Independents who will vote for each party. This enables it to achieve the

optimal Democratic seat share.18 Second, for given ", the coe�cient is decreasing in � and hence

the optimal seat-vote curve is more likely to be implementable when there is more individual

uncertainty. Intuitively, a larger � makes the voting behavior of Independents as a group less

volatile for a given shift in the ideology of the median Independent.

How permissive is the condition in Proposition 2? It is worth noting here that for any values

of " and � satisfying our assumptions, " � (� + ") ln(1 + "
� ) and hence the coe�cient multiplying

the fraction of Independents is less than "=2� . This in turn is less than 1=2 and hence a su�cient

condition for the optimal seat-vote curve to be implementable is that �I � 2minf�D; �Rg. While

the empirical application to follow will provide a more complete test for implementability, we

simply note here that this requirement appears permissive. For example, according to data from

Erikson, Wright and McGuiver [1993], this su�cient condition is violated in just four U.S. states.

III.C. The Optimal Districtings

What do the districtings that generate the optimal seat-vote curve look like? When the

condition of Proposition 2 is satis�ed, we can use arguments used in the proof of Proposition 2 to

show that the optimal seat-vote curve can always be implemented by a districting of the general

form

(�D(i); �I(i)) =

8>>>>>>>>>><>>>>>>>>>>:

(�D; �I) if i 2 [0; So(V ))

(
�D+

�I
2 �i

�D+
�I
2 �i+�I�

; �I�
�D+

�I
2 �i+�I�

) if i 2 [So(V ); �D + �I
2 )

(0; �I�
i�(�D+

�I
2 )+�I�

) if i 2 [�D + �I
2 ; S

o(V )]

(�D; �I) if i 2 (So(V ); 1]:

(13)

While this does not specify the fractions of Republicans �R(i), these can be readily obtained from

the equality �R(i) = 1� �D(i)� �I(i).
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Districts i 2 [0; So(V )) are the safe Democratic seats. The fractions of Democrats and Inde-

pendents in these seats (�D; �I) must satisfy the inequality

�D + �I [
� � "
2�

] � 1

2
: (14)

This reects the fact that the minimum fraction of Independents voting Democrat is ��"2� . Districts

i 2 (So(V ); 1] are the safe Republican seats and, because the maximum fraction of Independents

voting Democrat is �+"
2� , the voter allocations in these seats (�D; �I) satisfy the inequality

�D + �I [
� + "

2�
] � 1

2
: (15)

Districts i 2 [So(V ); So(V )] are the competitive districts. They are divided into Democrat-leaning

districts (i 2 [So(V ); �D +
�I
2 )) and Republican-leaning districts (i 2 [�D +

�I
2 ; S

o(V )]). The

Democrat-leaning districts are populated by only Democrats and Independents, with the fraction

of Independents varying from �=(� + ") to 1. These districts all elect a Democrat candidate when

the majority of Independents prefer the Democrats; i.e., when V � �D + �I
2 . However, they di�er

in their critical vote thresholds because they contain di�erent fractions of Independents. Thus,

the fraction of these districts electing Democrats varies smoothly as the aggregate Democrat vote

share increases from V to �D +
�I
2 . Similarly, the Republican-leaning districts are populated by

only Republicans and Independents, with the fraction of Independents varying from 1 to �=(�+").

These districts all elect Republicans when the majority of Independents prefer Republicans, but

the fraction electing a Republican varies smoothly as the aggregate vote share increases from

�D +
�I
2 to V .

Districtings of the form described in (13) are extreme in the sense that the competitive dis-

tricts have no voters of one type.19 It is reasonable to object that such districts are unlikely to

be practically feasible when account is taken of geographic constraints.20 In this regard, it is im-

portant to note that the optimal seat-vote curve can typically be implemented with much more

\straightforward" districtings. To illustrate, consider the class of districtings in which the fraction

of Independents is constant across districts. In this class, all that varies across districts is the

fraction of Democrats and Republicans. Then, we have the following result:
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PROPOSITION 3. The optimal seat-vote curve is implementable with a districting of the form

(�D(i); �I(i)) =

8>>>>>><>>>>>>:
(�D; �I) if i 2 [0; So(V ))

( 12 �
�I
2 +

�D+
�I
2 �i

2� ; �I) if i 2 [So(V ); So(V )]

(�D; �I) if i 2 (So(V ); 1]

(16)

if and only if
�I"(1� �I) + ( 12 � �I(

1
2 �

"
2� ))�I(

1
2 � ")

1
2 + �I(

1
2 �

"
2� )

� minf�D; �Rg: (17)

Proof. See Appendix

The competitive districts in districtings of the form described in Proposition 3 can still be

divided into Democrat-leaning districts (i 2 [So(V ); �D + �I
2 ]) and Republican-leaning districts

(i 2 [�D + �I
2 ; S

o(V )]). However, all districts contain all three types of voters. The Democrat-

leaning districts just have a greater fraction of Democrats than Republicans, with the ratio of

Democrats to Republicans varying from [1��I( ��"� )]=[1��I( �+"� )] to 1. The Republican-leaning

districts have a greater fraction of Republicans, with the ratio of Democrats to Republicans varying

from 1 to [1� �I( �+"� )]=[1� �I(
��"
� )].

The important point to note is that the condition of Proposition 3 is not that much more

restrictive than that of Proposition 2. As an illustration of this point, Figure II plots the sets

of (�D; �I) pairs that satisfy the conditions of Propositions 2 and 3 under the assumption that

" = 0:1 and � = 0:2. The horizontal axis measures �I and the vertical axis measures �D. The

entire triangular area represents the set of (�D; �I) pairs satisfying the condition of Proposition

2. The shaded area represents the set of pairs that satisfy the condition of Proposition 2 but not

that of Proposition 3.

III.D. What Happens when the Optimal Seat-vote curve is not Implementable?

While the condition of Proposition 2 is permissive, it is worth understanding what the con-

strained optimal seat-vote curve looks like when it is not satis�ed. In this case, the implementabil-

ity constraint in problem (10) must bind. Solving for the constrained optimal seat-vote curve is

an intricate problem because of the di�culty of accounting for the implementability constraint.

Thus, we will simply provide a avor of the solution and refer the reader to our working paper

(Coate and Knight [2005]) for the complete details.

When the condition of Proposition 2 is not satis�ed, there are three possibilities. First, the

condition is violated for �D and there are not enough Democrats. Second, it is violated for �R
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and there are not enough Republicans. Finally, it is violated for both �D and �R and there are

not enough Democrats or Republicans. The principles involved in the �rst and second case are

identical and, in the third case, the constrained optimal seat-vote curve is just a combination of

those emerging in the �rst and second cases. Thus, it will su�ce to discuss the �rst case.

Figure III illustrates the constrained optimal seat-vote curve - denoted S�(V ) - when there are

not enough Democrats. Panel (a) illustrates the case in which �D is less than
�I"
2� (1� � � 2") and

Panel (b) the case in which �D exceeds �I"
2� (1 � � � 2"). In either case, the constrained optimal

seat-vote curve lies below the optimal seat-vote curve on the interval [V ; �D +
�I
2 ) and equals it

thereafter. What this tells us is when the median Independent favors the Republicans, it is not

possible to elect enough Democrats to make the average ideology of the legislature equal to the

population average. However, when the median Independent favors the Democrats there is no

longer a problem, because Democrats can be elected from districts that are populated solely (or

largely) by Independents.

In the case illustrated in Panel (a) the logic of the constrained optimum is to allocate the

available Democrats to create as many safe Democrat districts as possible. These safe seats

contain only Democrats and Independents and the fraction of Democrats is the minimal necessary

to always give the Democrat candidate a majority. The jump in the seat-vote curve is created by

the presence of a group of Independent only districts. These districts elect a Democrat if and only

if the majority of Independents favor the Democrats which is why the jump occurs at the vote

share �D +
�I
2 .

In the case illustrated in Panel (b) the constrained optimum involves safe Democrat seats but

some Democrats are also grouped with Independents to form competitive districts. This generates

the convex portion of the seat-vote curve on the interval [V ; bV ). In addition, there are Independent
only districts so that the seat-vote curve again has a jump at the vote share �D +

�I
2 . As �D gets

larger (holding constant �I) the point at which the seat-vote curve attens (bV ) moves to the right
and, for su�ciently large �D, equals �D +

�I
2 and the at spot disappears. Moreover, the convex

portion of the seat-vote curve straightens out. The complex shape of the seat-vote curve in this

case stems from an inherent non-convexity created by the implementability constraint in problem

(10).

III.E. The Welfare Gain to Socially Optimal Districting

Returning to the case in which the optimal seat-vote curve is implementable, what would be the

17



welfare gain associated with implementation? Conveniently, the gain turns out to be proportional

to the squared distance between the baseline and optimal seat-vote curves. To see this, note �rst

that expected citizen welfare can be expressed as a function of the baseline and optimal seat-vote

curves. Letting EW �(S(V )) denote expected social welfare under the seat vote curve S(V ), we

have:21

LEMMA. It is the case that

EW �(S(V )) = � � fc+ E[S(V )2]� 2E[S(V )So(V )]g (18)

where c is a constant given by c = �D + �I [1=4 + "
2=3 + �2=3]:

Proof. See Coate and Knight [2006].

Using this formula to compute the welfare gain immediately establishes:

PROPOSITION 4. The welfare gain from socially optimal districting can be written as

G = EW �(So(V ))� EW �(S(V )) = E[(So(V )� S(V ))2]: (19)

Intuitively, the larger the distance from the optimal seat-vote curves, the larger are the welfare

gains associated with socially optimal districting.

IV. EMPIRICAL METHODOLOGY

From an empirical perspective, we would like to know how seat-vote curves generated by actual

legislative districting plans di�er from optimal seat-vote curves. We would also like to know if

the condition for implementability is satis�ed. Finally, if this condition is satis�ed, we would

like to know the magnitude of the welfare gains from implementing the optimal seat-vote curve.

This section presents our methodology for doing all this. In developing this, we assume that the

researcher has estimates at the district level of the mean and standard deviation of the Democratic

vote share under the districting plan in question. In addition, we assume that the analyst knows

the statewide fraction of voters who identify as Independents.22

IV.A. Estimating Seat-vote Curves

As explained in Section II.C, seat-vote curves are determined by the range of possible statewide

Democratic vote shares [V ; V ] and the pattern of district-speci�c threshold vote levels (V �(i)). We

will show that both the range of vote levels and the vote thresholds can be expressed solely as a
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function of the means and standard deviations of the district-level and statewide Democratic vote

share. The �rst step in establishing this is to provide expressions for these moments. Beginning

with the district-speci�c moments, the mean and standard deviation of Democratic votes in district

i, as expressed in equation (1), are

�i = E(V (i)) = �D(i) +
1
2�I(i) =

1
2 [1 + �D(i)� �R(i)]

�i =
p
V ar(V (i)) =

q
�I(i)2var(m)

4�2 = �I(i)"

2
p
3�

: (20)

Observe that the standard deviation of the Democratic vote share is proportional to the fraction

of Independents. It is increasing in the degree to which the median Independent shifts support

between the two candidates from election to election (") but is decreasing in the diversity of

preferences among Independents (�).

Turning to the statewide moments, we take cross-district averages of the district-speci�c means

and standard deviations to obtain:

� = E(V ) = �D +
1
2�I =

1
2 [1 + �D � �R]

� =
p
V ar(V ) =

q
�2Ivar(m)

4�2 = �I"
2
p
3�

: (21)

Using these state-wide moments, we can now write the maximum and minimum statewide Demo-

cratic vote shares as

V = V (1=2 + ") = ��
p
3�

V = V (1=2� ") = �+
p
3�

: (22)

Moreover, using the district-speci�c and statewide moments and the de�nition of V �(i) in equation

(3), we can write the vote threshold for electing a Democratic candidate in district i as follows:

V �(i) = �+
�

�i
(1=2� �i): (23)

Relabelling the districts so that

�+
�

�1=n
(1=2� �1=n) � �+

�

�2=n
(1=2� �2=n) � :::: � �+

�

�1
(1=2� �1);

the seat-vote curve is the function de�ned on the interval [��
p
3�; �+

p
3�] given by:

S(V ) = maxfi : �+ �

�i
(1=2� �i) � V g: (24)
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IV.B. Estimating the Optimal Seat-vote Curve

Using the fact that �D � �R = 2�� 1, we can re-write the optimal seat-vote curve described

in Proposition 1 as follows:

So(V ) = 1=2 + (2�� 1)(1=2� �) + 2�(V � 1=2): (25)

Observe that the optimal seat-vote curve and, in particular, its responsiveness and partisan bias

parameters depend critically upon the diversity of preferences among Independents (�). Even with

information on the statewide standard deviation, this parameter � cannot be identi�ed separately

from the underlying parameters �I and " (see equation (14)).
23 However, it is possible to identify

the ratio � = "=� , with data on the statewide fraction of Independents (�I) and the statewide

standard deviation of the Democratic vote share (�) as follows:

� � "

�
=
2
p
3�

�I
: (26)

Further, using the theoretical restriction on the sum of these preference parameters "+ � � 1=2,

we can place an upper bound on optimal responsiveness:

2� � 1

(1 + �)
: (27)

In the baseline analysis of the empirical application to follow, we assume that optimal responsive-

ness equals this upper bound. In addition, as a robustness check, we allow the optimal respon-

siveness to fall in a range below this upper bound.

IV.C. Verifying the Condition for Implementation

The condition for implementability presented in Proposition 2 cannot be veri�ed directly with-

out information on the underlying preference parameters ("; �). As just noted however, with out-

side information on the fraction of Independents, we can identify the ratio � = "=� . We can

use information on this ratio to place an upper bound on the coe�cient associated with the im-

plementability of the optimal seat-vote curve. In particular, as noted in Section 3.2, we know

that

(
"

2�
+ "� (� + ") ln(1 + "

�
)) � �=2; (28)

and this implies that a su�cient condition for implementability is:

�I �
2min(�D; �R)

�
: (29)
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Substituting in the expression for � from equation (26) and using the fact that � = �D + �I=2,

this su�cient condition can be re-written as

�I � 2min(��
p
3�; 1� ��

p
3�): (30)

Thus, the fraction of Independents must be below a critical value, the calculation of which only

requires information on the statewide mean and standard deviation of the Democratic vote share.

IV.D. Estimating the Welfare Gains from Socially Optimal Districting

Given that we only observe voting outcomes, which do not reveal the intensity of voter prefer-

ences for one party over another, the parameters of the surplus expression (�; ) in equation (7)

are not identi�ed in the empirical analysis. However, we can use the theoretical restriction on the

ratio of these parameters in order to calculate the range of proportionate welfare gains. To this

end, �rst note that the percentage increase in aggregate welfare from socially optimal districting

can be written as follows:

�G =
EW �(So(V ))� EW �(S(V ))

EW �(S(V ))
: (31)

Then, using the expressions from equations (18) and (19) and dividing through by �, we have

that:

�G(


�
) =


�E[(S

o(V )� S(V ))2]
1� 

� fc+ E[S(V )2]� 2E[S(V )So(V )]g
: (32)

Recall that the ratio =� is the fraction of the surplus a partisan obtains from having a

perfectly congruent legislature that is dissipated by having a legislature composed entirely of the

opposition party. When parties are not that polarized in terms of their underlying ideologies or

when the legislature is responsible for choosing only policies on which there is little disagreement

across ideologies (for example, spending on public safety and highway maintenance) this ratio may

be close to zero. When parties are polarized and are choosing policies on which there is strong

ideological disagreement (such as the level of transfer payments for the poor or the regulation of

abortion), this ratio may be close to one. In the former case, districting is not very important,

while in the latter case it is crucial to citizen welfare. Using the restriction that =� 2 [0; 1], we

can thus bound these proportionate welfare gains as follows:

0 � �G(
�
) � �G(1): (33)
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Because the upper bound will only be relevant for legislatures in states in which parties are

polarized and which choose policies on which there is strong disagreement, we will provide welfare

calculations for di�erent values of this key ratio (=�) in the empirical application to follow.

We next turn to the measurement of this welfare gain. Inserting equation (25) into equation

(32), we have that

�G(


�
) =

( � )f(�
o)2 + 2�oro�+ (ro)2(�2 + �2)� 2E[(�o + roV )S(V )] + E[S(V )2]g
1� ( � )fc+ E[S(V )2]� 2�oE[S(V )]� 2roE[V S(V )]g

(34)

where ro = 2� represents optimal responsiveness and �o = �(1 � 2�) represents the vertical

intercept of the optimal seat-vote curve. Notice that we can express the constant c as c =

�+ 2
p
3��
" ["2=3+�2=3�1=4]; and hence, given a particular value of the ratio =� and the parameter

� , this expression can be evaluated by computing three moments associated with the seat-vote

curve: E[S(V )]; E[S(V )2]; and E[V S(V )]. Finally, we have developed expressions relating these

moments to the district-speci�c vote thresholds (V �(i)), which, as noted above, can in turn be

related to the moments of the Democratic vote share; we refer readers to Coate and Knight [2006]

for the exact form of these expressions.

V. APPLICATION TO U.S. STATE LEGISLATURES

In this section, we apply our methodology to analyze the districting plans used to elect U.S.

state legislators during the 1990s districting period.24 For consistency with the theoretical frame-

work, we focus on states with single-member districts.25 In addition, given the bicameral nature

of state legislatures, we follow the existing empirical literature on redistricting and focus on elec-

tions to the Lower House. As shown in Table I, we have complete data for 28 states, most of

which adopted redistricting plans in 1992 and then again in 2002. For these states, there were

�ve elections held under the 1990s districting plan: 1992, 1994, 1996, 1998, and 2000.26 To esti-

mate the moments of the Democratic vote shares under these districting plans, we use data from

Ansolabehere and Snyder [2002] on state legislative election returns together with Census data on

voter characteristics by state legislative district.27 We also use state-level estimates of the fraction

of Independent voters derived from annual New York Times surveys in which voters are asked to

self-identify as Republican, Democrat, or Independent.28

V.A. Estimation of Moments
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There are a number of possible methods for estimating the moments of the voting distribution

under a districting plan, the appropriateness of which may vary from application to application.

With a su�ciently long panel, for example, moments in the key expressions above could simply be

replaced with their analogous sample moments. However, because redistricting typically occurs

every ten years in the United States and elections every two years, in our application we have

�ve observations per district at most. In addition, this approach is problematic given that sample

moments cannot be calculated for districts with uncontested elections, which occur frequently

in state legislative elections. As an alternative, we use an econometric model for estimating the

moments as a function of the characteristics of voters residing in the district. This approach

circumvents the short panel problem by modeling the moments in terms of a small number of

parameters and thus does not require the estimation of two parameters, or moments, per district. It

also circumvents the problem of uncontested districts as it allows the analyst to use characteristics

of voters residing in the districts in order to predict these two moments. Finally, as will be seen

below, the use of an econometric model allows the researcher to compute con�dence intervals

around key measures of our welfare analysis, such as the gains to socially optimal districting.

Before providing a speci�c econometric formulation for these moments, it is instructive to note

that, using equations (1) and (20), the Democratic vote share in district i can be written as a

linearly separable function of the district-speci�c mean and variance along with a shock to the

preferences of Independent voters:

V (i) = �i + �iw (35)

where w =
p
3
� (1=2 �m) is distributed uniformly with mean zero and variance equal to 1. This

formulation then naturally leads to the following speci�cation, in which the two moments are

related to voter characteristics:

�i = X
0
i�1 + �1�i

�2i = exp(X
0
i�2 + �2�i)

; (36)

where Xi denotes a vector of observed voter characteristics, (�1; �2) denotes parameters associated

with these observed characteristics, (�i,�i) denote district-speci�c random e�ects, assumed to be

distributed standard normal, and (�1,�2) are parameters associated with the random e�ects.
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Reecting our use of panel data, we next introduce a time dimension (t) and, inserting the above

parameterizations for the two moments into equation (35), we obtain the following random e�ects

model with heteroskedasticity:

Vt(i) = X
0
i�1 + �1�i + uit

ln(u2it) = X
0
i�2 + �2�i + ln(w

2
t )

: (37)

Before describing the estimation procedure associated with the econometric model in equation

(37), it is important to note two sources of uncertainty facing the analyst in estimating the

moments in equation (36). First, the analyst does not observe the true parameters (�1; �2,�1,�2)

and must instead use estimated parameters. Second, the random e�ects (�i,�i) are unobserved

by the econometrician. We deal with both of these issues of uncertainty via a bootstrapping

simulation procedure. In particular, for each replication r = 1; 2; :::; 100; an associated sample

of size N is drawn with replacement from our dataset of N districts, where N is the number of

districts with at least one contested election in our dataset.29 Given that we draw with replacement,

a given district in our dataset may be not represented, represented once, or represented multiple

times in the sample associated with a given replication r. For each of these 100 samples, we then

estimate the parameters of equation (37) via a standard two-step approach. First, we estimate a

subset of the parameters (�r1; �
r
1) using a random-e�ects panel data regression of votes in district

i (Vt(i)) on observed voter characteristics in district i (Xi). In the second step, we regress the

log of the squared residual obtained from the �rst step on observed district characteristics and

obtains estimates of the remaining parameters of interest (�r2; �
r
2).

30 Taken across replications, we

then have an entire distribution of parameter estimates (�r1; �
r
2; �

r
1; �

r
2)
r=100
r=1 .

Table II provides our estimates of the parameters �1 and �2 using the original dataset along

with the bootstrap standard errors.31 In addition to the district characteristics reported in Table

II, we also included a set of state dummy variables in both equations, thereby allowing two districts

with identical observable characteristics but in di�erent states to have di�erent voting patterns.

As shown in the �rst column, the mean vote share for the Democratic Party (�i), is increasing

in the percent urban and suburban (both of these are relative to the omitted category - percent

rural), percent with a college degree, percent over age 65, percent African-American, and percent

Hispanic (both of these are relative to the omitted category - percent white) but is decreasing in

household income. As shown in the second column, the variance is decreasing in household income
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and in the percent African-American.

The parameter estimates (�r1; �
r
2; �

r
1; �

r
2) associated with replication r are then used to compute

the key moments of the voting distribution for every district in our original dataset, including those

districts with only uncontested elections. Note that even with the parameter estimates from a

given replication r and data on district characteristics (Xi), we do not learn the district-speci�c

mean and variance of the voting distribution, as expressed in equation (36), because the random

e�ects (�i,�i) are unobserved. To get around this problem, random e�ects (�ri ,�
r
i ) are drawn from

the standard normal distribution for each replication r and for each district i in our dataset.32

The district-speci�c moments (�ri ; �
r
i ) associated with replication r are then calculated as follows:

�ri = X
0
i�
r
1 + �

r
1�
r
i

�ri =
p
exp(X 0

i�
r
2 + �

r
1�

r
i )

: (38)

As should be clear from equation (38), our simulation approach accounts for two forms of uncer-

tainty described above: the use of estimated parameters along with the inability of the econome-

trician to observe the exact realization of the random e�ects.

With estimates of district-speci�c moments in hand, corresponding statewide moments (�r; �r)

associated with replication r are then calculated by averaging across the district-speci�c mo-

ments. Key objects of interest, such as the vote threshold for electing a Democratic candidate,

as expressed in equation (23), can then be calculated for each district i and replication r; and

it follows that a state-speci�c seat-vote curve Sr(V ) can be calculated for each replication r: Fi-

nally, aggregating across all replications r = 1; 2; ::100, key aspects of the distribution of seat-vote

curves (Sr(V ))r=100r=1 , such as average responsiveness, median responsiveness, and the 90-percent

con�dence interval for responsiveness, are calculated for each state.33

V.B. Seat-vote Curves

Given that a plot of all replications would be cumbersome, we begin by presenting the seat-

vote curves from a particular replication, that associated with the median welfare gain from

socially optimal districting (as expressed in equation (34)). Note that these seat-vote curves are

presented primarily for illustration, and we will subsequently present statistics pertaining to the

entire distribution of seat-vote curves across replications. As shown in Figure IV, the range of

possible statewide support for the Democratic Party seems reasonable, at least in this particular

replication. For example, in New York, a heavily Democratic state, the Party receives support on
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the range [0.56,0.70], while in Utah, a heavily Republican state, the Democrats receive support on

the range [0.38,0.50]. Notice also that the seat-vote curve is close to linear in some states, such as

Maine and Pennsylvania, while it has important non-linearities in other states, such as Delaware

and Virginia.

As shown in column 1 of Table III, the responsiveness associated with these estimated seat-

vote curves exceeds two in every state, and, in some states, exceeds three.34 Findings of signi�cant

responsiveness are quite common in the existing literature, which has focused on a responsiveness

of three, a �nding that has become known as the \Cube Law" (King and Browning [1987]). Given

its prominence in the existing literature, we next report the partisan bias associated with the

estimated seat-vote curve, as measured by S(1=2)� 1=2: Notice that in the four states for which

V = 1=2 does not lie in the range of possible Democratic vote shares, this measure cannot be

computed. Although this measure is based upon only a single point on the seat-vote curve, it

is nonetheless interesting, as shown in column 4, that the seat-vote curve is biased towards the

Republicans in 18 states but towards the Democrats in only 4 states; the seat-vote curve is unbiased

in Montana and Oregon. The cross-state average bias of -3% implies that, when voters are equally

split, Republicans would secure 53% of the seats on average, relative to 47% for Democrats, and

would thus hold a signi�cant advantage of 6% in the legislature.

V.C. Optimal Seat-vote Curves

For comparison purposes, Figure IV also includes the optimal seat-vote curves from the repli-

cation associated with the median welfare gain for each state. These are plotted under the assump-

tion that optimal responsiveness, 2� , is at its maximal level 1=(1+�) in each state. It is apparent

from Figure IV, that the actual seat-vote curves are overly responsive in all cases, suggesting that

districting plans used to elect U.S. state legislators during the 1990s created too few safe seats.

Column 2 of Table III reports the responsiveness of the optimal seat-vote curve. As noted in

the theoretical section, optimal responsiveness is always below one, while actual responsiveness

substantially exceeds one in all cases. That is, as shown in column 3, the di�erence between actual

and optimal responsiveness is close to 2 in most states.

Column 5 of Table III reports the partisan bias associated with the optimal seat-vote curve,

which is de�ned as So(1=2) � 1=2. While the estimated seat-vote curve was shown to be biased

towards Republicans in this particular replication, the optimal seat-vote curve tends to be biased

towards the Democrats. Thus, the bias towards the Republicans exhibited in the actual seat-vote

26



curves cannot generally be justi�ed as optimal. As noted above, an important objection to this

comparison of actual and optimal partisan bias is that it just tells us about the properties of

the curves at the vote share V = 1=2. For a more global comparison, we computed the expected

Democratic seat share under the estimated and optimal seat-vote curves (E(S(V )) and E(So(V ))).

Column 7 of Table III reports the di�erence in this expected seat-share. When this di�erence is

positive, the expected Democratic seat share is higher than optimal. The interesting thing to note

is that, in this expected seat sense, there appears to be no obvious bias towards Republicans. If

anything, this alternative bias measure suggests that districting systems are overly biased towards

Democrats as this measure is positive in over one-half of the states. This makes us hesitant to

draw any strong conclusions concerning the general direction of bias.

The properties of seat-vote curves reported in Table III are based upon a single replication,

that associated with the median welfare gain. Table IV reports more general �ndings of our

analysis via the properties of the entire distribution of replicated seat-vote curves. The �rst three

columns report the mean di�erence in responsiveness between estimated and optimal seat-vote

curves across replications, the median di�erence in responsiveness across replications, and the

90 percent con�dence interval for the di�erence across replications. This con�dence interval is

computed by ranking our measures of responsiveness across replications and then choosing the

5th and 95th percentile of that distribution. As shown, the �nding that the estimated seat-vote

curve is overly responsive in Table III is a robust �nding as the 90 percent con�dence interval for

the di�erence in responsiveness is positive in all states. The �ndings regarding partisan bias, by

contrast, are more mixed. As shown in columns 4 and 5, the mean and median di�erence in bias

is negative in most cases, reecting the previous �nding that estimated seat-vote curves tend to

be overly biased in favor of the Republicans. The con�dence interval, however, includes zero for

all except nine states, and thus our �nding that the actual seat-vote curve is overly biased in favor

of Republicans should be interpreted with caution. Similarly, as shown in the �nal three columns,

no de�nitive conclusions can be drawn in a statistical sense regarding the di�erence in expected

seats.

V.D. Verifying the Condition for Implementation

As shown in Table V, the condition for implementation is satis�ed with probability one in

every state. That is, in every replication, the fraction of Independents was below the maximal

level described in equation (30). The state closest to not satisfying the requirements is Rhode
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Island, which is reported to have 51% Independents, just slightly below the cross-replication

average maximal level of 58%. In no replications, however, did this maximum level fall below the

reported 51% share of Independents. In summary, these results demonstrate that the condition

for implementability of the optimal seat-vote curve is indeed permissive, being satis�ed in all of

28 states included in our analysis and by a large margin in all cases except for Rhode Island.35

V.E. Welfare Gains

Given that the optimal seat-vote curve is implementable in all states and across all replications,

it is interesting to measure the welfare gains associated with socially optimal districting. To begin

with, we compute the percentage welfare gains under the assumptions that the ratio =� is at its

maximal level (i.e., 1) and that optimal responsiveness is at its maximal level in each state (i.e.,

1=(1 + �)). As shown in Table VI, the percentage welfare gains to socially optimal districting are

relatively small; averaged across all states, these median and average gains are reported at 1.81%

and 1.88%, respectively. There is, however, considerable variation across states with Rhode Island

and South Carolina at the opposite extremes. A visual comparison of the seat-vote curves in

Figure IV supports these welfare calculations as the seat-vote curves are similar in states with low

potential welfare gains but quite di�erent in states with large potential welfare gains.36 Regarding

the precision of these estimates, the con�dence intervals demonstrate that the upper bounds on

these welfare gains are also quite low, ranging from 1.47% in South Carolina to 6.02% in Rhode

Island.37

For a sense of how these results depend on the speci�c assumptions about the parameters =�

and 2� , Table VII reports the average welfare gains, where the average is taken across both states

and replications, associated with socially optimal districting arising under di�erent parameter

values. We allow the ratio =� to vary from 0:25 to 1 and allow 2� to vary from 0:25=(1 + �)

to 1=(1 + �) in each state. The notation � refers to the numerator in the ratio �=(1 + �), so

that the case in which 2� is set equal to 0:25=(1 + �) in each state corresponds to � = 0:25; the

case in which 2� is set equal to 0:5=(1 + �) in each state corresponds to � = 0:5; etc. As shown,

holding the ratio =� constant, the welfare gains to socially optimal districting, averaged across all

states, are uniformly increasing as the parameter � is reduced. This pattern reects the fact that

reductions in the parameter � are associated with reductions in optimal responsiveness, which,

as shown previously, was already below the responsiveness associated with the estimated seat-

vote curves. Holding the parameter � constant and reducing the ratio =�; we have that welfare
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is uniformly decreasing. As explained above, districting matters less for welfare as this ratio

decreases, reecting the fact that the conict between citizens over the available policy choices is

less severe.

The lesson to be drawn from Tables VI and VII is that the welfare gains from socially optimal

districting are relatively small as a proportion of the total surplus generated by state legislatures.

In principle, there may be two reasons for this. The �rst is that the districting plans that states

actually implement are relatively close to optimal plans. The second is that, because of the

diverse ideological make up of the U.S. states, aggregate welfare is relatively insensitive to varying

districting plans. To get a feel for which of these views is correct, we computed the proportionate

welfare gains that would arise from implementing the optimal seat-vote curve over the case of

identical districting in which each district is a microcosm of the whole. The idea is that if these

gains are large, then the second view cannot be correct. Table VIII reports the results under the

same parametric assumptions that underlie Table VI and they strongly suggest that the second

view is not correct. Thus, it seems that the states are doing districting in a way that is generating

seat-vote curves that are relatively close to optimal.38

A further interesting benchmark is the seat-vote curve that would be generated by a propor-

tional representation electoral system (PR); that is, S(V ) = V . As shown in Table IX, introducing

PR would raise welfare in all states. Moreover, the gains from a movement from PR to the optimal

seat-vote curve, are very small, ranging from an average of 0.02% in several states to 0.08% in

Oklahoma under our baseline parameter values. These �ndings suggest that almost all the welfare

gains associated with optimal districting could be achieved via PR. This result reects several

features of the seat-vote curves underlying these welfare calculations. First, the PR seat-vote

curve is linear, a feature shared by the optimal, but not actual, seat-vote curves. Second, the

PR seat-vote curve has responsiveness of 1, while responsiveness associated with the estimated

seat-vote exceeds 1 in all cases. As noted previously, optimal responsiveness is less than 1.39

VI. CONCLUSION

It will be clear to the reader that the exploration of socially optimal districting outlined in this

paper is very much a �rst step. The simple model underlying the analysis ignores many factors

that are important in real world discussions of districting. Nonetheless, the model provides a way

of thinking about the problem that is consistent with a long tradition of empirical research on
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districting and both the theoretical and empirical analysis have yielded some interesting �ndings.

We conclude the paper by summarizing what we see as the most signi�cant of these.

The �rst notable result concerns the nature of the optimal relationship between seats and

votes. Under the assumptions of our model, the optimal seat-vote curve is of the same linear

form that has been estimated in some of the early empirical literature. In sharp contrast to what

has been implicitly assumed in the districting literature, the optimal curve is biased and this bias

favors the party with the largest partisan base. The responsiveness of the optimal curve depends

on the degree of variation in the preferences of swing voters. This responsiveness is always less

than one so that the change in seat share optimally damps the change in vote share.

The second interesting �nding relates to the condition under which there exist districtings

that generate the optimal seat-vote curve. This condition, which requires that the fraction of

Independents be not \too large", is permissive and is satis�ed in all states in our data set. More-

over, when this condition is satis�ed, there will typically exist many di�erent districtings that can

generate the optimal seat-vote curve. These districtings involve safe seats for both parties and

a range of competitive districts that vary smoothly in terms of their ideological mix. They look

su�ciently straightforward to be achievable even when geographic constraints are accounted for.

This suggests that it may be reasonable to regard the optimal seat-vote curve as an attainable

benchmark for districters in the U.S. states.

The third key result concerns the di�erence between optimal and actual seat-vote curves. We

�nd that the seat-vote curves generated by the districting plans used in the 1990s by the states in

our data set are overly responsive to changes in voter preferences. This result seems unlikely to be

an artifact of our particular dataset. As we have previously noted, while optimal responsiveness

must be less than 1, prior empirical evidence has typically estimated responsiveness well in excess

of 1. In terms of partisan bias, we �nd no evidence of a direction of bias towards one party or the

other when the measure of the di�erence in expected seats is employed.

The fourth �nding relates to the potential welfare gains from socially optimal districting for

the states in our data set. While there is signi�cant variation across states, we �nd that these

gains are quite small, at least relative to the overall surplus generated by state legislatures. We

have argued that this is because states' districting plans were reasonably close to optimal rather

than because aggregate welfare was insensitive to varying districting plans. We also �nd that

almost all of the welfare gains from socially optimal districting could be realized by implementing
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a proportional representation system.
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APPENDIX

Proof of Proposition 2. In developing the conditions under which the optimal seat-vote curve is

implementable it is more convenient to work with the inverse optimal seat-vote curve than the

optimal seat-vote curve. In general, an inverse seat-vote curve is described by a triple fi; i; V �(�)g

where i and i are scalars satisfying 0 � i � i � 1 and V �(�) is a non-decreasing function de�ned

on [i; i] with range [V ; V ]. The interpretation is that i is the fraction of districts that are safe

Democrat; 1� i the fraction that are safe Republican; and V �(i) is the critical vote threshold for

competitive district i 2 [i; i]. Given a seat vote curve S(V ) we form its inverse in the following way:

i is just S(V ); i is S(V ) and for all i 2 [i; i], V �(i) is such that S(V ) = i. Thus, given the optimal

seat-vote curve described in Proposition 1, the optimal inverse seat-vote curve fio; io; V �o (i)g is

given by

io = �D + �I(1=2� "); (39)

io = �D + �I(1=2 + "); (40)

and for all i 2 [io; io]

V �o (i) =
[i� (�D + �I

2 )(1� 2�)]
2�

: (41)

We will need the following de�nitions for the proof. A districting is a description of the

fractions of voter types in each district f(�D(i); �I(i)) : i 2 [0; 1]g where for all i, (�D(i); �I(i))

belongs to the two dimensional unit simplex �2+. (We omit the fraction of Republicans since

�R(i) = 1 � �D(i) � �I(i).) A districting f(�D(i); �I(i)) : i 2 [0; 1]g is feasible if
R 1
0
�I(i)di = �I

and
R 1
0
�D(i)di = �D. A districting f(�D(i); �I(i)) : i 2 [0; 1]g generates the inverse seat-vote

curve fi; i; V �(�)g if: (i) �D + �I [ 1=2��D(i)�I(i)
] � V for all i 2 [0; i), (ii) �D + �I [ 1=2��D(i)�I(i)

] � V for

all i 2 (i; 1], and, (iii) �D +�I [ 1=2��D(i)�I(i)
] = V �(i) for all i 2 [i; i]. Requirement (i) is that districts

i 2 [0; i) are safe Democrat seats and requirement (ii) is that districts i 2 (i; 1] are safe Republican

seats. Requirement (iii) is that competitive district i 2 [i; i] has a critical vote threshold just equal

to V �(i). A seat-vote curve is implementable if there exists a feasible districting that generates its

associated inverse seat-vote curve.

We want to know if the optimal seat-vote curve So(V ) is implementable. We begin by de-

scribing the districtings that can generate the optimal inverse seat-vote curve fio; io; V �o (i)g. In

describing this set, there is no loss of generality in assuming that the safe Democrat and Repub-

lican districts are identical. For example, if (�D(i); �I(i)) varied over the safe Democrat seats
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i 2 [0; io), then we could create a districting with identical safe Democrat districts that used

exactly the same fractions of voter types in the safe Democrat districts by letting (�D(i); �I(i)) =

(
R io
0
�D(i)

di
io
;
R io
0
�I(i)

di
io
) for all i 2 [0; io). Thus, we may assume that (�D(i); �I(i)) = (�D; �I)

for all i 2 [0; io) and (�D(i); �I(i)) = (�D; �I) for all i 2 (io; 1] where (�D; �I); (�D; �I) 2 �2+.

Using the de�nitions of V and V (see (2)), requirements (i) and (ii) from above imply that

�D + �I(
� � "
2�

) � 1

2
(42)

and

�D + �I(
� + "

2�
) � 1

2
: (43)

These inequalities reect the fact that the minimum and maximum fraction of Independents voting

Democrat are, respectively, ��"2� and �+"
2� .

In the competitive districts [io; io], requirement (iii) ties down what the function �D(i) must

look like over the interval [i; i] given any choice of the function �I(i). Speci�cally, �D(i) =

f(�I(i); V
�
o (i)) where

f(x; y) =
1

2
� x

�I
(y � �D): (44)

In addition, we must have that (�I(i); f(�I(i); V
�
o (i))) 2 �2+ for all i 2 [io; io]. This constraint

amounts to the requirement that

�I(i) 2 [0;minf
�I

2(V �o (i)� �D)
;

�I
2(�I + �D � V �o (i))

g]: (45)

Notice that V �o (i) � �D is less than �I + �D � V �o (i) if and only if V �o (i) is less than �I
2 + �D:

Letting bio = �I
2 + �D, it is the case that V

�
o (i) <

�I
2 + �D for all i 2 [io;bio) and V �o (i) � �I

2 + �D

for all i 2 (bio; io]. Thus, we can write the constraint as
�I(i) 2

�
[0; �I

2(�I+�D�V �
o (i))

] if i < bio
[0; �I

2(V �
o (i)��D)

] otherwise
: (46)

We conclude from this that the districtings that generate the optimal inverse seat-vote curve

fio; io; V �o (i)g can be described by the set of all f(�D; �I); (�D; �I); �I(i)g such that (�D; �I) and

(�D; �I) belong to �
2
+ and satisfy (42) and (43) and �I(i) satis�es (46) for all i 2 [io; io]. We

call this the set of generating districtings and denote it by �. The question of implementability is

whether there exists a districting in this set which is feasible; i.e., which satis�es

io�I + (1� io)�I +
Z io

io

�I(i)di = �I (47)
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and

io�D + (1� io)�D +
Z io

io

f(�I(i); V
�
o (i))di = �D: (48)

How do we know when this is true? The following observation is key to the method that we

use. Let �� denote the subset of generating districtings that satisfy the feasibility requirement

that the average fraction of Independents equals the actual fraction of the population (i.e., (47)).

Then we have:

LEMMA A.1. Let f(�oD; �oI); (�oD; �oI); �oI (i)g and f(�1D; �1I); (�1D; �1I); �1I (i)g be two districtings

in the set �� such that

io�
o
D + (1� io)�oD +

Z io

io

f(�oI (i); V
�
o (i))di � �D � io�1D + (1� io)�1D +

Z io

io

f(�1I (i); V
�
o (i))di:

Then there exists a feasible districting in the set �.

Proof. Let

�o = io�
o
D + (1� io)�oD +

Z io

io

f(�oI (i); V
�
o (i))di

and

�1 = io�
1
D + (1� io)�1D +

Z io

io

f(�1I (i); V
�
o (i))di:

Choose � 2 [0; 1] such that

��o + (1� �)�1 = �D:

Then consider the districting f(��D; ��I ); (��D; ��I ); ��I (i)g that is the convex combination of f(�oD; �oI); (�oD; �oI); �oI (i)g

and f(�1D; �1I); (�1D; �1I); �1I (i)g with weight �. This districting is in the set � and is feasible. �

Thus, if there exist two districtings in the set �� one of which involves a higher fraction of

Democrats than there are in the population and one a lower fraction, then there must exist a

feasible districting in ��.

Consider now the following pair of optimization problems:

min io�D + (1� io)�D +
R io
io
f(�I(i); V

�
o (i))di

s:t: f(�D; �I); (�D; �I); �I(i)g 2 ��;
Pmin

and

max io�D + (1� io)�D +
R io
io
f(�I(i); V

�
o (i))di

s:t: f(�D; �I); (�D; �I); �I(i)g 2 ��:
Pmax
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The minimization problem selects the districting in �� that has the minimal fraction of Democrats,

while the maximization problem selects the districting that has the maximal fraction of Democrats.

Letting the values of these problems be � and � respectively, it follows from Lemma A.1 that

there exists a feasible districting generating fio; io; V �o (i)g if and only if � � �D � �. Thus, the

optimal seat-vote curve is implementable if and only if � � �D � �.

The Minimization Problem Pmin. To progress further, we need to develop expressions for the

values of the minimization and maximization problems � and �. Consider �rst the minimization

problem Pmin. To simplify the problem, note that in any solution it is clearly optimal to have no

more Democrats than necessary in the safe Democrat seats. Thus, from (42), we have that

�D =
1

2
� �I(

� � "
2�

): (49)

Similarly, it is optimal to have no Democrats in the safe Republican seats and hence

�D = 0: (50)

It follows from (50) that we can rewrite (43) as �I � �
�+" : Similarly, (49) implies that the constraint

that �D+�I � 1 amounts to �I � �
�+" : Thus, we can rewrite the minimization problem as follows:

minf�I(i);�I ;�Ig
R io
io
f(�I(i); V

�
o (i))di+ io[

1
2 � �I(

��"
2� )]

s:t: �I 2 [0; �
�+" ]; �I 2 [0;

�
�+" ]; (46) and (47).

Pmin

In order for this problem to have a solution, it must be the case that the set �� is non-empty.

Thus, there must exist at least one generating districting which has the property that the average

fraction of Independents equals the actual fraction in the population. A necessary and su�cient

condition for this to be true is that

�I � io
�

� + "
+

Z bio
io

�I
2(�I + �D � V �o (i))

di+

Z io

bio
�I

2(V �o (i)� �D)
di+ (1� io)

�

� + "
:

The expression on the right hand side is the fraction of Independents associated with the generating

districting that maximizes the use of Independents. Using the fact thatZ bio
io

�I
2(�I + �D � V �o (i))

di =

Z io

bio
�I

2(V �o (i)� �D)
di = �I� ln(1 +

"

�
);

we can write this as

�I � io
�

� + "
+ �I2� ln(1 +

"

�
) + (1� io)

�

� + "
: (51)
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We will assume that this inequality is satis�ed in what follows.

We can now state the value of the minimization problem:

LEMMA A.2. (i) If �I 2 [io �
�+" + �I2� ln(1 +

"
� ); io

�
�+" + �I2� ln(1 +

"
� ) + (1� io)

�
�+" ], then

� = �I"� �I� ln(1 +
"

�
) + io

"

� + "
:

(ii) If �I 2 [�I2� ln(1 + "
� ); io

�
�+" + �I2� ln(1 +

"
� )], then

� = �I"� �I� ln(1 +
"

�
) + io[

1

2
� (

�I � �I2� ln(1 + "
� )

io
)(
� � "
2�

)]:

Proof. Ignoring the inequality constraints on the choice variables, the Lagrangian for the problem

is

$ =

Z io

io

f (�I (i);V
�
o (i))di + io [

1

2
� �I (

� � "
2 �

)] + �[io�I +

Z io

io

�I (i)di + (1 � io)�I ]

where � is the Lagrange multiplier on the aggregate constraint (47). Using the de�nition of the

function f(�) we can write this as

$ =

Z io

io

�I (i)[��
(V �

o (i)� �D)
�I

]di + �I io [�� (
� � "
2 �

)] + �I (1 � io)�+ constant

We can therefore minimize the Lagrangian pointwise with respect to �I(i), �I and �I , respecting

the inequality constraints on these variables. The value of the multiplier � must be such that (47)

is satis�ed.

From the fact that V �o (i) 2 [V ; V ], we know that

� + "

2�
� (V �o (i)� �D)

�I
� � � "

2�
� 0 for all i 2 [io; io]:

It follows that � � �+"
2� , for if this were not the case, then the solution involves �I(i) = 0 for all i,

�I = 0 and �I = 0. This means that constraint (47) cannot be satis�ed. In addition, note that if

the multiplier lies in the interval 0 to ��"
2� this generates no more potential solutions than values

of the multiplier equal to 0. Thus, we can restrict attention to three possibilities: (i) � = 0; (ii)

� = ��"
2� ; and (iii) � 2 (

��"
2� ;

�+"
2� ).

Case 1. � = 0

In this case, the solution involves setting the fraction of Independents in the safe Democrat

seats and competitive seats equal to their maximal levels, so that �I =
�
�+" and

�I(i) 2
� �I
2(�I+�D�V �

o (i))
if i 2 [io;bio)

�I
2(V �

o (i)��D)
if i 2 [bio; io] :
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The fraction of Independents in the safe Republican seats does not a�ect the value of the La-

grangian and hence can be set equal to any level x 2 [0; �
�+" ]. In order that (47) be satis�ed we

need that

io
�

� + "
+ �I2� ln(1 +

"

�
) + (1� io)x = �I :

Thus, for this to be a solution, it must be that �I 2 [io �
�+" + �I2� ln(1 +

"
� ); io

�
�+" + �I2� ln(1 +

"
� ) + (1� io)

�
�+" ]:

Case 2. � = ��"
2�

In this case, the solution involves setting the fractions of Independents in the competitive seats

equal to their maximal levels, so that

�I(i) 2
� �I
2(�I+�D�V �

o (i))
if i 2 [io;bio)

�I
2(V �

o (i)��D)
if i 2 [bio; io]

and the fraction of Independents in the safe Republican seats equal to zero so that �I = 0. The

fraction of Independents in the safe Democrat seats does not e�ect the value of the Lagrangian

and hence can be set equal to any level x 2 [0; �
�+" ]. In order that constraint (47) be satis�ed we

need that

x
�

� + "
+ �I2� ln(1 +

"

�
) = �I :

Thus, for this to be a solution, it must be that �I 2 [�I2� ln(1 + "
� ); io

�
�+" + �I2� ln(1 +

"
� )]:

Case 3. � 2 ( ��"2� ;
�+"
2� )

It can be shown that if the multiplier is in this range, it must be that �I < �I2� ln(1 +
"
� ),

which is not possible.

We conclude that: (i) If �I 2 [io �
�+" + �I2� ln(1 +

"
� ); io

�
�+" + �I2� ln(1 +

"
� ) + (1 � io)

�
�+" ],

then we are in Case 1 and the solution to the minimization problem is

�I(i) =

8>>>>>>>>>><>>>>>>>>>>:

�
�+" if i 2 [0; io)

�I
2(�I+�D�V �

o (i))
if i 2 [io;bio)

�I
2(V �

o (i)��D)
if i 2 [bio; io]

�I�[io �
�+"+�I2� ln(1+

"
� )]

1�io
if i 2 (io; 1]

:

(ii) If �I 2 [�I2� ln(1 + "
� ); io

�
�+" + �I2� ln(1 +

"
� )], then we are in Case 2 and the solution to the
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minimization problem is

�I(i) =

8>>>>>>>>>><>>>>>>>>>>:

�I�[�I2� ln(1+ "
� )]

io
if i 2 [0; io)

�I
2(�I+�D�V �

o (i))
if i 2 [io;bio)

�I
2(V �

o (i)��D)
if i 2 [bio; io]

0 if i 2 (io; 1]

:

We can now prove the Lemma by deriving the corresponding allocation of Democrats across

districts and computing the aggregate fraction of Democrats used. For example, in case (i),

equations (49), (50), and the fact that �D(i) = f(�I(i); V
�
o (i)) for all i 2 [io; io], imply that

�D(i) =

8>>>>>>>>>><>>>>>>>>>>:

"
�+" if i 2 [0; io)

�I=2+�D�V �
o (i)

�I+�D�V �
o (i)

if i 2 [io;bio)
0 if i 2 [bio; io]
0 if i 2 (io; 1]

:

Thus, we have that

� =
Rbio
io
(
�I=2+�D�V �

o (i)
�I+�D�V �

o (i)
)di+ io

"
�+"

= �I"� �I� ln(1 + "
� ) + io

"
�+" :

This completes the proof of Lemma A.1. �

The Maximization Problem Pmax. Turning to the maximization problem, we have that:

LEMMA A.3. (i) If �I 2 [�I2� ln(1 + "
� ) + (1� io)

�
�+" ; io

�
�+" + �I2� ln(1 +

"
� ) + (1� io)

�
�+" ],

then

� = 1� �I � �I"+ �I� ln(1 +
"

�
)� (1� io)

"

� + "
:

(ii) If �I 2 [�I2� ln(1 + "
� ); �I2� ln(1 +

"
� ) + (1� io)

�
�+" ], then

� = 1� �I � �I"+ �I� ln(1 +
"

�
)� (1� io)[

1

2
� (

�I � �I2� ln(1 + "
� )

1� io
)(
� � "
2�

)]:

Proof. Following the same steps as used in the proof of Lemma A.2, it may be shown that: (i) if

�I 2 [�I2� ln(1 + "
� ) + (1� io)

�
�+" ; io

�
�+" + �I2� ln(1 +

"
� ) + (1� io)

�
�+" ], then

� = �I"� �I� ln(1 +
"

�
) + io[1� (

�I � [�I2� ln(1 + "
� ) + (1� io)

�
�+" ]

io
)];
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and (ii) if �I 2 [�I2� ln(1 + "
� ); �I2� ln(1 +

"
� ) + (1� io)

�
�+" ], then

� = �I"� �I� ln(1 +
"

�
) + io + (1� io)[

1

2
� (

�I � [�I2� ln(1 + "
� )]

1� io
)(
� + "

2�
)]:

Using the de�nitions of io and io in (39) and (40) and with a little work, these expressions can be

shown to equal the claimed expressions in the statement of the Lemma. �

Completing the Proof. We will now show that the optimal inverse seat-vote curve fio; io; V �o (�)g

satis�es the constraint that � � �D if and only if (12) holds for �D and the constraint that � � �D

if and only if (12) holds for �R. We begin with the former.

From Lemma A.1 we know that: (i) if �I 2 [io �
�+" + �I2� ln(1 +

"
� ); io

�
�+" + �I2� ln(1 +

"
� ) +

(1� io) �
�+" ], then

� = �I"� �I� ln(1 +
"

�
) + io

"

� + "
;

and (ii) if �I 2 [�I2� ln(1 + "
� ); io

�
�+" + �I2� ln(1 +

"
� )], then

� = �I"� �I� ln(1 +
"

�
) + io[

1

2
� (

�I � �I2� ln(1 + "
� )

io
)(
� � "
2�

)]:

In addition, observe that after substituting in for io, we have that �I � io �
�+" + �I2� ln(1 +

"
� ) if

and only if

�I �
�D

(1 + "
� )[1� 2� ln(1 +

"
� )] + "�

1
2

; (52)

so that case (i) arises if (52) holds and case (ii) otherwise.

Suppose that (52) holds so that case (i) arises. Then, after substituting in for io, we have that

� = (�D +
�I
2
)
"

� + "
+ �I"

�

� + "
� �I� ln(1 +

"

�
):

Thus, in this case, the constraint that � � �D is satis�ed if and only if

�D � �I(
"

2�
+ "� (� + ") ln(1 + "

�
));

which is just (12).

Next suppose that (52) does not hold and case (ii) arises. Then, after substituting in for io,

we have

� =
�I
2
("+

"

�
� 1
2
) +

�D
2
� �I" ln(1 +

"

�
)

and thus the constraint that � � �D is satis�ed if and only if

�I
2
("+

"

�
� 1
2
)� �I" ln(1 +

"

�
) � �D

2
: (53)
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To summarize, if (52) holds the constraint � � �D will be satis�ed if and only if (12) is satis�ed.

If (52) does not hold the constraint that � � �D will be satis�ed if and only if (53) is satis�ed.

We can now prove that � � �D if and only if (12) holds for �D. Suppose �rst that (12) is not

satis�ed. This implies that (52) holds since

(
"

2�
+ "� (� + ") ln(1 + "

�
)) < (1 +

"

�
)(1� 2� ln(1 + "

�
)) + "� 1

2
:

It follows that the constraint � � �D will be violated. Next suppose that (12) is satis�ed. Then

we claim that (53) must also be satis�ed. We need to show that

�D � �I(
"

2�
+ "� (� + ") ln(1 + "

�
));

implies that

�D � �If("+
"

�
� 1
2
)� 2" ln(1 + "

�
)g:

This amounts to 1 � 2" ln(1+ "
� ), which holds under our assumptions on " and � . It follows that,

irrespective of whether (52) holds, the constraint � � �D will be satis�ed.

It only remains to show that � � �D if and only if (12) holds for �R. From Lemma A.2, we

know that (i) if �I 2 [�I2� ln(1+ "
� )+

1�io
1+ "

�
;
io
1+ "

�
+�I2� ln(1+

"
� )+

1�io
1+ "

�
] then � � �D if and only

if

1� �I � �I"+ �I� ln(1 +
"

�
)� (1� io)

"

� + "
� �D

which is equivalent to

�R � �I"� �I� ln(1 +
"

�
) + (1� io)

"

� + "
:

Similarly, (ii) if �I 2 [�I2� ln(1 + "
� ); �I2� ln(1 +

"
� ) +

(1�io)
1+ "

�
], then � � �D if and only if

1� �I � �I"+ �I� ln(1 +
"

�
)� (1� io)[

1

2
� (

�I � �I2� ln(1 + "
� )

1� io
)(
� � "
2�

)] � �D

which is equivalent to

�R � �I"� �I� ln(1 +
"

�
) + (1� io)[

1

2
� (

�I � �I2� ln(1 + "
� )

1� io
)(
� � "
2�

)]:

Observing that 1� io = �R + �I
2 � �I", we can simply apply the argument from the �rst part of

the proof with �R replacing �D to reach the desired conclusion. �

Proof of Proposition 3. Using the de�nitions from the proof of Proposition 2, the optimal seat-

vote curve is implementable with a districting of the form in (16) if and only if (a) the proposed

districting is a feasible districting and (b) �D + 1=2� �D � V and �D + 1=2� �D � V .
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The proposed districting is a feasible districting if and only if the following conditions are

satis�ed: (a.i) �D 2 [0; 1��I ], (a.ii) �D 2 [0; 1��I ], (a.iii) for all i 2 [io; io], 12 �
�I
2 +

�D+
�I
2 �i

2� 2

[0; 1� �I ], and, (a.iv)

io�D +

Z io

io

[
1

2
� �I
2
+
�D +

�I
2 � i

2�
]di+ (1� io)�D = �D: (54)

It is straightforward to show that condition (a.iii) is satis�ed if and only if �I � �
�+" . Condition

(a.iv) can be simpli�ed by noting thatZ io

io

[
1

2
� �I
2
+
�D +

�I
2 � i

2�
]di = �I"(1� �I);

so that (54) can be rewritten as

io�D + �I"(1� �I) + (1� io)�D = �D: (55)

Using the de�nitions of V and V , the inequality requirements in (b) can be rewritten as �D �
1
2 � �I(

��"
2� ) and �D �

1
2 � �I(

�+"
2� ).

Combining all this, the optimal seat-vote curve is implementable with a districting of the form

in (16) if and only if there exist �D 2 [ 12 � �I(
��"
2� ); 1� �I ] and �D 2 [0;

1
2 � �I(

�+"
2� )] that satisfy

(55). Solving (55), we have that

�D =
�D � �I"(1� �I)� io�D

1� io
:

So de�ning the function:

g(�D) =
�D � �I"(1� �I)� io�D

1� io
;

the optimal seat-vote curve is implementable with a districting of the form in (16) if and only if

there exists �D 2 [ 12 � �I(
��"
2� ); 1� �I ] such that g(�D) 2 [0;

1
2 � �I(

�+"
2� )].

Since g is decreasing, it follows that if g( 12 � �I(
��"
2� )) �

1
2 � �I(

�+"
2� ) the condition is met if

and only if g( 12 � �I(
��"
2� )) � 0, while if g(

1
2 � �I(

��"
2� )) >

1
2 � �I(

�+"
2� ) the condition is met if and

only if g(1� �I) � 1
2 � �I(

�+"
2� ). Observe that

g(
1

2
� �I(

� � "
2�

)) =
�D � �I"(1� �I)� io[ 12 � �I(

��"
2� )]

1� io

so that g( 12 � �I(
��"
2� )) �

1
2 � �I(

�+"
2� ) if and only if �D � �R. Thus, if �D � �R the condition is

met if and only if g( 12��I(
��"
2� )) � 0 and if �D > �R it is met if and only if g(1��I) �

1
2��I(

�+"
2� ):

41



So suppose that �D � �R. Then, the condition is

�D � �I"(1� �I)� io[ 12 � �I(
��"
2� )]

1� io
� 0;

which is equivalent to (17) holding for �D. On the other hand, if �D > �R, then the condition is

�D � �I"(1� �I)� io(1� �I)
1� io

� 1

2
� �I(

� + "

2�
)

which with a little work can be shown equivalent to (17) holding for �R. �
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FOOTNOTES

1. Important papers in this literature include Butler [1951], Gelman and King [1990] and [1994],

King [1989], King and Browning [1987] and Tufte [1973]. For general discussions of districting see

Galderisi [2005] and Mann and Cain [2005].

2. More generally, a seat-vote curve is said to display partisan symmetry if S(V ) = 1�S(1�V )

for all V . A seat-vote curve is then de�ned to exhibit partisan bias if it deviates from partisan

symmetry systematically in favor of one party.

3. In legal discussions of districting, it is common to advocate implementing plans that satisfy

certain traditional \principles". These include the democratic ideals of respecting political sub-

divisions and recognizing communities of actual shared interest, and spatial criteria concerning

contiguity and compactness. A small literature has emerged analyzing various ways to measure

district compactness. In an interesting new paper, Fryer and Holden [2006] review this literature,

propose a new measure of compactness, and show how to compute the most compact districting.

4. Papers in this tradition include Owen and Grofman [1988], Gilligan and Matsusaka [1999],

Sherstyuk [1998] and Shotts [2001], [2002]. More recently, Friedman and Holden [2006] revisit the

partisan gerrymandering problem, providing an elegant and comprehensive analysis.

5. In an interesting application of the theory, Shotts [2001] and [2002] uses his positive models

of partisan gerrymandering to understand the policy implications of mandating that districting

authorities form so-called majority-minority districts.

6. Their ambitious analysis formalizes the intuition that there maybe a trade-o� between

descriptive and substantive representation. Descriptive representation is achieved by having dis-

tricts elect black representatives, while substantive representation is achieved when the legislature

chooses policies that favor black voters. Maximizing descriptive representation may require con-

centrating black voters into majority-minority districts, while maximizing substantive represen-

tation may require a more even spreading of black voters. The underlying structure of Epstein

and O'Hallaran's model is simpler than the one presented in this paper in that it does not al-

low for Independents and there is no aggregate uncertainty in voters' preferences. On the other

hand, to incorporate substantive representation, they model strategic policy choices on the part

of politicians, whereas in our model parties' ideologies are �xed.

7. In an interesting paper, Cameron, Epstein and O'Halloran [1996] develop a methodology for
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assessing the e�ect of di�erent districting schemes on the substantive representation of minority

interests as measured by U.S. House members' roll-call voting scores on minority issues. This

methodology is then applied to calculate the districting strategy that would maximize substantive

black representation in the U.S. House.

8. As will be seen below, most of our results, with the exception of the measure of welfare

gains, are independent of the exact values of the parameters � and .

9. This objective function is equivalent to aggregate expected utility under the assumption

that each Independent voter is ex ante identical. Under this assumption, for a given draw of m,

each Independent is equally likely to have any ideology on [m� �;m+ � ]. The expected payo� of

any Independent voter is then just the payo� of the average Independent voter.

10. For example, suppose that the aggregate vote for Democrats increases from 30% to 40%

and suppose their initial seat share is 30%. Then whether their seat share increases to 35% or 45%

has no impact on policy because in either situation the median legislator remains a Republican.

Thus, the responsiveness of the seat-vote curve over this part of the domain is irrelevant.

11. Recent empirical evidence is consistent with this no commitment assumption. In particu-

lar, Lee, Moretti, and Butler [2004] �nd that exogenous changes in electoral support for one party

does not induce changes in campaign platforms, as measured in post-election roll call voting data.

12. As noted in the introduction, Besley and Preston [2006] study how districting impacts

the platform choices of competing political parties in a model with a very similar avor to ours.

Their work could be a starting place for analyzing the problem of optimal districting taking into

account its impact on parties' strategic choices.

13. As noted in the introduction, Gilligan and Matsusaka [2005] study the optimal districting

problem from this Downsian perspective under the assumption that the objective function is to

minimize the distance between the ideology of the median legislator and the median voter. Their

main �nding is that identical districts are optimal. With identical districts, each candidate adopts

the position of the population median voter and all candidates have a homogeneous (and optimal)

ideology.

14. When " = 0, the fraction of Independents supporting the Democrats is certain and the

seat-vote curve is degenerate.

15. That said, it would certainly be interesting to extend the analysis here to the case in

which the districting authority only observes a signal of each voter's ideology (as in Friedman and
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Holden [2006]).

16. As noted in Section II.D, the linearity of the optimal seat-vote curve follows from our

assumptions that citizens have quadratic loss functions and that the distribution of Independents'

ideologies is uniform across its support. In Coate and Knight [2005] we explore the implications

of more general assumptions for the optimal seat-vote curve. We show that the factors identi�ed

in the basic model (i.e., (�D � �R) and 2�) remain key determinants of its partisan bias and

responsiveness. Interestingly, we have also found in simulations that the optimal seat-vote curve

is atter when the citizens' loss function is more convex. This suggests the idea that optimal

responsiveness is inversely related to \political risk aversion".

17. In this case, the optimal seat-vote curve is So(V ) = 1=2 + 2�(V � 1=2), while the only

feasible seat-vote curve is S(V ) = 0 if V < 1=2 and S(V ) = 1 if V > 1=2.

18. It is easy to see how. When " = 0 exactly 1=2 of the Independents will vote Democrat

and 1=2 will vote Republican. The optimal seat share for the Democrats is �D+�I=2. Consider a

districting that grouped all the Democrats together, all Independents together and all Republicans

together. This would generate �D +�I=2 Democratic seats if the ties in the Independent districts

were resolved by the toss of a fair coin. The problem of ties can be avoided by transferring a small

number of Democrats into 1=2 the Independent districts and a small number of Republicans into

the other half.

19. It may also be noted that the safe Democrat and safe Republican seats are identical.

However, this is inconsequential. All that matters is that these seats be safe. The seat-vote curve

is una�ected by the exact margin of victory in these seats.

20. Indeed, Shotts [2002] argues that geographic constraints necessitate that each district

contain at least some minimum fraction of each type of voter.

21. That is, EW �(S(V )) =
R V
V
W (S(V );m(V )) dV

V�V :

22. In the empirical application to follow, we estimate the moments by running panel data

regressions that relate district voting returns to voter characteristics. Data on the statewide

fraction of Independents is taken from survey data.

23. Intuitively, large swings in the Democratic vote share within a state could be due to a large

fraction of Independents (�I), large swings in the preferences of the median Independent ("), or a

tight distribution of ideology among Independents (�), in which case relatively small swings in the

preferences of the median Independent translate into relatively large swings in voting outcomes.
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24. We prefer this setting over the U.S. House because, in federal redistricting, state o�cials

control the redistricting process and each redistricting plan thus only partially contributes to

the resulting allocation of national seats across parties in Congress. Redistricting plans for state

legislatures are also controlled by state o�cials, and redistricting plans thus perfectly correspond

to changes in seats in state legislatures.

25. Some states elect multiple members from each district to state legislatures.

26. States deviating from this pattern of elections include Virginia, which has elections in

odd years and adopted redistricting plans in 1991 and 2001, and Colorado, whose district lines

were redrawn in 1998 following litigation over the representation of minority groups in the state

legislature.

27. These data, which are published in Barone et al [1998], include the fraction of residents

living in urban areas, the fraction living in suburban areas, household income, percent of residents

with a college degree, percent over age 65, percent African-American, and percent Hispanic.

28. These data were downloaded from the website http://php.indiana.edu/~wright1/cbs7603 pct.zip.

In order to compute the time-invariant fraction of Independents for each State, we take averages

across the years listed in Table 1. We choose this data source over others, such as the National

Election Survey, due to the large sample size, an important consideration when computing state-

speci�c statistics. During the 1992-2000 period as a whole, these surveys included over 200,000

respondents nationally.

29. Our dataset consists of 2,973 state legislative districts, of which 2,703 had at least one

contested election during the relevant time period.

30. This bootstrap approach also corrects for the additional uncertainty associated with the

second step regression including a generated variable on the left-hand side.

31. Alternatively, one could report the mean of the parameters across replications. These

estimates are very similar to those reported in Table 2 and are available from the authors upon

request.

32. An alternative solution to this problem would be to simply \shut down" this unobserved

component and use only the observed component as our estimate of the moments. This is, after all,

the central tendency (the mean and median) of the distribution of moments. The di�culty with

this approach, however, is that it will tend to understate the degree of cross-district heterogeneity,

which in turn may tend to overstate the responsiveness of the seat-vote curve. To see this,
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consider the extreme case in which the true moments are heterogeneous across districts but in

which the observed voter characteristics have no explanatory power in the regressions. Then, if

the unobserved component is shut down, the estimated seat-vote curve will be that associated

with identical districting and will thus jump from 0 to 1 at V=1/2, and all districts will thus be

considered competitive. Of course, our voter characteristics do have explanatory power but the

more general lesson still holds: ignoring the unobserved component tends to understate the degree

of heterogeneity across districts.

33. This simulation approach is similar to methods used in Gelman and King [1990], [1994].

In Gelman and King [1994], for example, votes (Vi) are assumed to be related to observable

candidate characteristics (Xi), such as incumbency, and the authors estimate the parameters of

the regression equation Vi = Xi� + ui, where ui is unobserved and normally distributed; i.e.

ui � N(0; �2). Importantly, the variance is assumed to be constant across districts. With the

estimated parameters in hand, the authors then simulate the model, and the implied seat-vote

curve, by drawing from the distribution of district-speci�c votes for the Democrat (i.e., the ui's).

This similarity not withstanding, there are three key di�erences between our approach and that of

Gelman and King. First, as noted in the introduction, we begin with a theoretical model and focus

on providing micro foundations for the measurement of seat-vote curves. Second, their approach

assumes that this variance of the vote generating process is constant across districts; in the context

of our model, this assumption would require that all districts have an equal fraction of Independent

voters, and we thus allow this variance to be heterogeneous across districts. Third, in explaining

di�erences in voting patterns across districts, Gelman and King [1994] rely on observable candidate

characteristics whereas, given our theoretical assumption of homogeneous candidates, we rely on

observable voter characteristics.

34. This responsiveness measure is obtained by computing the slope of the linear seat-vote

curve that best approximates the estimated seat-vote curve. To be more precise, de�ne the lin-

earized estimated seat-vote curve to be Sl(V ) = 1=2 + b + r(V � 1=2), where b and r are chosen

in order to minimize the expected square distance between the estimated and the linearized esti-

mated seat-vote curves. That is: r =cov[V; S(V )]=var(V ) and b = E[S(V )]� 1=2� r[E(V )� 1=2].

Then our measure of responsiveness is r.

35. Note that in evaluating the conditions for implementation, we have not used external

information on the statewide fraction of Democrats and Republican. It is comforting to note,
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however, that the implied fraction of partisans from voting behavior are highly correlated with

the fraction of voters self-reporting as partisans. Using the fact that the implied statewide fraction

of Democrats and Republicans are given by �D = �� �I=2 and �R = 1� �� �I=2; we calculate

the cross-replication correlation between the implied and reported fraction of voters to be roughly

0.8 for both Republicans and Democrats.

36. While a welfare comparison of the continuous optimal seat-vote curve and the discrete

measured seat-vote curve is somewhat arti�cial, we use the continuous optimal seat-vote curve in

order to apply the implementability condition from Proposition 2. To provide a sense of the error

associated with this approximation, we have derived a discrete optimal seat-vote curve, which is

a step-function approximation of the continuous optimal seat-vote curve. Welfare associated with

this discrete optimal seat-vote curve is similar to welfare under the continuous optimal seat-vote

curve, and the approximation error associated with the use of a continuous optimal seat-vote

curve is thus small in practice. The small size of this error should not be surprising given that the

discrete and continuous optimal seat-vote curve converge as the number of districts grows large.

As shown in Table 1, states tend have a large number of legislative districts.

37. Of course, if this surplus is itself very large, then these gains could be quite large in

monetary terms. But without further assumptions on the underlying welfare parameters � and ,

these percentage gains in welfare cannot be converted into monetary terms.

38. Note that the seat-vote curve generated by identical districting equals 0 for V < 1=2 and

1 for V � 1=2: In the context of our model, this is also the seat-vote curve generated by at-large

voting systems, providing an additional motivation for this benchmark.

39. The reader may be concerned that our assumption that optimal responsiveness is at its

upper bound may contribute in part to these small welfare gains associated with a movement

from PR to optimal districting. Indeed, as the diversity parameter � approaches 1=2, the optimal

seat-vote curve converges to the PR seat-vote curve, as can be seen in equation (11). So there

would obviously be no welfare gains to socially optimal districting in this case. To examine the

role of this upper bound assumption, we experimented with alternative values of the parameter �.

For example, when � = 0:25, optimal responsiveness equals 0:25=(1+�) and is thus less than 1/4;

even in this case, however, the welfare gains associated with a movement from PR to the optimal

seat-vote curve are small, averaging 0.18% across states and replications. Thus, these results

are robust to alternative parameter values and are not driven by the assumption that optimal
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responsiveness is at its upper bound.
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state first redistricting subsequent redistricting number districts
AL 1994 2002 105
CA 1992 2002 80
CO 1992 1998 65
CT 1992 2002 151
DE 1992 2002 41
FL 1994 2002 120
IA 1992 2002 100
IL 1992 2002 118
KS 1992 2002 125
KY 1996 2002 100
ME 1994 2002 151
MI 1992 2002 110
MO 1992 2002 163
MS 1995 2002 122
MT 1994 2002 100
NM 1992 2002 70
NV 1992 2002 42
NY 1992 2002 150
OH 1992 2002 99
OK 1992 2002 101
OR 1992 2002 60
PA 1992 2002 203
RI 1992 2002 100
SC 1992 1998 124
TN 1994 2002 99
UT 1992 2002 75
VA 1991 2001 100
WI 1992 2002 99

Table I: States and Years Included in Analysis



Moment mean variance
percent urban 0.0694** -0.0570

(0.0078) (0.0947)
percent suburban 0.0357** -0.1332

(0.0083) (0.1011)
household income (thousands) -0.0035** -0.0120**

(0.0004) (0.0040)
percent with college degree 0.1438** -0.2667

(0.0388) (0.4534)
percent over age 65 0.3649** 0.0648

(0.0364) (0.5930)
percent African American 0.4779** -2.7374**

(0.0144) (0.2649)
percent Hispanic 0.2926** -0.1256

(0.0320) (0.3273)
R-squared 0.4386 0.0494
Number of districts 2707 2707
Number of elections 8504 8504

Table II: Random Effects Regression Results
(all regressions include state-specific constant terms, bootstrap standard errors in parentheses)



state r optimal r difference b optimal b difference expected seats difference
AL 2.7483 0.7044 2.0439 0.0480
CA 2.4170 0.6212 1.7958 -0.0125 0.0162 -0.0287 0.0826
CO 2.6867 0.7277 1.9589 0.0846 -0.0038 0.0884 0.0480
CT 2.1870 0.6155 1.5716 -0.0298 0.0146 -0.0444 0.0183
DE 2.2597 0.6354 1.6243 -0.0610 -0.0158 -0.0452 -0.0951
FL 3.0914 0.6791 2.4123 0.0250 -0.0080 0.0330 -0.0332
IA 3.3310 0.7288 2.6022 -0.0200 -0.0041 -0.0159 -0.0457
IL 2.3693 0.6658 1.7035 -0.0508 0.0157 -0.0665 0.0364
KS 2.7312 0.6033 2.1279 -0.0360 -0.0106 -0.0254 -0.0627
KY 3.5330 0.6289 2.9041 -0.0500 0.0075 -0.0575 0.0314
ME 3.1589 0.7003 2.4587 0.0033 0.0067 -0.0034 0.0361
MI 3.1192 0.7416 2.3776 -0.1000 0.0010 -0.1010 -0.0086
MO 3.0136 0.6960 2.3176 -0.0521 0.0093 -0.0615 0.0160
MS 2.6200 0.6771 1.9429 0.1156
MT 2.8717 0.6763 2.1954 0.0000 -0.0170 0.0170 -0.0922
NM 3.3887 0.7038 2.6849 -0.0286 0.0090 -0.0376 0.0525
NV 3.1484 0.6965 2.4519 0.0238 0.0042 0.0196 0.0697
NY 2.3173 0.6900 1.6272 0.0812
OH 2.5471 0.6413 1.9058 -0.0657 0.0005 -0.0662 -0.0424
OK 3.2740 0.5186 2.7554 -0.0347 0.0063 -0.0410 0.0000
OR 2.7487 0.6145 2.1342 0.0000 -0.0101 0.0101 -0.0313
PA 2.6887 0.5803 2.1084 -0.0172 0.0139 -0.0311 0.0242
RI 1.9708 0.7432 1.2276 0.1757
SC 2.3915 0.6985 1.6930 -0.0726 0.0057 -0.0783 -0.0277
TN 2.9736 0.7059 2.2677 -0.1061 0.0165 -0.1225 0.0078
UT 2.6488 0.7316 1.9172 -0.0333 -0.0182 -0.0151 -0.1501
VA 2.1373 0.6678 1.4695 -0.0200 -0.0052 -0.0148 -0.0442
WI 2.8097 0.7094 2.1003 -0.0657 -0.0049 -0.0608 -0.0587
Average 2.7565 0.6715 2.0850 -0.0300 0.0012 -0.0312 0.0054

Table III: Properties of Estimated and Optimal Seat-Vote Curves
(for replication associated with median welfare loss by state)



mean median mean median mean median
AL 1.8239 1.8652 1.0131 , 2.4326 -0.0804 -0.0812 -0.1421 , -0.0379 0.0541 0.0487 0.0108 , 0.1202
CA 1.8327 1.8481 1.0972 , 2.4980 -0.0283 -0.0271 -0.0798 , 0.0329 0.0792 0.0838 -0.0001 , 0.1356
CO 1.8700 1.8641 1.1077 , 2.7489 -0.0059 -0.0047 -0.0724 , 0.0542 -0.0560 -0.0549 -0.1323 , 0.0170
CT 1.7339 1.7479 1.4181 , 2.0376 -0.0577 -0.0555 -0.1023 , -0.0244 0.0265 0.0258 -0.0064 , 0.0551
DE 2.0212 2.0231 1.2378 , 2.8136 -0.0427 -0.0416 -0.1273 , 0.0361 -0.0584 -0.0543 -0.1365 , 0.0248
FL 2.0488 2.0093 1.5851 , 2.6673 -0.0306 -0.0283 -0.0840 , 0.0206 -0.0239 -0.0263 -0.0767 , 0.0361
IA 2.3761 2.3970 1.8240 , 2.9774 -0.0014 -0.0048 -0.0550 , 0.0487 -0.0134 -0.0145 -0.0628 , 0.0418
IL 1.7695 1.8173 1.2300 , 2.2815 -0.0878 -0.0865 -0.1295 , -0.0507 0.0105 0.0104 -0.0297 , 0.0455
KS 2.0040 1.9937 1.5830 , 2.5635 -0.0014 -0.0013 -0.0494 , 0.0427 -0.0857 -0.0833 -0.1269 , -0.0445
KY 2.5209 2.5256 1.7970 , 3.2608 -0.0490 -0.0508 -0.0999 , 0.0033 0.0496 0.0487 -0.0038 , 0.1140
ME 2.3666 2.3653 2.0194 , 2.6793 -0.0061 -0.0035 -0.0442 , 0.0429 0.0435 0.0473 -0.0008 , 0.0830
MI 2.0319 2.0469 1.3785 , 2.6249 -0.0951 -0.0973 -0.1413 , -0.0515 -0.0233 -0.0265 -0.0771 , 0.0313
MO 2.1379 2.1538 1.7466 , 2.6283 -0.0767 -0.0783 -0.1163 , -0.0378 0.0138 0.0158 -0.0215 , 0.0500
MS 1.6717 1.7072 1.0177 , 2.3327 -0.0241 -0.0241 -0.0440 -0.0043 0.1135 0.1118 0.0630 , 0.1655
MT 2.2381 2.2022 1.6500 , 3.1036 0.0124 0.0115 -0.0414 , 0.0649 -0.1023 -0.1017 -0.1568 , -0.0490
NM 1.9778 1.9869 1.1543 , 2.7721 -0.0035 -0.0028 -0.0704 , 0.0580 0.0743 0.0721 0.0020 , 0.1387
NV 2.1884 2.1779 1.3243 , 3.0263 -0.0291 -0.0303 -0.1053 , 0.0475 0.0434 0.0419 -0.0399 , 0.1231
NY 1.5752 1.5660 1.1122 , 2.0576 0.0851 0.0849 0.0529 , 0.1128
OH 2.0223 1.9576 1.5078 , 2.5498 -0.0551 -0.0557 -0.1058 , -0.0125 -0.0353 -0.0330 -0.0839 , 0.0135
OK 2.4721 2.4915 1.9608 , 3.0119 -0.0375 -0.0386 -0.0878 , 0.0111 0.0388 0.0412 -0.0164 , 0.0923
OR 2.3696 2.2990 1.6972 , 3.0857 -0.0080 -0.0132 -0.0700 , 0.0628 -0.0008 -0.0017 -0.0804 , 0.0821
PA 2.1454 2.1410 1.7926 , 2.5518 -0.0649 -0.0655 -0.1012 , -0.0226 -0.0143 -0.0145 -0.0566 , 0.0283
RI 1.2585 1.2690 0.6227 , 1.8859 0.1712 0.1735 0.1336 , 0.2144
SC 1.8004 1.7805 1.1822 , 2.3830 -0.0310 -0.0283 -0.0763 , 0.0135 -0.0060 -0.0035 -0.0583 , 0.0416
TN 2.0311 2.0160 1.5091 , 2.6308 -0.0775 -0.0800 -0.1260 , -0.0171 -0.0014 -0.0020 -0.0591 , 0.0550
UT 1.8290 1.7967 1.0440 , 2.6165 0.0202 0.0191 -0.0300 , 0.0758 -0.1496 -0.1517 -0.2136 , -0.0717
VA 1.7549 1.7406 1.2524 , 2.2849 -0.0345 -0.0339 -0.0769 , 0.0117 -0.0095 -0.0116 -0.0534 , 0.0466
WI 2.2543 2.2377 1.7681 , 2.7728 -0.0385 -0.0415 -0.0811 , 0.0075 -0.0220 -0.0264 -0.0812 , 0.0464
Average 2.0045 2.0010 -0.0359 -0.0363 0.0072 0.0071

confidence interval
difference in responsiveness

Table IV: Properties of Estimated and Optimal Seat-Vote Curves
(properties of distribution across all replications)

difference in bias
confidence interval

difference in expected seats
confidence interval



state % independents average maximum % independents Pr(implementable)
AL 29.44% 70.77% 100%
CA 26.01% 73.13% 100%
CO 39.12% 80.16% 100%
CT 41.89% 67.34% 100%
DE 36.20% 76.83% 100%
FL 27.59% 82.25% 100%
IA 40.46% 80.60% 100%
IL 33.64% 72.11% 100%
KS 31.18% 73.56% 100%
KY 22.55% 79.14% 100%
ME 45.71% 75.60% 100%
MI 35.16% 80.19% 100%
MO 37.15% 74.65% 100%
MS 24.94% 63.52% 100%
MT 36.36% 75.27% 100%
NM 29.43% 78.03% 100%
NV 29.78% 77.84% 100%
NY 30.92% 60.60% 100%
OH 32.41% 80.25% 100%
OK 18.79% 75.86% 100%
OR 30.99% 78.82% 100%
PA 24.59% 78.58% 100%
RI 51.19% 58.14% 100%
SC 33.02% 83.00% 100%
TN 33.94% 77.89% 100%
UT 33.91% 70.49% 100%
VA 34.42% 80.60% 100%
WI 36.43% 81.68% 100%

Table V: Conditions for Implementability



state median % welfare gains average % welfare gains
AL 0.99% 1.11% 0.36% , 2.27%
CA 1.74% 1.86% 0.72% , 3.54%
CO 1.21% 1.45% 0.45% , 3.08%
CT 1.80% 1.82% 1.19% , 2.53%
DE 2.38% 2.43% 0.77% , 4.14%
FL 1.20% 1.24% 0.68% , 2.02%
IA 1.87% 1.90% 1.04% , 2.99%
IL 1.04% 1.06% 0.47% , 1.74%
KS 2.52% 2.50% 1.53% , 3.60%
KY 1.76% 1.76% 0.82% , 3.08%
ME 2.52% 2.62% 1.84% , 3.72%
MI 0.91% 0.94% 0.50% , 1.52%
MO 1.51% 1.50% 0.92% , 2.11%
MS 2.26% 2.34% 1.08% , 4.06%
MT 2.62% 2.75% 1.32% , 4.47%
NM 1.53% 1.73% 0.57% , 3.23%
NV 1.74% 1.82% 0.70% , 3.45%
NY 1.37% 1.41% 0.76% , 2.15%
OH 1.49% 1.60% 0.90% , 2.57%
OK 2.55% 2.54% 1.53% , 3.64%
OR 2.00% 2.22% 1.10% , 3.96%
PA 1.57% 1.61% 1.04% , 2.31%
RI 4.21% 4.15% 2.67% , 6.02%
SC 0.78% 0.84% 0.40% , 1.47%
TN 1.10% 1.15% 0.55% , 1.89%
UT 3.56% 3.78% 1.98% , 6.20%
VA 0.93% 1.01% 0.45% , 1.82%
WI 1.50% 1.55% 0.83% , 2.54%
Average 1.81% 1.88%

confidence interval

Table VI: Welfare Gains to Optimal Districting



η=1 η=0.75 η=0.50 η=0.25

γ/β=1 1.88% 2.06% 2.25% 2.46%

γ/β=0.75 1.33% 1.46% 1.59% 1.74%

γ/β=0.50 0.84% 0.92% 1.01% 1.10%

γ/β=0.25 0.40% 0.44% 0.48% 0.52%

Table VII: Average Welfare Gains Under Alternative Parameter Values



state % welfare gains (relative to identical districting)
AL 27.49%
CA 32.30%
CO 35.23%
CT 31.91%
DE 35.32%
FL 38.44%
IA 35.86%
IL 32.33%
KS 34.71%
KY 36.73%
ME 33.82%
MI 35.37%
MO 33.83%
MS 22.39%
MT 33.04%
NM 34.66%
NV 35.67%
NY 19.86%
OH 37.06%
OK 38.20%
OR 36.86%
PA 38.15%
RI 19.29%
SC 37.59%
TN 34.92%
UT 27.80%
VA 36.65%
WI 36.69%
Average 33.29%

Table VIII: Average Welfare Gains Associated With Moving from Identical to Optimal Districting



state % welfare gains to optimal districting from PR % welfare gains to implementing PR
AL 0.02% 1.09%
CA 0.04% 1.83%
CO 0.02% 1.43%
CT 0.07% 1.75%
DE 0.06% 2.39%
FL 0.03% 1.22%
IA 0.03% 1.88%
IL 0.03% 1.03%
KS 0.05% 2.45%
KY 0.03% 1.73%
ME 0.04% 2.59%
MI 0.02% 0.93%
MO 0.03% 1.47%
MS 0.03% 2.32%
MT 0.02% 2.73%
NM 0.03% 1.71%
NV 0.05% 1.79%
NY 0.02% 1.39%
OH 0.04% 1.56%
OK 0.08% 2.45%
OR 0.05% 2.18%
PA 0.05% 1.56%
RI 0.02% 4.13%
SC 0.02% 0.82%
TN 0.02% 1.13%
UT 0.02% 3.77%
VA 0.03% 0.99%
WI 0.02% 1.53%
Average 0.03% 1.85%

Table IX: Average Welfare Gains from PR



 

 
 

Figure I 

 

)(VoS  

V

)(VoS  

V 2/ID ππ +

)(VoS

o45

1

1  

0  

S  

V



0
.2

.4
.6

.8
1

Fr
ac

tio
n 

D
em

oc
ra

ts

0 .2 .4 .6 .8
Fraction Independents

Entire area represents pairs satisfying Proposition 2
Shaded area represents pairs satisfying Proposition 2 but not Proposition 3

Figure II



 

 

 (a)          (b) 
 

Figure III 

 
 
 
 
 
 
 
 
 
  

2/ID ππ +  
)(VSo  

VV  2/ID ππ +

)(* VS

V0  

S  

τε
τεπ

/
/1+

D  

 
 
 
 
 
 
 
 
 
  

2/ID ππ +

)(VSo

VV 2/ID ππ +

)(* VS

V  0  

S

V̂



.5
.6

.7
.8

.4
.5

.6
.7

.8

.3
.4

.5
.6

.7

.2
.4

.6
.8

.2
.4

.6
.8

.3
.4

.5
.6

.2
.4

.6
.8

.4
.6

.8

.2
.4

.6
.8

.2
.4

.6
.8

.5 .55 .6 .65 .5 .55 .6 .65 .4 .45 .5 .55 .6 .4 .5 .6 .7 .35 .4 .45 .5 .55

.4 .45 .5 .55 .4 .45 .5 .55 .5 .55 .6 .65 .4 .5 .6 .45 .5 .55 .6

AL CA CO CT DE

FL IA IL KS KY

S(V) Optimal S(V)
Seat-Vote Curves

Figure IVa

Graphs by state



.2
.4

.6
.8

.4
.5

.6
.7

.2
.4

.6
.8

.6
.7

.8
.9

0
.2

.4
.6

.4
.6

.8

.4
.6

.8

.5
.6

.7
.8

.9

.2
.4

.6
.8

.2
.4

.6
.8

.4 .6 .45 .5 .55 .6 .45 .5 .55 .6 .55 .6 .65 .7 .35 .4 .45 .5 .55

.45 .5 .55 .6 .45 .5 .55 .6 .55 .6 .65 .7 .4 .45 .5 .55 .6 .45 .5 .55 .6

ME MI MO MS MT

NM NV NY OH OK

S(V) Optimal S(V)
Seat-Vote Curves

Figure IVb

Graphs by state



.2
.4

.6
.8

.2
.4

.6
.8

.5
1

.3
.4

.5
.6

.7

.4
.5

.6
.7

.8

.2
.3

.4
.5

.3
.4

.5
.6

.7

.3
.4

.5
.6

.7

.4 .45 .5 .55 .6 .45 .5 .55 .6 .65 .5 .55 .6 .65 .7 .45 .5 .55 .6

.5 .55 .6 .65 .35 .4 .45 .5 .4 .45 .5 .55 .4 .45 .5 .55

OR PA RI SC

TN UT VA WI

S(V) Optimal S(V)
Seat-Vote Curves

Figure IVc

Graphs by state


	07.06.pdf
	Page 1




