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Abstract

In this paper we analyze heteroskedasticity-autocorrelation (HAC) robust tests constructed
using the Bartlett kernel without truncation. We show that while such an HAC estimator is not
consistent, asymptotically valid testing is still possible. We show that tests using the Bartlett
kernel without truncation are exactly equivalent to recent HAC robust tests proposed by Kiefer,
Vogelsang and Bunzel (2000, Econometrica, 68, pp 695-714).
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1 Introduction

Over the past 15 years an important literature has emerged in econometrics on methods for consis-
tently estimating asymptotic covariance matrices of parameters estimates in models with heteroskedas-
ticity and autocorrelation of unknown form. Asymptotic theory for heteroskedasticity-autocorrelation
(HAC) consistent variance estimators has developed rapidly with the literature primarily focused on
the class of nonparametric estimators derived from the spectral analysis literature. See Kiefer, Vogel-
sang and Bunzel (2000) for relevant references. The nonparametric class of HAC estimators are zero
frequency spectral density estimators that are weighted sums of sample autocovariances. The weights
are determined by a kernel function and truncation lag or ”bandwidth”. Regarding the bandwidth,
consistency of the HAC estimator only requires that the bandwidth increase with the sample size but
at a slower rate. Unfortunately, this asymptotic theory provides little guidance for kernel or bandwidth
selection in finite samples because any choice of bandwidth for a particular finite sample can be made
consistent with any rate of growth. This well known and old problem has led to the development of
data dependent methods for choosing bandwidths. But, data dependent bandwidths do not provide
complete solutions because they require the choice of an approximate parametric model for the au-
tocorrelation, Andrews (1991), or initial nonparametric estimates that require their own bandwidth
choice, Newey and West (1994).

In this paper we begin with a different approach to the problem of choosing the kernel and band-
width. Rather than focus on asymptotic variances and their consistent estimation, we take a finite
sample perspective and focus on exact variances. Our approach immediately suggests that the Bartlett
kernel without truncation (bandwidth equal to the sample size) provides the natural weights. Even
though this HAC estimator is inconsistent, we show that valid testing is possible nonetheless. We also
prove that tests using the Bartlett kernel without truncation are exactly equivalent to recent HAC
robust tests proposed by Kiefer et al. (2000).

2 The Bartlett Kernel Without Truncation

For clarity, we focus on the simple linear regression model

yt = x
0
tβ + ut t = 1, 2, ..., T,

where β and xt are k× 1 vectors, ut is autocorrelated and possibly conditionally heteroskedastic, and
E(ut|xt) = 0. This last condition rules out lagged dependent variables but can be dropped by doing
the analysis in the context of instrumental variable estimation. See Vogelsang (2000).

The focus is testing linear hypotheses about β. We consider the ordinary least squares (OLS)

estimator, bβ = ³PT
t=1 xtx

0
t

´−1 PT
t=1 xtyt. Define vt = xtut. Using standard calculations we can write

the normalized estimator as
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t=1 vt is crucial for constructing tests about β, it is useful to consider the exact variance,
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where Γj = cov
³
vtv

0
t−j

´
. Notice that the weights in (1) are the Bartlett kernel weights without
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truncation. The standard approach is to take the limit of (1) as T → ∞ which gives Ω = ΛΛ0 =
Γ0 +

P∞
j=1

³
Γj + Γ

0
j

´
. Then, Ω is estimated using a HAC estimator.

From the finite sample perspective, it makes more sense to estimate (1) directly which is what
would be done if an exact test for β were feasible. If the Γj’s are replaced with sample analogs,bΓj = T−1

PT
t=j+1 bvtbv0t−j for j ≥ 0, bΓj = bΓ0−j for j < 0 where bvt = xt

³
yt − x0t bβ´

, then bΩ = bΓ0 +PT−1
j=1

³
1− j

T

´ ³bΓj + bΓ0j´
is obtained. bΩ is the Bartlett kernel (i.e. Newey and West (1987)) HAC

estimator without truncation. Because there is no truncation, all information (some of it noisy) in the
data regarding the Γj ’s is used. Although bΩ is not a consistent estimator of Ω, valid tests can still be
obtained because bΩ is asymptotically proportional to Ω as we now show.
3 Asymptotics and Inference

Let Wk(r) denote a k-vector of independent standard Wiener processes, and define Bk(r) =Wk(r)−
rWk(1). Let [rT ] denote the integer part of rT where r ∈ [0, 1]. We use⇒ to denote weak convergence.
The following assumption is sufficient for our results:

Assumption 1 T−1/2
P[rT ]

t=1 vt ⇒ ΛWk(r), p limT
−1

P[rT ]
t=1 xtx

0
t = rQ uniformly in r with det(Q) > 0.

Define bSt =
Pt

j=1 bvj . We derive the asymptotic distribution of bΩ by showing that bΩ = 2 bC wherebC = T−2
PT

t=1
bSt

bS0t. Making use of the identityPT
j=1 ajbj =
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´
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and the fact that bST = 0 by the normal equations for OLS, simple algebra gives
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T

! bS0j = 2T−2
TX

j=1

bSj
bS0j = 2 bC. (2)

Using (2) it directly follows from Kiefer et al. (2000) and Assumption 1 that

bΩ⇒ 2Λ

Z 1

0
Bk(r)Bk(r)

0drΛ0

as T →∞. Note that bΩ is asymptotically proportional to Ω through ΛΛ0 and otherwise only depends
on known random variables.

Consider testing the null hypothesis H0 : Rβ = r against the alternative hypothesis H1 : Rβ 6= r
where R is a q × k matrix of constants with rank q and r is a q × 1 vector of constants. Under H0,

√
T

³
Rbβ − r´ = RÃ

T−1
TX

t=1

xtx
0
t

!−1

T−1/2
TX

t=1

vt ⇒ RQ−1ΛWk(1).

Because Wk(1) is a k−vector of standard normal random variables, RQ−1ΛWk(1) is a q−vector of
linearly independent normal random variables with variance matrix RQ−1ΩQ−1R0. A Wald statistic
could be constructed using a consistent estimator of RQ−1ΩQ−1R0. Instead, we consider the incon-
sistent estimator, R bQ−1 bΩ bQ−1R0, where bQ = T−1

PT
t=1 xtx

0
t giving the statistic

F ∗ = T
³
Rbβ − r´0 hR bQ−1 bΩ bQ−1R0

i−1 ³
Rbβ − r´ /q.
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In the case where q = 1 so that one restriction is being tested, we can construct a t−type statistic

t∗ =
√
T

³
Rbβ − r´ /qR bQ−1 bΩ bQ−1R0.

It follows from (2) and Theorem 1 of Kiefer et al. (2000) that under Assumption 1 as T →∞,

F ∗ ⇒Wq(1)
0
·
2

Z 1

0
Bq(r)Bq(r)

0dr
¸−1

Wq(1)/q, t∗ ⇒W1(1)/

s
2

Z 1

0
B1(r)2dr.

Critical values for the asymptotic distribution of t∗ have been obtained analytically by Abadir and
Paruolo (1997) and are tabulated in Table I for convenience. Asymptotic critical values for F ∗ for
q = 1, 2, 3, ..., 30 can be obtained by multiplying by 0.5 the critical values tabulated by Kiefer et
al. (2000) in their Table II.

4 Directions for Future Research

Given that the Bartlett kernel without truncation delivers promising HAC robust tests, it is logical to
ask how tests using other kernels without truncation behave and perform. Kiefer and Vogelsang (2000)
analyze the case of a general kernel, k(x), with continuous second derivative, k00(x), and show that
under Assumption 1, bΩ = bΓ0 +

PT−1
j=1 k(j/T )

³bΓj + bΓ0j´
⇒ −Λ R 1

0

R 1
0 k

00(r − s)Bk(r)Bk(s)
0drdsΛ0 as

T → ∞. Because asymptotic proportionality to Ω is obtained for general kernels, valid asymptotic
testing is possible using the class of kernel HAC estimators with bandwidth equal to sample size. A
preliminary analysis on this class of tests is given in Kiefer and Vogelsang (2000).
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Table I: Asymptotic Critical values of t∗

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95% 97.5% 99.0%
-6.090 -4.771 -3.764 -2.740 0.000 2.740 3.764 4.771 6.090

Source: Line 1 of Table I from Abadir and Paruolo (1997, p. 677) scaled by 1/
√
2.
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