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THE SMOOTH COLONEL MEETS THE REVEREND

NICHOLAS M. KIEFER AND JEFFREY S. RACINE

Abstract. Kernel smoothing techniques have attracted much attention and some notoriety
in recent years. The attention is well deserved as kernel methods free researchers from having
to impose rigid parametric structure on their data. The notoriety arises from the fact that
the amount of smoothing (i.e., local averaging) that is appropriate for the problem at hand
is under the control of the researcher. In this paper we provide a deeper understanding
of kernel smoothing methods for discrete data by leveraging the unexplored links between
hierarchical Bayes models and kernel methods for discrete processes. A number of potentially
useful results are thereby obtained, including bounds on when kernel smoothing can be
expected to dominate non-smooth (e.g., parametric) approaches in mean squared error and
suggestions for thinking about the appropriate amount of smoothing.

1. Introduction

We investigate the relationship between nonparametric discrete kernel methods and hi-

erarchical Bayes models of the type considered by Lindley & Smith (1972). By exploiting

certain similarities among the approaches, we not only gain a deeper understanding of the

nature of kernel-based methods, but also leverage some theoretical apparatus developed for

hierarchical Bayes models which is immediately relevant for kernel-based techniques.

This paper proceeds as follows. Section 2 provides some background material for the

kernel smoothing of discrete probabilities and conditional means that is necessary for what

follows. Section 3 presents a three-stage hierarchical Bayes framework and makes explicit

the connection between the prior variance of a multivariate mean vector and the smoothing

parameter in the kernel estimator. Section 4 considers some implications for applied discrete

kernel regression, while Section 5 presents some summary remarks along with directions for

future research.

Date: April 9, 2008.
Key words and phrases. Kernel estimation, Bayesian Methods, hierarchical models, nonparametrics, band-
width selection.
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2. Background

We first consider an unordered discrete variable having c outcomes, which is used strictly

to indicate group membership. We let X ∈ S ≡ {1, 2, . . . , c}. For arbitrary i ∈ S, let ni

denote the number of Xjk = i, in any given sample. The indices i and k denote the ‘group’

from which X is drawn (i, k = 1, . . . , c), while the index j denotes the jth draw from the

group, j = 1, . . . , ni. The total number of observations will be n =
∑c

i=1
ni, so that n − ni

is the number of Xjk 6= i.

Our interest lies with conditional mean models of the type recently considered by Ouyang,

Li & Racine (2008, in press). Given that such models are a function of the underlying

probabilities, we take this as a starting point for developing some background and notation.

2.1. Probability Function Estimation. We begin by assuming that interest lies in esti-

mating Pr(X = i) = p(i) given a sample of realizations {Xji}, j = 1, . . . , ni, i = 1, . . . , c.

We consider two approaches, i) the traditional (‘frequency’ i.e., non-smooth) estimator and

ii) a kernel (smooth) estimator.

Define the frequency estimator of p(i) to be

pi =
1

n

c
∑

k=1

nk
∑

j=1

1(Xjk = i) =
ni

n
,

where 1(Xjk = i) is the usual indicator function. The kernel estimator of p(i) is given by

pi,λ =
1

n

c
∑

k=1

nk
∑

j=1

L(Xjk, i, λ),

where

(1) L(Xjk, i, λ) =







1 − λ if Xjk = i

λ/(c − 1) otherwise,
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and where λ ∈ [0, (c− 1)/c] is a ‘smoothing parameter’ or ‘bandwidth’ (Aitchison & Aitken

(1976)). The restriction that λ ∈ [0, (c − 1)/c] ensures that pi,λ is a proper probability

estimator (i.e., pi,λ ∈ [0, 1]).

Note that we can rewrite pi,λ as follows,

pi,λ =
1

n

c
∑

k=1

nk
∑

j=1

L(Xjk, i, λ)

=
ni(1 − λ) + (n − ni)λ/(c − 1)

n

=
ni (1 − λc/(c − 1))

n
+

λ

(c − 1)

= pi

(

1 −
λc

(c − 1)

)

+
λ

(c − 1)
.

Note that when λ = 0, pi,λ = pi = ni/n (the frequency estimator), while when λ = (c− 1)/c

(i.e., (1 − λc/(c − 1)) = 0), pi,λ = 1/c, the discrete uniform (rectangular) distribution.

2.2. Conditional Mean Estimation. Now suppose we are interested in estimating µi =

E(Y |X = i), the expectation of Y conditional upon X = i based on a sample of realizations

{Xji, Yji}, j = 1, . . . , ni, i = 1, . . . , c. We again consider two approaches, a traditional

frequency approach and a kernel-based approach. We first define some frequency estimators

of certain population moments that shall be used to simplify the kernel-based estimator.

Let yi be the frequency estimator of µi defined as

(2) yi =
1

ni

c
∑

k=1

nk
∑

j=1

Yjk1(Xjk = i),

i.e., the sample mean of Y when X = i (a ‘cell’ mean). Let yī be defined as

yī =
1

(n − ni)

c
∑

k=1

nk
∑

j=1

Yjk1(Xjk 6= i),
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i.e., the sample mean of Y over all values of X other than X = i (̄i is taken to be the

complement of i), while the frequency estimator of E(Y ) (the ‘overall’ mean) is

y. =
1

n

c
∑

k=1

nk
∑

j=1

Yjk =
niyi + (n − ni)yī

n
.

The kernel estimator of µi is defined as

yi,λ =
n−1

∑c
k=1

∑nk

j=1
YjkL(Xjk, i, λ)

pi,λ
.

See Ouyang et al. (2008, in press) for the theoretical underpinnings of this estimator.

In order to facilitate a comparison of the Bayesian approach of Lindley & Smith (1972)

and the kernel approach, we wish to express yi,λ as a weighted average of yi and y.. The

kernel estimator yi,λ can be rewritten as follows,

yi,λ =
n−1

∑c
k=1

∑nk

j=1
YjkL(Xjk, i, λ)

pi,λ

=
n−1 (niyi(1 − λ) + (n − ni)yīλ/(c − 1))

n−1 (ni(1 − λ) + (n − ni)λ/(c − 1))

=
niyi(1 − λ) + (ny. − niyi)λ/(c − 1)

ni(1 − λ) + (n − ni)λ/(c − 1)

=

[

ni/n (1 − λc/(c − 1))

ni/n (1 − λc/(c − 1)) + λ/(c − 1)

]

yi +

[

λ/(c − 1)

ni/n (1 − λc/(c − 1)) + λ/(c − 1)

]

y.

= (1 − Φi)yi + Φiy.,

where the third equality follows from (2) by noting that

ny. − niyi = (n − ni)yī,

where

1−Φi =

[

ni/n (1 − λc/(c − 1))

ni/n (1 − λc/(c − 1)) + λ/(c − 1)

]

and Φi =

[

λ/(c − 1)

ni/n (1 − λc/(c − 1)) + λ/(c − 1)

]

,

and where λ ∈ [0, (c − 1)/c] implies that Φi ∈ [0, 1].
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When λ = 0 (i.e., Φi = 0∀i), yi,λ = yi (the frequency estimator), while when λ = (c− 1)/c

(i.e., (1 − λc/(c − 1)) = 0 or Φi = 1∀i), yi,λ = y., i = 1, . . . , c (the global mean).

3. Bayes Estimates for the Linear Model

We consider hierarchical models of the form

yji = µi + ǫji, j = 1, . . . , ni, i = 1, . . . , c,

where ni is the number of observations drawn from group i, and where there exist c groups.

For the ith group,










y1i

...

ynii











= ιni
µi + ǫi, i = 1, . . . , c,

where ιni
is a vector of ones of length ni, ǫi = (ǫ1i, . . . , ǫnii)

′, and, for the sample, y = Aµ+ ǫ

where y is the n-vector of observations, A is the (n×c) design matrix, and µ = (µ1, . . . , µc)
′,

the vector of group means.

Our aim is to understand the connection between hierarchical Bayes models and kernel

estimators of multivariate means. Just like an important special case of the Bayes estimates

we consider below, the kernel estimator yi,λ is a weighted average of the group mean for

group i, i.e., yi, and the overall mean for all groups, i.e., y.. The weights themselves are a

function of the total number of observations, n, the number of observations in group i, ni,

and the smoothing parameter, λ, which is typically of order O(n−1/2).

3.1. Comparing Kernel and Bayes Estimates. We consider a three-stage hierarchical

Bayes model. The first stage is given by

y ∼ (A1θ1, C1).
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As a function of θ1 and C1 for given y, this first stage specification can be regarded as the

likelihood function for the normally distributed case, otherwise as a quasi likelihood based

on two moments (Heyde (1997)). We return to A1 below.

The second stage,

θ1 ∼ (A2θ2, C2),

can be regarded as a prior distribution for θ1 given A2θ2 and C2 in the normal case (where it

is conjugate) or as an approximation to the prior if not normal, or from a frequency viewpoint

as a second stage in the data generating process (DGP). The first stage “parameters” are

themselves generated by a random process in this view. This interpretation focuses attention

on the hyperparameters θ2 (and C2) rather than θ1 which strictly speaking is not a parameter

in the frequency sense.

The third stage,

θ2 ∼ (A3θ3, C3),

can again be regarded as a prior on the second stage parameter θ2, or as an additional stage

in the DGP.

Our interest lies in estimating the c × 1 vector of means θ1. Following Lindley & Smith

(1972) we are thinking of normal distributions at each stage. For our purposes we can also

regard the stages as approximate distributions characterized by two moments noting the

calculations are exact only for the normal. The point of the stages is that the dimension of

the conditioning parameter is reduced at each step.

We are using the Bayesian hierarchical setup to obtain insight into the kernel estimator.

The full Bayesian analysis will require additional specification in the form of a prior on C1 and

possibly C2. Lindley & Smith (1972) suggest specifications proportional to identity matrices

and inverted gamma densities for the factors of proportion (and related generalizations).

They suggest using modal estimators in the expressions for the posterior means of interest.
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Using MCMC methods it is now possible to marginalize with respect to these variances,

probably a better procedure; see Seltzer, Wong & Bryk (1996).

For the problem at hand, we try to stick with the notation of Lindley & Smith (1972) as

closely as possible. The first stage is

A1 = {aji} with aji ∈ {0, 1},

c
∑

i=1

aki = 1,

n
∑

k=1

aki = ni,

θ1 = µ =











µ1

...

µc











,

C1 = σ2In,

A1 is the n × c design matrix with A′

1
A1 the c × c diagonal matrix with ni, the number of

observations in the ith group, as the ith diagonal element, µ is a c×1 vector of (population)

group means, σ2 is the within-group variance (i.e., var(yij)), and In is the n × n identity

matrix. Next, the second stage will become

A2 = ιc,

θ2 = µ.,

C2 = τ 2Ic,

where µ. is the (population) ‘overall mean’, and τ 2 = var(µi). Note that A2θ2 = ιµ. is simply

a c × 1 vector with elements being the overall mean µ. to which the Bayes (and kernel)

estimators can shrink. Finally, we let the scalar

C−1

3
→ 0

so that the prior on µ. is improper. Note that the impropriety is confined to one dimension.

The frequency analysis corresponds to an improper prior on the c-vector θ1, so that we expect
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inadmissibility of the frequency estimator through a Stein effect if c > 2. By adding a third

stage, we reduce the improper prior to one dimension. The results are seen below.

The three stage Bayes estimate is (Lindley & Smith (1972, page 7, Equation (16)))

θ∗
1

= D0d0

where

D−1

0
=

(

A′

1
C−1

1
A1 + C−1

2
− C−1

2
A2

(

A′

2
C−1

2
A2

)

−1

A′

2
C−1

2

)

d0 =
(

A′

1
C−1

1
y
)

.

θ∗
1

is the posterior mean and is an optimal estimator under quadratic loss. Writing

Λ = A′

1
C−1

1
A1 =

1

σ2



















n1 0 0 . . .

0 n2 0 . . .

...
. . .

... 0 0 nc



















we see that

D−1

0
=

(

Λ + τ−2Ic − τ−2ι(ι′−2ι)−1ι′−2
)

=
(

Λ + τ−2Ic − τ−2ιι′/c
)

,

d0 = A′

1
C−1

1
y

=











y1n1

σ2

...

ycnc

σ2











.

Recall that yi is the mean for group i. Thus the vector of posterior means satisfies

(

Λ + τ−2Ic − τ−2ι(ι′ι)−1ι′
)

θ∗
1

= d0
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or, element-wise

(σ−2nj + τ−2)θ∗
1j − τ−2θ∗

1. = σ−2njyj,

where θ∗
1. =

∑c
j=1

θ∗
1j/c. Thus

θ∗
1j = (σ−2njyj + τ−2θ∗

1.)/(σ−2nj + τ−2)

and the Bayes estimator for the jth mean is a weighted average of the group mean and the

overall posterior mean. This cannot in general be expressed as a weighted average of the

group mean and the overall mean. We explore the implications of this fact below.

We adopt a partitioned inverse, namely

Q = (A + BDB′)
−1

= A−1 − A−1B
(

B′A−1B + D−1
)

−1

B′A−1.

Letting

A = Λ + τ−2Ic,

B = ι,

D = −τ−2/c,

we have

Q =
(

Λ + τ−2Ic

)

−1

−
(

Λ + τ−2Ic

)

−1

ι
(

ι′
(

Λ + τ−2Ic

)

−1

ι − cτ 2

)

−1

ι′
(

Λ + τ−2Ic

)

−1

.

We let wi = ni/σ
2, di = ni/σ

2 + τ−2 = wi + τ−2. Note that

ι′
(

Λ + τ−2Ic

)

−1

ι − cτ 2 =
c

∑

i=1

1

di
− cτ 2 = −τ 2

c
∑

i=1

wi

di
= γ−1.
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Note also that

d0 = Λy =











w1yi

...

wcyc











.

Next, the Bayes estimator of the ith component of µ (i.e., the ith component of θ1 in Lindley

& Smith’s (1972) notation) is given by

µ∗

i = d−1

i wiyi − γd−1

i

c
∑

j=1

wjyj

dj
.

It is useful to recast this expression in terms of the between-to-within variance ratio κ =

τ 2/σ2. Let vi = ni/(ni + κ−1). Then

µ∗

i = viyi + (1 − vi)
c

∑

j=1

vjyj/
c

∑

j=1

vj .

Except in a special case, this cannot be expressed as a weighted average of the group and

overall mean. The reason is that the different group mean estimators have different preci-

sions, since the prior variance is the same for each group mean but the data contribution

depends on the group sample size. Naturally, the overall mean that should be used weights

the different group means according to their precisions, and these differ nonlinearly in group

sample sizes since the precision depends on the sum of the data and prior precisions. How-

ever, some insight can be gained by considering the important special case of a balanced

design.

3.2. The Balanced Case (ni equal for all i). Let ni = n∗ for all i. The kernel estimator

of the ith component of µ can be written as

yi,λ =

[

n∗ (1 − λc/(c − 1))

n∗ (1 − λc/(c − 1)) + nλ/(c − 1)

]

yi +

[

n∗λ/(c − 1)

n∗ (1 − λc/(c − 1)) + n∗λ/(c − 1)

]

y.

=

[

n∗

n∗ + n∗/((c − 1)/λ − c)

]

yi +

[

n∗/((c − 1)/λ − c)

n∗ + n∗/((c − 1)/λ − c)

]

y.,

(3)
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where λ is a smoothing parameter to be set by the researcher.

Further, the Bayes estimator of the ith component of µ is given by (in the balanced case)

µ∗

i =

[

n∗

n∗ + κ−1

]

yi +

[

κ−1

n∗ + κ−1

]

y.

= vyi + (1 − v)y.

(4)

where v = n∗/(n∗+κ−1) is the common value of the vi term from above. The correspondence

between the two methods is given by

n∗/((c − 1)/λ − c) = κ−1,

hence

κ =
1

n∗
((c − 1)/λ − c).

Alternatively, λ can be expressed as

(5) λ = (c − 1)/(c + n∗κ).

This gives some intuition for the choice of the smoothing parameter λ if one chooses not to

adopt the Bayesian approach explicitly. λ should be larger as the groups are thought to

be more homogeneous (smaller κ or τ 2) and smaller as the groups are thought to be less

similar. Of course, if one is to do this thinking, it is natural to use the Bayesian specification

directly, noting that the logic applies equally in the unbalanced case.

From a decision-theoretic point of view we can consider the admissibility of the frequency

estimator (2), the kernel estimator (3), and the equivalent Bayes estimator (4). Consider the

normal case with squared-error loss and note that the estimators are linear; µ∗ = By. Using

Cohen (1966, Theorem 2.1) we see that µ∗ is admissible if and only if the eigenvalues of B,

bi, satisfy 0 ≤ bi ≤ 1 with equality at unity at most twice. Here B has diagonal elements

{B}ii = v +
1 − v

c
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and off-diagonal elements

{B}ij =
1 − v

c

and the eigenvalues are v with multiplicity c − 1 and unity with multiplicity one. In the

unsmoothed case (τ−2 = 0 from the Bayesian viewpoint, λ = 0 from the frequentist), all of

the eigenvalues are unity and the estimators are inadmissible for c > 2.

Next, we turn to another frequency property, that of MSE. This is of limited interest

from the Bayesian point of view (samples that did not arise are irrelevant for a particular

application) but is useful in assessing properties of techniques used repeatedly in identical

applications. We know that the MSE of the Bayes/kernel estimator (identical in the balanced

case) improves over that of the frequency estimator yi if and only if (Lindley & Smith (1972,

page 3, Equation (2)))

τ̂ 2 ≤ 2τ 2 + σ2,

where

(6) τ̂ 2 =
∑

i

(yi − y.)
2

c − 1
.

This allows us to obtain an upper bound for λ that will ensure (in probability) that MSE(yi,λ) ≤

MSE(yi). Substituting, we have

τ̂ 2 ≤ 2
σ2

n
((c − 1)/λ − c) + σ2,

which is equivalent to

n(τ̂ 2 − σ2)

2σ2
+ c ≤

c − 1

λ
,

which implies that

(7) λ ≤
2σ2(c − 1)

n(τ̂ 2 − σ2) + 2cσ2
.
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The only unknown in this formula is σ2 which can be estimated directly from the data via

(8) σ̂2 =

∑c
i=1

∑n∗

j=1
(yij − yi)

2

n − c
.

It is widely known that the smoothing parameter must obey λ → 0 as n → ∞ for consistent

estimation while, as noted earlier, λ is restricted to lie in [0, (c− 1)/c]. Note that (7) tells us

that an oversmoothed kernel estimator can be consistent but can be beaten by the frequency

estimator on MSE grounds (i.e., when λ is overly large).

4. Implications for Kernel Estimation

The results obtained in Section 3 above yield a number of implications for applied kernel

estimation with discrete data. The first is that they provide bounds for bandwidth selection

that are previously unknown in the literature. The second is that they deliver a simple plug-

in method of bandwidth selection with an empirical Bayes flavor (Efron & Morris (1973))

that possesses appealing finite-sample properties and, in addition, is computationally trivial.

4.1. Bounds for λ. Recall that [0, (c−1)/c] is the range of λ when using the kernel function

defined in (1). We now incorporate the result summarized in (7) to obtain tighter bounds

on λ.

Note that when τ̂ 2 = σ2, (7) equals (c − 1)/c, the upper bound possible for λ, hence the

bound is non-binding in this case. It is also non-binding when τ̂ 2 ≤ σ2. However, when

τ̂ 2 > σ2, then in order to outperform the frequency estimator on MSE grounds, the kernel

estimator must obey λ < (c−1)/c with the upper bound now given by (7). On MSE grounds,

the range of λ is no longer [0, (c − 1)/c], rather it is

(9)

[

0, min

{

c − 1

c
,

2σ2(c − 1)

n(τ̂ 2 − σ2) + 2cσ2

}]

.

In other words, (7) tells us that when the idiosyncratic variation (i.e., σ2 = var(yij)) is

greater than the intergroup variation (i.e., τ̂ 2 = var(yi)), there exists a λ in the feasible
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range (i.e. [0, (c − 1)/c]) that will outperform the frequency estimator on MSE grounds

(e.g., that given by (5)). On the other hand, when the idiosyncratic variation is less than

the intergroup variation, imposing this (reduced) bound on λ (rather than (c− 1)/c) avoids

situations where the frequency estimator may outperform the smoothed estimator. Note

that (5) always satisfies the bound.

The reader may well be asking what effect this may have in applied settings. By way of

example, we consider two illustrative cases and present the results in the form of two graphs

given in Figure 1. In Figure 1 below we plot the upper bound on λ given by the above rule

as a function of κ̂ = τ̂ 2/σ2 for c = {2, 10} and n = 25 i.e., we plot the upper bound in (9) λ

versus the relative variation in the group means (τ̂ 2).

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

c=2

τ̂
2

σ̂
2

λ

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

c=10

τ̂
2

σ̂
2

λ

Figure 1. Upper bounds on λ given by Equation (9) when σ2 = 1, n = 25,
c = {2, 10}.

Figure 1 reveals that there are situations in which choosing λ in the permissible range

([0, (c − 1)/c]) can result in smoothed estimates that are worse than the frequency (i.e.,
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non-smooth) estimate on MSE grounds. In these situations (i.e., when τ̂ 2 > σ2) a restricted

choice of λ can avoid this possibility.

4.2. A Plug-In Bandwidth Selector. Equation (5) suggests a computationally trivial

formula for a plug-in bandwidth selector for the kernel estimator of a multivariate mean.

By way of example, we compare the MSE performance of the frequency estimator (λ = 0),

least-squares cross-validated bandwidth selection (Ouyang et al. (2008, in press)), and that

based upon (5) evaluated using the estimators (6) and (8) of τ 2 and σ2. We vary τ and σ,

set c = 2, ni = 25, and draw M = 10, 000 Monte Carlo replications where the setup is that

described in Section 3. For each replication we compute the MSE. Results are summarized

in figures 2 and 3 via box-and-whisker plots. The median MSE over the M replications is

given below each figure.

mse.bayes mse.cvls mse.freq

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

c = 2, n = 50, ni = 25, σ = 1, τ = 1

Median MSE: Bayes = 0.0301, CV = 0.0298, Frequency = 0.0284

Figure 2. Boxplots for the MSE of the Bayes-plug-in, cross-validated, and
frequency estimators σ = 1, τ = 1. Note that results for τ > σ are qualitatively
identical to those for τ = σ hence are omitted for space considerations.
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Figure 3. Boxplots for the MSE of the Bayes-plug-in, cross-validated, and
frequency estimators σ = 10, τ = 1.

It can be seen that the relative performances of the frequency estimator (λ = 0), the

least-squares cross-validated estimator, and that based on the Bayes-plug-in rule (5) are

equivalent for τ ≥ σ. However, for τ < σ, the Bayes-plug-in rule remains competitive with

the least-squares rule and outperforms the frequency estimator. Given that the Bayes-plug-in

bandwidth is trivial to compute, it may to be of interest to practitioners.

5. Conclusion

In this paper we investigate the relationship between the kernel smoothing of a multivariate

mean and the Bayes estimate thereof. We show that the smoothing parameter adopted for

the kernel estimator is related to the prior variance in a three stage hierarchical Bayes model,

which then provides an upper bound on the degree of smoothing that can be applied in order

for the kernel method to improve upon the frequency (i.e., non-smooth) estimator. To the

best of our knowledge these bounds are previously unknown in the literature. We also
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propose a Bayes-plug-in bandwidth for kernel estimation that is computationally trivial and

possesses appealing finite-sample properties.

Many remain uncomfortable with the kernel smoothing of discrete data and, in particu-

lar, with the kernel smoothing of datasets consisting of both discrete and continuous data.

For instance, it is common to encounter separate kernel estimates of earnings equations for

different industries where industry grouping is determined by, say, Standard Industrial Clas-

sification (SIC) codes, which is clearly a frequency approach (i.e., separate kernel estimates

are generated for each SIC code). Methods for the kernel estimation of unconditional distri-

butions, conditional distributions, and conditional means that smooth the discrete covariate

in the manner described above in the presence of both discrete and continuous data have

recently been developed; see Li & Racine (2003), Hall, Li & Racine (2004), Racine & Li

(2004), and also Li & Racine (2007). In finite-sample settings, the estimators that smooth

the discrete covariates often outperform their frequency-based counterparts on MSE grounds.

There are, however, no finite-sample results that indicate when this will be the case, and

it would be helpful to have some guidance on this matter. We expect that the approach

considered herein can be extended to this setting providing enhanced understanding of ker-

nel smoothing in these settings along with bounds on bandwidths for discrete covariates

thereby ensuring that the kernel estimator that smooths the discrete covariates dominates

the frequency-based kernel estimator that does not.
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