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Axiomatic Cost and Surplus-Sharing

Abstract

The equitable division of ajoint cost (or ajointly produced output) among agents with
different shares or types of output (or input) commodities, is a central theme of the theory of
cooperative games with transferable utility. Ever since Shapley’s seminal contribution in 1953,
this question has generated some of the deepest axiomatic results of modern microeconomic
theory.

More recently, the ssmpler problem of rationing a single commodity according to a profile of
claims (reflecting individual needs, or demands, or liabilities) has been another fertile ground for
axiomatic analysis. This rationing model is often called the bankruptcy problem in the literature.

This Chapter reviews the normative literature on these two models, and emphasi zes their
deep structural link viathe Additivity axiom for cost sharing: individual cost shares depend
additively upon the cost function. Loosely speaking, an additive cost sharing method can be
written as the integral of arationing method, and this representation defines a linear isomorphism
between additive cost sharing methods and rationing methods.

The simple proportionality rule in rationing thus corresponds to average cost pricing and to
the Aumann-Shapley pricing method (respectively in the case of homogeneous or heterogeneous
output commodities). The uniform rationing rule, equalizing individual shares subject to the
claim being an upperbound, correspondsto serial cost sharing. And random priority rationing
corresponds to the Shapley-Shubik method, applying the Shapley formulato the Stand Alone
costs.

Severa open problems are included. The axiomatic discussion of non-additive methods to

share joint costs appears to be a promising direction for future research.
JEL : C71, D62, D63
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I ntroduction

The oldest formal principle of distributive justiceis, without a doubt, Aristotle's celebrated

maxim:
Equals should be treated equally, and unequals, unequally in proportion to relevant

similarities and differences

(in the modern rendition by the social psychology literature, see, e.g., Deutsch [1985])

Inspired by the axiomatic approach to the theory of cooperative games (initiated in 1953 by
Shapley's seminal contribution—-Shapley [1953]), a considerable research effort explores the
logical limits of the old maxim, within a small number of simple models of fair division. All
such models stage a given production technology and a given set of users of the technology.
Individual usersinfluence the production plan in different ways, either by demanding different
quantities of output, or contributing different quantities of input, or both. When individual
demands (or contributions) are homogeneous (total demand is simply the sum of individual
demands) and the technology has constant returns to scale, the fair distribution of inputs and
outputs among users can and should simply follow Aristotle's proportionality principle. The
logical challengeisto deal with variable returns of the technology and heterogeneity of the
individual demands/contributions.

This survey of the theory of cooperative production is organized around three basic models,
to which most of the literature is devoted. First we discuss the rationing model (Part 1), where a
given amount of resources (e.g., money) must be divided among beneficiaries with unequal
claims on the resources. In this very bare model, the only available information about the
technology is asingle point of the production set. Then we look at a one input - one output
technology (Part 2), where all users consume (possibly different amounts of) a homogeneous
output commodity, and contribute (possibly different amounts of) a homogeneous input
commodity: atypica problem specifiesalist of individual demands of output (resp. input
contributions) and the entire production function (with variable returns) and asks to divide fairly
the corresponding input cost (resp. output produced). In the third model we assume a technology
with a single homogeneous input and one heterogeneous output per agent, (resp. one
homogeneous output and one heterogeneous input per agent), and we speak of the heter ogeneous

goods model (Part 3). The formal definition of the cooperative production problem is the same as
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in the homogeneous good models of Part 2: it consists of alist of heterogeneous demands and the
entire production function. The question isto divide fairly the corresponding total input cost
(resp. to divide the output produced, given the list of heterogeneous input contributions and the
technology).

One important feature in the model is whether the input or output commodities come in
indivisible units or are infinitely divisible: we speak of adiscrete or real variable, respectively.
Both versions are meaningful and important in applications. the goods on demand may be cars
(discrete) or length of arunway (real); individual contributions may come in days on the job
(discrete) or cash (real) and so on. Each one of the three models involves two kinds of variables:
the exogeneously given claims/demands (rationing model, Part 1), demands of output or
contributions of input (Parts 2 and 3) on the one hand, and the endogeneously determined shares
of the resources (Part 1) or cost shares or output shares (Parts 2 and 3) on the other hand. Each
kind of variable can be either discrete (d) or real (r). Intherationing model (Part 1) the main
model is of the"rr" type (the exogeneous and endogeneous variables are both real) but we also
discuss the dd-model (both kinds of variables are discrete). In the cost and surplus sharing
models both the rr-model and the dr-model (exogeneous variable is discrete, endogeneous oneis
real) play an important role; for instance the classical model of cooperative gamesis of typedr,
but the theory of Aumann-Shapley pricing happensin the rr-world.

Besides the issue of realism, the choice between a discrete or areal model involves afamiliar
trade-off. A discrete model is mathematically much simpler, asit typically involves no
topological difficulty. For instance, in the dd-model the set of possible (rationing or cost
sharing) methods is essentially finite; in the dr model, atypical cost sharing method is alinear
operator on afinite dimensional space (see Part 3); in the rr method a cost sharing model isa
linear operator on a functional space. On the other hand, in the discrete model even the basic
proportionality principle mentioned at the outset is hard to write, it can be approximated at best.

Some comments about the type of axioms we impose are in order. A few of them convey a
simple idea of equity: of thistype are Equal Treatment of Equals and the crucial Dummy axiom
in the heterogeneous goods model expressing some notion of reward. There are also some
incentive compatibility requirements, such as No Advantageous Reallocation in Parts 1 and 2 or
Demand Monotonicity in Part 3. For the latter axiom, the equity and incentive compatibility
interpretations coexist and reinforce each other.



Y et the main axiomatic tools throughout the survey are driven neither by equity nor
incentives. They are properties of structural invariance expressing the commutativity of the
allocation method with respect to certain variations in the cost or surplus sharing problem under
scrutiny. For instance Consistency, the leading axiom in Part 1, requires the method to commute
with avariation in the society of agents concerned. Additivity, by far the most important axiom
in Parts 2 and 3, is commutativity of the cost sharing method with respect to the sum of cost
functions. Scale Invariance and Unit Invariance (Part 3) are about changing the unit in which a
particular good is measured. And so on.

The structural invariance axioms are the powertools of the mathematical analysis, the
backbone of the most interesting characterization results. The most spectacular example isthe
Additivity axiom in Parts 2 and 3. The entire set %2 of rationing methods studied in Part 1 is
shown to be linearly isomorphic to the set of additive cost sharing methods in the homogeneous
good model (Theorem 2.2) and isomorphic to the extreme points of the (convex) set of additive
cost sharing methods in the heterogeneous goods model (Theorems 3.1 and 3.3). Thisdouble
isomorphism allows us to follow the "same" allocation method in the three different models: the
proportional rationing method (Part 1) becomes average cost sharing in Part 2 and the Aumann-
Shapley method in Part 3; the uniform gains method in Part 1 becomes serial cost sharing in
Parts 2, 3; priority rationing (Part 1) becomes incremental cost sharing in Parts 2,3. New
methods emerge as well: uniform losses rationing suggests the dual serial cost sharing method.

The main lesson to be learned from this overview is that the powerful structural invariance
axioms are double-edged swords. For instance Additivity with respect to cost functions implies
an isomorphism between cost sharing and rationing methods, but it also severely limits the
choices open to the mechanism designer. When a structural invariance axiom such as Additivity
conflicts with a set of reasonable equity and/or incentives requirements, we feel that the
invariance axiom must be the first to go. This opens up the question of finding aless restrictive
version of the invariance axiom, for which the impossibility result becomes alimited possibility
result. A good exampleisthe new and yet hardly explored space of nonadditive cost sharing
methods: Section 3.7.

Relation to other chaptersin the Handbook

In the current chapter, we view the users of the technology as entirely passive: they have

inelastic demands of output, or input contributions, or claims. The axiomatic analysisis supposed



to enlighten a benevolent dictator on the possible interpretations of fairness when dividing cost
or output, or whatever resources must be split among the participants. Another approach sees the
users as rational microeconomic agents, endowed with classical preferences and choosing
independently and strategically the amount of output they want to consume or of input they
choose to contribute. Any given division method (whether or not it isfair in the sense of this
chapter) yields a specific noncooperative demand game (resp. input contribution game) where a
user’s cost share depends on the entire profile of demands (resp. his output share depends on the
profile of contributions). In thisview adivision method is a decentralization device: each user
knows his own preferences but may be completely unaware of other users preferences. The
general results of Chapter 5, Vol. 1 on mechanism design and of Chapter 23, Vol. 2 on
strategyproofness become then relevant. In particular the incentives properties of the uniform
gains rationing method (and more generally of the fixed path methods: see Section 1.8) are
reinterpreted in Chapter 23, Vol. 2 in the context of the fair division problem with singlepeaked
preferences: there they mean that the direct revelation of preferencesis a strategyproof
mechanism. Similarly, serial cost sharing (and more generally the fixed path generated methods
in Part 3) givesrise to a strategyproof socia choice function whenever the cost function is
supermodular.

The second important link is with Chapter 26, Vol. 2, on fair allocation and 20, Vol. 2, on
fair compensation. A third way to look at the cooperative production problem is as a special
instance of the social choice problem in a particular economic environment. The social planner
takes into account the technology (production set) and the whole profile of individual
preferences, then selects afirst best (Pareto efficient) allocation that he deems optimal. One way
to do sois by defining afull fledged social preference over the set of feasible alocationsin the
economy: Chapter 16, Vol. 2, explains why this approach will lead, in most models, to a
conceptual dead-end in classical Arrowian fashion. An alternative routeisto simply select one
(efficient) allocation by means of fairness axioms: thisis the route taken in Chapter 26, Vol. 2,
for ageneral family of allocation problems that includes cooperative production; thisis also the
approach taken in Chapter 20, Vol. 2, for afamily of models very close to our homogeneous
goods problems. The main difference isthat in the first best approach the social choice function
selects the shares of output as well as the shares of input from the profile of individual
preferences: therefore the profile of cost shares, say, depends on more than the profile of



demands and the cost function, and a formula such as the Shapley-Shubik method is generally
not relevant.

1. Rationing

1.1. The problem and some examples
A rationing problemisatriple (N,t,x) where N isafinite set of agents, the nonnegative real
number t represents the amount of resourcesto be divided, the vector x = (x;);cny Specifies for

each agent i aclaim x;, and these numbers are such that

0<x forali ; 0<t< x
ieN

A solution to the rationing problemisavector y = (V;)cn ,» SPecifying ashare y; for each
agent i and such that

o<y <xforali ; Dy =t
ieN

The crucial inequality y, <x may not be meaningful if claims are subjective evaluations of
needs (or responsibility): an agent may underestimate his “ objective” need (or responsibility),
prompting the socia planner to violate the above inequality. Our model ignores this possibility:

thusit is the most convincing when the claims x, are “objectively” measured, asin the case of a

contractual debt.

Several of the axiomatic properties of rationing methods pertain to variations in the
population (also called society) N of concerned agents. See the merging properties in Section
1.2 and the consistency property playing the leading role from Section 1.3 onward. Therefore
the formal model must specify the set & of potential agents from which a certain subset N is
selected to generate an actual problem. In general, &/ could be finite or infinite, although the
“real” society N is alwaysfinite. One exception isthe discussion of symmetric and consistent
rationing methods in Section 1.4: there we must assume that the set A& isinfinite.

It is neither easy nor necessary at this stage to interpret arationing problem directly asa
model of cooperative production. The link of the rationing model with cooperative production
will become apparent in Part 2, when we discuss the implications of the powerful Additivity

axiom in the homogeneous goods model of cost and surplus sharing: see Theorem 2.2.



Inheritance problems provide the oldest example on record of the rationing problem (see
O'Neill [1982] and Rabinovich [1973] borrowing examples from the Babylonian Talmud): heret
isthe liquidation value of the bankrupt firm and x; isthe debt owed to creditor i (see Aumann
and Maschler [1985]).

Taxation is another important example: now t istotal tax to belevied and x; isagent i's fiscal
liability (see Y oung [1988] [1990]). Note that in a taxation example, the resources to be divided
are a“bad,” whereas they are a“good” in ainheritance or bankruptcy story. A microeconomic
example similar to taxation is the cost sharing of an indivisible public good: t is the cost of the
good and x; isthe benefit to agent i.

Rationing occursin markets where the price of acommaodity is fixed (for instance, at zero): t
isthe available supply and x; isagent i's demand of good i (Benassy [1982] Dreze [1975]).
Medical triage is an example: t measures the available medical resources and x; isthe quantity
needed by agent i for full treatment (Winslow [1992]). Rationing food among refugeesis similar:
X; measures a nutritional need, and t the nutritional value of the available food. The supply chain
problem is a management example: the central supplier collects orders from itsretailers and can
not meet all demands at once (Cachon and Lariviere [1996]).

Often the resources to be divided come in indivisible units: organs for transplants, seatsin
crowded airplanes or in popular sports events, visas to potential immigrants (Elster [1992]) as
well as cars allocated by General Motorsto its car dedlers. In thiscase x; and t are integers, e.g.,
in the case of organs or visas x; can only be 0 or 1. Important examples where x; andt are
integers come from queuing and scheduling: a server can process one job per unit of time and
agent i requests x; jobs; at any timet such that t < z X; , the service protocol solves arationing
problem.

A rationing method r associates to any rationing problem (N,t,x) asolution y=r(N,t,X).
We study rationing methods with the axiomatic methodology. In the main model, that we call the
rr-model, all variables t,x;, y; vary over the nonnegative real line, and correspond to divisible

resources, claims, demands, etc. Sections 1.2 to 1.8 are devoted to the rr-model. In Section 1.9

we study the dd-model where t, x;, y; are all nonnegative integers.



We denote by £ the set of rationing methods with a given potential population// . When
required for clarity, we indicate whether claims and shares are discrete or real variables, e.g.,

£, means that claims are integer valued and shares are real valued.

All rationing methods discussed below satisfy the following property
Resource Monotonicity (RM)
{t <t} ={r(N,t,x) <r(N,t’,x)} for all N,t,t"and x
Thisisamild and compelling requirement: when resources (whether desirable or not)
increase, no one should see his share reduced. In most of the results below, Resource
Monotonicity needs not be assumed and follows from the other axioms (e.g., Upper Composition
(2.4) implies RM); exceptions are Theorems 1.4 and 1.6.
With the exception of Section 1.7, all methods are equitable in the sense that they do not
discriminate a priori between the agents. This corresponds to the two familiar axioms:
Equal Treatment of Equals:
X =X;=Yy;=y;foralN,xtandali,jeN
Symmetry:
y =r(N,t,x) isasymmetric function of the variables x;,i € N
Note that Symmetry implies Equal Treatment of Equals.

An important operation is the duality operator transforming gainsinto losses. If r isa
rationing method, its dual method r* is defined as

r'(N,t,x) = x—r(N,xy —t,x) foral N,t,x

(where we use the notation Xy = 2 X; ). Given x, the method r* alocatest units of “gains’
ieN
exactly asr allocates the corresponding losses (xy —t).

Overview of Part 1.  The proportional rationing method is characterized in Section 1.2 by
the property that it treats claims as anonymous transferable “bonds’. In Section 1.3 we discuss
two important methods equalizing respectively the gains and losses on individual claims and
introduce the Upper and Lower Composition axioms. The celebrated Contested Garment
method inspired by a bargaining interpretation of the rationing model is the subject of Section
1.4. The next two Sections focus on the structural invariance axiom called Consistency, leading

to the characterization of parametric methods in Section 1.5, and of the equal sacrifice methods
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in Section 1.6. Section 1.7 discusses the rich family of asymmetric methods meeting Consistency
Upper and Lower Composition. Fixed path methods, discussed in Section 1.8, are another family
of asymmetric methods, that play a crucial role in Part 3. The probabilistic rationing of
indivisible goods is the discrete variant of the rationing model: see Section 1.9. Finally, Section
1.10 discusses the variant of the rationing problem where the available resources may exceed the

sum of individual claims.

1.2. The proportional method
With the exception of Section 1.9, all variables t,x; and y; arerea numbers: we areintherr-

model. The proportional rationing method is defined as follows:

y= pf(N,t,X):L-x whenever x, >0
XN

(Whenever xy =0, al rationing methods select y =0)

Several related characterizations of the proportional rationing method pertain to the
possibility of merging a subset of agents into a single agent with the combined demand, or,
conversely, to split one single agent into several smaller agents. Theseresults are al related to
the fact that proportional rationing “discounts’ each unit of claim/demand by the same factor,
irrespective of who presents this unit of claim/demand (whether the agent has alarge or small
global demand isirrelevant). Hence the proportional method is compelling when claims are
transferable like anonymous bonds. Any other method is vulnerable to manipulations by
transferring claims across agents or changing their identity by adding “artificial” agents.

For agiven set N of agentsand asubset S, Sc N, we denote by NS the set with
(IN-|SH1) agentswhere all agentsin Shave been “merged” into asingle agent denoted S*. For
instance:

N={12,345,S={2,4,5 = N ={1,53
For any xin R} we denote xs = Y x; , X = projection of xonR3 ; and x!* e RN s
icS
defined by X! = x; ifi ¢ S, x) = x5. Now we consider four independence properties of

increasing notational complexity; yet, by Theorem 1 below, they are logically equivaent in 2 .
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No Advantageous Reallocation (NAR)

ForalN,S, dltandal x,x : X =x"™=r(N,t,x)=ry(N,t,x) (1.1)

This saysthat by reallocating individual demands among the agentsin S, the total share of
this coalition is unchanged, thus preventing such maneuver to be profitable.
Irrelevance of Reallocations (IR)

ForalN,S altandal x,x : X =x"={r(N,t,x)=r,(N,t,x) foral je N\ S}

Reallocations of demands do not affect agents outside the scope of the reallocation.

Independence of Merging and Splitting (IMS)
ForalN,S, altandalx : r(N,t,x)! =r(N9 t, x%)

The merging operation isthe movefromNto N [SI. splitting is the converse transformation.

By repeated applications of Independence of Merging and Splitting we get the following

property. Assume (N, )cy isapartition of Nand let x — x* be the "merging" mapping from
RN into RM given by
X =Xy, foral ke M
Thenry (N,t,x) =r,(M,t,x*) for all ke M . The next property provides a more precise
decomposition of the rationing method by means of a partition.
Decomposition (DEC)
For any N and any partition (N,.),.,,Of N, for al t, al x and all k:
F(N,t X)) = (Nt X ) wheret, =1 (M, t,x¥)
We compurte first the shares of the members (N ) of the partition, and then allocate each

share within the relevant coalition.

Theorem 1.1. Assume N contains three agents or more. The proportional method meets all
four properties NAR, IR, IMS and DEC. Conversely the proportional method is the only
rationing method meeting any one of the four above properties.

The characterizations gathered in Theorem 1.1 are inspired from similar results by Banker
[1981], O'Neill [1982], Moulin [1987] and Chun [1988]. See also Chun [1999] and de Frutos
[1999]. Remarkably, the symmetry properties (such as Equal Treatment of Equals) are not used.
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In Section 1.4, another characterization of the proportional rationing method is based on the
fact that it isself-dual (r =r*), that isto say it allocates gains and losses in exactly the same way
(Proposition 1.6).

1.3. Uniform Gains and Uniform L osses

This pair of rationing methods are as important and (almost) as simple as the proportional
method. They aim at equalizing, respectively, the actual “gains’ y, and the net losses (x; — ;)
across agents, under the feasibility constraints of a rationing method:

The Uniform Gains method ug:

yi =ug;(N,t,x)=min{A,x} where disthesolutionof > min{1,x} =t
N

The Uniform Losses method ul:

yi =ul;(N,t,x)=(x, —u), whereu isthesolution of Z(xi —u), =t
N

(where (z), = max{z,0}). Inthe literature, these two methods are often called Constrained
Equal Awards, and Constrained Equal Losses.

For agiven rationing problem (N,t,x), let us denote by Y the set of feasible solutions:

Y(N,t,x)={yeRYo<y <x and Yy, -1
N

One checks easily that ug(N,t,x) isthe unique solution maximizing over Y(N,t, x) the
"leximin" ordering; that is, it lexicographically maximizes the smallest coordinate y;, then the
next smallest coordinate and so on. Similarly, ul(N,t, x) isthe unigue maximizer of the
"leximin" ordering applied to the vector of losses (x, — V) .

The pair {ug,ul} isadual pair: ul =ug* and ug=ul*. Thisimportant fact allows a parallel
axiomatic treatment of these two methods.

Both methods ug, ul, aswell as pr and all other symmetric methods discussed below, respect
the natural order of gainsand losses. That is, they meet the following two axioms

Ranking: X <X; = y; <; (1.2

Ranking*: X <x; = (X — ¥;) < (Xj - Yj) (1.3

13



The two axioms above are dual, namely arationing method r satisfies one axiom if and only
if the dual method r* satisfies the dual axiom.
Although both methods ug, ul agree on the ranking of absolute gains and losses, they differ

sharply in the ranking of relative gains and losses. Consider the following two dual axioms:

Progressivity: 0< X <X; :ﬁsi
Xj X
Regressivity: 0<xinj:>iSﬁ
X X

j

Proposition 1.1. The uniform gains method is Progressive, but not Regressive. It isthe most
progressive method among those satisfying Ranking.

The uniform losses method is Regressive, but not Progressive. It isthe most regressive
method among those satisfying Ranking*.

(The precise definition of “the most progressive” isleft to the reader.)

Our next pair of dual axioms plays a very important role throughout this Part. They are
structural invariance properties (see Introduction) allowing to decompose the computation of
shares when the avail able resources are estimated from above or from below:

Upper Composition (UC):
Foral N,xandt,t” : {0<t<t'<xy}={r(N,t,x)=r(N,t,r(N,t’,x))} (1.4)
Lower Composition (LC):

Foral N,xandt,t":{0<t’<t < x } ={r(N,t,x) =r(N,t’,x) + r(N,t—t’,x—r(N,t’,x)) (1.5)

If we allocate first the resources t”, and later it appears that the avail able resources are
actually lower, namely t, Upper Composition allows to simply take the optimistic shares
r(N,t’,x) astheinitial demands from which to further ration until t. \WWe may forget about the
initial demands x once we know an upper bound of the actual resources. Note that UC implies
Resource Monotonicity.

Dually, if we know alower bound t” of the actual resourcest, Lower Composition allows to

distribute the pessimistic shares r(N,t’, x) , subtract these shares from the initial demands and
distribute the balance (t —t”) according to the reduced claims x—r(N,t’,x) .

Proposition 1.2. The three methods pr, ug and ul meet the two axioms Upper Composition

and Lower Composition.
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The family of methods meeting UC and LC islarge: in Section 1.7 we describe arich set of

such methods, and we show — with the help of additional requirements — that our three basic

methods pr, ug and ul play a central role within thisfamily: Corollary to Theorem 1.5. For the
time being, we state two pairs of dual characterizations of ug and ul. They are technically smple,
but their interpretation is quite interesting. In the following statement, we omit the variable N
that plays no role.

Independence of Claim Truncation (ICT)

For al N,t,x:r(t,x) =r(t,x at) where (X At), = min{x; ,t}
The part of one' s claim that is not feasible has no influence on the allocation of the resources:
Composition from Minimal Rights (CMR)
For al N,t,x:r(t,x) =m(t,x) +r (t—mg(t,x), x—m(t, x)), where m(t, x) = (t — X)),

Agent i’sminimal claim m (t, x) isthis part of the resources that he will receive, even in the
most pessimistic case where the claims of al other agents are met in full. CMR is the special
case of LC where t'=m,(t, X) .

Proposition 1.3. (Dagan [ 1996], Herrero and Villar [2000] ). The Uniform Gains method is
characterized by the two properties Lower Composition and Independence of Claim Truncation.
The Uniform Losses method is characterized by Upper Composition and Composition for
Minimal Rights.

A different approach uses a priori bounds on individual shares, namely bounds that do not

depend on the size of other agent’ s claims. We denote by |N| =n the cardinality of N.

Lower Bound: for all N,t,x, andali : vy, =r(N,t,x)= min{xi,%}

Upper Bound: for all N,t,x, andall i yizri(N,t,x)S{%+(xi—XTN)}+

It is plain that ug meets the Lower but not the Upper Bound, whereas ul meets the Upper but
not the Lower Bound. Lower Bound says that agent i is guaranteed a fair share of the resources
unless he demands no more than the fair share, in which case his demand is met in full.

Dually, Upper Bound states that agent i’sloss x, — Y, isnot smaller than the average deficit

Xy —t, unless his claim is smaller than the average deficit, in which case he gets no resources.

15



The Lower Bound has alot of bite when tissmall; if t<n-min;{x}, Lower Bound forces
equal gains. y; =t/ nforali. Similarly, if tisclose enough to Xy , Upper Bound forces equal
losses:

{xn —n-mini{x} <t<xy}={x -y =x;-y;ali,j}

Note that for |N|= 2, Lower Bound characterizes the ug method, and (by duality) Upper
Bound characterizes the ul method. This simple fact does not extend to the case |N|> 3;
however, we can still characterize the ug method if we bring Lower Composition to the rescue.
Consider the following very mild requirement:

Zero Consistency:
Foral N,t,xandali : {x =0 ={r(N,t,x); =r(N\i,t,x)} (1.6)

It is hard to imagine under what circumstances the presence of a null demand agent (who
therefore receives nothing) could influence the allocation of resources among the other, active
agents.

Proposition 1.4. The Uniform Gains method is characterized by the following three
properties. Lower Bound, Lower Composition and Zero-Consistency.

The Uniform Losses method is characterized by the three properties, Upper Bound,
Upper Composition and Zero-Consistency.

1.4. The Contested Gar ment method and Self Duality

The contested garment method is a rationing method for two agents only, in the vein of the

familiar "split the difference” principle for two person bargaining. The interpretation of x; asthe

verifiable claim of agent i (as opposed to a vague demand) is required for the application of the
cg method and its n-person extensions. The method is inspired by the following two quotes from
the Babylonian Talmud (see O'Neill [1982], Aumann and Maschler [1985]): "R. Tahifa, the
Palestinian, recited in the presence of R. Abbahu: two [peopl€] cling to a garment; [the decision
isthat] one take as much as his grasp reaches and the other take as much as his grasp reaches and
therest isdivided equally between them.” “Two hold agarment . . . if one of them says, ‘It isal
mine' and the other says, 'Half of itismine,' . . . the former then receives three quarters and the

|atter receives one quarter.”
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Consider atwo person rationing problem (t, %, X,) . We can interpret agent i's "grasp"”
optimistically as min{x;,t} (in case his own claim takes absolute priority over the other claim)
or pessimistically as (t - x;), (if the other agent gets hisfull claim). Then we split the

remaining deficit (case of optimistic claims) or surplus (case of pessimistic claims). Both
computations yield the same method:

yp = min{x,t} +%(t —min{x,t} —min{x,,t}) (optimistic grasp)
= (%), +5 (- (), ~(t-%,),)  (pessimistic gracp)

A more transparent reading of thisformulain the case x, < x, is:

if t<min{xg,X}: Yi=Yo =%t
if X <t<Xxo: ylzﬁ;yzzt—ﬁ (1.7)

2 2

if max{x,x,} <t: ylzé(t+xl—x2);yzzé(t+x2—x1)
The Contested Garment method is self-dual, r* =r, namely it alocates gains and lossesin

exactly the same way. This property follows at once from the optimistic and pessimistic formulas
above:

0 (00 =% =5 0 ~t= 060, 404 =) =+ X + (). =3 = (t-x).)

and theidentity z+(z—t), =min{zt}.
The Contested Garment method is self-dual, r* =r, namely it alocates gains and lossesin
exactly the same way. This property follows at once from the optimistic and pessimistic formulas

above:
. 1 1
05 (6) =X =2 O = 06 =1, + 04 =), = S (= X+ (E= %), =% = (- x,),

and theidentity z+(z—t), =min{zt}.
On the other hand, the Contested Garment method fails Upper Composition and (by duality)
Lower Composition: property (1.4) failsfor x, =10, x, =20, t=15and t'=18.
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Note that cg coincides with ug for small t, i.e., t <min{x;, x,} , and with ul for larget, i.e.,

max {x;,X,} <t. More importantly, cg shares the two invariance properties used above to
capture ug and ul:

Proposition 1.5. (Dagan [ 1996] )

The Contested Garment method is characterized by Self-Duality and Independence of Claim
Truncation; or by Self-Duality and Composition from Minimal Rights; or by Equal Treatment of
Equals, Independence of Claim Truncation, and Composition from Minimal Rights.

Compare this result, for two-person problems, with the following compact characterization of
the proportional method, for problems of arbitrary size.

Proposition 1.6. (Young [ 1988])

The proportional method is characterized by Self Duality and Upper Composition; or by Self
Duality and Lower Composition.

Two natural extensions of the cg method for an arbitrary number of agents have been
proposed. Thefirst one relies on the observation that forn = 2, the cg method is the average of
the two priority methods. The 12-priority method is the rationing method (denoted prio(12)) that
gives absolute priority to agent 1 over agent 2, hence:

iftissuchthatt<x : y=(t,0)
iftissuchthat x; <t<x +X, @ y=(X,t—X)

Define symmetrically the 21-priority method prio(21) and notice that formula (1.7) defining
cg can be written as:

cg= % prio(12) +% prio(21)

Hence the first generalization of cg as the Random Priority method, namely the arithmetic
average of the priority methods over all orderings of N. Let o be an ordering of N as
(04,05,...,0,), namely o, isthe highest priority agent and so on. We define
y = prio(o)(N,t,x) asfollows:

k k+1
if kisaninteger suchthat: ) x; <t<) X,
i=1 i=1
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ycrj :Xcrj forj=1...,k

k
Yo == (X %)) (1.8)
1
Yo, =O0forj=k+2,..n
Random Priority method:

y= %z prio(o)(N,t,x) wherethe sum bearson all orderings of N (1.9
‘o

The second natural extension of cg to any n uses an explicit mixture of the uniform gains and
uniform losses methods. Thisisthe Talmudic rationing method due to Aumann and Maschler
[1985] (who argue convincingly that itsintuition was present already in the ancient Talmudic
literature)

Talmudic method:

= - int, 2y X _Xuy X
y=tal(N,t,x) =ug(N, min{t, 2},2)+uI(N,(t ) )+,2) (1.10)

The Talmudic method halves each claim and follows Uniform Gains until each half claimis
met. It then applies the Uniform Losses method to the remaining half claims. The Talmudic
method coincides with cg in the case of two agents — yet another equivalent formulation of cg.

Both the Talmudic and Random Priority methods are self-dual. Both coincide with Uniform
Gains whenever t < min;{x;} and with Uniform Losses whenever t > max;{Xy;} -

The next result shows a remarkabl e relation between the two methods, Random Priority and
Tamudic, and the two most important value solutions for cooperative games, namely the
Shapley value and the nucleolus. These solutions are defined in Section 3.2 and 3.6 respectively.
Fix arationing problem (N,t,x) and define two (dual) cooperative games, generalizing the
bargaining interpretation of the contested garment:

foradl Sc N : v(S)=min{xg,t} (optimistic grasp)
W(S) = (t—Xy\s) (Pessimistic grasp)

Notethat v(N)=w(N)=t.

Theorem 1.2. (O'Neill [1982], Aumann and Maschler [1985])

i) The Random Priority method allocates the resources according to the Shapley value of the

above games.
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ii) The Talmudic method allocates the resour ces according to the nucleolus of the above

games.

1.5. Consistent and symmetric methods
The axiom of Consistency has played a mgjor role in the recent microeconomic literature on
distributive justice, see Chapter 26, Vol. 2. See aso the surveys by Thomson [1990] and
Maschler [1990]. Consistency in the rationing problem is both very natural and extremely
powerful, as demonstrated by the results of this and the next subParts.
Consistency (CSY):
Foral N,S,Sc N, alt, al x:r(N\S;t—rg(N,t,X), Xyg) =T(N,t,X) g (1.12)

Equivalently, Consistency can be defined by looking at coalitions Swith asingle agent i:
PN E=n (NSt X), X)) = FONLE XD

The axiom says that upon removing one (or several) agent from the society N, and taking
away the resources allocated to this agent (or agents) within N, the allocation of shares within the
reduced society remains the same. In other words, changing the status of an agent from "active
participant” to "passive expense of resources’ does not alter the overall distribution; removing
one agent and his share of resources is of no consequence to other agents. Thus Consistency isa
decomposition property with respect to changesin the set of relevant agents.

Note that Consistency is a self-dual axiom: arationing method is consistent if and only if its
dua method is consistent as well.

In this Section we discuss symmetric methods only. In thisfamily a powerful
characterization result of (essentially) all consistent methodsis available.

Our first result says that Consistency allows us to extend in at most one way atwo person
symmetric rationing method.

Proposition 1.7. Let r({1,2})(t,(x,, X,)) bearationing method defined for two person

problems only. Assume that r({1,2}) is symmetric and resource monotonic. Then thereis at

most one consistent rationing method r (defined for all finite societies N) that coincides with

r({1,2}) for all two- person problems. Moreover, r is symmetric and resource monotonic.
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The discussion of parametric methods below establishes that pr, ug, ul aswell asthe
Talmudic rationing method are consistent (of course this claim can be checked directly).
Therefore Proposition 1.6 has the following corollaries:

i) the Tamudic method isthe only consistent extension of the contested garment method
(for two-person problems) to an arbitrary number of agents,

ii) the Uniform Gains method is the only consistent method satisfying Lower Bound

(y; = min{x; ,%}) for two agents problems, (and adual statement holds for Uniform Losses by

Proposition 1.4).

Proposition 1.7 begs the question: what symmetric two person rationing methods can be
extended to a (symmetric) consistent method for an arbitrary number of agents? A generdl
answer is given by Dagan and Volij [1997] and Kaminski [2000]: a certain binary relation
associated with the two person method must be transitive. Theorem 1.3 below gives a much
more transparent answer under one additional mild requirement:

Continuity
r(N,t,x) iscontinuousin (t,x), for al N (1.12)

We define now the family of parametric rationing methods. They are the key to Theorem
1.3. Let f(4,2) beareal valued function of two real variables, with 0< A <A andz>0; the
Upper Bound A may befinite or infinite. We assume:

f(0,2=0 ; f(A;2=z f(A4,2) isnondecreasingand continuousin A over [0,A] (1.13)

To any such function f we associate a unique rationing method r as follows

Foral N,t,x : r(N,tx)= f(A,x) where A isasolution of Zf(l,)g):t

ieN
(this equation may have an interval of solutions A but they all give the same sharesto every
agent). We call r the parametric method associated with f. By construction a parametric method
issymmetric; clearly, it is consistent as well.
The three basic methods pr, ug and ul are parametric, for the following functions f:
Proportional: f(A,z)=A.zand A =1

UniformGains. f(A,z)=min{A,z} and A =+

Uniform Losses: f()u,z):(z—%)+ and A = +oo
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Among the two extensions of cg discussed in Section 1.4, the Random Priority method is not
consistent, whereas the Talmudic method is consistent. To check the former claim, take

N ={123, t =10,x =(6,8,10) and compute the shares allocated under Random Priority:

1 .1 1 1. 1. 1 1. 1. 1 1
=—-6+=-2=2=,Y,==8+—-4=3=, y3==-10+ -4+ -2=4—
N=3"°%% 3 Y2738 g T 3T 3

Next remove agent 3 and his share 4 %4, which leaves us with the reduced problem:
N\{3,t"=52%,x" =(6,8) . Now the shares under Random Priority are: y; = y5=2%;.

To check the latter claim, we show that the Talmudic method is parametric. Set A =2 and
define f(A,z) asfollows:

A Z
f(A,2)=—— forO<A<—
(4.2) 1-4 Z+2
_Z fm—z—slsziﬂ
2 Z+2 Z+2
:z—g;& mriiﬂslSZ
A-1 zZ+2

The next result establishes that parametric methods capture, essentially, al consistent and
symmetric rationing methods.

Theorem 1.3. (Young [1987]) A parametric method is a consistent and symmetric rationing
method. Conversely, a rationing method satisfying Equal Treatment of Equals, Consistency and
Continuity can be represented as a parametric method where f (A, z) is continuous in both
variables.

Note that in the converse statement, it is enough to assume pairwise consistency, namely the
restriction of property (1.11) to subsets S containing two agents. On the other hand, the converse
statement holds only if we assume that the size of the set N can be arbitrarily large, that isto say,
theset .4 of potential agents must be infinite. Thisisan important limitation of Theorem 1.3 as
well as of Theorem 1.4, in the next Section that does not apply to Theorem 1.5 in Section 1.7.

The class of parametric methods is very rich. Chun, Schummer and Thomson [1998], for

instance, discuss a method of egalitarian inspiration much different from any of the methods
discussed in this survey.
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1.6. Equal Sacrifice Methods

The equal sacrifice methods are an important subset of the parametric ones. They appear
early on in the discussion of equitable taxation schedules (see Mill [1859] and the discussion in
Y oung [1990]).

Fix areal valued function u(z) of the nonnegative real variable z, and suppose that u is

continuous and strictly increasing. Think of u as areference utility function. Loosely speaking,
the equal sacrifice rationing method associated with u is defined by solving for all N,t, x the
following system of equations:

u(x;)—u(y;) =u(x;)—u(y;) forali,je Nand ) y; =t (1.14)
ieN

Because u is strictly increasing, the above system has at most one solution. Assume for a
moment that such a solution exists. Then at the allocation y, each and every agent contributes an
equal "sacrifice,” namely the same net utility loss measured along the reference utility scale u.
Thisis especially appealing in the context of taxation. Let x; be agent i's taxable income, y; be

his after tax income, and (xy —t) bethe total tax to be levied. Then the system (1.14)

distributes taxes so as to equalize the net sacrifice measured along the scale u. Concavity of u —
decreasing marginal utility — means that a dollar taken from the rich translates into a lesser
sacrifice than a dollar taken from the poor. Hence the choice of u allows the social planner to
adjust the progressivity of taxation while following the normatively transparent principle of
equal sacrifice.

Hereis aprecise definition of the equal sacrifice methods.

Proposition 1.8. Fix u, a continuous and strictly increasing real valued function defined on

the nonnegative real line. For any rationing problem (N,t, x) the following system has a unique
solutiony, and y is a solution to the rationing problem:
Yy, =tandforali:{y >0 = u(x)-u(y)=max{u(x,)-u(y,)} (1.15)

ieN
This rationing method satisfies Symmetry, Ranking, Consistency and Upper Composition.
All equal sacrifice methods are clearly consistent, but, in general an equal sacrifice method
fails Lower Composition. The only exceptions are the Proportional and Uniform Losses
methods. Moreover, an equal sacrifice method meets Ranking* (1.3) if and only if the utility

function u is concave.
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We turn to some examples of equal sacrifice methods. The simplest ones involve power
utility functions:
Uy(z) = Log z yields the proportional method
u(2)=z yields the Uniform Losses method
Interestingly, the Uniform Gains solution is not an equal sacrifice method, but it isthe limit
of power methods. Consider the family of utility functions u:
up(z):—i where 0< p < 4o (1.16)
ZP
For p close to zero the corresponding method approaches the proportional method, whereas
for p arbitrarily large it approaches the Uniform Gains method. Let us compute for instance the
method corresponding to u; ; the system (1.14) always has a unique solution, and yields
explicitly the parametric representation:
1 1 1 1

1Al ey =2 A
Yio XY X A+ X

Next consider the family of utilities u®
u%(z) = 29 where 0< g < +oo (1.17)
For q close to zero, the corresponding method approaches pr, for g=1 it isthe method ul,

and for g arbitrary large it approaches the "hyperregressive" method that gives full priority to the
agents with the largest x;. In the case of two agents, this method is defined as

tt .
=(=,—= if X = X
(2 2) 1= %2

Note finally that for g <1, u? is concave and the corresponding method meets Ranking*.
We state next a partial converse of proposition 1.7. It uses three additional axioms:
Strict Monotonicity: for al N,t,t’,x : {t<t}={y <y fordli}
Srict Ranking: foral N,t,xandali,j : {X <x;}={y <y}

Scalelnvariance: foral N,t,xand >0 : r(N,a-t,a-x)=0o-r(N,t,Xx)
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Strict Monotonicity and Strict Ranking are demanding properties; for instance both ug and ul
(aswell as cg) fail both requirements. They are intuitively reasonable and yet they cut a subset
of rationing methods that is not topologically closed, an unpalatable feature.

Scale Invariance, on the other hand, is an impeccable invariance axiom insisting that the
choice of the unit to measure both the demands/claims/taxable income and the available
resources, should be of no consequence whatsoever. It is satisfied by all rationing methods
discussed so far.

Theorem 1.4. Young [1988]

i) A rationing method satisfying Consistency, Upper Composition, Strict Monotonicity and
Strict Ranking must be an equal sacrifice method, defined by system (1.14).

i) A rationing method satisfying Consistency, Upper Composition, Srict Monotonicity, Strict
Ranking and Scale Invariance, must be an equal sacrifice method derived from a power

functionu , 0< p<eo, ((1.16)), or must be the proportional method.

An important open question. Replace in statement i) Strict Monotonicity and Strict Ranking
by Monotonicity and Ranking: now all equal sacrifice methods (given by (1.15)) with a concave
utility, aswell as Uniform Gains, are available. Isthisal? Similarly, if in statement ii) we

weaken the same two axioms in the same way, all methods derived from the power functions u,

((1.126)) aswell asu”((1.17)) for g<1, and ug meet these requirements. Isthisall?

Y oung [1990] offers an empirical “verification” of Theorem 1.4, by showing a number of
actual tax schedules that fit well within the family of equal sacrifice methods constructed from
the power functions uy, .

1.7. Asymmetric methods. combining the invariance axioms

When the recipients of the resources have different exogeneous rights, in addition to their
possibly different demands, the symmetry axiom must be abandoned. In bankruptcies and
inheritances, creditors or heirs often have different status implying some priorities between their
claims, irrespective of their sizes. For instance the federal government's claim on the assets of a
bankrupt firm has absolute priority over the claims of the trustees, who have priority over those

of the shareholders and so on.
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The most asymmetric rationing methods are the priority methods prio(c) ((1.8)). In

order to define a consistent priority method we must introduce the set N from which the agents
can be drawn. This set can befinite or infinite. Recall that in the previous Part about symmetric
methods, .#” was any countably infinite set. In the current Part, by contrast, we can
accommodate the case of afiniteset 4.

We denote by o an ordering (complete, transitive, antisymmetric relation) of .4~ and for
any finite subset N of .#", we also write ¢ for theinduced ordering on N. Any finiteset Nis
ordered by o as N =(04,05,,...,0,) and for any rationing problem (N,t, x), we define the
alocation prio(o)(N,t,x) exactly asin (1.8). Notethat thedua of prio(c) isthe priority
method with the opposite ordering of 4.

The following fact is obvious: for any orderingo , the priority method prio (o ) meets
Consistency, Upper and Lower Composition, and Scale Invariance.

Thus our four powerful invariance axioms are met by the three basic symmetric methods pr,
ug and ul aswell as by the most asymmetric ones, the priority methods. Theorem 1.5 below
describes the relatively simple family of methods satisfying all four axioms: they "connect” the

three symmetric methods to the priority ones in interesting ways.

We define the composition of rationing methods. Given are .#° and a partition A4 =U.,
where the parameter o variesin & . For every o we are aso given arationing method on .7,
denoted r%; moreover 1 isarationing method on & . The composition of these methodsis
denotedf[r*,ae & ]=r. For any problem (N,t,x), with afinite society N, N c .#", we define
N, =Nn N, and Aisthefinite subset of & containing o« if and only if N, isnonempty.
The shares y =r(N,t,x) are computed in two steps: first we split t among the subsets N,, (i.e.,

among the “agents” of A) according to 1, then the share z, allocated to N,, isdivided among
the agentsin N, accordingto r*:

Zy =T (At(xy, ) forae A oy =1"(Ny, zXn, ) forie N,

Thus, the operation of composition generates “two tiered” rationing methods that may apply
different equity principles for the aggregate problem (on & ) and for any of the decentralized
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problems (on N, ). Note that the Decentralization property (Section 1.2) says precisely that a
certain method is preserved by “ self-composition”.

We say that the composition operation respects property Q if, whenever al methods
r,r,,oce & ,meet Q, so doesthe method f[r,,ae & ].

Proposition 1.9.

i) The composition of rationing methods respects the following properties. Resource
Monotonicity, Upper and Lower Composition, and Scale Invariance.

i) The composition operation does not respect the Consistency property, or Equal Treatment

of Equals.
iii) If each methodr®,cce & , isconsistent, and o isan ordering of & , the composition
prio(c)[r*,ae €] isconsistent as well.
Proposition 1.9 shows that the three invariance axioms UC, LC and S, are met by arich
family of rationing methods, obtained by composing such methods as pr, ug, ul (aswell as their
asymmetric versions g and ", to be defined shortly) in an arbitrary number of tiers. There

are many more methods in this family, as discussed in Moulin and Shenker [1999].

When we impose CSY as well, the set of available methods becomes much simpler, athough
it still allows agreat deal of flexibility. The following asymmetric versions of ug and ul play a
key role in the characterization result.

For any set of positive weights w;, one for eachi e N , we define the weighted gains method
g" asfollows:

forall N,t,x:y; = g"(N,t,x) = min{ Aw, x;} Where/lsoIVGSZmin{/lw,,xi} =t
N

Its dual method is the weighted losses method "

forall N,t,x:y; = ["(N,t,x) = max{x — uw ,0} where u solvesZmax{xi —uw;,0p =t
N

The Uniform Gains and Uniform L osses methods are the two particular methods

corresponding to uniform weights (w; =1for all i) . Note that when the weights of the different

agents are very unegual, the methods g% and IV become arbitrarily close to any priority
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method: it will be enough to guarantee that if agent i is higher than agent j in the priority
ordering, his weight becomes infinitely bigger than agent j's weight.

Clearly, the methods g" and 1"V meet all four invariance axioms CSY, UC, LC and 9. In
view of Proposition 1.9, we can construct many rationing methods meeting the four invariance
axioms asfollows. Partition arbitrarily the set & in“priority classes” and order these classes.
In each priority class, use either the proportional, or aweighted gains, or aweighted |osses
method. An exampleis provided by the American bankruptcy law, which arranges the creditors
in priority classes and uses the proportional method within each class (Kaminski [2000]).

In order to state the last theorem in this Part, we need two more definitions. We say that the
rationing method r gives priority to agent i over agent j if j does not get anything unlessi's

demandismetinfull: y; >0=y; =X (foral N,t,x). Wesay that arationing method is

irreducibleif for any pair i, j , r does not give priority toi over j. For instancepr, g" and I
(for any w) areall irreducible (recall that we require positive weights w; ).

Theorem 1.5. (Moulin [2000])

i) Let r be a rationing method meeting Consistency, Upper and Lower Composition and

Scale Invariance. Then thereisa partition /' =u N, anordering o of & , and for each «

an irreducible method r* meeting CSY, UC, LC and S such that:
r=prio(o)[r*, e & |

ii) Let r be an irreducible method meeting Consistency, Upper and Lower Composition and
Scale Invariance. If &/ contains at least three agents, thenr is either the proportional method,
or a weighted gains method, or a weighted losses method.

In Moulin [2000], the somewhat involved family of irreducible methods for the case | V| = 2
isdescribed in full.

Within the family uncovered in Theorem 1.5, our three basic rationing methods are the only

symmetric methods (except in the case | V| = 2).

Corollary to Theorem 1.5. Assume N contains at least three agents. Then there are
exactly three rationing methods satisfying Equal Treatment of Equals and the four invariance

axioms: they are the Proportional, Uniform Gains and Uniform Losses methods.
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A much needed next step in the theory of rationing methods is an asymmetric version of
Theorem 1.3: what is the set of methods consistent and continuous? Naumova [2000] offers an
asymmetric generalization of Theorem 1.4, where the utility functions measuring sacrifice are
personalized.

Another interesting open question (discussed in Moulin [2000]) isto generalize Theorem 1.5
(or its Corollary) by dropping one of the four invariance axioms. For instance a method meeting
Consistency, Scale Invariance and Upper Composition is priority to higher demands: given the

profile of demands x, this method gives priority toi over j if and only if x; > x;, and treats equal

demands equally (thusit is symmetric as well); it emerged in Section 1.5 as the limit as some
equal sacrifice methods (see the discussion of power methods (1.17)). Its dua method, priority
to lower demands, meets al four axiomsin Theorem 1.5 except Upper Composition. The
characterization of al rationing methods meeting Consistency, Scale Invariance and one of the

composition axioms is wide open.

1.8. Fixed path methods

Thisimportant family of rationing methods contains asymmetric variants of the uniform
gains method as well as the priority methods. The fixed path methods play an important rolein
Part 3 when we discuss Demand Monotonicity (Sections 3.4 and 3.6). They emerge aso in the
model of fair division under single-peaked preferences (briefly discussed in Section 1.10), where
they are akey example of strategy-proof methods. In this Section we merely define these
methods and check their invariance properties.

It is necessary to place an exogeneous bound on individual demands. This bound may be

finite or infinite. We call it the capacity of agent i and write X; where X; <+oo (real or
infinite). A rationing problem (N,t,x) must now satisfy 0< x, < X; for all i. Weaways
assumethat x; isfinitefor all i.
A fixed path method is defined from a family of monotone paths y(N), one for each possible
society N. Thepath y(N) is anondecreasing mapping from [0, Xy] into [0, X;y;] such that
foral t,0<t< Xy : D 7i(N,t)=t, 0<y;(N,t)<X;foralli
N

lim y;(N,t)= X forall i
t—= Xy
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Notethat y must be continuousint. If X; isfinitefor al i, the limit property holds true

because y(N, Xy) = Xnj-

The fixed path method r” is now defined as follows:
r”(N,t,x) =min{y,(N,s),x} for al i, where s is a solution of Zmin{yi(N,s),x} =t (1.19)
N

If wetake x= X (X= Xy;) inthe above equation, we find

Y(N,t)=r"(N,t, X) (1.20)
Examples of fixed path methods include the uniform gains method (for the path ug(N,t, X))
any weighted gains method, and any priority method prio(c). Notethat a priority method can
be represented as a fixed path method only if al capacities X; are finite (with the possible
exception of the capacity of the last agent in the priority ordering). The path t — prio(N,t, X)
follows the edges of the cube [0, X] in the order specified by o .
If X; =X forali,j,uniformgainsisasymmetric fixed path method. It isthe only fixed

path method meeting Equal Treatment of Equals: indeed the path r(N,t, X) must be diagonal by
ETE, so the claim follows from (1.20) and (1.19).
The set of fixed path methods is not stable by duality: for instance uniform lossesis not
such amethod. It contains no self-dual method.
Proposition 1.10.
i) All fixed path methods meet Upper Composition. They generally fail Lower Composition.
ii) A fixed path method is consistent if and only if the associated paths N — y(N) commute

with the projection operator:
forall N,S,Sc N :y™s = ¥(S) namely y(N,t)g =7(S,7s(N.1)) forall t  (121)

Note that al the methods obtained by a priority composition of weighted gains methods (see
Proposition 1.9) are fixed path methods and satisfy Lower Composition. | conjecture that there
is no other fixed path method meeting LC.

The property (1.21) in statement ii) is especially easy to read when the maximal set & of

potential agentsisfinite. Thesingle path y( A& ) from0to X generates the entire family of

[V

paths y(N) by simple projection on N. In this case we can really speak of a one path method.
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1.9. Rationing indivisible goods

We modify the rationing model assuming that the commodity being distributed comesin
indivisible units. Examplesinclude cars, appliances, seats for a concert or in a plane, organs for
transplant, etc.

The formal model isidentical, except that all the variables t, x;, y; are nonnegative integers.

The definitions of arationing problem, a solution, and a rationing method are unchanged. The

set of such methodsisdenoted £, . The duality operation is unchanged.

It is convenient to think of arationing method as a scheduling agorithm. Fix N and x and
restrict attention to resource monotonic rationing methods. The path t — r(N,t, x) is described
as asequence {i,...,ix} in N, whereK = xy and i; isthe agent receiving the first unit
(r(N,1,x) givestheunitto iy), i, isthe agent receiving the second unit and so on. Inthe
sequence {iy,...,ik} , agent i appears exactly x; times, for all i.

The definitions of Consistency, Upper and Lower Composition, are all unchanged. Note that
Consistency has a particularly simple formulation in terms of the sequence {iy,...,i,} describing
thepath t — r(N,t,x). The axiom saysthat by ssmply dropping all occurrences of a certain
agent i in this sequence, we obtain the sequence describing the path t — r(N \i,t, X nyip) -

Symmetry islost when we allocate indivisible goods, as long as the allocation is
deterministic. If we now think of the division of resources as arandom variable, we can restore
this basic equity property, at least in the ex ante sense. It turns out that the probabilistic rationing
of indivisible goods arise naturally in the discussion of additive cost sharing methodsin Part 3 —
an entirely deterministic model —.

A probabilistic rationing method associates to every deterministic rationing model
(N,t,x) (where t and x; are integers) arandom variable Y such that, with probability one,
0<Y, <x foraliand Y, =t. Thethree basic methods pr, ug and ul have a canonical
probabilistic analog.

To define the proportional method, fix the profile of claims x and throw x balls of color i
inanurn, for each i € N ; drawing from the urn t times, independently and without replacement
—and with uniform probability — generates the random variable Y =r(N,t, x) of the random

proportional method. Clearly, the expected value of Y, isagent i’s proportional share t.(x / Xy) .
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The random proportional method meets Consistency, Upper and Lower Composition, as well
as Equal Treatment of Equals (ex ante). Conversely, the method is characterized by ETE, UC
and LC: Moulin [1999b].

The probabilistic analog of uniform gainsis called Fair Queuing (Shenker [1995], Demers et

al. [1990]). Given aprofile of claims X, this method gives away one unit to each agent in round

robin fashion, selecting randomly and with uniform probability the ordering in which they
receive each unit; an agent drops out only when his claim is not met in full. The expected value
of agent i’ s share after t units have been distributed is exactly his uniform gains share in the
deterministic problem (N,t,X) .

The Fair Queuing method meets Consistency and Upper Composition, but fails Lower
Composition. Moulin and Stong [2000] show that this method is characterized by the
combination of CSY, UC, and a strong form of Equal Treatment of Equals: two agents with
identical claims have equal expected shares, and their actual (ex post) shares never differ by
more than one unit.

The dual method, Fair Queuing* allocates each unit with equal probability among the agents
with the highest remaining claim, i.e., their initial claim net of the units received in earlier
rounds.

The characterization results in the probabilistic model of rationing are generally sharper than
in the classical model. Moulin and Stong [2000] provide very complete descriptions of the set of
methods meeting UC and LC, or CSY and UC (or CSY and LC).

1.10. Two variants of the rationing model

a) Surplussharing

In asurplus sharing problem (N,t, x) , the resources t must be divided according to the
profile of claims x and we assume t > Xy : the resources exceed the sum of individual claims.
One interpretation isthat x; isthe amount of investment contributed by agent i to ajoint venture,
and t isthe total return, allowing a profit t — xy . Alternatively, the resources being distributed
are undesirable (atax, aworkload) and agent i'sclaim x; entitles him to receive no more than a

share x; of thetotal liability. These claims are not compatible.
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A solution y to the surplus sharing problem allocates a share y; to agent i in such away that
0<x <y; and yy =t. A surplussharing method d associates asolution y=d(N,t,X) to
every surplus sharing problem (N, t, x).

The Proportional surplus sharing method is given by the same formula asin the rationing
case. Uniform Gainsis defined as follows:

y, =ug, (N,t,x) =max {4,x} where A isthe solution of ) max{4,x} =t
N

The counterpart of the Uniform Losses rationing method simply divides the surplus equally,

and for this reason we call it the egalitarian method:
1
Y = egi(N1t1X) =X +E(t_XN)

In the surplus sharing model there is no duality operation, hence no analog to the Contested
Garment method.

Consistency and Scale Invariance have the same definition but there is only one Composition
axiom:

forall N,t,t’,x : xy<st'<t=d(N,t,x)=d(N,t,d(N,t’,x)) (1.22)

Several axiomatic results about rationing have a direct counterpart in the surplus sharing
model, and several new results emerge as well. For instance, the proportional method is
characterized, asin Theorem 1.1, by Independence of Merging (or Splitting), or by
Decomposition. On the other hand, many surplus sharing methods meet No Advantageous
Reallocation, including the egalitarian method.

Theorems 1.3 about parametric methods and Theorems 1.4 about equal sacrifice methods are
readily adapted to the surplus sharing context: Y oung [1987], Moulin [1987].

The following result is the counterpart of Theorem 1.5 and its Corollary. The asymmetric
generalizations of the egalitarian method divide the surplusin proportion to a set of fixed shares

w,w >0 forall i and w, =1:

Y = riW(N’t’X) =X +\Ni'(t_ XN)
The proportional method and the fixed share method r* meet No Advantageous Reallocation,

Consistency, Composition and Scale Invariance. Conversely, these four axioms characterize this
family of surplus sharing methods. If we add Equal Treatment of Equalsto the list of
requirements, only the Proportional and the Egalitarian methods are left. See Moulin [1987].
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b) Fair division with single-peaked preferences

Think of a context where the size of agent i's claim/demand x; is private information, so that
agent i may choose to misrepresent its actual value if this proves beneficial. We make the
following assumption on individual preferences over shares: given that his (real) claim/demand
is x;, agent i strictly prefers y; toy! if y/ <y, <x but strictly prefers y/ toy; if x; < y/ <y;.
Thisisthe familiar assumption of singlepeakedness. It isareaistic assumption in the rationing
problem if the resources being distributed are not freely disposable: think of food that must be
eaten in one day, or of asharein arisky venture. For examples and discussion of this
assumption see Sprumont [1991] or Barbera, Jackson and Neme [1997].

A fair division method works as follows in this context. The mechanism dlicits the peaks of

individual preferences (corresponding to the claims x; in the rationing or surplus sharing
models) and each peak x; can be anywherein the fixed interval [0, X;]. For agiven amount of
resources t, the sum of individual claims xy may be smaller or larger than t. Thus the allocation

problem may be a rationing problem or a surplus sharing problem and an allocation method is a
pair of one rationing and one surplus sharing method.

Incentive compatibility of this mechanism is the strategy-proofness property: reporting one's
true peak is optimal for every agent, irrespective of other agents' reports.

The key observation is that Uniform Gains (used both for the rationing and the surplus
sharing cases) is a strategy-proof method, and so are all the fixed paths methods, where a
different path can be used for the rationing and for the surplus sharing cases. Conversely,
Uniform Gainsis characterized by Strategy-proofness, Efficiency and Equal Treatment of
Equals: Sprumont [1991], see also Ching [1994]. Similarly, the consistent fixed path methods are
characterized by Strategy-proofness, Efficiency, Consistency and Resource Monotonicity:
Moulin [1999a], see also Barbera, Jackson and Neme [1997].

Thereis also asizable literature looking at the fair division problem with singlepeaked
preferences from an equity angle, and where axioms such as No Envy or Population
Monotonicity play abig role: see Thomson [1994a, b], [1995], [1997], Schummer and Thomson
[1997] and references there. Once again Uniform Gains stands out as the method of choice.



2. Sharing variablereturns

2.1. The problem and some examples

A (one-dimensional) cost sharing problemisatriple (N, C, x) where N isafinite set of

agents, C is a continuous hondecreasing cost function from R, into R, suchthat C(0) =0, and

X = (X )jen Specifiesfor each agenti ademand x;, x, =20.

A solution to the cost sharing problem (N, C, x) isavector y = (Y;)icn SPecifying a cost

share for every agent and such that

yiz0forali, ; Y y=C() x) (21)
ieN ieN

A surplus sharing problem is the same mathematical object as a cost sharing problem but its
interpretation is different: the given function is denoted F (to avoid confusion) and is now a
production function; if total input contribution is z, total output is F(z); next x; isagent i'sinput
contribution and y; isagent i's share of the total output F(xy ). The whole axiomatic discussion
is unaffected by the choice of one or the other context, although certain axioms are not equally
natural in both contexts. With the exception of afew examples, we use the cost sharing
interpretation and terminology throughout Parts 2 and 3.

A cost sharing method (resp. a surplus sharing method) is a mapping ¢ associating to any
cost sharing (resp. surplus sharing) problem asolution y = ¢(N,C,x). We denoteby . the set
of cost sharing methods thus defined.

Note that variable population axioms play no role in this Section (see comment b) in Section
2.5). Therefore, omit N in the variablesof ¢: wewrite y=¢(C,Xx).

The question addressed in this Section is the equitable division of cost (or surplus) shares
when the returns of the technology vary. In other words our initial postulate is that constant
returns pose no equity issue whatsoever: costs (or surplus) shares must simply be proportional to
individual demands of output (resp. contributions of input). This corresponds to the following
axiom on the cost sharing method ¢ .

Constant Returns
{C(z)=A.zfordl z>20} = { (N,C,x)=A.x} foradl N, adl A>04dl C, dlx (2.2
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A simple example of a cost sharing problem with increasing returns (decreasing average
cost) isdiscount pricing. The agentsin N are grouping their order of wine (thereisonly one
quality of wine). Wine can be bought at the local store at price p; or at alower price p, froma
discount retailer located far away. In the latter case afixed transportation cost ¢, (independent
of the shipment size) must be added. Hence the cost function:

C(z)=min{p,-z,co+ p,- 2} (2.3

If the total demand x justifies buying from the discount retailer (if x5 >Co/(p— o))
how should total cost be split among the buyers? With several suppliers, the cost function C
takes the form of a concave, increasing and piecewise linear function starting at C(0)=0.

Our second example is a cost sharing problem with decreasing returns (increasing average

cost). Think of N as encompassing all the consumers of a certain good (N is a monopsonist for

this good) competitively supplied. Thus the demand zismet at price S %(z) , where the supply

function p— S(p) isincreasing; the resulting cost function C(z) = z- S™Y(z) has decreasing
returns.

In the surplus sharing context, we find symmetrical examples displaying increasing or
decreasing returns technologies. For instance, the agent in N may be monopolizing the supply of
acertain good for which the demand is competitive. The market absorbs z units of output at

price D(z) where D is decreasing; hence the revenue function F(z) = z- D(z) has decreasing

returns.
A simple example with increasing returns involves fixed costs (asin example (2.3)). The

agents can use a technology with constant returns r; and no fixed input cost, or they can pay a

fixed input cost ¢, and benefit from higher returns r, :

F(z)=max{r-z,r,-(z—Cy)} (2.9
A brief overview of Part 2 follows. In Section 2.2, the average cost sharing method is
characterized in precisely the same way as proportional rationing in Section 1.2. Serial cost
sharing isintroduced in Section 2.3: together with average cost sharing, it playsthe key rolein
the current model. In Section 2.4 the property of Additivity (of cost shares with respect to the
addition of cost functions) is defined and the main theorem derived: the set of rationing methods

isisomorphic to that of additive cost sharing methods; in particular serial cost sharing
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corresponds to the uniform gains rationing method. Some variants and open questions are
gathered in Section 2.5.

2.2. Average cost method
The simplest cost sharing method divides total cost in proportion to individual demands. Itis
denoted ac:
y=ac(C,x)= Cl) (2.5)
XN
(of course, if x5y =0 wemust have y=0). The average cost method entirely ignores the

returns of the technology between 0 and the total demand X, . From all the methods discussed

in this Section, it is the most informationally economical. Thisis convenient from an
implementation viewpoint, but has no normative appeal per se.

A first type of axiomatic justification for this method mimics those of the proportional
rationing method in Section 1.2. The axioms of No Advantageous Reallocations (NAR),

Irrelevance of Reallocations (IR), and Independence of Merging and Splitting (IMS) are
transported word for word from that context to that of cost sharing methods by simply replacing
the resourcest in rationing by the cost function C. Theorem 1.1 has the following counterpart.

Theorem 2.1. Assume N contains three agents or more. The average cost method meets the
three properties NAR, IR and IMS, as well as the following property:

No Charge for Null Demand
{x =0t={y;=¢;(N,C,x)=0 foradl C,xandali (2.6)

Conversely, the average cost method is the only cost sharing method charging nothing for a
null demand and meeting any one of NAR, IR or IMS.

The interpretation of (2.6) in the case of cost sharing is that no one should have to pay
anything for no output; in the case of output sharing, it is sometime referred to as“No Free
Lunch”: you don't receive any output if you did not participate in the production process by
contributing some money or some labor. All methods discussed in Sections 2.2 to 2.4 satisfy
(2.6). In Section 2.5 we give some arguments against this axiom and offer a method that violates
it.
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The interpretation of the three axioms NAR, IR and IMSis the same as in the case of
rationing: one does not need to monitor the "identity” of the various units of demands (whether a
certain unit comes from an agent with alarge or small demand isirrelevant). Any unit of

demand is treated anonymously and therefore there is no benefit in passing them around.

2.3. Serial cost sharing
The average cost (average returns) method entirely ignores the variation of the returns

between 0 and xy . When those returns vary widely and when individual demands are of very
different size aswell, thisresult in an unpal atable distribution of costs (or output). Consider the
(decreasing returns) cost function

C(z) =(z-10), where, asusuad, (a), = max{a,0} (2.7)

Thefirst 10 units are free, and additional demands cost 1 per unit. Say N ={1,2,3 and
consider the profile of demands x = (35,7). The average cost method gives y =(1,1%4,2%).
Isit fair that agent 1 pays anything, when he could argue that his fair share of the 10 free unitsis
34 and that heis not consuming that much? The point is that agent 1 is charged the high
average cost that he did not cause in the first place: as C(3x;) =0, if no one else asks more than

he does, no one has to pay; hence he should not be held responsible for costs that only arise
because other agents demand more than he does.
Notice that, viewed in the light of output sharing, the argument is less convincing: here

F(z) =(z—-10), isaproduction function requiring afixed cost of 10 before output can be

collected (a particular example of (2.4)). Agent 1's contribution of 3 units of input is useful,
even if applied to pay the fixed cost; other agents should give him some share of the output.
Next we look at the (increasing returns) cost function (a specia case of the discount pricing

example (2.3)):
. z
C(z2) = min{ z, 9+E} (2.8)

with x=(35,7). Average cost yields y = (21, 35, 4.9) so agent 1 ends up paying less than his
Stand Alone cost C(x;) =3. Note that the first 10 units cost 1 apiece, and that the price drops to

.1 for each additional unit. Thistime, agents 2 and 3 protest that they were the ones responsible
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for reaching the low marginal cost, because 3x; <10, so agent 1 should not get any benefit from
that; hisfair share of the cost is 3 because the returns are constant up to the level 3x;.

Notice that the argument is even stronger in the output sharing context. The production

function has a high return of 3 up to 10 units of input, after which the return dropsto %,. Agent

lisentitled to afair share of the “good returns’: as his “demand” falls below thisfair share 10/3,

he should receive 9 units of output, afar cry from what the average returns method offers him.
The above discussion suggests the following upper and lower bounds on cost shares,

depending on the variation of marginal costs/returns. The set Nisfixed and #(N)=n.

Increasing marginal costs bounds (IMC bounds)

if Cisconvex : C(xi)Syi:q)i(C,x)S@foralli,allx (2.9

Decreasing marginal cost bounds (DMC bounds)

if Cisconcave: @S Yi =9;(C,x) < C(x) for al i, all x (2.10)

We let the reader check that each one of the announced bounds is compatible with budget
balance in the corresponding domain of cost functions. For instance a convex cost function such
that C(0) =0 is subadditive hence the left-hand inequality in the IMC bound isfeasible. And so
on.

Consider a convex cost function. The Stand Alone lower bound y, > C(x;) sayssimply that

no agent can benefit from the presence of other users of the technology. Thisiscompelling
when marginal costs increase because the consumption of any user creates a negative externality
on that of any other user. Indeed, most cost sharing methods discussed in Part 2 meet the Stand
Alone lower bound when C is convex, and the Stand Alone upper bound when C is concave
(case where any user creates a positive externality on any other user). Thisistruefor al additive
methods. Corollary 1 to Theorem 2.1.

By contrast, the two remaining inequalitiesin (2.9) (2.10) fail for the average cost method, as
shown by the numerical examples above.

Consider again a convex cost function and the Unanimity Upper Bound y; < C(nx,)/n.

This says that an agent's cost share cannot exceed her share when all agents demand the same
amount as she does (and are treated equally). Given that marginal costs increase, this conveys

theideathat agent i is entitled to afair share of the “good” margina costs, namely those of the
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first nx; units. Think of the scheduling example: we are saying that all agents have an equal
right to the best (i.e., the earliest) dotsin the queue. If x; is much smaller than the other

demands, this bound has alot of bite.

A symmetrical interpretation holds for the Unanimity Lower Bound (y; = C(nx;)/ n) when
C isconcave: in the output sharing context, it saysthat agent i isentitled to afair share of the
good marginal returns; in the cost sharing context, that she should accept her fair share of
responsibility for the “bad” marginal cost. See Moulin [1992] for a general discussion of the
notion of unanimity bounds.

The serial cost sharing formula (Shenker [1995], Moulin and Shenker [1992]) is directly
inspired by the unanimity bounds. Fix C and a profile of demands x. We start by relabeling the
agents by increasing demands: x; < X, <...< X,,. First we split equally the cost of the first nx;
units among all agents. Now agent 1 is served (and pays C(nx;)/ n) and we split equally the

cost of additional units between the remaining agents {2,3,...,n}, until agent 2 is served, and so

on. Formally we define a sequence x,i=1...,n asfollows:

i—1
=1

Note that the sequence X isnondecreas ng. The serial cost shares are now:

1 2y 1 iy _ i—1
Y1:%;YZZY1+%;...;Yi:yi—l"'C(Xn)_iCj_(;_( Lo ew)
or equivalently:
yl:c(xl); 2:c(x2)_ o) . o) _y o) (2.13)
n n-1 n(n-1) n—i+l Z(n-j+H(n-j)

In the cases n=2 and n= 3 the general formulas (2.12), (2.13) are ssmple:

1 1
N=2,%<X% ! Y =§C(2X1) ; Y, =C(x +X,) —EC(2><1)

1 1 1
N=3i%<% <% Y =2C%); Y= 5004 +2%) O3

1 1
Y;= C(XN )= EC(X1 + 2X2) - EC(3X1)

For instance, in the numerical examples discussed above:



(C(2) = (2-10),, x= (3 5,7)} = y = (0, 15, 35)
{C(2) = min{z, 9+%}, x=(35,7)} = y = (3 365, 385)

Recall from the discussion after (2.7), that the serial cost share y, =0 is plausible in the cost
sharing interpretation, less so in a surplus sharing story. Similarly in the case of the cost function
(2.8), the serial cost share y, =3 denies any cost saving to agent 1, despite the fact that his
presence increases the cost savings of the other two agents: thisis clearly an extreme
interpretation of fairnessin this example.

In the examples, the agent with the smallest demand prefers his serial cost shareto his
average cost share in the example with increasing marginal cost and his preferences are reversed
in the example with decreasing marginal cost. The preferences of the agent with the largest
demand are diametrically opposed. Thisisageneral fact.

Kolpin [1998] proposes further interpretations of the serial formulain terms of linear pricing.

We conclude Section 2.3 by generalizing the decentralized bounds (2.9), (2.10) for the serid
cost shares to a cost function with arbitrary returns. That is, we give an upper and a lower bound
on y; = ¢;(C,x) that only depend upon C, x; and n, the number of users. Thisisimportant for
an uninformed agent, who cannot assess the size of other agents demands.

Proposition 2.1. The serial cost sharing method meets the Increasing Marginal Costs bounds
((2.9)) and the Decreasing Marginal Costs bounds ((2.10)). Moreover, for any non decreasing
cost function C (such that C(0) = 0), it satisfies the following Universal Bounds:

ZC(x)< ¥ =1(C.X) < C(n%) (2.14)

It is easy to check that the average cost method fails both universal bounds. Take the cost
function (2.7) and x = (3,5, 7) : the upper bound isviolated for agent 1. Take the cost function
(2.8) and x(3, 20, 27): the lower bound is violated for agent 1.

The universal bounds are deceptively mild: they eliminate many appealing cost sharing
methods. Among the additive methods analyzed in Section 2.4, the universal lower bound is met
by many methods besides serial cost sharing. For instance the Shapley-Shubik cost sharing
method (see Section 2.4) meets this bound, and so does any convex combination of serial and
Shapley-Shubik. On the other hand the universal upper bound essentially characterizes serial
cost sharing: Theorem 2.3 below.
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2.4. Additive cost sharing

In the rationing problem, the requirement that the solution y depends linearly upon the
resourcest is enough to single out the proportional rationing method: Chun [1988]. By contrast,
in the cost sharing problem with homogeneous goods, there is arich family of cost sharing
methods where the solution y = ¢(C, x) depends additively upon the function C. Theorem 2.2
below establishes alinear isomorphism between this family and the set of (resource monotonic)
rationing methods. Thus Additivity leaves alot of maneuvering room to the mechanism
designer.

With a dlight abuse of notation we denote by 2 the set of monotonic rationing methods
(note that all rationing methods discussed in Part 1 are monotonic). An element r of %2 defines

foral xe R," amonotonic (hence continuous) path t — r(t, x) from 0 to x:
oO<r(t,x)<x, ry(t,x)=t foralt,0<t<xg
t<t'=r(,x)<r(',x) foraltt' 0<t'<xg
Thedomain 2 of cost functions consists of all the functions C that can be written as the
difference of two convex functions: this domain contains all the twice continuously differentiable

functions, as well as al the piecewise linear functions. Naturally, we aso require each function C

in 2 to be non decreasing and such that C(0) =0.
We denote by .4 the set of cost sharing methods. an element ¢ of ./ associates asolution

¢(C, ) to every cost sharing problem (C, x) where Ce 9 and xe R." . In addition to Constant
Returns (2.2), we consider the following powerful axiom:
Additivity(ADD)
©(C'+C*x)=p(C"; X)+(C?*x) foral C',C’e 9 dlx (2.15)
This property allows to decompose the computation of cost shares whenever the cost
function itself can be additively decomposed. This commutativity brings a sharp representation
result: the additive cost sharing methods are isomorphic to rationing methods.

We denote by T, the cost function I',(z) = min{z,t} (easier to interpret as a production

function: returns are one until the level t, then drop to zero). Finally we denote by
M (P,Q,...) the subset of cost sharing methods meeting the properties P,Q,...
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Theorem 2.2. (Moulin and Shenker [1994]). Consider the following two mappings, from
Rinto # (CRADD) and from 4 (CRADD) into 2 :

r—e: ¢(C,x) = jOXN C'(t)dr(t,x) for al Ce 2, x (2.16)

o—->r:rtx)=e,,x) foralt,x (2.17)
These two mappings define a linear isomorphism from £ into 4 (CR,ADD) and back.
Corollary to Theorem 2.2. All cost sharing methodsin .# (CR, ADD) meet the following
properties:
)] No charge for null demand: x =0=y, =0
i) Stand Alone lower (upper) bound under increasing (decreasing) marginal costs:
C convex = ys = C(x) fordl C,x, dl Sc N
C concave= y, < C(Xx,) forall C,x,al Sc N
Theorem 2.2 establishes a precise isomorphism between monotonic rationing methods and
additive cost sharing methods. In particular, the key methods on both sides are matched, and
many of the normative requirements in one model have a counterpart in the other one. Below isa
list of rationing methods and cost sharing methods matched by the linear isomorphism.
a) proportional rationing <> average cost sharing
In 2, the proportional method gives to every dollar of claim the same right to the resourcest
; similarly in . , average cost sharing gives to every unit of demand the same responsibility in
total cost (every unit of input is entitled to the same output share).
b) uniform gainsrationing <> serial cost sharing

Fix N and x, and label the agent so that x, < X, <...< X,. Agenti’sshare y, = ug, (t, X) where

tvariesin [0, x, ] is easily computed, with the help of the sequence x' given by (2.11):

ifOSthl:yi:%t

) 1
ifxi<t<x®:y =x+—(t—x*
Yi =X n—l( )

ifxF<t<x) iy =x,+ (t—x7)

n-j+1



t—x*
n—i+1( )

Therefore the cost sharing method associated with uniform gains by (2.16) is precisely given
by (2.12), as claimed.

In 2 the uniform gains method gives an equal claim to all agents on the first units of
resources until their claim is met. Similarly, serial cost sharing makes al individual demands pay
an equal share of the first units produced until their demand is met.

C) priority rationing <> incremental cost sharing

To an ordering o of the agentsin N— amapping from {1,....,n} into N— we associate the

following incremental cost sharing method:
i i—1
Yo = C(%,): Yo, = C(%, +%,) =C (X, )i Yo, =C(Q, %, ) =C(XX%,) (2.18)
j=1 j=1

It corresponds to the priority rationing method prio(c) (seeformula(1.8)).

d) random priority ordering <> Shapley-Shubik cost sharing

The averaging operation is preserved by the linear isomorphism, therefore the Random
Priority rationing method ((1.9)) is associated with the arithmetic average of al incremental cost
sharing methods. This method, originally proposed by Shubik [1962], distributes costs according
to the Shapley value of the Stand Alone cost game:

y= ¥ S S (o) -ce) (2.19
<s<n-1 . %ig\l

In the case of two agents, this gives the cost sharing method corresponding to the contested
garment rationing method:

Y =2{C0x+%) + C(x) - C(x )} where{i, } ~{1.2 220)

The Shapley-Shubik method plays an important role in the model with heterogeneous goods
(Part 3); its characterization there (Corollary 1 to Theorem 3.4) is quite convincing. Contrast this
with the lack of normative argumentsin favor of Random Priority rationing, or in favor of the
Shapley-Shubik method in the current model with one homogeneous good.

The isomorphism in Theorem 2.2 also suggests new cost sharing methods corresponding to
simple rationing methods. For instance Uniform Losses givesriseto a“dual” serial method,



where all users pay an equal share of the last units produced (instead of the first units, in the case
of serial cost sharing) until the smallest demand is satisfied, after which the remaining users

share equally the cost of the next highest units, and so on. In the case of two agents with x, < x,,

this gives the following cost shares:
1 1
V1= E(C(Xl + Xz) _C(Xz - X1))1 Y, = E(C(Xl + Xz) _C(Xz - X1))

The Talmudic rationing method (1.10) leads to a somewhat exotic method, except in the case
of two agents, where it coincides with the Shapley-Shubik method. For n=3 and x, < x, < X,

the method associated with Talmudic rationing gives the following cost shares:

1 1 1.3
%= 5C0% + % +%) = 2Clx, + 3= 2) +2C(TY)

2= 2004+ %+ %) £ COq 1 = 2) =20 4 202 +3) -S4+ X)

1 1 1.3 1
Yy =5C06 4%+ %) +2C0% + X, 1) = S C(TY) =2 C(L+ %) + 2 C(L+ x,)

We conclude this subSection by a characterization of serial cost sharing within the set
M (CR, ADD) . All methods in this set meet the Stand Alone bounds when the cost function is
either convex or concave (Corollary to Theorem 2.2), but they typically fail the Universal
Bounds (2.14). The Shapley-Shubik method meets the lower bound (because in the sum (2.19)
theterm with S=& hasweight 1/n) but fails the upper bound (even for n=2).

The universal upper bound is a key ingredient in the characterization of the serial method; yet
it is not sufficient to single out this method in.# (CR, ADD).

Consider the counterpart of zero-consistency for rationing methods (property (1.6)):

{x=0={¢ (N,C,x)=0and go(N,C,x)[N\i] =¢@(N \i,C,x[N\i])} foral N,C,x, i (2.21)

Within ./ (CR, ADD) this property isisomorphic to the axiom (1.6). It isavery mild
requirement, met by all cost sharing methods discussed in Part 2 (with the exception of some
methods allowing for negative cost shares. see Section 2.5, point a).

In order to pin down the serial method, we strengthen Zero Consistency by allowing the
removal of a non paying agent, provided we make sure to serve his demand (that could be strictly

positive). Given amethod in. , the property is stated as follows:
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{@.(N,C,%) =0} = {0(N,C, %)y = (N \i,C, %)
where C(2) =C(z+ x)} foral N,C,x andi (2.22)
(Notethat C will have ajump at 0if C(x) is positive; but the universal lower bound
guarantees C(x)=0).

Thelast ingredient is the unobjectionable equity requirement called Ranking:

X < X; =Y, <Y, . Notethat the Ranking axiom (1.2) for rationing methods conveys the same

idea (is even written in the same way) but is not equivalent via the linear isomorphism. If the
rationing method r meets Ranking, the corresponding cost sharing method may not do so.
Theorem 2.3. (Moulin and Shenker [1994])
Serial cost sharing is characterized by the combination of the five axioms Constant Returns,
Additivity, Universal Bounds (2.14), Ranking, and property (2.22).

2.5. Variants of the model and further axioms

a) Distributivity (Moulin and Shenker [1999])

The Distributivity axiom expresses the commutativity of the computation of cost shares with

respect to the composition of cost functions:

Distributivity(DIS)
¢(C'oC? x) =¢p(C",p(C? X)) for al C',C*e 9,and all x

The addition of cost (or production) functions corresponds to technol ogies operating in
parallel: agiven demand of output (resp. a contribution of output) yields two types of costs, e.g.,
advertising costs and production costs, (resp. enters two production functions). Their

composition corresponds to technologies running sequentially: x — y, = C*(x) = y, = C'(y,),

theinput of C? isthe output of C* (and asimilar interpretation if C*,C? represent production
functions). Both axioms, Additivity and Distributivity, allow us to decompose the computation
of cost sharesif the cost or production function itself is decomposed.

One consequence of Distributivity (with no counterpart in the case of Additivity) is
reversibility of fairness:

y=¢(C,X) & x=¢(C™,y) foral x,y
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Given apair (X, y) with one profile of outputs and one profile of inputs, we can either take the
profile of demands as given and check that y is the corresponding fair profile of costs shares for
the given cost function, or we can take the vector y as given and check that x isfair for the given
production function. These two tests are equivalent for a distributive method.

Distributive methods include average cost sharing, serial cost sharing, aswell as any
incremental method. Y et the Shapley-Shubik method (2.19) is not distributive, and in fact a
proper convex combination (with fixed coefficients) of distributive methods is never distributive!

Moulin and Shenker [1999] characterize the rich family of additive and distributive methods
(meeting Constant Returns). In thisfamily, average cost sharing is the only self-dual method (a
result related to Proposition 1.6), and serial cost sharing the only method meeting the universal
lower bound (or upperbound) (2.14).

b) Negative cost sharesand the decreasing serial method

In some contexts it makes sense to allow negative cost shares (y, <0) or to charge for anull
demand (x =0andy, >0).

Suppose marginal costs increase (as in the monopsonist example of Section 2.1). Then an
agent who demand little or nothing (who refrains from demanding much) is helping the agents
with alarge demand, so we may want to compensate him by giving him some money (paid for
by other agents). Symmetrically, consider an output sharing problem and suppose marginal
returns decrease. Think of the “tragedy of the commons” story: input is fishing effort and output
isthetotal catch in the common property lake. Then an agent who refrains from adding more
input may argue that she deserves a share of total catch (and end up with x, =0 andy, > 0). Note
that the dual of the two stories above, where we switch from cost sharing to output sharing or
vice versado not ring as plausible. To punish an agent who does not work if the production
function in convex (y, <0 for x. small), or to charge one who does not demand any output if the
cost function is concave, crosses the line of acceptable coercion by the mechanism designer!

The decreasing serial cost sharing method (De Frutos [1998], Suh [1997]) follows exactly the
formulas ((2.11), (2.12), (2.13)) except that individual demands are arranged in decreasing order:

X, =X, >...> X (so that the sequence X is decreasing, too). With two agentsand x, > X,
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1 1
¥1=5C(2%) ¥, = Cx + %) =2 C(2x,)
If Cisstrictly concave, y; ispositive whenever x iszeroand x; ispositive; on the other

hand, no agent receives a negative cost share (thisis clear in the case n= 2 and can be checked
ingeneral on (2.11), (2.12)). If Cisstrictly convex, Y, isnegative whenever x iszeroand x; is
positive.

The decreasing serial cost sharing method fails both universal bounds (2.14) and has not
received an axiomatic characterization at the time of this writing.

Hougarth and Thorlund-Petersen [1998] proposes an interesting mixture of the increasing
and decreasing serial methods, arguing that we should keep the former if C is convex and the

latter if C isconcave. Their method is not additive with respect to cost functions.

¢) Consistency?

The Consistency axiom played akey role for the analysis of rationing methods, but it is
absent from that of cost sharing methods. Using the linear isomorphism between rationing and
cost sharing methods, one would like to characterize the subset of 4 (CR, ADD) associated
with consistent rationing methods. This may even suggest an appropriate definition of
Consistency for general cost sharing methods. A definition of Consistency is offered by Tijs and
Koster [1998]: it suffers from the same drawback as the definition discussed in Remark 3.1
below, namely it does not work in adomain of non decreasing cost functions.

A related and equally natural question isto characterize the subset of .4 (CR, ADD)
associated with the (symmetric) parametric methods (Section 1.5). Both questions are wide open.

1 1
Y =§C(2x1); Y, =C(x + Xz)_EC(ZXJ

If Cisstrictly concave, y; ispositive whenever x iszeroand x; ispositive; on the other

hand, no agent receives a negative cost share (thisis clear in the case n= 2 and can be checked
in general on (2.11), (2.12)). If Cisstrictly convex, Y, isnegative whenever x iszeroand x; is
positive.

The decreasing serial cost sharing method fails both universal bounds (2.14) and has not
received an axiomatic characterization at the time of this writing.



Hougarth and Thorlund-Petersen [1998] proposes an interesting mixture of the increasing
and decreasing serial methods, arguing that we should keep the former if C is convex and the

latter if C isconcave. Their method is not additive with respect to cost functions.

c) Consistency?

The Consistency axiom played a key role for the analysis of rationing methods, but it is
absent from that of cost sharing methods. Using the linear isomorphism between rationing and
cost sharing methods, one would like to characterize the subset of .# (CR, ADD) associated
with consistent rationing methods. This may even suggest an appropriate definition of
Consistency for general cost sharing methods. A definition of Consistency is offered by Tijs and
Koster [1998]: it suffers from the same drawback as the definition discussed in Remark 3.1
below, namely it does not work in a domain of non decreasing cost functions.

A related and equally natural question isto characterize the subset of .4 (CR, ADD) associated

with the (symmetric) parametric methods (Section 1.5). Both questions are wide open.

3. Heter ogeneous outputs or inputs
3.1. Theproblem

In the cost sharing version of the more general model now under scrutiny, each agent i

demands a different good, and the technology specifiesthe total cost C(X;, Xo,...,X,) . Inthe
output sharing version, each agent i contributes the amount x; of an “input i” and total output
F(Xq,...,X,) must be shared among the participants. Thus we identify “good i” and “agent i”.

Examples of such cost sharing problems include sharing the cost of a network connecting
geographically dispersed users (so the heterogeneity of demand comes from the heterogeneity of
space, as in road networks), or of atelecommunication network in which the users need different
service (e.g., different bandwidth, or different degrees of reliability in service, or they use the
network at different times of the day). Another example isthe cost sharing of alarge project
(dam, space station) between various beneficiaries (e.g., power company, farmers, tourism
industry, in the dam example: see Straffin and Heaney [1981]).

Examples of both cost sharing and output sharing are commonplace in the accounting
literature (see Thomas [1977]). The various divisions of the firm contribute heterogeneous
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inputs to acommon project, say the launching of a new product: how should the revenue of the
project be distributed among them? The cost sharing issue arises when the divisions share a
common service, such as the central administration unit.

The main ssimplifying assumption of the current model is that each agent demands exactly
one output good (or contributes exactly one input). On the other hand, the domain of cost (or

production) functionsis very general: C(0) =0 and C nondecreasing in each x;, are the only
restriction we impose when the variables are discrete (Sections 3.2, 3.3); when x; isareal

number, we add some regularity conditions.
The mathematical complexity of the models raises significantly above that in Parts 1 and 2.

Welook first at the case of binary demands (each x; isOor 1) in Sections 3.2, i.e., the classical

theory of values for cooperative games with transferable utility. We consider variable demands

of indivisible goods (each x; isan integer) in Sections 3.3 and 3.4, and finally variable demands

of divisible goodsin Sections 3.5 and 3.6.

In Sections 3.2 to 3.6, we look at additive methods only, aswe did in most of Section 2. We
extend the isomorphism between rationing methods and additive cost sharing methods (Theorem
2.2): in the case of heterogeneous goods, the set of rationing methods is identified with the
extreme points of the set of additive methods meeting the Dummy axiom (Theorems 3.1 and
3.3).

The Shapley-Shubik cost sharing method, and its asymmetric counterparts, the random order
values, emerge forcefully from the axiomatic discussion. Shapley's characterization result in the
context of binary demands (Proposition 3.1) now has company in the variable demand model,
whether demands are integer valued or real valued (see Corollary 2 to Theorem 3.1 and
Corollaries 1 and 3 to Theorem 3.4).

The two other prominent methods are the Aumann-Shapley pricing method, extending
average cost sharing to the context of heterogeneous goods, and the additive extension of serial
cost sharing: they are discussed in Sections 3.3 to 3.6 and characterized in Section 3.6
(Corollaries 2 and 3 to Theorem 3.4).

Up to 1995, the literature on cost sharing with variable demands was unanimously arguing
for the Aumann-Shapley method. Theinitial axiomatic characterization by Billeraand Heath
[1982] and Mirman and Tauman [1982] (see also Billera, Heath and Raanan [1978]) was refined
in several ways (Tauman [1988] isagood survey). One version of thisresult isin Corollary 2 to
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Theorem 3.4. Moulin [19958] spells out a critique of the Aumann-Shapley method based on the
properties of Demand Monotonicity and Ranking. The former says that the cost share of an
agent should not decrease when his demand of output increases, ceteris paribus. The latter says
that, when all goods enter symmetrically in the cost function, the ranking of individual cost
sharesis the same as that of individual demands.

Both properties DM and RKG are compelling when each good is identified with a different
agent. They are less compelling if the demand of good i aggregates many small individual
demands, which is the standard interpretation in the literature on the Aumann-Shapley method.
In this survey we stick to the first interpretation and emphasize the critique of the AS method. In
turn this pushes the Shapley-Shubik and serial methods to the forefront.

Additivity of cost shareswith respect to the cost function, the main assumption throughout
Parts 2 and 3, is a powerful mathematical tool, yet not a compelling normative requirement.
Additivity narrows down the set of cost sharing methods drastically, thus bringing a number of
impossibility statements when we require other properties with more normative appeal: an
example is the combination of Demand Monotonicity and Average Cost for Homogeneous
Goods (see Proposition 3.3 and Corollary 2 to Theorem 3.4). When the impossibility hurts, the
first axiom to go should be Additivity. The literature on nonadditive methodsis reviewed in

Section 3.7: it contains very few papers but its potential for growth is huge.

3.2. Binary demands: the Shapley value
Thisisthe model of the classical cooperative games with transferable utility where the only
restriction is our assumption that the cost function is nondecreasing.

A binary cost sharing problemisatriple (N, C,x) where N isafinite set of agents, Cisa
nondecreasing function from {03 into R, such that C(0)=0, and X =(X;)ien isaprofile of
demands, where each x; =0 or 1.

For convenience, we denote the vector of demands x as a, possibly empty, subset Sof N:

X =1iff i e S. Thusthe cost function C associates to each coalition S Sc N, anumber C(S),

interpreted as the cost of serving all agentsin Sand only them. Our assumptionson C are:
C(@)=0 ; ScT=C(S)<C(T)fordl SSTcN
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A solution to the binary cost sharing problem (N, C,S) isaprofile of cost shares y = (Y, )ien -

where each y; isareal number and:

y;20forali, Yy, =C(S)
ieN

A binary cost sharing method isamapping ¢ associating to any problem (N,C,S) asolution
y=¢(N,C,S).

The idea of sharing costs in proportion to demands reduces in this model to dividing equally
C(S) among all agentsin S (and charging nothing to those outside S). However this method
violates the basic principle of reward, namely that cost shares should reflect responsibilitiesin
generating the costs. A minimal requirement to that effect is that an agent who "obviously" is
not generating any cost should pay nothing. The Dummy axiom conveys just that idea.

We use the notation 9;C(S) = C(S)—C(S\i) for the marginal cost (saving) of subtracting
agent i from coalition S. Of course, 9,C(S)=0ifieS.

Dummy (DUM)
{0;,C(T)=0foral Tc N} ={y, =¢;(N,C,S)=0} foralN,S,iandC (3.1

An agent is called adummy for the cost function C if it costs nothing to serve her, irrespective of
the number of other users being served. The egalitarian method (y; = C(S)/#(S) ifie S, y; =0
otherwise) charges a dummy agent as any other, therefore it violates Dummy.

Additivity (ADD)

o(N,Ct+C?,S) = o(N,C. S)+¢(N,C?S) foralN,Ck,S
Note that Dummy and Additivity together imply a generalization of the Constant Returns
property (2.2). If Cislinear, C(x) = ¢ , the method simply “separates’ costs:
0i(N,C,S)=¢-x wherex; =1ifieS,x, =0ifieS
We denote € (DUM, ADD) the family of cost sharing methods meeting Dummy and

Additivity. These two axioms place no restriction on the method across different populations N
and N’: therefore Proposition 3.1 describes this family in the fixed population context, where N
isfixed and Svaries (note that most of the literature, only looks at the case S= N ). Next we
introduce a mild consistency requirement linking the solutions across variable populations; in

turn, the corresponding methods take a natural structure: Theorem 3.1.
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Given N, an incremental cost sharing method specifies for each nonempty subset Sof N

(including N itself) an ordering o(S) =(07,...,05) Wwheres=#(S) . The cost shares

y=¢°(N,C,S) are computed as follows:
y.=0ifieg S
Youis) = CUOLUS): Yo, (8) = 96,(5C{01(5),0,(S)}) = C({0,(5),0,(9}) -C({0,(S)});... (3.
You(s) = 90,(5C{01(S),...,0,(S)}) foral k=1,...,s
2)
A random order value is a convex combination of incremental methods where the weights of the
combination are independent of C. Denoting by S (S) the set of permutations of S, arandom

order value iswritten as

y=0(N.C,S)= Y Ay ¢’®(N,C,S) forals (3.3
o(S)e #(S)

Note that we can choose an arbitrary set of convex coefficients A, for each coalition S. For

instancein S={1,2,3 we may choose the incremental method with ordering 2, 1, 3and in
S’ ={1,2,4 we may choose that with ordering 1, 2, 4.
Finally we need an equity property to state Shapley's original characterization. If two agents
affect the cost function symmetrically, we require that they receive the same share
Equal Treatment of Equals (ETE)
{C(Tui)=C(Tuj)fordl T suchthati, j¢ T} =
{0,(N,C,9) =¢,;(N,C,S) foral S,Sc N} foral C,i, j
Proposition 3.1. (Fixed population, Weber [ 1988])
The set of random order values coincides with the set € (DUM, ADD) of the cost sharing

methods meeting the Dummy and Additivity axioms.
Corollary to Proposition 3.1. (Shapley [ 1953])
The three axioms Dummy, Additivity and Equal Treatment of Equals characterize a single

method namely the Shapley value; that is, the set € (DUM, ADD,ETE) containsa single
method:
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s-1
goi(N,C,S):Zw Y o C(Tui)foralieS

t=0 : TTcS\i (3.4)
#T)=t

?;j(N,C,S5)=0ifjeS
Incremental methods ((3.2)) and random order values ((3.3)) defined in the fixed population
context, may allocate priorities (or weigh the various priority orderings) inconsistently when S
changes. In order to avoid this unpalatable feature, we must switch to the variable population
context and impose a mild consistency requirement. We denoteby N the maximal set from
which agents can be drawn (afinite or infinite set) and by ¢ apriority ordering of A . On each

finite set S this ordering induces an ordering denoted o(S), and the corresponding formula (3.2)

defines the o -incremental cost sharing method. Similarly, a consistent random order valueis a
convex combination of the ¢ -incremental methods, where ¢ variesover al orderingsof N

and the coefficients are independent of N, Cand S
o(N,C,S)= Y A,0°)(N,C,S) fordlN,C,S (3.5)

ceS(N)

The following axiom corresponds to the zero-consistency property for rationing methods
((1.6)): adummy agent can be removed without affecting the distribution of costs among the rest
of the agents:

Dummy-Consistency (DCY)
{0iC(T)=0foral T = N} ={p(N,C,S)\jj=9(N\i,C,S\i) foral S} foral N,i, and C

(wheretherestriction of Cto N \i isdenoted C aswell).

Proposition 3.2. (Variable population)
The set of consistent random order values coincides with the set ¢ (DUM,DCY, ADD) of

the cost sharing methods meeting Dummy, Dummy-Consistency and Additivity.

Several alternative characterizations of the Shapley value and the random order values have
been proposed in the literature. They replace the Additivity axiom by another powerful
requirement; the two most striking results rely on the property of marginalism and the notion of
potential. We describe these two resultsin the fixed population context.

In arandom order value, the cost share of an agent only depends upon his marginal costs
0,C(T) for the various coalitions containing i. This property, called Marginalism, is defined as:
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{9,CX(T)=9,C?(T) foral T = S} ={p;(N,C.,S)=¢,(N,C?,S)} foral N,CX,Sandi  (3.6)
Loehman and Whinston [1974] and Y oung [1985a] show that the Shapley value is characterized
by Marginalism and Equal Treatment of Equals. Khmelnitskaya[1999] shows that the
combination of Marginalism, Dummy, and an axiom called Monotonicity characterizes the
random order values when N contains three agents or more. The monotonicity requirement is as
follows:
{CHT)=C3(T) fordl Tc N,T = Sand C(S) < C*(S)}
={p;(N,CL,N)< ¢;(N,C? N) forallieS} foral N,C¥, and S
If we add Dummy-Consistency to thislist of requirements, we characterize the family of
consistent random order values.
The second characterization result concerns the Shapley value alone. Consider the following
potential function:
P(N,C)= > WC(S) where n =#(N),s=#(S) (3.7
ScN n!
The Shapley value ((3.4)) can be equivalently written as.
¢i(N,C,S)=0;P(S,C)=P(S,C)- P(S\i,C) (3.8)
Thus agent i's share is simply the i-th derivative of the potential function. As second derivatives
commuite, thisimpliesfor all i, jinN:
d;¢;(N,C,S)=0;¢;(N,C,S) & ¢,(N,C,5 -¢;(N,C,S\ j) =¢;(N,C,S5)-¢;(N,C,S\i) (3
9)
The effect on i's share of removing j isth