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Abstract

In this paper, we consider bootstrapping cointegrating regressions. It is shown
that the method of bootstrap, if properly implemented, generally yields con-
sistent estimators and test statistics for cointegrating regressions. We do not
assume any speci¯c data generating process, and employ the sieve bootstrap
based on the approximated ¯nite-order vector autoregressions for the regression
errors and the ¯rst di®erences of the regressors. In particular, we establish the
bootstrap consistency for OLS method. The bootstrap method can thus be used
to correct for the ¯nite sample bias of the OLS estimator and to approximate the
asymptotic critical values of the OLS-based test statistics in general cointegrat-
ing regressions. The bootstrap OLS procedure, however, is not e±cient. For the
e±cient estimation and hypothesis testing, we consider the procedure proposed
by Saikkonen (1991) and Stock and Watson (1993) relying on the regression aug-
mented with the leads and lags of di®erenced regressors. The bootstrap versions
of their procedures are shown to be consistent, and can be used to do inferences
that are asymptotically valid. A Monte Carlo study is conducted to investigate
the ¯nite sample performances of the proposed bootstrap methods.
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1. Introduction

The bootstrap has become a standard tool for the econometric analysis. Roughly, the pur-
pose of using the bootstrap methodology is twofold: To ¯nd the distributions of statistics
whose asymptotic distributions are unknown or dependent upon nuisance parameters, and
to obtain re¯nements of the asymptotic distributions that are closer to the ¯nite sample
distributions of the statistics. It is well known that the bootstrap statistics have the same
asymptotic distributions as the corresponding sample statistics for a very wide, if not all,
class of models, and therefore, the unknown or nuisance parameter dependent limit distribu-
tions can be approximated by the bootstrap simulations. Moreover, if properly implemented
to pivotal statistics, the bootstrap simulations indeed provide better approximations to the
¯nite sample distributions of the statistics than their asymptotics. See Horowitz (2002) for
an excellent nontechnical survey on the subject.

The purpose of this paper is to develop the bootstrap theory for cointegrating regres-
sions. The bootstrap can be potentially more useful for models with nonstationary time
series than for the standard models with stationary time series, since the statistical theories
for the former are generally nonstandard and depend, often in a very complicated manner,
upon various nuisance parameters. Nevertheless, the bootstrap theories for the former are
much less developed compared to those for the latter. Virtually all of the published works
on the theoretical aspects of the nonstationary bootstrap consider simple unit root models.
See, e.g., Basawa et al. (1991), Chang (2000), Chang and Park (2002b) and Park (2000,
2002). The bootstrap cointegrating regression has been studied only by simulations as in
Li and Maddala (1997). The bootstrap method, however, is used quite frequently and ex-
tensively by empirical researchers to approximate the distributions of the statistics in more
general models with nonstationary time series.

We consider the sieve bootstrap to resample from the cointegrating regressions. The
method does not assume any speci¯c data generating processes, and the data are simply
¯tted by a VAR of order increasing with the sample size. The bootstrap samples are then
constructed using the ¯tted VAR from the resampled innovations. We show in the paper
that under such a scheme the bootstrap becomes consistent for both the usual OLS and the
e±cient OLS by Saikkonen (1991) and Stock and Watson (1993). The sieve bootstrap can
therefore be used to reduce the ¯nite sample bias of the OLS estimator, and also to ¯nd
the asymptotic critical values of the tests based on the OLS estimator. The bootstrapped
OLS estimator, however, is ine±cient just as is the sample OLS estimator. The bootstrap
does not improve the e±ciency. To attain e±ciency, we need to bootstrap the e±cient
OLS estimator. The sieve bootstrap can be naturally implemented to do resampling for
the e±cient estimator, which itself relies on the idea of sieve estimation of the cointegrating
regression. We show in the paper that the sieve bootstrap is generally consistent for the
e±cient OLS method.

Though we focus on the prototype multivariate cointegration model in the paper for
concreteness, the theory we derive here can be used to analyze more general cointegrated
models. The immediate extensions are the cointegrating regressions with more °exible de-
terministic trends including those allowing for structural breaks. Cointegrating regressions
with shifts in the coe±cients can also be analyzed using the methods developed in the paper.
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Moreover, our theory extends further to the cointegrating regressions represented as error
correction models, seemingly unrelated cointegrated models and panels with cointegration
in individual units. The sieve bootstrap proposed here can be applied to all such models
only with some obvious modi¯cations. The estimation of and testing for the cointegration
parameters can therefore be performed or re¯ned by the sieve bootstrap. It is well expected
that the sieve bootstrap is consistent for the aforementioned models if implemented properly
as suggested in the paper, and it can be proved rigorously, if necessary, using the theory
established in the paper.

The rest of the paper is organized as follows. Section 2 introduces the model, assump-
tions and some preliminary results. The multivariate cointegrating regression with a detailed
speci¯cation for data generating process is given, and a strong invariance principle, which
can be used for both the sample and bootstrap asymptotics, is introduced and discussed.
The standard asymptotic results for the cointegrating regressions are then derived. In Sec-
tion 3, the sieve bootstrap procedure is presented, and the relevant bootstrap asymptotics
are developed. The bootstrap consistency is established there. Section 4 summarizes our
simulation study, and Section 5 concludes the paper. All the mathematical proofs are given
in Section 6.

A word on notation. Following the standard convention, we use the superscript \¤" to
signify whatever is related to the bootstrap samples and dependent upon the realization of
the samples. The usual notations for the modes of convergence such as !a:s:, !p and !d are
used without additional references, and the notation =d denotes the equality in distribution.
The stochastic order symbols op and Op are also used frequently. Moreover, we often use
such standard notations with the superscript \¤" to imply their bootstrap counterparts. We
use the notation j ¢ j to denote the Euclidean norm for vectors and matrices, i.e., jxj2 = x0x
and jAj2 = trA0A for a vector x and a matrix A. For matrices, we also use the operator
norm k¢k, i.e., kAk = maxx jAxj=jxj for a vector x and a matrix A which are of conformable
dimensions. For a matrix A, vec(A) denotes a column vector which stacks row vectors of
A.

2. The Model, Assumptions and Preliminary Results

2.1 The Model and Assumptions

We consider the regression model given by

yt = ¦0xt + ut (1)
xt = xt¡1 + vt

for t = 1; 2; : : :, where
wt = (u0t; v

0
t)
0

is an (`+m)-dimensional stationary vector process. Under this speci¯cation, the model
introduced in (1) becomes a multivariate cointegrating regression. For the subsequent de-
velopment of our theory, we let x0 be any random variable which is stochastically bounded,
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and let (wt) be a linear process given by

wt = ª(L)"t (2)

where

ª(z) =
1X

k=0
ªkzk

We make the following assumptions.

Assumption 2.1 We assume
(a) ("t) are iid random variables such that E"t = 0, E "t"0t = § > 0 and Ej"tja < 1 for
some a ¸ 4.
(b) detª(z) 6= 0 for all jzj · 1, and

P1
k=0 jkjbjªkj < 1 for some b ¸ 1 .

The conditions in Assumption 2.1 are not necessary for our results in this section. In
particular, the iid assumption on the innovation ("t) is not required. It is introduced here
just to make our forthcoming bootstrap procedure more meaningful. All the subsequent
theoretical results may be obtained under weaker martingale di®erence assumptions on ("t).
Also, 1-summability of (ªk) is assumed to simplify the proofs, and can be weakened to 1=2-
summability. Yet, a wide class of cointegrated models, including Gaussian error correction
models considered in Johansen (1988, 1991), can be represented as the model speci¯ed in
(1) and (2) with ("t) and (ªk) satisfying the conditions in Assumption 2.1.

2.2 Invariance Principles

For the iid random vectors ("t), we de¯ne

Wn(r) =d n¡1=2
[nr]X

t=1
"t

Then the invariance principle for the iid random vectors ("t) holds, i.e.,

Wn !d W (3)

where W is a vector Brownian motion with variance §. In particular, we have

Lemma 2.2 Let Ej"tja < 1 for some a > 2. Then we may de¯ne on a common proba-
bility space Wn and W such that

P

(
sup

0·r·1
jWn(r) ¡ W (r)j > n¡1=2cn

)
· Knc¡an Ej"tja

for any numerical sequence (cn), cn = n1=a+± for some ± > 0, where K is an absolute
constant depending only on a and `+m.
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Lemma 2.2 follows immediately from the strong approximation result established in Einmahl
(1987). For any given a > 2, we may choose ± such that 0 < ± < 1=2¡1=a to show

sup
0·r·1

jWn(r) ¡ W (r)j = op(1)

and therefore, the invariance principle (3) follows directly from Lemma 2.2. The use of
strong approximation for the proof of the invariance principle (3) is very useful in our
context, since it can also be directly applied to derive the corresponding invariance principle
for the bootstrap samples. This will be shown in the next section.

The invariance principle for ("t) directly carries over to the one for (wt). We have from
the Beveridge-Nelson decompostion that

wt = ª(1)"t + ( ¹wt¡1 ¡ ¹wt)

with ¹wt =
P1
k=0

¹ªk"t¡k and ¹ªk =
P1
i=k+1 ªi, and therefore,

Bn(r) = n¡1=2
[nr]X

t=1
wt

= n¡1=2ª(1)
[nr]X

t=1
"t + n¡1=2( ¹w0 ¡ ¹w[nr])

= ª(1)Wn(r) + Rn(r) (4)

where
sup

0·r·1
jRn(r)j = op(1)

since ( ¹wn) is well-de¯ned and stationary under our 1-summability condition on (ªk). The
reader is referred to Phillips and Solo (1992) for more details. It now follows immediately
from (4) that

Bn !d B (5)

where B is an (`+m)-dimensional vector Brownian motion with variance  = ª(1)§ª(1)0.
We call  the longrun variance of (wt). If we let ¡(k) = Ewtw0

t+k be the autocovariance
function of (wt), then we may de¯ne the longrun variance of (wt) as  =

P1
k=¡1 ¡(k).

Correspondingly, we denote by ¢ the one-way longrun variance of wt, i.e., ¢ =
P1
k=0 ¡(k).

We let B = (B0
1; B0

2)0 and partition  = (ij) and ¢ = (¢ij) into cell matrices for i; j = 1; 2,
conformably with wt = (u0t; vt)0.

2.3 Inference on Parameters

As is well known, the parameter ¦ in the multivariate cointegrating regression (1) can be
consistently estimated by the OLS estimator ¦̂n, whose limiting distribution is given by

n(¦̂n ¡ ¦) !d
µZ 1

0
B2B0

2

¶¡1 µZ 1

0
B2dB0

1 + ¢21

¶
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as n ! 1. Though the OLS estimator ¦̂n is super-consistent, it is asymptotically biased
and ine±cient when (ut) and (vt) are correlated. Moreover, the tests based on the OLS
estimator ¦̂n are generally invalid. For the test of the hypothesis

H0 : ¸(¦) = 0 (6)

where ¸ : R`m ! R· is continuously di®erentiable with ¯rst-order derivative ¤ = @¸=@¼0; ¼ =
vec¦, we may consider the Wald-type statistic

T̂n = ^̧0
n

³
¤̂n(M¡1

n  11)¤̂0n
´¡1 ^̧n (7)

where ^̧n = ¸(¦̂n), ¤̂n = ¤(¦̂n) and Mn =
Pn
t=1 xtx0t. For the practical implementation, of

course, the longrun variance 11 of (ut) must be estimated. The statistic has the limiting
distribution

T̂n !d ¿ 0Q¡1¿ (8)

where ¿ = ¤(M¡1  I`)(
R 1
0 B2  dB1 + ±21) and Q = ¤(M¡1  11)¤0 using the notations

¤ = ¤(¦), ±21 = vec¢21 and M =
R 1
0 B2B0

2. The asymptotic distribution of Tn is thus
nonstandard and dependent upon various nuisance parameters. See, e.g., Park and Phillips
(1988) for the distribution theories for ¦̂n and T̂n.

For the e±cient estimation of ¦, we consider the procedure suggested by Saikkonen
(1991) and Stock and Watson (1993), which is based on the regressions augmented with the
leads and lags of the ¯rst-di®erenced regressors 4xt. Under Assumption 2.1, we may write

ut =
1X

k=¡1
¦0
kvt¡k + ´t (9)

where (´t) is uncorrelated with (vt) = (4xt) at all leads and lags with variance 11¢2 =
11 ¡ 12¡122 21, and

P1
k=¡1 j¦kj < 1. The reader is referred to Saikkonen (1991) and

the references cited therein for the representation in (9).
We are therefore led to consider the regression

yt = ¦0xt +
X

jkj·p
¦0
k4xt¡k + ´pt (10)

where ´pt = ´t+
P
jkj>p¦0

k4xt¡k. Since (¦k) are absolutely summable, we may well expect
that the error (´pt) will become close to (´t) if we let the number p of included leads and
lags of the di®erenced regressors increase appropriately as the sample size n grows. Indeed,
Saikkonen (1991) shows that if we let p ! 1 such that p3=n ! 0 and n1=2 P

jkj>p j¦kj ! 0,
then the regression (10) is asymptotically equivalent to

yt = ¦0xt + ´t (11)

In particular, the OLS estimator ~¦n of ¦ in regression (10), which we call the e±cient OLS
estimator, has the asymptotics given by

n(~¦n ¡ ¦) !d
µZ 1

0
B2B0

2

¶¡1 Z 1

0
B2d(B1 ¡ 12¡122 B2)0 (12)
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which is precisely the same as the asymptotics of the OLS estimator of ¦ from regression
(11).

Note that B1 ¡ 12¡122 B2 has reduced variance 11¢2 = 11 ¡ 12¡122 21 relative to
the variance 11 of B1. The asymptotic variance of ~¦n is therefore smaller than that of ¦̂n.
Moreover, B1 ¡12¡122 B2 is independent of B2, and consequently the limiting distribution
of ~¦n is mixed normal, which is quite a contrast to the nonstandard limit theory of ¦̂n. As
a result, the usual chi-square test is valid if we use a test statistic based on ~¦n. Indeed, for
testing the hypothesis (6), we may use

~Tn = ~̧0
n

³
~¤n(M¡1

nn  11¢2)~¤0n
´¡1 ~̧n (13)

where ~̧n = ¸(~¦n) and ~¤n = ¤(~¦n) are de¯ned similarly as ^̧n and ¤̂n introduced in (7),
and Mnn is the matrix de¯ning the sample covariance of ~¦n, which corresponds to Mn for
¦̂n given also in (7). Then it follows that

~Tn !d Â2
· (14)

As before, 11¢2 should be consistently estimated for practical applications.
In what follows, we reestablish the asymptotics for the augmented regression (10) using

a weaker condition on the expansion rate for p, relative to the one required by Saikkonen
(1991). We assume

Assumption 2.3 Let p ! 1 and p = o(n1=2) as n ! 1.

Our condition on p is substantially weaker than the one used in Saikkonen (1991). Our
upper bound for p is extended to o(n1=2) compared to his o(n1=3). Moreover, we do not
impose any restriction on the minimum rate at which p must grow. Thus we may allow
for the logarithmic rate that is usually imposed for the common order selection rules such
as AIC and BIC. The logarithmic rate, however, is not allowed in Saikkonen (1991) unless
(¦k) decreases at a geometric rate. The rate for p here is therefore valid for more general
stationary process (wt), as can be seen clearly in our proof for the following lemma.

Lemma 2.4 Under Assumptions 2.1 and 2.3, we have (12) and (14) as n ! 1.

The asymptotics established in the above lemma will be used as a basis for the subsequent
development of our bootstrap asymptotics.

3. Bootstrap Procedures and Their Asymptotics

3.1 Bootstrap Procedures

In this section, we introduce the bootstrap procedures for our cointegrating regression model
(1) and develop their asymptotics. For our bootstrap procedures introduced below, we may
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use various consistent estimates for ¦. Therefore, we use the generic notation ¦n to denote
any estimate of ¦ that is n-consistent. More explicitly, we let

¦n = ¦̂n; ~¦n;¦0

where ¦̂n and ~¦n are the OLS estimators of ¦ in regressions (1) and (10), respectively,
and ¦0 denotes the hypothesized or estimated value of ¦ under the restriction given by the
hypothesis (6). Other estimates of ¦, which are asymptotically equivalent to any of these
estimators, can also be used.

The cointegrating regression model (1) with the speci¯cation (2) of its stationary com-
ponent as a linear process can be bootstrapped using the standard sieve method. The
method of sieve bootstrap requires to ¯t the linear process (wt) to a ¯nite order VAR with
the order increasing as the sample size grows. We may rewrite (wt) as a VAR

©(L)wt = "t

with ©(z) = I ¡ P1
k=1 ©kzk, since ª(L) in (2) is invertible, and therefore it is reasonable

to approximate (wt) as a ¯nite order VAR

wt = ©1wt¡1 + ¢ ¢ ¢ + ©qwt¡q + "qt (15)

with "qt = "t +
P
jkj>q ©kwt¡k. The order q of the approximated VAR is set to increase at

a controlled rate of n, as we will specify below. In practice, it can be chosen by one of the
commonly used order selection rules such as AIC and BIC.

Assumption 3.1 Let q ! 1 and q = o(n1=2) as n ! 1.

The required condition on the expansion rate for q in Assumption 3.1 is identical to that
for p given in Assumption 2.3.

Outlined below are the necessary steps for obtaining the bootstrap samples (x¤t ) and
(y¤t ) for (xt) and (yt), respectively.

Step 1: Fit regression (1) to obtain (ût), i.e.,

yt = ¦0
nxt + ût

and de¯ne ŵt = (û0t; v0t)0, where vt = 4xt. As mentioned above, we may use
various estimates ¦n of ¦ here.

Step 2: Apply the sieve estimation method to the VAR (15) of (ŵt) to get the
¯tted values ("̂qt) of ("qt), i.e.,

ŵt = ©̂1ŵt¡1 + ¢ ¢ ¢ + ©̂qŵt¡q + "̂qt (16)

Obtain ("¤t ) by resampling the centered ¯tted residuals
Ã

"̂qt ¡
1
n

nX

t=1
"̂qt

!n

t=1
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and construct the bootstrap samples (w¤
t ) recursively using

w¤
t = ©̂1w¤

t¡1 + ¢ ¢ ¢ + ©̂qw¤
t¡q + "¤t

given the initial values w¤
t = wt for t = 0; : : : ; 1 ¡ q. This step amounts to the

usual sieve bootstrap for (ŵt).

Step 3: De¯ne w¤
t = (u¤0t ; v¤0t )0 analogously as wt = (u0t; v0t)0. Obtain the boot-

strap samples (x¤t ) by integrating (v¤t ), i.e., x¤t = x¤0 +
Pt
k=1 v¤t , with x¤0 = x0

and generate the bootstrap samples (y¤t ) from

y¤t = ¦0
nx

¤
t + u¤t

The estimate ¦n of ¦ here need not be the same as the one used in Step 1.

The bootstrap samples (x¤t ) and (y¤t ) can be used to simulate the distributions of various
statistics as explained below.

Discussions on some practical issues arising from the implementation of our bootstrap
method are in order. First, the choice of an estimator ¦n for ¦ should be made in Steps
1 and 3. The choice in Step 3 is not important, as long as we regard the chosen estimate
as the true parameter for the bootstrap samples. The choice of ¦n for ¦ we use in Step 1,
however, is very important, as it would a®ect the subsequent bootstrap procedure in Steps
2 and 3. In particular, the order selection rule applied to determine the model in Step 2 can
be very sensitive to the choice of ¦n made in Step 1. Naturally, we recommend to use the
best possible estimate, i.e., the most e±cient estimate available incorporating all restrictions
for the hypothesis testing. This is what is observed by Chang and Park (2002b) for the
bootstrap unit root tests. Li and Maddala (1997) also ¯nd that using the true value in Step
1 yields the best result for the bootstrap hypotheses tests. Second, the initializations for
the generations of (w¤

t ) and (x¤t ) are necessary respectively in Steps 2 and 3. The choices
w¤
t = wt for t = 0; : : : ; 1¡ q and x¤0 = x0 make the results conditional on these initial values

of the samples. To reduce or eliminate such dependencies, we may generate su±ciently large
number of (w¤

t ) and retain only last n drawings, or include a constant so that the estimate
¦n of ¦ is independent of the initial value of (x¤t ).

We consider the bootstrap version of regression (1) given as

y¤t = ¦0
nx

¤
t + u¤t (17)

which yields the bootstrap estimator for the usual OLS, viz.,

¦̂¤
n =

Ã nX

t=1
x¤tx

¤0
t

!¡1 Ã nX

t=1
x¤ty

¤0
t

!

We also look at the bootstrap version of regression (10), which we write as

y¤t = ¦0
nx

¤
t +

X

jkj·p
¦¤0
k4x¤t¡k + ´¤pt (18)
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where
´¤pt =

X

jkj>p
¦¤0
k v¤t¡k + ´¤t

The e±cient bootstrap OLS estimator, i.e., the OLS estimator from regression (18), is given
by

~¦¤
n =

0
@
nX

t=1
x¤tx

¤0
t ¡

Ã nX

t=1
x¤t v

¤0
pt

! Ã nX

t=1
v¤ptv

¤0
pt

!¡1Ã nX

t=1
v¤ptx

¤0
t

!1
A
¡1

¢
0
@
nX

t=1
x¤t y

¤0
t ¡

Ã nX

t=1
x¤tv

¤0
pt

! Ã nX

t=1
v¤ptv

¤0
pt

!¡1Ã nX

t=1
v¤pty

¤0
t

!1
A

where
v¤pt = (4x¤0t+p; : : : ; 4x¤0t¡p)

0

In both regressions (17) and (18), we denote by ¦n the estimate of ¦ used to generate the
bootstrap samples (y¤t ) from (x¤t ) and (u¤t ). Note that in regression (18) the coe±cients of
the leads and lags of the di®erenced regressors depend on the realized samples, which we
signify by attaching the superscript \¤" to the coe±cients ¦k's. The test statistics

T̂ ¤n = ^̧¤0
n

³
¤̂¤n(M

¤¡1
n  ̂11)¤̂¤0n

´¡1 ^̧¤
n

~T ¤n = ~̧¤0
n

³
~¤¤n(M

¤¡1
nn  ̂11¢2)~¤¤0n

´¡1 ~̧¤
n

which are constructed from the bootstrap OLS and e±cient estimators, ¦̂¤
n and ~¦¤

n, analo-
gously as as their sample counterparts T̂n and ~Tn de¯ned in (7) and (13). For the de¯nitions
of the bootstrap statistics T̂ ¤n and ~T ¤n , we may use the longrun variance estimate obtained
from each bootstrap sample, say ¤11 and ¤11¢2, in the places of the sample estimates ̂11
and ̂11¢2. This would not a®ect any of our subsequent results, since we only consider the
¯rst order asymptotics.

3.2 Bootstrap Asymptotics

The asymptotic theories of the estimators ¦̂¤
n and ~¦¤

n can be developed similarly as those
for ¦̂n and ~¦n. To develop their asymptotics, we ¯rst establish the bootstrap invariance
principle for ("¤t ). We have

Lemma 3.2 Under Assumptions 2.1 and 3.1,

E¤j"¤t ja = Op(1)

as n ! 1.

Roughly, Lemma 3.2 allows us to regard the bootstrap samples ("¤t ) as iid random variables
with ¯nite a-th moment, given a sample realization. Following the usual convention, we
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use the notation P¤ to denote the bootstrap probability conditional on the samples. The
notation E¤ signi¯es the expectation taken with respect to P¤, for each realization of the
samples.

To develop the bootstrap asymptotics, it is convenient to introduce the bootstrap
stochastic order symbols o¤p and O¤

p, which correspond respectively to op and Op. Let
² > 0 be given arbirarily, and M > 0 be chosen accordingly. For a bootstrap statistic T ¤n ,
we de¯ne

T ¤n = o¤p(1) if and only if PfP¤fjS¤nj < ²g > ²g < ²

for all large n, and

T ¤n = O¤
p(1) if and only if PfP¤fjS¤nj > Mg > ²g < ²

for all large n. They all satisfy the usual rules applicable for op and Op. See Chang and
Park (2002b) for more details. In particular, whenever T ¤n !d¤ T in P, we have T ¤n = O¤

p(1)
and T ¤n +o¤p(1) !d¤ T in P. Note also that E¤jT ¤n j = op(1) and Op(1) imply T ¤n = o¤p(1) and
O¤
p(1), respectively.

De¯ne

W ¤
n(r) =d¤ n¡1=2

nX

t=1
"¤t

analogously as Wn introduced earlier in Section 2, and let W be a vector Brownian motion
with variance §. It follows from the strong approximation result in Lemma 2.2 applied to
the bootstrap samples ("¤t ) that we may choose W ¤

n satisfying

P¤
(

sup
0·r·1

jW ¤
n(r) ¡ W (r)j > n¡1=2cn

)
· Knc¡an E¤j"¤t ja

for (cn) and K given exactly as in Lemma 2.2. Note in particular that K does not depend
on the realization of the samples. However, due to the result in Lemma 3.2, we have

sup
0·r·1

jW ¤
n ¡ W j = o¤p(1)

as long as a > 2, and consequently

W ¤
n !d¤ W in P

An `in probability' version of the bootstrap invariance principle is therefore established for
the bootstrap samples ("¤t ).

The corresponding invariance principle for (w¤
t ) can also be derived easily. We let

©̂(1) = 1 ¡
qX

k=1
©̂k

and
ª̂(1) = ©̂(1)¡1
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Then we may deduce after some algebra that

w¤
t = ª̂(1)"¤t + ª̂(1)

qX

i=1

0
@
qX

j=i
©̂j

1
A (w¤

t¡i ¡ w¤
t¡i+1)

= ª̂(1)"¤t + ( ¹w¤
t¡1 ¡ ¹w¤

t )

where ¹w¤
t = ª̂(1)

Pq
i=1(

Pq
j=i ©̂j)w

¤
t¡i+1. We therefore have

B¤
n(r) = n¡1=2

[nr]X

t=1
w¤
t

= n¡1=2ª̂(1)
[nr]X

t=1
"¤t + n¡1=2( ¹w¤

0 ¡ ¹w¤
[nr])

= ª̂(1)W ¤
n(r) + R¤

n(r)

It is thus well expected that the invariance principle holds for (w¤
t ) if ª̂(1) !p ª(1) and

sup0·r·1 jR¤
n(r)j = o¤p(1). Let B be the vector Brownian motion introduced in (5). Then

we may indeed show that

Theorem 3.3 Under Assumptions 2.1 and 3.1, we have

B¤
n !d¤ B in P

as n ! 1.

Let

z¤t = z¤0 +
tX

i=1
w¤
i

Then we have

Lemma 3.4 Under Assumptions 2.1 and 3.1, we have

1
n2

nX

t=1
z¤t z

¤0
t !d¤

Z 1

0
BB0 in P

1
n

nX

t=1
z¤t¡1w

¤0
t !d¤

Z 1

0
BdB0 + ¢ in P

as n ! 1.

The limit distributions of the bootstrap OLS estimator and the associated statistic can
now be obtained easily from Lemma 3.4, and are given in the following theorem. Let ¿ and
Q be de¯ned as in (8).
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Theorem 3.5 Under Assumptions 2.1 and 3.1, we have

n(¦̂¤
n ¡ ¦n) !d¤

µZ 1

0
B2B0

2

¶¡1 µZ 1

0
B2dB0

1 + ¢21

¶
in P

and
T̂ ¤n !d¤ ¿ 0Q¡1¿ in P

as n ! 1.

The bootstrap is therefore consistent for the OLS regression. The bootstrap estimator
¦̂¤
n has the same limiting distribution as ¦̂n. Therefore, in particular, the bootstrap can be

used to remove the asymptotic bias in ¦̂n, since the bootstrap distribution has the same
asymptotic bias as the sample distribution. The bias corrected OLS estimator de¯ned by

¦̂cn = ¦̂n ¡ E¤(¦̂¤
n ¡ ¦n)

does not have asymptotic bias, and is thus expected to have smaller bias in ¯nite samples as
well. Hypothesis testing can also be done using the OLS estimator, if the critical values are
obtained from the bootstrap distribution. For example, consider the test of the hypothesis
(6). If we let c¤(®) be the bootstrap critical value given by

P¤
n
T̂ ¤n · ĉ¤(®)

o
= ®

for a prescribed size ®, then we have

P
n
T̂n · ĉ¤(®)

o
! ®

as n ! 1. Therefore, the bootstrap test has the asymptotically correct size.
We now consider the asymptotics for the bootstrap e±cient estimator ~¦¤

n obtained from
(18). Denote by f¤(¸) and ¡¤(k), respectively, the spectral density and autocovariance
function of (w¤

t ). For all bootstrap samples yielding spectral density bounded away from
zero and absolutely summable autocovariance function, we would have the representation

u¤t =
1X

k=¡1
¦¤ 0
k v¤t¡k + ´¤t (19)

where
P1
k=¡1 j¦¤

kj < 1 and (´¤t ) are uncorrelated with (v¤t ) at all leads and lags.
As shown in Lemma A3 in Appendix, we have

sup
¸

kf¤(¸) ¡ f(¸)k = o¤p(1)

and 1X

k=¡1
¡¤(k) =

1X

k=¡1
¡(k) + o¤p(1)

It therefore follows that
P¤ ff¤(¸) > ²g !p 1
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for some ² > 0 and

P¤

8
<
:

1X

k=¡1
j¡¤(k)j < 1

9
=
; !p 1

since f(¸) is bounded away from zero and ¡(k) is absolutely summable. We may therefore
deduce that the probability of realization of samples which allow for the representation (19)
approaches to one as the sample size increases. The bootstrapped augmented regression
(18) is therefore well justi¯ed.

Similarly as for the asymptotic equivalence between the sample regressions (10) and
(11), we have the bootstrap asymptotic equivalence between the regression (18) and

y¤t = ¦0
nx

¤
t + ´¤t (20)

for the inference on ¦n. We de¯ne

N¤
n =

1
n

nX

t=1
x¤t´

¤0
t ; M¤

n =
1
n2

nX

t=1
x¤tx

¤0
t

and

N¤
nn =

1
n

nX

t=1
x¤t ´

¤0
pt ¡

Ã
1
n

nX

t=1
x¤tv

¤0
pt

! Ã
1
n

nX

t=1
v¤ptv

¤0
pt

!¡1Ã
1
n

nX

t=1
v¤pt´

¤0
pt

!

= N¤
n + P ¤

n

M¤
nn =

1
n2

nX

t=1
x¤tx

¤0
t ¡ 1

n

Ã
1
n

nX

t=1
x¤tv

¤0
pt

! Ã
1
n

nX

t=1
v¤ptv

¤0
pt

!¡1Ã
1
n

nX

t=1
v¤ptx

¤0
t

!

= M¤
n + Q¤

n

Then we have

Lemma 3.6 Under Assumptions 2.1, 2.3 and 3.1, we have

P ¤
n ; Q¤

n = o¤p(1)

as n ! 1.

Therefore, the bootstrap asymptotics for the regressions (18) and (20) are the same.
Consequently it follows that

Theorem 3.7 Under Assumptions 2.1, 2.3 and 3.1, we have

n(~¦¤
n ¡ ¦n) !d¤

µZ 1

0
B2B0

2

¶¡1 Z 1

0
B2d(B1 ¡ 12¡122 B2)0 in P

and
~T ¤n !d¤ Â2

· in P
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as n ! 1.

The limit distribution of the bootstrap e±cient estimator ~¦¤
n is equivalent to that of its

sample counterpart ~¦n, just as in the case for the OLS estimator. The associated statistics
~T ¤n and ~Tn also have the identical asymptotic distribution. The bootstrap consistency of the
test statistic for cointegrating regression (1) therefore extends to the dynamic cointegrating
regression (10) augmented with the leads and lags of the di®erenced regressors.

We may also consider the bias corrected estimator

~¦cn = ~¦n ¡ E¤(~¦¤
n ¡ ¦n)

for the e±cient estimator ~¦n. Though it has no asymptotic bias, the correction may still
reduce the bias in ¯nite samples. Moreover, the bootstrap critical value for the test ~Tn can
be found

P¤
n

~T ¤n · ~c¤(®)
o

= ®

for the size ® test. The bootstrap test based on b¤(®) would then have the correct asymptotic
size, since

P
n

~Tn · ~c¤(®)
o

! ®

as n ! 1. Note that ~Tn is asymptotically pivotal, unlike T̂n whose limiting distribution
depends on various nuisance parameters. Therefore, the bootstrap test based on ~Tn may
provide an asymptotic re¯nement. In this case, the bootstrap test utilizing the bootstrap
critical values ~c¤(®) would yield rejection rates closer to the nominal values, compared to
the test relying on the asymptotic chi-square critical values.

4. Simulations

In this section, we conduct a set of simulations to investigate ¯nite sample performances of
the bootstrap procedures in the context of cointegrating regressions. Our simulations are
based on the simple bivariate cointegrating regression model

yt = ¼xt + ut
xt = xt¡1 + vt

where the regression error (ut) and the innovation (vt) for the regressor (xt) are generated
as stationary AR(1) processes given by

ut = '1vt¡1 + "1t
vt = '2vt¡1 + "2t

The innovations ("t), "t = ("1t; "2t)0, are drawn from bivariate normal distribution with
covariance matrix

§ =
µ

1 ½
½ 1

¶
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Our simulation setup is entirely analogous to that of Stock and Watson (1993). In our
simulations, we set '1 = 0:6, '2 = 0:3, ½ = 0:5, and ¼ = 0; 0:1.

We consider two least squares regressions

yt = ¼̂nxt + ût (21)
yt = ~¼nxt + ~¼1n4xt + ~¼2n4xt¡1 + ~́t (22)

and compare the ¯nite sample performances of the estimators ¼̂n and ~¼n and the test
statistics T̂n and ~Tn based respectively on ¼̂n and ~¼n. Note that our simulation setup
introduces nonzero asymptotic correlation between the regressor and the regression error in
regression (21), causing the asymptotic bias of ¼̂n and the invalidity of T̂n. The problems
are however expected to vanish, at least asymptotically, in regression (22). As explained
earlier, ~¼n has no asymptotic bias, and the test using ~Tn is asymptotically valid. For our
simulation setup, we have in regression (22)

¼1 = ½; ¼2 = '1 ¡ ½'2

and
´t = "1t ¡ ½"2t

Notice that (´t) de¯ned as above are uncorrelated with ("2t) at all leads and lags, and
therefore are orthogonal also to (vt) at all leads and lags, which is required for the validity
of the model (22) as an e±cient cointegrating regression introduced in (10).

To examine the e®ectiveness of the bootstrap bias correction, the ¯nite sample perfor-
mances of ¼̂n and ~¼n are compared to those of the bias corrected estimators ¼̂cn and ~¼cn,
in terms of bias, variance and mean square error (MSE). For the sake of comparisons, the
scaled biases, variances and MSE's for the estimators ¼̂n, ~¼n, ¼̂cn and ~¼cn are computed.
For the test statistics, we compute the rejection probabilities under both the null and the
alternative hypotheses, for which we set the value of ¼ respectively at 0 and 0:1. Rejec-
tion probabilities are obtained using the critical values from Â2

1 distribution for the sample
test statistics, T̂n and ~Tn, and from the bootstrap distribution for the bootstrap tests, T̂ ¤n
and ~T ¤n . The simulation results are presented in Tables 1, 2 and 3, respectively for the
models with no deterministic components, with drift and with a linear trend. We use the
superscripts \¹" and \¿" to signify that the associated estimators/tests are computed from
the models with drift and with a linear trend. Samples of sizes n = 25; 50; 100 and 200
are considered. For each case, 5000 samples are simulated, and for each of the simulated
samples, 1000 bootstrap repetitions are carried out to compute bootstrap estimators and
test statistics.

The simulation results are largely consistent with the theory derived in the paper. The
bias of ¼̂n is quite noticeable and does not vanish as the sample size increases. It turns out,
however, that the bootstrap is quite e®ective in reducing the bias of ¼̂n. The bootstrap
reduces the bias of ¼̂n substantially in all cases that we consider in our simulations, and the
bias reduction becomes more e®ective as the sample size increases. In some of the reported
cases, the bias corrected estimate has bias as small as approximately 2% of that of ¼̂n. On
the other hand, the bootstrap bias correction has little impact on the sampling variation.
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The sample variances of ¼̂cn are roughly comparable to, or even slightly larger than, those
of ¼̂n. The bootstrap also reduces the bias in ~¼n, albeit the magnitudes of improvements
are not comparable to those for ¼̂n. Clearly, ~¼n is asymptotically unbiased, and thus there
is not as much room for improvement in ~¼n as in ¼̂n. The bootstrap does not reduce the
sampling variations for ~¼n, just as for ¼̂n, and ~¼cn has no smaller sample variances. For both
estimators, the bootstrap bias corrections become relatively more important for models with
a mean or a linear trend.

It appears that the bootstrap generates quite precise critical values for both tests T̂n
and ~Tn, even when the sample sizes are small. In particular, the performance of T̂ ¤n is quite
satisfactory. The test T̂n is invalid, and naturally, yields the rejection probabilities under
the null that are very distinct from its nominal test sizes. However, its bootstrap version T̂ ¤n
has quite accurate null rejection probabilities even for small samples. As expected, the test
~Tn based on the e±cient estimator ~¼n performs much better than its OLS counterpart T̂n in
terms of the rejection probabilities under the null. Its bootstrap version ~T ¤n also improves the
¯nite sample performances of ~Tn. While the null rejection probabilities of both bootstrap
tests T̂ ¤n and ~T ¤n approach to the nominal values as the size of samples increase, the bootstrap
e±cient test ~T ¤n does better in small samples than its OLS counterpart T̂ ¤n . This is more
so for models with a mean or a linear trend. Due to the presence of non-uniform size
distortions, the ¯nite sample power comparisons between T̂n and ~Tn and their bootstrap
counterparts T̂ ¤n and ~T ¤n are not clear. It just seems that they are all roughly comparable.

5. Conclusion

In this paper we consider the bootstrap for cointegrating regressions. We introduce the
sieve bootstrap based on a VAR of order increasing with the sample size, and establish its
consistency and asymptotic validity for two procedures: the usual OLS and the e±cient
OLS relying on the regressions augmented with the leads and lags of the di®erenced re-
gressors. For the usual OLS, the bootstrap can thus be employed to correct for biases in
the estimated parameters, and to compute the critical values of the tests. With the boot-
strap bias correction, the OLS estimator becomes asymptotically unbiased. Moreover, the
OLS-based tests become asymptotically valid, if the bootstrap critical values are used. The
bootstrap OLS method, however, is not e±cient. For the e±cient inference, we should base
our bootstrap procedure on the e±cient OLS method. The sieve bootstrap proposed in the
paper appears to improve upon the e±cient OLS method in ¯nite samples. It generally
reduces the ¯nite sample biases for the estimators and yields sizes that are closer to the
nominal sizes of the tests.

The theory and method developed in the paper can be used to analyze more general
cointegrated models. The models with deterministic trends and/or structural breaks can
be analyzed similarly. The error correction models, seemingly unrelated and panel cointe-
gration models are other examples, to which our theory and method are readily applicable.
Indeed, the required modi¯cations of the theory and method for such extensions are mini-
mal, and can be applied only with some obvious adjustments. The theory discussed in the
paper is concerned only with the consistency of the bootstrap. For the pivotal statistics,
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however, it might well be the case that the bootstrap provides the asymptotic re¯nements
as well. Our simulation study in the paper is in fact somewhat indicative of this possibility.
Moreover, it appears that the theoretical illustration for the asymptotic re¯nement is pos-
sible using the techniques developed in Park (2000) to establish the bootstrap re¯nement
for the unit root tests.

6. Mathematical Proofs

6.1 Useful Lemmas and Their Proofs

We consider the regression

wt = ~©1wt¡1 + ¢ ¢ ¢ + ~©qwt¡q + ~"qt (23)

which is the ¯tted version of regression (15). Since ¦n is consistent, it is well expected
that the ¯tted regression (23) with (wt) should be asymptotically equivalent to the ¯tted
regression (16) with (ŵt) introduced in Step 1 of our bootstrap procedure.

Lemma A1 Under Assumptions 2.1 and 3.1, we have as n ! 1

©̂k = ~©k + Op(n¡1=2)

uniformly in 1 · k · q. Moreover,

max
1·t·n

j"̂qt ¡ ~"qtj = Op(n¡1=2)

as n ! 1.

Proof of Lemma A1 It follows immediately from the de¯nition of (ŵt) that

max
0·i;j·q

¯̄
¯̄
¯
1
n

nX

t=1
ŵt¡iŵ0

t¡j ¡
1
n

nX

t=1
wt¡iw0

t¡j

¯̄
¯̄
¯ ·

µ
max
1·t·n

jŵt ¡ wtj
¶ Ã

1
n

nX

t=1
jŵtj +

1
n

nX

t=1
jwtj

!

However, we have
max
1·t·n

jŵt ¡ wtj = Op(n¡1=2)

because

jŵt ¡ wtj =

¯̄
¯̄
¯

Ã
yt ¡ ¦0

nxt
vt

!
¡ wt

¯̄
¯̄
¯ =

¯̄
¯̄
¯

Ã
(¦ ¡ ¦n)0xt

0

!¯̄
¯̄
¯ · j¦ ¡ ¦nj jxtj

and
j¦n ¡ ¦j = Op(n¡1); max

1·t·n
jxtj = Op(n1=2)

Since
1
n

nX

t=1
jwtj;

1
n

nX

t=1
jŵtj = Op(1)
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we have

max
0·i;j·q

¯̄
¯̄
¯
1
n

nX

t=1
ŵt¡iŵ0

t¡j ¡ 1
n

nX

t=1
wt¡iw0

t¡j

¯̄
¯̄
¯ = Op(n1=2)

The rest of the proof is rather straightforward, and we omit the details.

Let
w·t = (w0

t¡1; : : : ; w
0
t¡·)

0

and de¯ne
M·· = Ew·tw0

·t

Moreover, denote by f the spectral density of (wt). Then we have

Lemma A2 Under Assumption 2.1, we have
°°°M¡1
··

°°° · 1
2¼

µ
inf
¸

kf(¸)k
¶¡1

for all · ¸ 1.

Proof of Lemma A2 Let c· 2 R· be an eigenvector associated with the smallest eigen-
value ¸min of M··. De¯ne

'·(¸) = (ei¸; : : : ; ei·¸)0

and use \¹" to denote its cojugate. It follows that

¸min = c0·M··c·

=
Z ¼

¡¼
c0·

¡
'·(¸)¹'·(¸)0  f(¸)

¢
c· d¸

¸
Z ¼

¡¼

µ
inf
¸

°°'·(¸)¹'·(¸)0  f(¸)
°°
¶

d¸

=
µ
inf
¸

kf(¸)k
¶ Z ¼

¡¼
k'·(¸)¹'·(¸)0kd¸

= 2¼
µ
inf
¸

kf(¸)k
¶

However, we have °°°M¡1
··

°°° = ¸¡1min

from which the stated result can be deduced immediately.

Lemma A3 Under Assumptions 2.1 and 3.1, we have

sup
¸

jf¤(¸) ¡ f(¸)j = o¤p(1)

and 1X

k=¡1
¡¤(k) =

1X

k=¡1
¡(k) + o¤p(1)

as n ! 1.
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Proof of Lemma A3 Given Lemma A1, the stated results are just straightforward ex-
tensions of Lemma A2 in Chang and Park (2002b). Here we only obtain `in probability'
versions, instead of `almost sure' versions, since the results in Lemma A1 hold only in
probability.

Lemmma A4 Under Assumptions 2.1 and 3.1, we have

E¤
¯̄
¯̄
¯
nX

t=1
(w¤
t¡iw

¤0
t¡j ¡ ¡¤(i ¡ j))

¯̄
¯̄
¯

2

= Op(n)

uniformly in i and j, as n ! 1.

Proof of Lemma A4 Once again, the stated result follows exactly as in Lemma A4 in
Chang and Park (2002b), due to Lemma A1, under some obvious modi¯cations to deal with
multiple time series.

Lemmma A5 Under Assumptions 2.1, 2.3 and 3.1, we have

E¤

°°°°°°

Ã
1
n

nX

t=1
v¤ptv

¤0
pt

!¡1°°°°°°
= Op(1)

E¤
¯̄
¯̄
¯
nX

t=1
x¤t v

¤0
pt

¯̄
¯̄
¯ = Op(np1=2)

as n ! 1.

Proof of Lemma A5 The proof is essentially identical to that of Lemma 3.3 in Chang
and Park (2002b).

Lemma A6 Under Assumptions 2.1, 2.3 and 3.1, we have
¯̄
¯̄
¯
nX

t=1
v¤pt´

¤0
pt

¯̄
¯̄
¯ = O¤

p(n
1=2p1=2)

and
nX

t=1
x¤t (´

¤
t ¡ ´¤pt)

0 = o¤p(n)

as n ! 1.

Proof of Lemma A6 De¯ne (ª̂pk) such that

´¤pt ¡ ´¤t =
X

jkj>p
¦̂0
kv
¤
t¡k =

X

jkj>p
ª̂pk"¤t¡k
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Note that
X

jkj>p
jª̂pkj ·

Ã 1X

k=1
jª̂kj

! 0
@ X

jkj>p
j¦̂kj

1
A

as one may easily deduce.
To show the ¯rst part, we write for 1 · i · p

nX

t=1
v¤t¡i´

¤0
pt =

nX

t=1
v¤t¡i´

¤0
t +

nX

t=1
v¤t¡i(´

¤
pt ¡ ´¤t )

0

It is easy to see

E¤
¯̄
¯̄
¯
nX

t=1
v¤t¡i´

¤0
t

¯̄
¯̄
¯

2

= Op(n)

uniformly in 1 · i · p. Therefore, it su±ces to show that

nX

t=1
v¤t¡i(´

¤
pt ¡ ´¤t )

0 = o¤p(n
1=2) (24)

uniformly in 1 · i · p. However, we have as in the proof of Lemma 3.1 in Chang and Park
(2002a)

nX

t=1
w¤
t¡i

0
@ X

jjj>p
ª̂pj"¤t¡j

1
A
0

=

0
@ X

jkj>p
jª̂k¡1jjª̂pkj

1
AO¤

p(n) +

0
@

1X

i=0

X

jjj>p
jª̂ijjª̂pj j

1
AO¤

p(n
1=2)

=

0
@ X

jkj>p
jª̂pkj

1
AO¤

p(n
1=2)

=

0
@ X

jkj>p
j¦̂kj

1
AO¤

p(n
1=2)

uniformly in 1 · i · p, and (24) follows immediately.
To prove the second part, we de¯ne

xi¤t =
tX

i=1
"¤i (25)

so that
z¤t = ª̂(1)»¤t + ( ¹w¤

0 ¡ ¹w¤
t )

It follows that
nX

t=1
z¤t (´

¤
pt ¡ ´¤t )

0 = ª̂(1)
nX

t=1
»¤t (´

¤
pt ¡ ´¤t )

0 + ¹w¤
0

nX

t=1
(´¤pt ¡ ´¤t )

0 ¡
nX

t=1
¹w¤
t (´

¤
pt ¡ ´¤t )

0 (26)
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We have
nX

t=1
(´¤pt ¡ ´¤t ) =

X

jkj>p
ª̂pk

nX

t=1
"¤t¡k

=

0
@ X

jkj>p
jª̂pkj

1
AO¤

p(n
1=2)

=

0
@ X

jkj>p
j¦̂kj

1
AO¤

p(n
1=2) (27)

We also have similarly as in the proof of the ¯rst part

nX

t=1
¹w¤
t (´

¤
pt ¡ ´¤t )

0 =

0
@ X

jkj>p
j¦̂kj

1
AO¤

p(n) (28)

Moreover, we have as in the proof of Lemma 3.1 in Chang and Park (2002a)

nX

t=1
»¤t (´

¤
pt ¡ ´¤t )

0 =

0
@ X

jkj>p
jª̂pkj

1
AO¤

p(n) +

0
@ X

jkj>p
jª̂pkj

1
AO¤

p(n
1=2)

=

0
@ X

jkj>p
j¦̂kj

1
AO¤

p(n) (29)

The second part can now be easily deduced from (26) and (27) - (29). The proof is therefore
complete.

6.2 Proofs of Lemmas and Theorems

Proof of Lemma 2.2 The stated result follows from Einmahl (1987). In particular,
he shows that his Equation 1.3 holds for all ± when 2 < s < 4, and for ± ¸ K°sn with
° < 1=(2s ¡ 4) when s ¸ 4, in his notation. In either case, his ± is greater than our n1=a+±

with any ± > 0 as long as n is su±ciently large. His result is therefore applicable as we
formulate here.

Proof of Lemma 2.4 We write

n(~¦n ¡ ¦) =

Ã
1
n2

nX

t=1
xtx0t ¡ Qn

!¡1 Ã
1
n

nX

t=1
xt´t ¡ Pn

!

where

Pn =
1
n

nX

t=1
xt(´t ¡ ´pt)

0 +

Ã
1
n

nX

t=1
xtv0pt

! Ã
1
n

nX

t=1
vptv0pt

!¡1 Ã
1
n

nX

t=1
vpt´0pt

!

Qn =
1
n

Ã
1
n

nX

t=1
xtv0pt

! Ã
1
n

nX

t=1
vptv0pt

!¡1 Ã
1
n

nX

t=1
vptx0t

!
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where in turn
vpt = (v0t+p; : : : ; v

0
t¡p)

0

To get the stated result, it su±ces to show that

Pn; Qn = op(1)

under Assumptions 2.1 and 2.3.
In the subsequent proof, we use

°°°°°
1
n

nX

t=1
xtv0pt

°°°°° = Op(p1=2) (30)
°°°°°°

Ã
1
n

nX

t=1
vptv0pt

!¡1°°°°°°
= Op(1) (31)

which are the multivariate extensions of the results established in Chang and Park (2002a).
The required extensions are straightforward and the details are omitted. It follows imme-
diately from (30) and (31) that

Qn = n¡1Op(p1=2)Op(1)Op(p1=2) = Op(n¡1p)

since

kQnk · 1
n

°°°°°
1
n

nX

t=1
xtv0pt

°°°°°

°°°°°°

Ã
1
n

nX

t=1
vptv0pt

!¡1°°°°°°

°°°°°
1
n

nX

t=1
vptx0t

°°°°°

as one may easily see.
We now show that

Pn =

0
@ X

jkj>p
j¦kj

1
AOp(1) + Op(n¡1=2p)

We ¯rst write

kPnk ·
°°°°°
1
n

nX

t=1
xt(´pt ¡ ´t)

0
°°°°° +

°°°°°
1
n

nX

t=1
xtv0pt

°°°°°

°°°°°°

Ã
1
n

nX

t=1
vptv0pt

!¡1°°°°°°

°°°°°
1
n

nX

t=1
vpt´0pt

°°°°°

= An + Bn

We may show as in the proof of Lemma 3.1 of Chang and Park (2002a) that

An =

0
@ X

jkj>p
j¦kj

1
AOp(1)
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Moreover, we have

¯̄
¯̄
¯
nX

t=1
vt¡i´0pt

¯̄
¯̄
¯ ·

¯̄
¯̄
¯̄
nX

t=1
vt¡i

0
@ut ¡

X

jjj·p
¦0
kvt¡j

1
A
0¯̄
¯̄
¯̄

·
¯̄
¯̄
¯
nX

t=1
vt¡iu0t

¯̄
¯̄
¯ +

1X

j=¡1
j¦j j

¯̄
¯̄
¯
nX

t=1
vt¡iv0t¡j

¯̄
¯̄
¯

= Op(n1=2)

uniformly in i for jij · p. It therefore follows that

Bn = Op(p1=2)Op(1)Op(n¡1=2p1=2) = Op(n¡1=2p)

as was to be shown.

Proof of Lemma 3.2 Given the result in Lemma A1, the proof is the trivial extension
of the proof of Lemma 3.2 in Park (2002). The details are, therefore, omitted.

Proof of Theorem 3.3 To derive the bootstrap invariance principle for (w¤
t ) from that

of ("¤t ), we need to show
©̂(1) !p ©(1) (32)

and
P¤

½
max
1·t·n

¯̄
¯n¡1=2 ¹w¤

t

¯̄
¯ > ²

¾
= op(1) (33)

for any ² > 0.
Let ~©(1) be de¯ned exactly as ©̂(1) using the ¯tted coe±cients (~©k) in regression (23).

It follows immediately from Lemma A1 that

©̂(1) = ~©(1) + Op(n¡1=2q)

Moreover, we may deduce as in the proof of Lemma 3.5 in Chang and Park (2002a) that

~©(1) = ©(1) + Op(n¡1=2q) + o(q¡b)

using the result in Shibata (1981). We therefore have

©̂(1) = ©(1) + op(1)

and obtain (32). The proof of (33) is essentially identical to the proof of Theorem 3.3 in
Park (2002).
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Proof of Lemma 3.4 Set z¤0 = 0 for simplicity. The required modi¯cation to allow for
nonzero z¤0 is trivial. The ¯rst part follows immediately, since

1
n2

nX

t=1
z¤t z

¤0
t =d¤

Z 1

0
B¤
nB

¤0
n +

1
n2 z¤nz

¤0
n

and
n¡1=2z¤n = O¤

p(1)

for large n.
To prove the second part, we let (»¤t ) be de¯ned as in (25) so that we have

nX

t=1
z¤t¡1w

¤0
t = ª̂(1)

nX

t=1
»¤t¡1"

¤0
t ª̂(1)0 +

nX

t=1
w¤
t ¹w¤0
t

¡ z¤n ¹w¤0
n + ¹w¤

0

nX

t=1
"¤0t ª̂(1)0 ¡

nX

t=1
¹w¤
t¡1"

¤0
t ª̂(1)0

It is straightforward to show

z¤n ¹w¤0
n ; ¹w¤

0

nX

t=1
"¤0t ª̂(1)0;

nX

t=1
¹w¤
t¡1"

¤0
t ª̂(1)0 = O¤

p(n
1=2)

and we therefore have
nX

t=1
z¤t¡1w

¤0
t = ª̂(1)

nX

t=1
»¤t¡1"

¤0
t ª̂(1)0 +

nX

t=1
w¤
t ¹w¤0
t + o¤p(1) (34)

for large n.
It follows that

ª̂(1)
nX

t=1
»¤t¡1"

¤0
t ª̂(1)0 !d¤

Z 1

0
BdB0

by the bootstrap invariance principle and Kurtz and Protter (1991). Moreover, it can be
deduced analogously as in Lemma A4 that

E¤
¯̄
¯̄
¯
nX

t=1
(w¤
t ¹w¤0
t ¡ E¤w¤

t ¹w¤0
t )

¯̄
¯̄
¯

2

= Op(n2)

and we have
1
n

nX

t=1
w¤
t ¹w¤0
t = E¤w¤

t ¹w¤0
t + O¤

p(n
¡1=2)

However,

E¤w¤
t ¹w¤0
t =

1X

k=0
¡¤(k) =

1X

k=0
¡(k) + o¤p(1)

from which, together with (34), the stated result follows immediately.
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Proof of Theorem 3.5 The results can easily be derived from Lemma 3.4 using the
bootstrap invariance principle and continuous mapping theorem.

Proof of Lemma 3.6 Notice that

jQ¤
nj · 1

n

¯̄
¯̄
¯
1
n

nX

t=1
x¤t v

¤0
pt

¯̄
¯̄
¯

°°°°°°
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n

nX

t=1
v¤ptv
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pt
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¯̄
¯̄
¯
1
n

nX

t=1
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It therefore follows that

Q¤
n = n¡1O¤

p(p
1=2)O¤

p(1)O¤
p(p

1=2) = O¤
p(n

¡1p)

from Lemma A5. This shows that Q¤
n = o¤p(1).

Moreover, we have

jP ¤
n j ·

¯̄
¯̄
¯
1
n

nX

t=1
x¤t (´

¤
pt ¡ ´¤t )

0
¯̄
¯̄
¯ +
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¯
1
n

nX
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x¤t v

¤0
pt
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¯

°°°°°°

Ã
1
n

nX

t=1
v¤ptv

¤0
pt

!¡1°°°°°°

¯̄
¯̄
¯
1
n

nX

t=1
vpt´¤0pt

¯̄
¯̄
¯

and it follows from Lemmas A5 and A6 that

Pn = o¤p(1) + O¤
p(p

1=2)O¤
p(1)O¤

p(n
¡1=2p1=2) = o¤p(1)

as required to be shown.

Proof of Theorem 3.7 Due to Lemma 3.6, we have

n(~¦¤
n ¡ ¦n) =

Ã
1
n2

nX

t=1
x¤tx

¤0
t

!¡1
1
n

nX

t=1
x¤t ´

¤0
t + o¤p(1)

The bootstrap asymptotic distribution of ~¦¤
n can now be easily deduced from the bootstrap

invariance principle and Kurtz and Protter (1991). The bootstrap asymptotic distribution
of ~T ¤n may similarly be obtained.
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Table 1.1: Finite Sample Performances of the Estimators

n estimator nbias n2var n2MSE

25 ¼̂n 2.516 4.826 11.157
¼̂c

n 0.576 6.315 6.647
~¼n 0.025 2.981 2.982
~¼c

n 0.026 2.981 2.981

50 ¼̂n 2.705 6.213 13.528
¼̂c

n 0.365 7.305 7.439
~¼n 0.015 2.489 2.489
~¼c

n 0.016 2.490 2.490

100 ¼̂n 2.746 6.573 14.112
¼̂c

n 0.197 7.201 7.240
~¼n 0.015 2.224 2.224
~¼c

n 0.014 2.229 2.229

200 ¼̂n 2.723 6.457 13.871
¼̂c

n 0.060 6.775 6.779
~¼n -0.005 2.165 2.165
~¼c

n -0.004 2.169 2.169

Table 1.2: Finite Sample Performances of the Test Statistics

sizes powers

n test 1% test 5% test 10% test 1% test 5% test 10% test

25 T̂n 0.058 0.216 0.345 0.583 0.806 0.885
T̂ ¤

n 0.011 0.053 0.100 0.404 0.558 0.660
~Tn 0.046 0.110 0.178 0.485 0.626 0.691
~T ¤
n 0.007 0.045 0.090 0.296 0.481 0.592

50 T̂n 0.055 0.195 0.324 0.893 0.977 0.990
T̂ ¤

n 0.008 0.048 0.097 0.727 0.873 0.934
~Tn 0.026 0.080 0.131 0.811 0.892 0.919
~T ¤
n 0.012 0.051 0.097 0.744 0.856 0.902

100 T̂n 0.047 0.174 0.296 0.997 1.000 1.000
T̂ ¤

n 0.010 0.047 0.094 0.981 0.997 0.999
~Tn 0.018 0.066 0.117 0.982 0.994 0.997
~T ¤
n 0.010 0.049 0.096 0.973 0.991 0.996

200 T̂n 0.039 0.161 0.270 1.000 1.000 1.000
T̂ ¤

n 0.009 0.045 0.094 1.000 1.000 1.000
~Tn 0.012 0.054 0.105 1.000 1.000 1.000
~T ¤
n 0.009 0.045 0.096 1.000 1.000 1.000
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Table 2.1: Finite Sample Performances of the Estimators

n estimator nbias n2var n2MSE

25 ¼̂¹
n 3.288 11.692 22.504

¼̂¹c
n 0.912 14.649 15.481

~¼¹
n 0.184 7.171 7.205

~¼¹c
n 0.074 7.233 7.238

50 ¼̂¹
n 3.398 13.270 24.816

¼̂¹c
n 0.463 15.670 15.885

~¼¹
n 0.069 5.226 5.231

~¼¹c
n 0.018 5.241 5.241

100 ¼̂¹
n 3.494 13.384 25.590

¼̂¹c
n 0.277 14.820 14.897

~¼¹
n 0.045 4.587 4.589

~¼¹c
n 0.019 4.596 4.596

200 ¼̂¹
n 3.517 13.540 25.912

¼̂¹c
n 0.146 14.255 14.276

~¼¹
n 0.028 4.312 4.312

~¼¹c
n 0.017 4.322 4.322

Table 2.2: Finite Sample Performances of the Test Statistics

sizes powers

n test 1% test 5% test 10% test 1% test 5% test 10% test

25 T̂¹
n 0.020 0.142 0.261 0.265 0.547 0.676

T̂¹¤
n 0.017 0.059 0.106 0.227 0.384 0.498

~T¹
n 0.044 0.117 0.180 0.257 0.415 0.505

~T¹¤
n 0.008 0.043 0.090 0.093 0.248 0.369

50 T̂¹
n 0.031 0.140 0.257 0.623 0.841 0.905

T̂¹¤
n 0.011 0.055 0.106 0.498 0.693 0.795

~T¹
n 0.026 0.084 0.135 0.591 0.736 0.808

~T¹¤
n 0.012 0.052 0.102 0.479 0.672 0.767

100 T̂¹
n 0.029 0.135 0.231 0.967 0.994 0.997

T̂¹¤
n 0.010 0.054 0.105 0.924 0.978 0.990

~T¹
n 0.017 0.067 0.121 0.942 0.974 0.984

~T¹¤
n 0.011 0.051 0.099 0.921 0.967 0.980

200 T̂¹
n 0.026 0.125 0.220 1.000 1.000 1.000

T̂¹¤
n 0.011 0.052 0.100 1.000 1.000 1.000

~T¹
n 0.014 0.060 0.115 0.999 1.000 1.000

~T¹¤
n 0.010 0.050 0.103 0.999 1.000 1.000
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Table 3.1: Finite Sample Performances of the Estimators

n estimator nbias n2var n2MSE

25 ¼̂¿
n 5.925 19.070 54.170

¼̂¿c
n 2.460 27.327 33.379

~¼¿
n 1.273 17.658 19.280

~¼¿c
n 0.230 19.762 19.815

50 ¼̂¿
n 6.408 22.298 63.360

¼̂¿c
n 1.538 29.023 31.389

~¼¿
n 0.592 11.893 12.244

~¼¿c
n 0.037 12.256 12.257

100 ¼̂¿
n 6.609 22.742 66.418

¼̂¿c
n 0.907 26.866 27.688

~¼¿
n 0.286 9.585 9.667

~¼¿c
n 0.013 9.675 9.675

200 ¼̂¿
n 6.660 24.429 68.783

¼̂¿c
n 0.467 26.910 27.128

~¼¿
n 0.168 8.592 8.620

~¼¿c
n 0.034 8.611 8.612

Table 3.2: Finite Sample Performances of the Test Statistics

sizes powers

n test 1% test 5% test 10% test 1% test 5% test 10% test

25 T̂ ¿
n 0.051 0.212 0.351 0.204 0.503 0.661

T̂ ¿¤
n 0.029 0.071 0.123 0.120 0.243 0.355

~T ¿
n 0.056 0.135 0.203 0.161 0.298 0.388

~T ¿¤
n 0.010 0.042 0.091 0.035 0.131 0.228

50 T̂ ¿
n 0.060 0.246 0.387 0.522 0.790 0.879

T̂ ¿¤
n 0.016 0.057 0.114 0.271 0.490 0.612

~T ¿
n 0.025 0.080 0.134 0.329 0.516 0.612

~T ¿¤
n 0.010 0.050 0.100 0.221 0.430 0.551

100 T̂ ¿
n 0.065 0.235 0.375 0.927 0.987 0.995

T̂ ¿¤
n 0.010 0.056 0.108 0.753 0.905 0.951

~T ¿
n 0.015 0.064 0.116 0.815 0.904 0.938

~T ¿¤
n 0.009 0.049 0.099 0.770 0.886 0.927

200 T̂ ¿
n 0.062 0.229 0.362 1.000 1.000 1.000

T̂ ¿¤
n 0.012 0.056 0.107 0.998 1.000 1.000

~T ¿
n 0.014 0.057 0.109 0.997 0.999 0.999

~T ¿¤
n 0.011 0.050 0.101 0.996 0.999 0.999


