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1 Introduction

We consider a technology producing indivisible units of a homogeneous good that we call
a service at an increasing marginal cost: ¢, is the cost of producing the g-th unit and we
assume 0 < ¢; < ¢ < ... < ¢y < g1 < .... Each agent consumes at most one unit of
service; agent i is willing to pay u;, u; > 0, for service.

We compare the welfare consequences of two simple and natural mechanisms to exploit
the technology —mamely, the commons.

The Average Cost mechanism (AC) is a one shot game where each agent chooses to
buy the good or not and where total cost is equally divided among all the buyers.

The Random Priority mechanism (RP) is a sequential game where first, Nature chooses
at random (with uniform probability) an ordering of the agents and offers them to buy
the good at the successive marginal costs: the agent ranked first is offered the good at
price ¢, and if exactly ¢ among those ranked before i did buy, agent ¢ is offered the price
Cq+1-

The RP and AC games are plausible descriptions of certain commons utilized in the
free access regime!. Our motivation however is exclusively normative: if both options (to
charge average cost or to charge marginal price at random) are available, which one should
we recommend? Our answer bears on distributive properties (which agents receive more
surplus in what mechanism?) and on efficiency properties (which mechanism induces
more overproduction, and which one collects more surplus?). The examples we have in
mind are scheduling problems where the users have the option to leave the queue (on
which more below), such as congested roads (Naor (1968), Mendelson (1985)) and the
Internet (Demers et alii (1990), Shenker (1995)). See also the discussion of average cost

versus incremental cost policies in Spulber (1994)2.

I'Think about our agent as walking around randomly in the forest looking for mushrooms or fruits.
Someone will be lucky enough to find the fruit hanging lowest and pick it if the fruit is worth this person’s
effort to reach for that low branch; the next luckiest agent will find the next lowest hanging fruit and
decide similarly whether or not to spend the effort to get it; and so on.

Another example is R & D competition where input is research effort and output is (the present value
of) a patent. Think of all teams as supplying the same research effort, and of the lucky one (first in line)
as the team which discovers the first and most profitable patent, and so on.

By contrast, the AC mechanism is a plausible description of free access to a commons when the returns
of the technology are equal out of necessity, as when agents pump water form a common well and the

pressure must be the same for all.
2Spulber (1994) discusses a case involving power utilities: at issue is the allocation of the costs of new

investments necessary to serve new customers; this cost can be rolled over in the general budget (average



In equilibrium, both mechanisms inefficiently overproduce, but the inefficiencies in
AC and RP differ both in size (surplus loss) and nature (surplus distribution). These
differences are the subject of this paper: we ask which configurations of the demand (the
distribution of the individual willingness to wait) are better handled by the AC or the RP
mechanisms, in the sense of generating more surplus and minimizing overproduction. We
show examples where one collects the efficient surplus whereas the other collects almost
no surplus and vice-versa.

An important example in favor of RP against AC is the case of a perfectly homoge-
neous demand (all agents are willing to pay the same amont for service). There the RP
equilibrium outcome is first best efficient, whereas the AC outcome dissipates all surplus
(an extreme case of the tragedy of the commons): everyone is better off under RP than
under AC.

The converse configuration, where everyone prefers the AC mechanism to the RP one
turns out to be impossible: Proposition 3. We can, however, have a situation where the
total surplus collected by AC exceeds that collected by RP: Proposition 5.

Our second main finding is the role of an index that we call the crowding factor, that
affects the relative welfarewise performance of the two mechanisms. The crowding factor
is the ratio of the potential demand (the number of agents who would like to be served
if service is free) over the maximal production (the largest willingness to pay, i.e., the
largest ¢ such that ¢, < max; ;). This factor is a measure of the level of congestion of
the system. We show that the more crowded the commons, the more the RP mechanism
outperforms the AC one. In general, when the crowding factor is very large, the latter
collects no surplus whereas the former collects a positive fraction of the efficient surplus
(Proposition 8). In the canonical model with quadratic costs, the crowding factor is an
exact measure of the remative performance of our two mechanisms. See Sections 3, 4 and

6 for precise statements.

1.1 A scheduling example

Two often observed protocols for managing queues are (1) the organized queue where a
newcomer ‘takes a number’ and agents are served in turn (this is the familiar ‘first in, first
out’ system) and (2) the unorganized queue where the server picks at random someone

in the waiting crowd without paying attention to how long this person has been waiting.

cost sharing) or imputed solely to the beneficiaries of the investments (incremental cost sharing). He also

argues in favor of the latter on incentives and efficiency grounds.



Most queues among real people (at the post office, in shops, etc.) are ‘organized’, and the
actual distribution of numbered tickets is common when the wait is expected to be long
(e.g., at the US Immigration and Naturalization Services). Many mechanical queues are
‘unorganized’, as when we try to get a line from a busy phone system, access the Internet
and so on®.

In both type of queues the key strategic decision of each agent is to opt out (leave
the queue, also called balking in the queuing literature) or stay in the queue. Assume
for simplicity that the server processes exactly one agent per unit of time; that agent ¢’s
utility for being served after waiting g periods is u; — ¢, and is zero for balking at time
t = 0; and that agents are risk neutral. We imagine that all agents show up at time ¢ = 0,
and then decide to stay or not in the queue. In the inorganized protocol, the expected
delay of anyone agent when ¢ agents choose to stay is (14+2+...+¢q)/qg=(¢+1)/2 and
the corresponding game is precisely the AC mechanism for the technology ¢, = ¢*. In the
organized protocol, a priority ordering of all agents is drawn randomly and without bias
at time ¢t = 0 and the agents decide to stay or not after learning their number. Thus the
agent who draws the number 1 is offered service with a delay ¢; = 1 and decides at once
to stay or not; the agent drawing number 2 is offered a delay ¢, = 2 if agent 1 stays and
c; = 1 if agent 1 balks; and in general an agent is offered service with a wait ¢, = g, if
exactly ¢ agents among those who drew a lower number decided to stay. This is precisely
the RP mechanism for these commons with linearly increasing marginal costs.

The scheduling model above is probably the simplest example of a commons with
increasing marginal costs; the RP and AC mechanisms are especially natural in this
model, and easy to implement. Our results throw some light on the choice between these

two protocols.

1.2 Contents of the paper

We define the continuous version of our model in Section 2. We have a continuum of
agents who each want at most one unit of service, and the profile of utilities (willingness
to pay for service) is described by a familiar demand function p — d(p) = the number of

agents willing to pay p or more. The continuous version raises some technical difficulties

3There are examples of unorganized queues among real people and organized mechanical queues: think
of a packed bar where the bartender cannot keep track of ‘who is next’, and of these customer assistance

lines where a machine announces the expected waiting time until the next available agent.
“Once an agent finds it worthwhile to stay for the first period —as u; > (¢ + 1)/2— he will have no

incentive to leave later because the expected wait decreases after each period



(for instance, the noncooperative game has a continuum of players), but on the other hand
it yields a simple description of the equilibrium outcomes of AC and RP, and a simple
formula for measuring their inefficiency, both in terms of overproduction and of surplus
loss: Proposition 1.

Section 3 is devoted to the important special case where the demand and marginal
cost functions are both linear. The only relevant parameter in this case is the crowding
factor: it determines entirely the overproduction and surplus loss —relative to the efficient
benchmark— of our two mechanisms. Beyond the crowding factor 2.4, we find that
RP strongly outperforms AC; beneath this critical level, AC mildly outperforms RP:
Proposition 2 gives a precise meaning to our opening statement.

In Section 4 we go back to the general case of the continuous model and state our
most general results about the distributive consequences of the two mechanisms. A lower
tail of the demand always prefers RP to AC whereas the agents preferring AC to RP
form a —possibly empty— upper tail of the demand: Proposition 3. In particular, if
the demand is flat (identical agents), the RP outcome is fully efficient whereas the AC
outcome entirely dissipates the surplus. Some convexity properties of the demand give an
edge to one mechanism over the other, irrespective of the cost function: to AC over RP if
1/d is concave (Proposition 5) and to RP over AC if 1/d is convex (Proposition 6). Finally,
Proposition 8 explains that RP asymptotically outperforms AC when the crowding factor
goes to infinity as a result of replicating the demand function while keeping the technology
fixed.

In the last two sections, we turn to the discrete version of our model, with a finite set
of agents demanding at most one unit of service. All definitions and results introduced for
the continuous model have a counterpart in the discrete model: Section 5. The interest of
the discrete model is twofold. Firstly it provides a rigourous foundation for the continuous
model, by viewing the latter as the limit of a natural sequence of discrete models: this
important technical fact is explained in Appendix 1. Secondly, the discrete model allows
us to make a statistical argument in favor of RP over AC, explained in Section 6. We
assume quadratic costs and parametrize the demand space in a natural way. We show
that with many agents, for almost all choices of the demand function, the pattern of
relative overproductions and surplus losses under AC and RP is precisely the same as in
the linear demand case of Section 3: Propositions 9 and 10. This in turn gives a broader
support to our finding that 2.4 is the critical value of the crowding factor beyond which
we expect RP to strongly outperforms AC.

All proofs are gathered in the appendices.



2 The model with a continuum of agents

An economy consists of a marginal cost and demand function, denoted mc and d. The
function mc is defined for all x, > 0, strictly increasing and continuous. We assume
mec(0) > 0 and me(oo) = oo. We denote by C' the cost function, and ac the average
cost function. The demand function d(p) is defined for all nonnegative price p; d is
nonincreasing and continuous; moreover, for the sake of simplicity, we assume there is a
price P above which nobody wants to buy the good: d(P) = 0. Denote Xy = d(mc(0))
the size of the potential demand; and set me(X;) = P. If me(0) is positive, the part of
the demand functions for 0 < p < mc(0) (the agents willing to pay less than mc(0) for
service) plays no role in either the AC or RP mechanisms: these agents never buy service.
Therefore we can assume mc(0) = 0 without loss of generality.

The crowding factor of the economy (d,mc) is v = Xo/X;. Its role appears in the

next sections.

4dE X Xo

Figure 1

The efficient quantity qg is at the intersection of the marginal cost and inverse demand
curves, i.e., it is the unique solution of d(mc(qr)) = qr (see Figure 1). The efficient
surplus og is the sum of the consumer surplus at the ‘competitive’ price mc(gqg) and of

the competitive profit:

og = D(mc(qg)) + q5 - mc(qe) — C(qr) (1)
where D(p) is the consumer surplus at price p:
P P )
D) = [ d(y) dy =~ [ "(y—p) d) dy.

6



The Average Cost mechanism is the noncooperative game (with a continuum of play-
ers) where each agent chooses to buy service or not, x; = 0 or 1. An agent who does not
buy pays nothing. All agents who do buy pay the average cost ac ([ ), where [z is the
total number of agents who buy.

In equilibrium the quantity gac produced is where the average cost and inverse demand

curves intersect, i.e., it solves the equation:

d(ac(qac)) = qac -

(Our assumptions on d and mc guarantee a unique solution.) An agent with valuation
(willingness to pay for service) above gac buys service and pays ac(qac), one with valua-
tion below gac does not buy. The AC equilibrium surplus is simply the consumer surplus
at price ac(qac):

oac = D(ac(qac)) - (2)

The Random Priority mechanism works as follows. Nature draws an ordering of all
agents, with uniform probability on all orderings; agent are successively offered service
at an increasing price (defined inductively) and can accept or refuse, ; = 0 or 1; the
price offered to agent i is mc ([ z) where the sum bears over all agents preceding 7 in the
ordering in question.

The inductive definition of the above integral is a technical issue that we choose to
ignore at this point. The discussion of the RP equilibrium outcome below is similarly
heuristic. A more rigourous approach is proposed in Section 5 and Appendix 1, where
the RP and AC games with a continuum of agents are viewed as the limit of a sequence
of discretized games with finitely many agents.

Think of the RP mechanism as allocating infinitesimally small units ¢ of the good.
After a total of ¢ units have been allocated, the demand above p = me(q) has ‘shrunk’
by a factor A(q), 0 < A(q) < 1, because some of these agents are already served. The
shrinking factor is uniform because all agents above p are treated symmetrically with

respect to the allocation of the ¢ units. The shrunk demand is thus

dy(p') = A(q) - d(p') for all p' > p=me(q) .

The evolution of A follows a differential equation. Denote € = mc(q) - §, where mc is the
derivative of mc, then

dq+6(p+ 6) = dq(p+ 6) -0,



where we neglect a second order term due to the fact that some of ¢ is allocated to the

agents in [p, p + €|. Combining the two equations above:

Ma+6)-d(p+e) = Ag)-d(p+e) =6 = Mg +8) — Mq) = —d<p5+ 0 ‘d<mi<q>>

where in the right-hand side equality we again neglect a second order term. Define

dt
q) = / Ame(D) with the convention ¢(q) = co whenever ¢ > mc *(P) .

Now the differential equation governing A and the initial condition A\(0) = 1 yield

Ag) =1—¢(q) aslongas ¢(q) <1.

Two cases may arise. We may reach a level ggrp such that ¢(qrp) = 1, in which case all
agents in d(mc(qrp)) have already been served when grp units have been allocated. In
this case the RP mechanism stops because no agent will accept an offer any longer. If,
on the other hand we reach grp = mc™!(P) with ¢(grp) < 1, then there are no agent
left in d(mc(grp)) and the mechanism stops as well. In both cases we have d,,,(p) =0
whenever p > me(qrp) so that grp is the quantity produced in equilibrium.

Going back to the definition of A\, we consider an agent ¢ with willingness to pay p. For
any ¢ such that mc(q) < p, agent ‘p’ buys the good at price mc(q) or less with probability
1 — A(q). Hence his total probability of service is

{ 1 if mc1(p) > qrp
:L‘p =

| dme(p) if me(p) < gre

(Note that if ggp = mc™!(P), the upper case is vacuous.) And his expected cost share is

/ m dt where b = inf{mc*(p), qrp} .

Finally we can compute the surplus collected by RP in equilibrium:

d(mc(t))
_ /OW [ /m f(t)(p — me(t)) d(p) dp] % '

Recall that D(p) is the consumer surplus at p, now we get the formula
a D
- / # D(met dt (3)

We summarize the above discussion as:

Orp = /Ooo(wp-p—yp) |d(p)| dp = —/OOO [ Obp_—mc(t)dt] d(p) dp



Proposition 1 At the RP equilibrium outcome the quantity qrp is produced with proba-

bility one, where

X e Ay
qrp = A1 Zf 0 m_

qrP dt

qrp solves /0 W =1 otherwise.

T dt
An agent willing to pay p = mc(q) buys service with probability / d(i where § =
0o d(mc

(t)”
: : 7 me(t)
min{q, qrp} and his expected payment is / ————. Total surplus collected at the RP
0 d(mec(t))
equilibrium is given by (3).
Our goal in the next two sections is to compare qg, qac and qgrp as well as og, gac
and orp. We start by the canonical example where both the demand and the marginal

cost functions are linear.

3 The case of quadratic costs and linear demands

In this section we assume that marginal costs increase linearly, mec(z) = a-x for all x > 0

where a is a positive constant.

A mc A mc
P
ac ac
P d
d
=2 qao=2 qe qac Xo=12
Figure 2 Figure 3

Consider first the case of a flat —infinitely elastic— demand function: d(p) = X, for
p < b, =0 for p > b, where X is ‘large’, namely Xy > 2b/a. The demand is perfectly

homogeneous, all agents are willing to pay b for service. Under the AC mechanism, we have



a full ‘tragedy of the commons’, namely inefficient overproduction, gac = 2b/a = 2qg,
up to the point where the average cost equals the common valuation b and so the AC
equilibrium dissipates all surplus: c4¢c = 0. See Figure 2.

We can use Proposition 1 to compute the RP equilibrium, provided we account for the
discontinuity in d and D. But the direct argument is obvious: the first qg agents in the
random ordering buy the service, the subsequent agents decline. Thus the RP equilibrium
is first best efficient: ¢qp = qrp and o = orp. The RP outcome is preferred by every
agent to the AC outcome: everyone gets a fair share of the efficient surplus under RP and
no surplus at all under ACP.

We turn to the case of a linearly decreasing demand function, namely

(P—p) for 0<p<P
for P<p

d(p) = (5)

S Q|2

In this economy, depicted in Figure 3, we have Xy = v - P/a and X; = P/a so that ~
is the crowding factor defined in the preceding section. Applying Proposition 1 delivers

easily:

Proposition 2 In the economy with linear marginal cost me(x) = a-x and linear demand

(5), we have
P v P . 2y
=—_._1 . —— . (1—e): el
4 a v+l 4drp a( e"); qac 0 y+2’
and
ore Y1 ey oac _ 4y +1)
op 2 ’ op  (y+2)*

Thus the relative overproductions qac/qr and grp/qr, as well as the relative surpluses
oac/og and orp/og only depend upon the crowding factor . Figures 4 and 5 depict the

overproductions and surpluses when ~ varies between 0 and +o0.
Insert Figures 4 and 5 here.

The first observation is that grp < qac at all levels of v: the RP equilibrium overpro-
duces less than AC. On the other hand AC collects more surplus than RP when v < 2.3994

and vice versa:

v <" = 0ac > Ogrp

7> = o0ac <Orp

®Note that this argument is valid for any marginal cost function.

10



+2
v—2
Figures 4 and 5 also make clear that the relative advantage of RP and AC is monotonic

where v* = 2.3994 is the solution of e? =

in 7: both ratios gac/qrp and ogp/osc increase with .

Next we note that when v < 2.4, AC collects only a bit more relative surplus than
RP: 04c/orp never exceeds 1.03 for any v > 0. On the other hand, o4c/orp goes to
zero when v goes to infinity, at the rate of 8 /~.

Finally, we note that as v goes to infinity, the RP equilibrium collects only one half
of the efficient surplus: thus we cannot think of the flat demand case —discussed at the
beginning of this section— as the limit of the v-linear economies. Another difference is
that, for any 7, the agents with valuation close enough to P prefer AC to RP. At the AC
equilibrium, they get service at the following price:

T
y+2°

At the RP equilibrium, the price they pay is given by Proposition 1:
qrr -t 1 + v - e 7
= —dt=P  —— .
brp /0 d(a-t) Y
One checks easily that prp > pac for all 7. Recall that if the demand is flat, all agents
strictly prefer RP to AC.

pac = ac(qac) = P

4 Welfare comparisons in the general case

We go back to the general model of Section 2 and compare first the distributive conse-
quences of our two mechanisms. In the AC equilibrium outcome, all the ‘efficient’” agents
(i.e., the gr agents with the largest willingness to pay) are served with probability one.
The RP equilibrium allocation, on the other hand, guarantees service only to those agents
willing to pay mec(grp) or more, and this does not include all efficient agents because, typ-
ically, ggp is strictly larger than gg.

The AC allocation offers no service at all (and zero surplus) to agents with low utility
(i.e., below ac(qac)), whereas the RP allocation gives a positive probability of service to
any agent with valuation greater than mc(0) = 0. This is the source of inefficiency in
the equilibrium of RP: efficiency —interpreted as surplus maximization— forbids to serve
with any positive probability an agent with valuation smaller than mc(qg).

The pattern ‘low valuation agents prefer RP to AC’ and ‘high valuation agents prefer

AC to RP’ is general, with one important qualification: there may be no one preferring

AC.

11



Proposition 3 Consider an economy (d, mc) with a positive surplus: o > 0 <= P > 0;

a) there is a valuation p, 0 < p < P, such that every agent with valuation in ]0,p|
strictly prefers the RP equilibrium to the AC one;

b) if there is at least one agent that does not strictly prefer the RP equilibrium to the
AC one (resp. that strictly prefers AC over RP), the set of those agents forms an interval
[p, P] (resp. an interval |p, P));

c) there are economies where every agent strictly prefers the RP equilibrium to the AC

one.

Note the statement c is established by the case of an infinitely elastic demand discussed
above.
The next four propositions compare the performance of AC and RP in terms of their

relative overproduction and surplus loss, just like in Proposition 2.

Proposition 4 a) Both the RP and AC equilibrium outcomes inefficiently overproduce:
qr < qac,qrp. The overproduction under RP is at most 100%: qrp < 2qf.

b) If RP overproduces more than AC, it also collects less surplus:

gac < qrp = O0AC = ORP

qac < gqrp == O0AC > ORP

In the linear economies of Section 3, the overproduction of the AC equilibrium is at
most 100% (it is at most 30% at the RP equilibrium: see Figure 3). However, the cap of
100% on the overproduction under RP (statement a) is independent of both the demand
and marginal cost functions. It is easy to construct examples where the overproduction
under AC is arbitrarily largeS.

The linear economies of Section 3 provide examples where g4 > qrp and o 4¢ may be
larger or smaller than ogp. Statement b tells us that the only other possible configuration
is when AC overproduces less and collects more surplus. Our next result provides a family

of examples:

Proposition 5 If 1/d is a concave (resp. strictly concave) function on the interval

[0, mc(gac)] then gac < qrp (Tesp. qac < qrp)-

Note that the concavity of 1/d implies (but is not implied by) the convexity of d: the

density of agents increases when the willingness to pay decreases.

6Take mc sharply concave and d flat or nearly flat. We omit the details.
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Given our assumption that the demand vanishes at a finite price P, the function 1/d
cannot be concave over the entire interval |0, P[. Nevertheless it is easy to construct an
example illustrating Proposition 5. Fix A\, 0 < A < 1, and a,b > 0, the demand function

d(p) =

a
—( TR truncated for p high enough to be above mc(gac), is such an example.
p

Proposition 6 If 1/d is a convex (resp. strictly convex) function on [0, P[ then qac >

qrp (7’68;0- gac > qRP)-

Unlike in the case of Proposition 5, we may apply Proposition 6 to any mc function:
we do not need to worry about the relative position of mc(qac) and P (i.e. of gac and
X1), whereas mc(gac) < P is necessary to apply Proposition 5.

Unlike in the case of Proposition 5, it is very easy to come up with simple functional
forms of the demand for which 1/d is convex. Recall that a function is Log concave if
Logf is concave. Then we have: d concave = d Log concave = 1/d convex. Consider
a demand function of the form d(p) = f(a — 8p), 0 < p < /3, where f is increasing and
f(0) = 0. Then 1/dis convex if 1/ f is convex. If this holds true, and mc(qac) < P = a/f,
we deduce from Proposition 6 that gac > qrp (and gac > qrp if 1/f is strictly convex).
An example is the demand d(p) = (o — p)* for any positive exponent A, because the
function f(z) = 2 is Logconcave. Our next result offers a family of demand functions

for which we guarantee the pattern gac > qrp and ocac > ogrp.

Proposition 7 If the function D/d is affine on the interval [0, mc(qac)] then 1/d is

conver and we have gac > qrp and cac > Orp.

Consider the demand function d(p) = (o — Bp)*, with A > 0. The function D/d is affine
on the interval [0, P| and only there. Therefore Proposition 7 only applies to a marginal
cost function small enough such that mec(gac) < P. For instance in the case of a linear
demand (A = 1) and a linear mec function as in Section 3, this inequality holds if and only
if the crowding factor is at most 2.

The last results shows that for infinitely crowded commons, the RP equilibrium sys-
tematically outperforms the AC one. We fix an arbitrary economy £(1) = (d, mc) and
we replicate the demand to A - d, for some A\ > 1, without replicating the marginal cost
function: the crowding factor of the economy £(\) = (X - d, me) is thus v(A) = A - ~(1).
We compare the two mechanisms as A goes to infinity.

It is easy to check on the formulas of Section 2 (e.g., (4)) that gr(\), qac(A) and
qrp(A) are increasing in A. Moreover when A goes to infinity, the proportions of the

efficient surplus generated by RP and AC respectively converge. The latter converges to

13



zero: for infinitely crowded commons, AC collects almost nothing of the efficient surplus.
The former converges toward a strictly positive ratio (of course smaller than 1), which
means that RP always collects a significant proportion of the efficient surplus, even for

infinitely crowded commons. Formally,

Proposition 8

/\11_{20 qac(A) = Ah_%o qrp()) = /\h_{lgo qe(A) = X3

and
[ Dlmet),
. 0AC . ORp o d(mc(t))
lim —(\) =0 d Iim —(\) =
fim ) andlim =2 = =5 o)

5 The model with a finite set of agents

We turn to the version of our model with a finite set of agents. This makes the notational
burden substantially heavier, but on the other hand it allows for a rigorous definition of
the strategic games AC and RP. All results of Sections 3 and 4 have a counterpart in
the discrete model. Moreover the continuous model can be viewed as the limit of the
discrete model when the size n of the population tends to infinity: the straightforward
limiting argument is explained in Appendix 1. Thus we interpret the results reviewed in
this section as the mathematical justification of those of the previous sections. The less
technical reader may go directly to Section 6 presenting a statistical argument genuine to
the discrete model.

An economy is a triple £ = (N, u, c) where N is the finite set of agents, i — u; for
i € N is the utility profile (that is, u; is agent ¢’s willingness to pay for the service), and
q — cq for ¢ =1,2,..., is the strictly increasing marginal cost function. We write total

cost and average cost as C' and ac respectively: C(q) = >{ ek, ac(q) = C(q)/q.

Definition 1 An agent is said to be of type q if his utility u; is such that c; < u; < cgq1.
Q

The profile of types is the sequence (ng,ny,na,...,ng) such that an = n, where ng, is
q=0

the number of agents of type q. Let m, denote the number of agents of type q or more:

Q
mg = Z Nng.
k=q

Definition 2 The crowding factor of the economy € = (N,u,c) is v =n/Q, where n is
the number of agents and Q is the largest integer q such that u; > ¢, for some i € N.

14



We define successively the RP and AC mechanisms and compute their equilibrium out-
come. When the consumption of agent i is a random variable, we interpret w; as his
von Neumann-Morgenstern utility, and assume risk neutrality with respect to monetary
payments.

The RP mechanism is probabilistic: the allocation it determines is a random variable.
Because we assume risk neutrality, all we need to know about agent ¢’s allocation is the

probability z; that he will be served, and his expected payment y;.

Definition 3 : The Random Priority mechanism. Nature draws agents successively
without replacement and with uniform probability (equivalently, an ordering of the agents
is drawn at random, with equal probability on all orderings). The agent drawn in the first
stage 1is offered the good at price ¢y and chooses between taking the offer or declining it
(in both cases, this agent leaves the game). The second agent in line is offered the good
at price cy if the first agent did buy at c1, or price ci if the first agent declined. An so
on: the agent drawn at stage q is offered the price cyi1, where ¢’ is the number of agents

drawn before him who did buy.

The strategic analysis of this game is transparent. It is a dominant strategy for an
agent to ‘buy truthfully’ (i.e., buy if and only if w; > ¢,/); barring indifference, the domi-
nant strategy equilibrium is the unique Nash equilibrium, and is also a strong equilibrium
(i.e., it resists coalitional deviations). Even if indifferences are allowed, the above equi-
librium remains the essentially unique strong equilibrium of the game. It is also Pareto
superior to any other Nash equilibrium. Note that these strategic properties are indepen-
dent of agents’ preferences toward risk.

The canonical equilibrium is determined by the altruistic tie-breaking rule: when-
ever indifferent between buying or not, an agent does not buy. We shall maintain this
assumption throughout the paper; removing it would complicate the analysis at the mar-
gin without bringing any new insight. As not confusion may arise, we simply call this
equilibrium ‘the” RP equilibrium.

The description of the RP equilibrium allocation only depends upon the partition
(No, M, ..., Ng) where NV, is the (possibly empty) set of agents of type ¢ (namely, ¢, <
u; < cg+1) and @ is the largest nonempty type. Two agents of the same type behave
exactly in the same way in the RP game and receive the same allocation denoted (x4, y?).
Clearly, this allocation only depends upon the profile of types n, = N, 0 < ¢ < Q
(Definition 1).

15



The key to compute the RP allocation is the probability [, that the ¢-th unit be sold,

namely the probability that at least ¢ agents be served. Let M, = U N denote the set
k>q
of agents willing to buy at ¢, (with cardinality m, = ny). As long as the mechanism
k>q
offers the good at a price not larger than c,, all agents in M, behave in exactly the same

way. Therefore 3,/m, is the probability that a given agent in M, pays ¢, for the good.
Now we describe the RP allocation. Clearly z; = y; = 0 whenever ¢ € NM. Next, for all g,
1<q¢g<Q,alie N

xi:xq:iﬁ yi:yq:i&'ck (6)

=1 % =1 Mk

The computation of the sequence [, is easy for the small values of ¢ but hard afterwards.

Denote by gg the ‘efficient’ quantity, i.e., the largest integer ¢ such that ¢ < m,. In
the RP equilibrium, the first gz units are sold for sure, therefore 3, =1 for 1 < ¢ < ¢g.
Beyond gg, the number 3, must be computed by a recursive algorithm given in Cres and
Moulin (1998) (Proposition 1).

An important measure of the performance of RP is the expected quantity it produces,

Q
qrp = Y _ ;- The argument just given shows grp > gg (with probability 1) namely RP
k=1
never produces less than the efficient quantity.
We now compute the surplus generated by RP. If the ¢g-th unit is distributed, then it is
distributed with equal probability to every agent of type at least ¢ (i.e., by construction,

agents labeled n — m, + 1 to n), and generates the stochastic surplus:

Thus the expected surplus generated by the RP allocation is computed as follows:

Q
URP:ZBq Ogq - (7)
g=1

Definition 4 : The Average Cost mechanism. FEach agent chooses to buy the good
or not: x; =0 or 1. An agent who does not buy pays nothing. An agent who does pays

average cost. Hence

r, =0 = yi:ac<2xi> .

ieN
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The strategic analysis of this mechanism is straightforward and well known. Denote
by d the (set valued) demand function: d(p) = {i € N | p < u;} for all p > 0. Let qac
be the largest integer such that ¢ < # d(ac(q)). Consider the outcome where exactly gac
agents in an upper tail of d(ac(qac)) are served (that is no agents in d(ac(qac)) is willing
to pay more for the good than any agent in the upper tail). This outcome is a Nash
equilibrium. There may be other equilibria but the above one is a surplus maximizing
equilibrium (verification of these claims is immediate).

In Appendix 1 we explain in what sense the RP and AC equilibrium outcomes of
the continuous economy are the limit of the RP and AC outcomes just described for the
discrete economy. This convergence argument is intuitive in the case of the AC mechanism:
it is standard fare in partial equilibrium analysis. Less so in the case of the RP outcome:
the convergence property relies on the nontrivial asymptotic result borrowed from Cres
and Moulin (1998) and explained in Appendix 1.

We give now some examples where the RP outcome dominates the AC outcome and
vice versa. All examples involve quadratic costs, ¢, = ¢, that can be interpreted as a
scheduling problem where agent ¢’s utility is u; — q for receiving service after waiting ¢
periods, and —q for waiting ¢ periods without being served.

Assume first n = 25 and a flat demand curve, u; = 10.3 for all ¢ = 1,...,25. The
efficient production is gg = 10, and o = 48. In the AC equilibrium, 19 agents stay in
the queue (because ac(q) = (¢ + 1)/2) and o4¢c = 5.7 or about 12% of og. By contrast
the RP equilibrium is fully efficient: the first 10 agents in the priority ordering stay in
the queue and all others leave’.

Our next example is one where the AC equilibrium is first best efficient but the RP
equilibrium is not. We have n = 25 (and quadratic costs). The utility profile is

u;=15fore=1,...,10; u; =25 foris=11,...,20; u; =5.5forv=21,...,25.

The AC equilibrium is the efficient outcome where the five high valuation agents, and
only them, are served (each paying ac(5) = 3) for a total surplus o = 040 = 12.5. On
the other hand, Random Priority inefficiently serves with positive probability each one of
the 20 ‘inefficient’ users. It results from the formulas (6) and (7) that the RP outcome
collects 7.7 units of surplus, or only 62% of the efficient surplus.

Our last example is a discrete analog of the linear demand /quadratic costs continuous

economies of Section 3. The two equilibrium allocations collect nearby the same surplus

"More generally, in a discrete economy with quadratic costs where all agents are of the same type @Q

and n > @, one checks that the ratio ogp/oac is of order of 2Q).
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but have different distributive consequences. We have n = 4 and a ‘uniform’ profile of

types (Definition 1). The utilities of our agents are spread as follows:
l<u <2<uy<3<uz<4<u <5 with ¢,=¢q for ¢=1,....5. (8)

The efficient quantity is qg = 2 and the total surplus is og = uz + uqy — 3. To compute

the RP allocation, we need to determine the probability 3, that the g-th unit is sold:

3 1

51252:1 and /8321 /84:ﬂ.

The AC equilibrium allocation is unique with agents 2, 3 and 4 active and agent 1 left
out. Comparing the two allocations we find that agent 1 always prefer RP to AC, and
agents 3,4 always prefer AC to RP. As for agent 2, he prefers RP if and only if uy < 2.6.
Finally, total surplus collected may be larger in either one of the two allocations, but the
ratio remains close to one. When (u;)}_, varies within the limits given in (8), the bounds
of this ratio are: 0.865 < grp < 1.042.

The entire discussion ngSection 4 remains valid in the discrete economy. One can
prove the analog of Proposition 3 about which agents prefer RP over AC and vice versa,
and of Proposition 4 about the property gac < qrp = 0ac > orp. The same holds true
for Propositions 5, 6, 7 and 8, all of which have exactly the same interpretations as in the
continuous model.

We turn to a statistical comparison of RP and AC in discrete economies with quadratic

costs and a large number of agents.

6 Statistical comparison of RP and AC

In this section, we compare the asymptotic behavior of AC and RP from a statistical
angle. We look at a discrete economy with quadratic cost ¢, = ¢ and a large number of
agents, and we randomize over all profiles of types.

Here we consider a population where all n agents are potentially active in the dis-
tribution process (i.e., Ny = ), and have a highest possible utility for service strictly
smaller than cg;i. The number of overall possible profiles is the number of ways one
Q+n—-1

Q-1

(BE-statistics in short), the uniform distribution over all these possible profiles of types.

can distribute n balls into ) urns: ( ) . We call Bose-Einstein statistics

The asymptotic BE-statistics is the limit of this probability distribution when the

number n of agents, as well as the number () = n/7y of units distributed (where v is
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fixed), goes to infinity. One then obtains the following convergence result: the variance
of the random variable a:g\z) = q](\z) /Q (where M = E or RP or AC) converges to zero
asymptotically. Hence its limit x; behaves according to a Dirac measure with probability

1 on the asymptotic limit of the mean of the random variable qJ(\Z) /Q.

Proposition 9 Asymptotically under the BE-statistics, with probability one, the efficient
proportion xg of the Q) units that should be distributed, and the proportion rrp (resp.
xac) of the Q units that is distributed by RP (resp., by AC under the assumption of

quadratic costs) are:

8l 2y

rp=——, rrp=1—¢€", Tao = —— .
E S+l RP AC )

The interpretation is clear. Asymptotically, a profile of types chosen at random among

all the possible ones® will almost surely have the above ratios.

Proposition 10 Asymptotically under the BE-statistics, with probability one, the ratio
of the efficient surplus secured by RP and AC are:

1 4 1
OrP _ Y F (1—e2), gAac (v + 3
OE 27y OR (v+2)

Comparing with Proposition 2, we find that the quantity produced and surplus col-
lected under the Bose-Einstein statistics are exactly the same as under the linear demand
economy of Section 3! In particular, as shown by Figure 4, AC overproduces more than
RP for any crowding factor. In terms of surplus collected, AC mildly outperforms RP if
v is below 2.4 and RP strongly outperforms AC when + is above 2.4. See Section 3.

The Bose-Einstein statistics over profiles of types results from a simple urn model? for
dispatching agents within the intervals of marginal costs. Consider an urn containing @)
balls, one for each type. Agents line up in front of the urn in a random order, and the
first one selects his type by drawing a ball at random in the urn. He then puts back the
ball into the urn together with one other of the same type. Hence the urn is modified:
the second agent in line chooses his type by drawing a ball at random in the urn —which
contains now () + 1 balls— and puts it back into the urn with one more of the same type.
Consequently, all agents draw and modify the urn which at the end of the process contains

@ +n balls. This way one generates the Bose-Einstein statistics over the profiles of types:

8Recall that n agents are dispatched within @ types at most (some types can be empty, even the last

one: Q).

9Known as the Polya-Eggenberger urn schemes.
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a type which has already been drawn is more likely to be drawn once more. Hence the
economy is more homogeneous that if the urn were not changed after one draw. This
last case corresponds to the Maxwell-Boltzmann statistics, which obviously generates an
almost uniform profile of types if n >> ). Thus Propositions 9 and 10 hold under the
MB statistics as well, and in that case they follow at once from Proposition 2.

One basic point is that the intervals of marginal costs are implicitly assumed to be
approximately of the same length, so that they can all be represented by one and only one
ball inside the urn. This is the case as soon as the marginal cost curve keeps asymptotically
a linear direction (with positive, finite slope), the reason why we only used quadratic costs

in this section.

7 Concluding comments

Does RP outperform AC as a simple mechanism to manage the commons?

The answer is unambiguously yes when the demand function is uniform, or nearly
uniform (see the discussion of Sections 3 and 6), and Propositions 8 establishes that the
answer is yes whenever the commons are sufficiently crowded.

The robustness of these results could be tested in several natural variations of the
model. One of them is the dual ‘output sharing’ game, where each agent contributes 0 or
1 unit of input (e.g., labor) and total output F'(y) produced when y agents do work must
be shared among all these workers. This second model is standard fare to discuss the
exploitation of natural resources, such as fisheries (Gordon (1954), Levahri and Mirman
(1975)), forests, oil reserves (Dasgupta and Heal (1979)), etc. Input represents the fishing,
logging or pumping effort and output is the total catch. It is easy to adapt our results to
the output sharing context.

Another natural variation of our model is to allow for variable demands: agents can
buy more than one unit of the good. The RP mechanism generalizes as follows: units
of output with increasing marginal costs are successively offered to an agent selected
randomly and without bias from the pool of active agents —where an agent is active as
long as he did not refuse any such offer. When the pace of discretization (the size of
each indivisible unit) goes to zero, this mechanism converges to the serial cost sharing
mechanism analyzed by Moulin and Shenker (1992). The welfare comparison of the serial
and average cost sharing mechanisms is still a widely open subject: see, however, Moulin
and Shenker (1994) and Chapter 6 in Moulin (1995).
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Appendix 1

From the continuous to the discrete model

We fix a continuous economy (d,mc) and construct a canonical £ of discrete economies, one for each
cardinality of A/, approximating more and more finely the continuous economy.

From now on, fix the size, n of N. Consider the discrete economy £ with n agents. We label the
potential users of the service: agent i, with 1 < i < n. Fix the utility profile in the following way: for all

i, 0 <i <n—1, agents i has a utility (reservation value) for the service:

up=d! <%(n - i))

where for all x > 0, d~!(x) = sup {p > 0| d(p) > x}. If the service were proposed for free, each agent
would demand one unit, therefore n units of service would be provided. Hence along the quantity axis,
the unit measure is —. Given the utility profile, since the agent with the highest utility is agent labeled

n
n (with a utility P), the maximum number of units of service that the institution can possibly provide is

X
approximately <™ In fact we define it as'”:

We fix the marginal costs of the successive units of service produced to be, for all ¢, 1 < ¢ < Q + 11,

_ X
cq—mc<Q+1q> .

For future reference, we compute the profile of types of the economy £(. Define the function &,

from the unit interval [0, 1] into itself by:
1 —
Vi € 10,1],6(t) = b d dome(Xt) .
The function ¢ is continuous, nonincreasing and 6(0) =1, §(1) = 0.
Lemma 1 For the discrete economy E™, for all q, 1 < q < Q, the number of agents of type q is:
1
[CON P S S B O P
= (gt) |- (@)

0Denote [z] the smallest integer higher than or equal to z; and |x| the highest integer smaller than

or equal to x.
"The (Q + 1)-th unit is never sold.
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and the number of agents of type at least q:

o [o)]

Proof: Recall that agent i is of type ¢ if and only if ¢; < u; < cgq1. Then for all ¢, 1 < ¢ < Q 12

1
n, ﬂ{z,Ozn |n5(Q+1 <n-—i<nb 0+1 ,

and an integer k is strictly smaller (resp. weakly bigger) than z if an only if it is strictly smaller (resp.

weakly bigger) than [2]. Here we take k = n — 4, and the desired formula obtains at once. O

Hence the function ¢ is the distribution function of agents across the intervals of marginal costs.
Fortunately, when n goes to infinity and the discrete economies (N, u, ¢) converge toward the contin-

uous economy (d, mc), the limiting behavior of the sequence (3,) is given by a simple threshold function,

which allows us to compute easily the quantity produced and surplus collected at the RP equilibrium in

the continuous model. The following theorem is a rigourous proof of Proposition 1.

Theorem 1 (Crés and Moulin (1998)) In the continuous economy defined by the demand and marginal
cost curve d and mc, the RP equilibrium allocation produces the quantity qrp with probability one, where

qrp is defined as follows:

X1 dx
=X ) — <1
qrP 1 f /0 Ame(@)) =
dRrRP dx
qrp € [O, Xl[ solves /O W =1 otherwise.

q

An agent of type p = mc(q) receives service with probability / and his expected payment is

dx
o d(me(z))

" me(x) dz -
/0 d(me(x))’ where ¢ = min{q, grp}.

In other words, the sequence of “curves” ((q/Q,ﬂq)?:l) converges pointwise toward the threshold
n

“function”:
0 for x > xrp = qrp/ X1
O.(x) =14 [0,1] forz=axgp
1 for x < zpp

As for the argument of convergence of the AC equilibrium in the discrete case toward its continuous

version, it is standard and omitted.

Appendix 2: Proofs in the continuous model

Proof of Proposition 2: Omitted, straightforward. O

12The symbol § Z stands for the cardinality of the set Z.
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Proof of Proposition 8 and 4: A consequence of the proof of their analog in the discrete case, in Appendix

3, and of the limit argument. O

Proof of Proposition 5, 6 and 7- Fix mc and d. Suppose 1/d is concave on [0, mc(gac)] and apply Jensen’s
inequality to this function and the following integral:
1 qac 1 1 1 qAC 1
—_— —[me(t)]dt < = —/ mctdt)z—.
qac Jo d[ ()] d (qAC 0 Q dlac(gac]

By definition, gacis the solution of dac(qac] = ¢ so the above inequality gives
qgAC 1
/ ————dt <1 implying gac < qrp by Theorem 1 .
o dme(t)]

Next we suppose that 1/d is convex on [0, P[ and show gac > grp. From Proposition 1, ggp is not
larger than X, therefore if gac > X3 there is nothing to prove. Assume now gac < X7 <= mc(qac < P.

From Proposition 1 and Jensen inequality for the function 1/d on the interval [0, mc(gac)], we have:

qAC 1 qRP 1
/o d[mc(t)]‘“zlz/o dmed] "

and the desired conclusion gac > qrp-
Finally we suppose that D/d is affine. First we check that 1/d is convex. Set f = 1/d. If f is twice
differentiable, its convexity obtains easily by differentiating D/d = D - f twice:

D-f=—-d-f+D-f=-14+D- f and O=D~f:—g~f+D~f:>f:T20.
The easy argument in the case where f is not twice differentiable is omitted.
As 1/d is convex, Proposition 7 implies gac > grp. We combine this inequality with the fact that
an affine function commutes with the integral operation:

1 aac p _ 2 L qac e _ D[ac(ch)} _ OAC
me gt =G (G [ et ) - o -

q94c D drP )
e g = / Zme(t)dt > / = me(t)dt = onp
0 0

Proof of Proposition 8: The first assertion, lim ggp = X7, follows easily from Theorem 1. Moreover, for A
infinite, (Ad)~1(t) — P for all t; therefore we get straightforwardly lim gz = X;. Finally the limit value
of gac when \ — oo satisfies: lim gac = ac™*(P).

As a consequence )\lim D[ac(gac)] = 0, which implies the fourth equality. Finally the fact that
9E
/ [()\d)*l(x) —me(x)] dv — P — ac(X1) allows to conclude. O
0
Appendix 3: Proofs of Section 6

The parameter space of profiles of types: the (@ — 1)-simplex,
and the uniform distribution

A distribution (n1,n2,...,ng) can be represented by a point in the (@ — 1)-simplex:

Q
SQI:{A:(ADAQ,...,AQ)N | qu=1} :
q=1
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n
with A\, = —Z.
n

12 -1
Consider @)—1 random variables: X, X»,..., Xg_1, uniformly distributed in {0, — =, i , 1};
n'n

n
1

i.e., they all reach each value with proba 1 Reordering the @ — 1 points X1, Xs,..., Xg—1 in their

natural order, one gets () — 1 new random variables denoted X1y, X(2),...,X(g-1). These random

variables are called the order statistics. For notational convenience, we set X(g) =1, X(g) = 1.

There exists a simple characterization of the uniform distribution on the (¢ — 1)-simplex.

Q+n-1

Lemma 2 (Tovey (1997)) The uniform distribution on the ( ) attainable points of the sim-

plex Sg_1 is equivalent to taking the random variable A = ()\q)qul where A\g = X(g) — X(g—1)-

q)

We give now some properties of the distribution of the order statistics.
Lemma 3 For all g > 1, the distribution function of the q-th order statistics is

Y = Q-1 [(k+1\" [(n—k\*
rfro=t)-E (40 () (50"

r=q

k
Proof: The random variable X, is smaller or equal to — if and only if at least ¢ among the random

1 k k+1
variables X1, Xa,..., Xg_1 are in {0, —,...,—}, and the remaining ones are in {L,...,l}7 hence
n n n

the result. O

The uniform distribution over profiles of types

In the framework presented here, by setting, for all ¢, 1 < ¢ < @,
ng = n(X(q) - X(q,l)) thus my, =n(1— X(q,l)) ,

the uniform distribution over all attainable profiles of types is generated. The parameter space of profiles
of types being endowed with this statistics, we can study the asymptotic distribution (i.e., for (n, Q) —

n
00, with = — ¢, 0 < ¢ < 00) of the quantities distributed by each mechanism.

Q

Proof of proposition 9: For a fixed ¢, the probability that gr > ¢ is exactly the probability that m, > g,

then is equal, by lemma 3, to

Q-1 r Q—-1-r
q\ _ Q-1 q q
P{Xm—nél—g}—;:l( , )(1_n+1> <n+1) ’

This is exactly the probability that Q — 1 Bernoulli trials, with probabilities 1 — for success and

n —+

q T for failure, result in at least ¢ — 1 successes.

Let Yg_1 denote the ratio of successes in () — 1 Bernoulli trials, with probabilities 1 — % for
n

success. The mean and variance of Yg_1 are respectively (see Feller (1957)):

q 1 q q
E (Yo_1)=1- d Var (Yo_1) = 1- .
(¥o-1) ny nd Var (To-) Q—l( n+1>n+1
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q

—1
Hence by Chebishev’s inequality, for q >1

0-1 —n+1,0nehas:
q q—1

P{X_ <1——} - Py, >
(¢-1) = n {(Q 1)—Q_1}

2
q—1 q
< <m ) ) Var (YQ—I) .

n
Consider a sequence (n,Q) — oo in such a way that — — ~, and a sequence (q("’Q))(n’Q) such that

Q
g™
— 2z €[0,1]. Since lim Var(Yg_1) =0, the condition
Q (n,Q) 00
-1 T
lim L + 1 =zx+-—-1 >0<:>x>L
Qs @ —1 ' n+1 y y+1’

entails: 1i§n P{qr > q} = 0. Concluding through the same way in the other case, one gets:

(n,

0if 2>——
v+1

Iim P > =
i Plas 2} = 5
1if o< ——
v+1

We turn to the asymptotic distribution of gac. Under the assumption of quadratic costs and the
uniformity assumption, for a fixed ¢, the probability that gac > ¢ is exactly the probability that M et >
q, so it is equal, by lemma 3, to P {X(L%l]) <1- %} By an argument similar to the one used above,
this yields:

2
0 if z > =7
v+2
lim P AC > =
i P{g q} = ,
1if z< =1
v+2
The last case to be investigated is the one of Random Priority. Define the ()—1 new random variables
Zg = , 1 < q <@ —1, such that one also has Z;) = ———. The random variable Z, reaches
1-X, 1= X
with equal probability the n + 1 values {1, pomeERREE L, R R oo}. The same use of Chebishev’s
n— n—q
. . . q+1
lit Ids, for k > (Q — 1 ,
inequality yields, for (Q )n 1

1 k N7 1 1 1
PlZy<——2} < _ a4z Iy
1-4 Q-1 n+1 Q-1 n+l)n+1
Hence the cumulative distribution function of the random variable Z(; converges to a threshold function
1
with threshold at ¢ = %k — 1 (the function equals zero before g, one after).

Let us now prove by induction that for n > 0,

- —1
(n,g?ioop{zz(k SZ1 —qn}zo.

k
k=0 Q
Suppose it is true at rank ¢ — 1. One has

q q n
P{ZZ 21 q+1n}§ZP{Z(q):1_1ﬁ—n}x
k=0

k
k=0 Q




1 1
{ 1- a_q}. ©)

Fix € > 0. By the induction assumption and the Chebishev’s inequality respectively, there exists (ny, Q1)
such that if (n,Q) > (n1,Q1), then for h > ¢'3

= = 1 1 ¢

&
k=0 i=o ! Q Q Q

1 €

Therefore, separating the sum in the righthand side of inequality (9) into Z and Z, one gets, for

h=1 h=q
(na Q) > (’n’ly Ql))

P{quz gzl_ q+1)}§e,

kT
k=0 k=1 Q

hence the result. We can then prove that the cumulative distribution function of the random variable

1
- E Z(1) converges toward a threshold function with threshold at
1=
. - 1
- g — = ——Log(1 —x) .
q — £ x
k= Q

q q—1
1 1 1
Finally, given that Z == Z Z(), Trp is such that L (——) Log(1 —z) = 1, hence the result. O

=1 Tk "0 Y T
Proof of proposition 10: Tt is a direct corollary of the preceding proposition. The asymptotic threshold
for the quantities distributed yields an asymptotic threshold for the surpluses generated. Under the

assumption of quadratic costs, the surplus generated by the g-th unit distributed is contained between

an(lc —q) and an(lc — @+ 1). Its normalized mean value (i.e., mean value divided by @?) then

k=q

(1)
2

converges toward . The normalized mean value (i.e., mean value multiplied by n) of the ratio

1
— converges toward
m 1

. Hence the normalized mean value of the surplus generated by RP is
q x

e 1 (1 g)? 1
= V7Y o=z
ORP /0 i

1-— 6727) .

The distribution of surpluses degenerates around this mean value, since its variance can easily be bounded
above by use of the variance of the distribution of the quantities distributed, which itself converges toward
0 thanks to the preceding proposition.

The same line of argument gives the normalized mean value of the efficient surplus

B 2

y X Y
o = 1—a)de — £ = _—— |
xe)

13Recall that % — ¢, and (@), o) is such that — z € 10,1].
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and the normalized mean value of the surplus generated by AC:
ZAC 2
E Tac 2y
oAC = 1—2)der — 4% = ———— .
W/o (= 2 (v+27

Hence the proposition. O
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