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Abstract

We consider bilateral matching problems where each person views
those on the other side of the market as either acceptable or unacceptable:
an acceptable mate is preferred to remaining single, and the latter to an
unacceptable mate; all acceptable mates are welfare-wise identical.

Using randomization, many efficient and fair matching methods de-
fine strategyproof revelation mechanisms. Randomly selecting a priority
ordering of the participants gives a simple example.

Equalizing as much as possible the probability of getting an acceptable
mate accross all participants stands out for its normative and incentives
properties: the profile of probabilities is Lorenz dominant, and the reve-
lation mechanism is groupstrategyproof for each side of the market.

Our results apply to the random assignment problem as well.
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Random matching and assignment
under dichotomous preferences

1 Introduction

The bilateral matching problem occupies a special place in the mechanism design
literature, combining strong empirical relevance and an interesting mathemat-
ical structure (see Roth and Sotomayor [1990]). The celebrated Gale-Shapley
algorithm selects an efficient matching with strong incentive properties: it is
stable in the sense of the core, and strategyproof with respect to the side of
the market actively proposing to the other side (though not with respect to the
passive side).

We consider the important special case of the bilateral matching problem
where each man (resp. woman) evaluates each woman (resp. man) as acceptable
or unacceptable: being matched with an acceptable (resp. unacceptable) mate
is better (resp. worse) than remaining single, and two acceptable mates yield the
same welfare. Abusing language slightly, we speak of dichotomous preferences,
to capture the idea that the preferences of an individual are entirely described
by the subset of his or her acceptable mates'.

For convenience we use the marriage terminology, but we have in mind other
kinds of matching than sharing a life—for which a single binary criterion is an
utterly insufficient model! Examples relevant to our model include matching
managers to support staff, when a staff person is acceptable to a manager if and
only if he has certain skills, and a manager is acceptable to a staff person if and
only if she is not requesting “hard” tasks; or matching professors to research
assistants, when the professor is acceptable to the student if and only if he
works in a certain area, and the student is acceptable to the professor if and
only if he is willing to do certain chores; or matching pilots to copilots, nurses to
doctors, and so on. For this kind of matching problems, time-sharing is a simple
and commonly observed tool to divide fairly the indivisible market participants.
Randomizing over different matchings is formally equivalent to time-sharing,
and is the accepted terminology in the assignment problem discussed below.
We adopt it for matching as well.

In the classical bilateral matching model, the assumption that preferences
over potential mates are strict is essential: see sections 2.3 and 2.5.1 in Roth and
Sotomayor [1990]. By contrast, widespread indifferences are the very subject
of our model, and indeed our results differ sharply from those of the classical
model. The main new feature is that the problem of efficiently matching a set
M of men and a set W of women, all with dichotomous preferences, decomposes
in two disjoint subproblems M°, W? and M¢, W°. The women in W% compete

1Yet individual’s preferences have at least three indifferences classes corresponding to being
matched with an acceptable mate, or an unacceptable one, or remaining single. Moreover,
preferences among unacceptable mates do not matter, as we only consider voluntary (individ-
ually rational) matchings.



for the men in M?, and the latter can—and will, in any efficient matching—all
be matched to some subset of W?. The roles of men and women are reversed in
M9, We. Because the only action in the efficient subproblem M, W is which
women get matched and which don’t, we can think of M? as a set of passive “ob-
jects”, to be assigned to the agents in W%, In this view, the matching problem
reduces to a pair of assignment problems, a crucial simplification allowing us to
develop in parallel the analysis of the matching and the assignment problems.

Dichotomous preferences are equally natural in the assignment problems.
Think of housemates distributing single rooms, when a “good” room may be
one with a private bath for some agent, one with a private phone for another
agent, and so on; another example is the assignment of softwares to workers
when a given software can be compatible or not with a worker’s own machine;
or the scheduling of a list of jobs by a single server among a given set of time-
slots: each customer requesting one job finds only certain time-slots acceptable
(e.g., the job is useless after next Tuesday, or can only be done on week-ends,
and so on).

Barring monetary compensations, we use randomization (time-sharing) to
achieve a fair compromise among efficient matchings, or assignments. This nor-
mative interpretation of randomization is not new in the literature on assignment
(see Section 2), but it does not appear in the matching literature. Our main
finding is that the three enduring goals of mechanism design, efficiency, fairness
and incentive compatibility, are compatible under dichotomous preferences.

In the rest of this section, we outline our results. The first observation is
that, in the dichotomous domain, the set of matchings stable in the sense of the
core is nothing more than the set of efficient and voluntary matchings. Indeed,
an objection by an unmatched man and an unmatched woman who are mu-
tually acceptable is also a Pareto improvement?. Secondly, the decomposition
of efficient and voluntary (deterministic) matchings in two disjoint efficient as-
signments implies that the total number of men—and women—matched in any
efficient matching is a constant e, a number that we call the efficiency size of
the given matching problem. Conversely, a matching where e men and e women
are matched is efficient.

Randomization (time-sharing) is easy to evaluate in the dichotomous do-
main, because utility takes only two values, 0 if single, and 1 if matched. Thus
the probability to get an acceptable mate is the canonical utility function® over
random matchings. A crucial consequence of the definition of e follows: a ran-
dom voluntary matching is efficient ex ante (i.e., with respect to the profile of
probabilities of getting an acceptable mate) if and only if its efficient ex post,
namely if with probability 1, e men and e women are matched.

This fact allows us to construct many efficient, fair and strategyproof match-
ing methods. The simplest example uses the familiar idea of selecting randomly,
and with uniform probability, a priority ordering of the participants. We call

2Note that “weakly improving” objections often lead to an empty core, for instance when
we have one woman and two men, and every mate is acceptable to every one.

3First order stochastic dominance is a complete preordering of all random matchings, and
the axiomatic apparatus of the von Neumann-Morgenstern utility theory is superfluous.



it the random priority solution. For any fixed ordering of the set of men and
women, the corresponding lexicographic maximization of utilities over volun-
tary matchings yields an efficient deterministic matching (unique utility-wise):
this matching method is clearly strategyproof. When we randomize with fixed
probabilities over all orderings of the set of agents, strategyproofness is clearly
preserved, and so is efficiency. The former statement does not depend upon the
assumption of dichotomous preferences, the latter one does.

In the spirit of random priority, we construct a different solution averaging
over all efficient deterministic utility profiles, and show (Lemma 8) that this
uniform solution also combines efficiency, fairness and strategyproofness.

If random priority is an important and versatile idea for fair division, an
even more basic concept is that of equalizing utilities in the sense of the leximin
ordering, i.e., maximizing first the smallest individual utility, then the next
to last utility, and so on. Our main result is that the maximization of the
leximin ordering when utilities are the probabilities of being matched delivers a
random matching method that stands out both for its normative (Theorem 1)
and incentive properties (Theorem 2). The former result says that the utility
profile corresponding to this egalitarian solution maximizes much more than the
leximin preordering: it first-order stochastically dominates any other feasible
profile (when utilities are rearranged increasingly), a property known as Lorenz
dominance. This implies for instance that the egalitarian solution maximizes
the Nash product of individual utilities, and, more generally, the sum of any
concave transformation of individual utilities. Theorem 1 also provides a simple
algorithm to compute the egalitarian solution.

The latter result (Theorem 2) establishes the very strong incentive proper-
ties of the egalitarian solution related to joint misreport of their preferences by
coalitions (subgroups) of agents. Because the domain of dichotomous prefer-
ences is of much smaller size than that of strict preferences (2" versus n!) it is
easier for the agents to learn about their mutual preferences, which facilitates
the formation of coalitions.

A mechanism is called groupstrategyproof if no coalition can increase the
utility of at least one member, without decreasing that of at least one other
member. We show that the egalitarian solution is groupstrategyproof with re-
spect to all-male and all-female coalitions (Corollary to Theorem 2).

By contrast, neither the random priority nor the uniform solution are group-
strategyproof with respect to all-male, or all-female, coalitions. Moreover Lemma
7 shows that no deterministic matching method is groupstrategyproof with re-
spect to all-male, or all-female, coalitions. It is easy to check the latter claim
for a fixed priority method. Say that three men share two women by the fixed
priority: my = meo > ms. Each woman finds all men acceptable, m; likes w; and
wa, My likes only wq, and mg likes only ws. For these true preferences (mq, ws)
and (mq,w;) are matched. However m; can help ms at no cost to himself, by
reporting that he likes only wy, resulting in the matches (my,w;) and (ms, w2).

When we allow for manipulations by coalitions mixing some men and some
women, strong impossibility results obtain. No efficient solution treating equals
equally is even weakly groupstrategyproof; the same is true of any solution



selecting a utility profile without specifying the probabilistic matching to im-
plement it: Theorem 3.

The paper is organized as follows. Section 2 reviews the relevant literature.
The model is defined in Section 3. Efficient voluntary matchings (and assign-
ments), deterministic as well as random, are characterized in Section 4. The
egalitarian, random priority and uniform methods are defined and compared
in Section 5. Strategyproofness and groupstrategyproofness are the subject of
Section 6. Further fairness properties in the random assignment problem are
discussed in Section 7; in particular we give a competitive interpretation of the
egalitarian random assignment (corollary to Theorem 1). Section 8 gathers some
concluding comments.

2 Relation to the literature

A bipartite graph between a set of men and a set of women connects some men
to some women by edges. A matching is a subset of edges of the graph such that
each point (man or woman) is in at most one edge. Matching theory explores the
properties of inclusion maximal matchings, simply called maximal matchings. If
we interpret the presence (resp. absence) of an edge in the graph joining m to
w as “man m and woman w are mutually acceptable”, then maximal matchings
are precisely efficient and voluntary matchings. The decomposition of efficient
matchings in two disjoint efficient assignments is then a simple reinterpreta-
tion of the well known Gallai-Edmonds decomposition of bipartite matching
graphs: see Theorem 3.2.4 in Lovasz and Plummer [1986], an excellent survey
of matching theory.

The economic theory of bilateral matching under strict preferences—surveyed
in the classic book by Roth and Sotomayor [1990]—does not address fairness by
randomization, but examines in great details strategyproofness and core stabil-
ity. Roth [1982] shows that no mechanism selecting a core stable matching at
all profiles can be strategyproof for both men and women. This incompatibility
disappears under dichotomous preferences, because core stability boils down to
efficiency and voluntariness: for instance a fixed priority matching method is
core stable in the latter domain, but not in the strict preference domain. Theo-
rem 2 and Lemma 8 offer a large family of core stable and strategyproof random
matching methods.

In the classical (strict preferences) domain, the man-optimal Gale Shapley
algorithm selects the best core stable matching from the point of view of men.
This mechanism is groupstrategyproof for the men but manipulable by women
(Dubins and Freedman [1981], Gale and Sotomayor [1985]). Our egalitarian
solution, by contrast, is groupstrategyproof for either side of the market.

The small literature on random assignment under strict preferences is very
relevant to our work. Hylland and Zeckhauser [1979] defined a fair and efficient
solution, adapting to the random assignment problem the familiar competitive
equilibrium with equal incomes. Yet this competitive solution is not incen-
tive compatible, and in fact Zhou [1990] establishes the general impossibility



of achieving ex ante efficiency (when preferences over lotteries are described
by von Neumann-Morgenstern utilities), fairness (in the minimal sense of equal
treatment of equals), and strategyproofness.

If the efficiency requirement is weakened to ex post efficiency (each deter-
ministic assignment chosen with positive probability is Pareto optimal), these
three properties are met by the random priority mechanism, ordering the agents
randomly and letting them pick successively their best object still available, a
well defined procedure under strict preferences. This mechanism is ex post ef-
ficient, strategyproof, and treats equals equally. It is not, however, ex ante
efficient (Bogomolnaia and Moulin [2000]). Interestingly, it can be interpreted
as the competitive equilibrium with random property rights (Abdulkadiroglu
and Soénmez [1998]).

Our egalitarian and random priority solutions adapt the above two methods
to dichotomous preferences, and extend them to bilateral matching.

A recent flurry of papers on the deterministic assignment of indivisible goods
bears some relation to our work. The central question of that literature is to
characterize the set of efficient and incentive compatible (strategyproof) assign-
ment mechanisms. The fixed priority mechanisms and the competitive trade
mechanisms (from a fixed distribution of property rights over objects) stand
out in this set, but interesting compromises emerge as well: Papai [2000]. This
literature almost always assumes strict preferences (a few exceptions are dis-
cussed below). Fairness in the sense of equal treatment of equals is ruled out
because attention is restricted to deterministic assignments. However, the tests
of resource and population monotonicity play a role: Ehlers and Klaus [2000],
Ehlers, Klaus and Papai [2000].

Svensson [1994], [1999], and Bogomolnaia and Deb [2000] consider the de-
terministic assignment problem in the full domain of complete and transitive
preference relations, thus allowing for strict and for dichotomous preferences.
Fixed priority mechanisms are strategyproof and non bossy. Conversely, these
two properties force the mechanism to resemble closely a fixed priority one; the
additional property of neutrality captures precisely the fixed priority mecha-
nisms. In the same domain of preferences, Wako [1994] shows that competitive
trades may not be efficient.

3 The model

A matching problem consists of a finite set M of “men”, a finite set W of
“women”, and two M x W zero-one matrices RM and RW, representing di-
chotomous preferences of men over women and of women over men respectively.
An entry RM,,,, = 1 if woman w is acceptable for man m, and RM,,,, = 0 if
she is not acceptable for him (and similarly for RW). Thus, each row RM,,
of RM represents the preferences of a man m, and each column RW™ of RW
represents the preferences of a woman w.

Each person prefers to be matched to an acceptable person of the opposite
gender to being unmatched, but would rather be alone than matched to an



unacceptable person.

We assume throughout the paper that matching is voluntary, namely two
individuals can be matched only if they like each other. We refer to this im-
portant assumption as the individual rationality restriction. It implies that all
the information about feasible matchings and relevant preferences is conveyed
by a single M x W zero-one matrix R, equal to the entry by entry product of
RM and RW: R, =1 if and only if RM,,,, =1 and RW,,,,, = 1, i.e., if and
only if man m and woman w are mutually acceptable (we then say that they
are “compatible”). We call the triple (M, W, R) the individually rational (ir)
reduced problem of the problem (M, W, RM, RW).

Thus we work most of the time with the ir-reduced model (M, W, R). The
only exception is Section 6 devoted to strategic behavior: there the matching
mechanism computes the ir-reduced problem from the reported preferences RM
and RW.

As this will cause no confusion, we use the notation R,, (resp. R™) both
for the row (resp. the column) of R and for the subset of women (resp. men)
who are compatible with man m (resp. woman w). For any subset S of men
(resp. subset B of women)—also called a coalition—we write Rg = Ug R, (resp.
RP = UpRY) for the set of people of the opposite gender, compatible with at
least one person in S (resp. B).

The same triple (M, W, R) can be interpreted in a different way. Suppose
we only care about the interests of the one side of the matching market (say,
M). We obtain an assignment problem, where we interpret M as the set of
(gender neutral) agents, W as the set of objects to be assigned to M, and R as a
representation of dichotomous preferences of the agents in M over the objects in
W. We use the same notation as in matching problem, and interpret R, = 1/0
as “object w is good/bad for agent m”.

When interpreting (M, W, R) as a matching problem, all persons in M UW
are endowed with preferences, whereas in the assignment interpretation, only
the agents in M have preferences®.

To distinguish between the matching and assignment interpretations of the
problem (M, W, R), we speak of persons in the former, and of agents and objects
in the latter. For brevity, we state formal definitions and results in the most
convenient interpretation, with a brief mention of the corresponding statement
in the alternative interpretation. Moreover, in the case of matching the two
sides have perfectly symmetric roles, so we often state a one-sided result (one
where the roles of men and women are different) without repeating that the
symmetric one-sided result holds as well.

A deterministic matching p of the ir-reduced problem (M, W, R) is a subset

41t turns out that, in the assignment problem, the interpretation of agent’s preferences is
more general than in matching. In the latter, our results require that “remaining single” be
strictly preferred to “being matched to an unacceptable person”, whereas in assignment all
results are preserved if we only assume that “receiving no object” is not worse than “receiving
a bad one”; moreover, receiving no object may not be an option at all. See Comment 2
in Section 8. For the clarity of exposition, we interpret preferences in the assignment and
matching problems in the same way.



of M x W, such that (m,w) € p only if Ry, = 1, and any person appears
there at most once: for any m € M (resp. w € W) there exist at most one
w € W (resp. m € M) such that (m,w) € p (resp. (m,w) € w). Persons who
appear as a component of a pair from u, and only those, are matched by pu.
We write A(M, W, R) for the set of deterministic matchings. The definition of
a deterministic assignment p is identical; we say that an agent m is assigned if
and only if there exists an object w, such that (m,w) € p.

A random matching is a lottery m on A(M,W, R). For all our results, the
only relevant information about a random matching 7 is the random allocation
matriz Z, giving for all m and w the probability z,,, that man m and woman
w are matched, i.e., the probability that 7 selects a deterministic matching u
such that (m,w) € p. Thus the M x W matrix Z is substochastic, that is to
say it is non-negative and the sum of each row and each column is at most 1;
MOTEOVET Zpy,, 1S positive only if man m and woman w are compatible.

The mapping from a random matching 7 to its allocation matrix 7 is clearly
not one-to-one. A variant of the Von Neumann-Birkhof theorem on bistochastic
matrices (Lemma 2.1 in Bogomolnaia and Moulin [1999]), implies that it is onto
the following set of M x W matrices:

Z(M,W,R) ={Z | Z is substochastic and Ry = 0= 2z =0} (1)

Given a random allocation matrix Z, we interpret the probability that a
given person is matched as his or her utility. Denoting by Z,, the m-th row
of Z (man m’s random allocation) and by Z* the w-th column of Z, we write
these utilities as follows:

Uy (Zm) = szw = szw, vy (ZV) = szw = Z Zmw (2)
w R, M

Rw

We denote by UV (M, W, R) the set of feasible utility vectors (of length | M|+
|[W1), namely the image of Z(M, W, R) under the utility functions (2). We say
that the utility vector in (2) is implemented by Z.

When talking about assignment problem, we only look at feasible utility
vectors u of length |M| and denote their set by U (M, W, R).

An (assignment or matching) solution is a mapping (M, W, R) — Z associat-
ing a random allocation matrix to any problem. A welfarist solution only keeps
track of the utility profile: it is a mapping (M, W, R) — (u,v) € UV(M, W, R)
(matching) or (M, W, R) — uw € U(M, W, R) (assignment). The priority solu-
tions defined in Section 4 and the three randomized solutions in Section 5 are
welfarist.

4 Efficiency

A person who is not compatible with anybody (R, = # or R* = ) has no
bearing on efficiency, and can simply be ignored. We assume R,, # 0 and



RY # () for all m,w in this section and the following one. For future reference,
note that such a “null” person could play a strategic role in a group manipulation
of the kind we discuss in Section 6 (by sending a non-null report).

For matching problems, if there is a way to simultaneously match all men
and all women, we say that M and W can be perfectly matched.

We first show that any efficient matching problem can be decomposed into
three disjoint matching problems: one group of men competes for a set of women
each of whom always get matched, another set of women competes for another
group of always matched men, and the remaining men and women can be per-
fectly matched.

We introduce this crucial result in an example with ten men and ten women,
and the compatibility matrix given in Figure 1. Consider first the subproblem
with the set of men M = {m;, ma, m3} and of women W< = {wg, wr, ws, we, wig}-
These three men can be matched to seven (out of ten) different subsets of three
women in W?: the three unfeasible subsets are the ones containing both w; and
wg, whose only mutually acceptable mate is msy. Note that any two women in
W who can both be matched (i.e., any pair except wr, wg) is contained in a
triple that can be matched to M°. It follows that a matching is efficient (and
voluntary) in our subproblem if and only if M° is matched to a subset of W9,
and there are seven such matchings (counting as one all matchings yielding the
same utility profile).

Next consider the larger subproblem with additional men M? = {my, ms, mg}
and women WP = {ws, w4, ws}. Note that no woman in W9 can be matched
with any man in MP?, and that M? and WP have a perfect match. Therefore
the efficient matchings in the subproblem M° U MP?, W< U WP simply augment
the efficient matchings of M°, WP by the perfect matching of M? to WP.

Finally, add the remaining M? = {my, mg, mg, m1o} and W° = {wy,wy}.
Note that no man in M? can be matched with any woman in W? U W¢, and
that W can be matched with any pair in M¢. Therefore there are six efficient
matchings (utility-wise) of M? and W°. We conclude that a matching of the
original 10 x 10 problem is efficient (and voluntary) if and only if M? and WP
are perfectly matched, M? is matched to a feasible triple in W9, and W? is
matched to a pair in M9

The structure of the efficient and voluntary matchings in the above example
is fully general. In the following statement, {S1, Sa, S5} is called a partition of
S if 51,55, 53 are disjoint subsets of S, their union is S, and at least one of
S1, S, 53 is non-empty.

Lemma 1 (Gallai-Edmonds decomposition)

Given a matching problem (M, W, R) with R,, # 0, R* # 0 for all m,w,
there is a unique pair of partitions {M®°, MP, M} of M and {W°, WP W4} of
W such that:

i) W? is only compatible with M°, and M° is overdemanded by W?:
RW" = M° and

10



|Rs N W9 >[S|  forall S C M° (3)

it) MP and WP can be perfectly matched
ii) M? is only compatible with W°, and W° is overdemanded by M?:
Ryra = W° and

RPN M >|B| forall BCW° (4)

We call M°, W° the sets of overdemanded persons, MP, WP the sets of
perfect persons, and M, W the sets of disposable persons.

Note in particular, that |[M°| < |[W?|, |MP| = [WP| and |[M?| > |[W°|. The
problem is trivial when the only non-empty sets are M? and WP.

The women in W¢ are compatible only with men in M¢° and are enough
to make everyone in M° happy: we can assign M° to W9, In fact (3) implies
‘RS N Wd\{wH > |S], hence by Hall’s theorem applied to the assignment of
overdemanded men, M® can be assigned to W\ {w}, for any w in W?. This
justifies our “disposable” terminology for the women in W¢.

Lemma 2 Notations as in Lemma 1. Define the efficiency size of problem
(M,W,R) as

e = [M°|+ [W?| +[MP| = |[M° + [W°| + [W?| (5)

A deterministic matching p € A(M, W, R) is efficient (Pareto optimal w.r.t.
the utilities (2)) if and only if its cardinality |u| = e, i.e., exactly 2e agents (e
men and e women) are matched by .

In all efficient matchings, M? is matched to a proper subset of W& , W© is
matched to a proper subset of M<, and MP and WP are perfectly matched.

When we interpret (M, W, R) as an assignment problem, we are only inter-
ested in assigning agents from M and do not care whether objects from W get
assigned. Lemma 1 becomes: there is a unique pair of partitions {M?, M?} of
M and {W°,W"°} of W, such that M® can be assigned to W"°, and W? is
overdemanded by M¢ (here M = M° U MP and W"° = WP U W4).

Efficient assignments are those which assign exactly e = |M?| +|W°| agents:
M must be assigned to W, and some S C M9, |S| = |W°|, must be assigned
to We.

Back to the matching interpretation, the gist of Lemma 2 is that, if |u| < e,
then there exist another, necessarily efficient, matching u/, || = e, ¢/ D p.
From the point of view of welfare, all that matters is which pairs of coalitions
(S, B) of size e, where S C M, B C W, can be matched and which cannot. We
call the former pairs efficient and denote their set by E(M, W, R). A person is
disposable if and only if there is an efficient coalition (S, B) to which he or she

11



does not belong. Note that by, Lemma 2, there is also an efficient coalition to
which he or she belongs (recall our assumption Ry, R, # ().

The only aspect of the efficiency frontier not determined by the partition of
Lemma 1 is this: which coalitions from M¢ can be (simultaneously) matched?
and which coalitions from W< can be matched? In the example of Figure 1 the
answer is, respectively, every pair of M? = {my, mg, mg, m10} and seven triples
from W9 = {we,wr, ws, we, w0} (the three triples containing w; and wg are
excluded).

The following notation will be useful. Given (M, W, R) and S C M, B C W,
we write (S, B, E) for the matching problem restricted to men in S and women
in B; thus R is the S x B submatrix of R.

By Lemmas 1 and 2, the initial problem decomposes into three disjoint
matching problems: (M°, W% R), (M?, WP R), and (M? W¢, R). Leave aside
the perfect matching of MP to W?. Since overdemanded persons always get a
match, we can consider (M°, W< R) and (M? W°, R) as assignment problems:
in the first one disposable men play the role of “agents”, and overdemanded
women the role of “objects”, while in the second one disposable women are
“agents” and overdemanded men are “objects”.

The efficiency size e = e(M, W, R) plays a crucial role throughout the paper.
We will need the following properties of e.

Lemma 3 Notations as in Lemmas 1,2.

me M°UMP < e(M\m, W, R) = e(M,W,R) — 1 (6)

me M s e(M~\un, W, R) = e(M, W, R) (7)

Lemma 4 Notations as in Lemmas 1,2. The efficiency size e(M, W, R) is sub-
modular in M and in W, and supermodular in M x W. In the following inequal-
ities, we write e(S, B) instead of e(S, B, R) :

e(S,W)+e(T,W) > e(SUT,W)+e(SNT, W), forall S,T C M
o(M,B) +e(M,C) > e(M,BUC)+e(M,BNC), forall B,C CW
e(S,B)+e(S',B") > e(S,B)+e(S,B), forall SCS" and all BC B’

A characterization, different from Lemma 2, of the set of efficient pairs
E(M,W,R), is derived from priority solutions, a special class of welfarist solu-
tions. Given a priority ordering >= of M U W, we define the >priority utility
profile as the >lexicographic maximum over the utility set &/). Thus the highest
priority person ¢; gets utility 1 because he or she is compatible with at least one
person; the next person in the priority line, io, gets utility 1 if there is a way to
match him or her without affecting the utility of person i1, otherwise this per-
son’s utility is 0, and so on. Priority solutions are efficient, and our next result
states that any efficient matching can be obtained as one of them. Moreover,

12



the efficient pair (.5, B) matched under a given priority ordering depends only
on the relative position of a person among others of the same gender: the utility
of a man does not depend on which women precede him and vice versa.

Lemma 5 Notations as in Lemmas 1,2. Given an ordering = of M, and an
ordering =w of W, all priority orderings > consistent with them both yield the
same utility profile u( =nr),v( >=w), and match the following pair S(>-), B(>):

m € S(-) & uy=1&eTU{m},W,R)—e(T,W,R) = 1,
w € B(-)ev,=1eM,CU{w},R)—eM,C,R)=1,

where T is the set of agents preceding m in >p;, and C is the set of agents
preceding w in =y . Moreover, every efficient pair (S, B) € E(M,W, R) obtains
as S(>), B(>) for some ordering = of M UW.

Similarly, in the assignment problem (M, W, R), a coalition of agents is effi-
cient if and only if its size is e(M, W, R) and it can be assigned to W. And the
set of efficient coalitions coincides with the set of coalitions which are assigned
by the > pspriority solution for some ordering ;s of M.

We turn our attention to efficient random matchings. Their description is
greatly simplified by the fact that all efficient deterministic matchings have the
same size (Lemma 2). Let 7 be a lottery over A(M, W, R), the set of determinis-
tic matchings. A necessary condition for the Pareto optimality (efficiency) of 7
with respect to the utilities (2) is that its support contains only efficient match-
ings (this is the familiar ex-post efficiency property). This condition is sufficient
as well: by Lemma 2 every efficient deterministic matching p maximizes the
joint utility >\, um + >y vw = 2e(M, W, R), and so does every lottery over
these matchings.

The final result of this section offers two more characterizations: of efficient
random allocation matrices Z thanks to Lemmas 1, 2; and of the utility efficiency
frontier thanks to Lemmas 3, 4, 5.

Lemma 6 Notations as in Lemmas 1, 2.

i) A random matching (assignment) is efficient if and only if, with probability
one, it matches 2e(M, W, R) persons (assigns e agents).

it) A random allocation matriz is efficient if and only if the sum of its entries
is e(M, W, R).

111) A random allocation matriz Z for matching problem is efficient if and
only if Zmw > 0 only for (m,w) € (M°,W%) u (M?,WP) U (M4 W?°), and
its restrictions to (MP,WP), to (M°,W?) and to (M?, W°) represent, respec-
tively, an efficient matching between MP and WP (i.e., the restricted matriz is
bistochastic), and efficient random assignments of W% to M° and of M< to W°.

iv) A utility vector (u,v) € [0, 1]M+W is feasible and efficient if and only if
it is a solution of the following system:
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Stm = Y v =e(M,W,R);Y up < e(S, W, R) for all S C M,
M w S

Zvﬂl
B

We denote by UV (M, W, R) the set of efficient feasible utility vectors. In the
assignment interpretation, the set of efficient and feasible vectors u € [0,1]M is
denoted by U¢(M, W, R).

IN

e(M,B,R) for all BC W (8)

Lemma 6 extends to efficient random matchings the three-fold decomposi-
tion of efficient deterministic matchings discussed before Lemma 3. The efficient
utility frontier UV (M, W, R) is the cartesian product of the three efficiency fron-
tiers UVE(M°, W, R), UVE(M?, W°, R), and UV*(MP, WP, R). The latter set
is trivial (all utilities are 1); the two former sets are described by their projec-
tions on W< and M? respectively (because all utilities are 1 in M° and W?),
namely the efficiency frontier 2/¢(M°, W4, E) of the female assignment problem
(M°, W, R) and U¢(M?, W, R) of the male assignment problem (M?, W, R).

>From the above discussion, we can canonically extend any efficient as-
signment solution—selecting for every problem (M,W,R) a utility vector in
Ue(M, W, R)—to an efficient matching solution. The canonical extension gives
to M?% and W9 the same utility as they would get, respectively, in the male as-
signment problem (M, W°, R) and the female assignment problem (M°, W9, R),
and utility 1 to everyone else. This fact greatly simplifies the notational burden
of the next sections.

Property iv) applied to the (male) assignment problem (M, W, R) charac-
terizes U¢ (M, W, R) by the following system:

>t = (MW, R); S i, < e(S, W, R) for all S C M
M S

This is the very definition of the core of the formal cooperative game S —
e(S, W, R), where e sets an upper bound on utilities instead of the more familiar
lower bound. This game has no useful interpretation in our model. Two familiar
“values”, the Shapley value and the egalitarian solution, are known to be in the
core if the game is submodular (Shapley [1971], Dutta and Ray [1989] ): they
correspond to our random priority and egalitarian solutions, respectively.

5 The egalitarian solution and two averaging so-
lutions

The egalitarian solution picks an efficient matching (or assignment) equalizing
the individual utilities as much as possible, i.e., the probabilities of receiving a
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good object. Its utility profile maximizes in UV (M, W, R) (or in U(M, W, R))
the familiar leximin ordering.

Pick a vector x and rearrange its coordinates increasingly: the resulting vec-
tor is denoted x*. The leximin ordering compares = and y like the lexicographic
ordering compares x* and y*. Thus z is strictly preferred to y if y7 < z7, or
{yf = o3 and y3 < a3}, or {yf = =f, i = 1,2, and y5 < 3}, and so on. The
leximin ordering has a unique maximum over any convex and compact set )
(or U) of utility profiles®, and this profile is on the efficiency frontier UV (or
ue).

In the example of Figure 1, women w; and wg are only compatible with ma,
therefore min{vr, vg} < 0.5 for any feasible utility profile (u,v). Men mz, mg, mg
and my have to share w; and wsy, so min{ur,ug,ug,u1g} < 0.5 as well. If we
reserve ms, w; and ws for these six disposable persons, they each end up with a
probability % to be matched. The remaining disposable women wg, wg and wyg
can share men m, and mg, so as to get utility % each (give % of mg to wig, %
of mg and % of my to wy, and % of my to wg). All other persons get utility 1.
This is the egalitarian solution.

We turn to a general assignment problem (M, W, R). An important property
of the egalitarian solution is related to the partial ordering known as Lorenz
dominance and defined as follows:

k k
zlory iff {Zx’{ > ny for all k}

t=1 t=1

If the arbitrary convex set U of utility profiles contains a Lorenz dominant
element u*, this profile has a very strong claim to fairness within the efficiency
frontier. Indeed, it achieves the maximum over I/ of any collective utility func-
tion averse to inequality (in the sense of the Pigou-Dalton transfer principle); it
is the unique maximum if the collective utility is strictly averse to inequality®.
Thus v* maximizes not only the leximin ordering but also the Nash collective
utility > ,,log um,, and any collective utility > ,, f(u,) for any increasing and
concave function f (if f is strictly concave, u is the unique maximum), and
more.

Theorem 1 states that the egalitarian solution of any matching or assignment
problem is Lorenz dominant among all feasible utility profiles.

In the statement of Theorem 1 we use the notations R(T) instead of Rr,
R(T,B) = R(T)N B and r(T,B) = |R(T, B)| for T C M, B C W. For any real
valued function h, the expression argming h(T") stands for the subset T of S
minimizing h over all subsets of S; if several subsets of S reach the minimum,
T is the largest one in the sense of inclusion: this is well-defined in our case,
because, for our choice of the function h, if two subsets minimize h on 2%, so
will their union.

Ssee, e.g., Lemma 1.1 in Moulin [1988].
6That is, collective utility increases from a Pigou-Dalton transfer. See, e.g., Section 2.5 in
Moulin [1988].
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The last piece of notation concerns the sequence Ty, k = 1,2, ..., of disjoint
subsets of M constructed in the Theorem. We write T,  for the union of
Ty, 15, ..., Tk.

Theorem 1 For any assignment problem (M, W, R), the feasible utility set U(M, W, R)
has a Lorenz dominant element denoted u® and called the egalitarian utility
profile.

To compute u®, we assume R; # O for all i and define a finite increasing
sequence of positive numbers ag, k = 1,..., K, of which all but at most one are
strictly below 1; and a partition of M by a sequence Ty, k = 1,..., K, of non-
empty coalitions:

My = MWy=W;My=M\T1_ 1 Wi=W\RT, 1)
. (T, Wg_1)
g T (9)
T, Wj,_
T, = M1 ifop>1; =argmin (T Wi1) if ap < 1
My |T|

The sequences ay, Ty stop at K where Ty
profile is:

r = M. The egalitarian utility

.....

up, =ag ifmeTy, fork=1,..,.K—1;, wu,=min{l,ax} if me Tk (10)

In the canonical extension of the egalitarian solution from assignment to
matching, the Lorenz domination property is preserved.

The algorithm (9) is related to the Gallai-Edmonds decomposition (Lemma
1) for assignment problems in the following way: if ax < 1, then M* =
M\M9 = ();if ax > 1, then Ty = M1 = M® and Wx_; = W™ = WIUWP.
In all cases, no agent in M? is assigned with probability 1.

The random allocation matrix (or matrices) Z implementing u¢ are largely
determined by the algorithm (9). The main fact, illustrated by Figure 2, is that
the objects in R(T), Wi_1) = R(T):)\R(T1.... k—1), and only those, are assigned
to the agents in Tj. This fact, and the related competitive interpretation of
the egalitarian matrices Z, are discussed in the section 7 below (section on
assignments).

The intuition behind algorithm (9) is straightforward. Consider T1: even if
we reserve R(T))—i.e., all the objects they like—for these agents, at least one
agent in 77 will not get more than a7 because the total utility of 77 cannot
exceed r(T1, W). Thus the maximin utility cannot exceed «;:

min u,, < oy for any u € U(M, W, R)

The egalitarian solution assigns R(77) to 11 (splitting equally r(T7, W)

among T} ) and repeats the same computation in the reduced problem (M, Wi R) :
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the key fact is that the new maximin utility as is greater than «q, thus the de-
cision to reserve R(Ty) to Tj is vindicated.

The main result in Dutta and Ray [1989], is related to—and used in the
proof of—our Theorem 1. Interpret the set U¢(M, W, R) of efficient utility vec-
tors as the core of the submodular cooperative game S — e(S, W, E) Theorem 3
in Dutta and Ray [1989] implies that ¢¢(M, W, R) contains a Lorenz dominant
element (the first statement of our Theorem 1) and computes it by an algorithm
identical to (9), except that (T, B) is replaced everywhere by e(T, B), the effi-
ciency size of the reduced problem (T, B, E) See the proof of Theorem 1. Note
that r(T, B) is computed by direct inspection of the matrix R, whereas comput-
ing e(7T, B) is the harder task of discovering the Gallai-Edmonds decomposition
of the subproblem (T, B, R).

We define now two welfarist solutions working by averaging instead of equal-
izing. As discussed in Section 1, random priority is a familiar idea in the as-
signment literature.

Definition 1 The random priority assignment solution is the uniform lottery
over all =priority solutions, one for each ordering > of M. Its utility profile for
the problem (M, W, R) is given by the formula:

=3y W{e(’fu{m},mé) _ o(T, W, R)}
p=0 TeS,(M\m)

for all m; S,(M\\m) is the set of coalitions of size p not containing m

In view of Lemma 5, the canonical extension of random priority to matching
problems can also be defined as the uniform lottery over all >priority matching
solutions, one for each ordering > of M U W.

In the example of Figure 1, the random priority utilities for disposable per-
sons are:

1 2
rp__rp _ 1., rp_,rp _ TP _ Z,
vyt = g =3 Vg = Ug —v10—3,

7
rp _rp_ ', p__ D _
Uy = Uy = Ug = Uyg =

12° 12’

Consider man my7: he competes for women w; and ws with mg, mg and mg.
His utility is 1 if he is the first or the second agent in > ,sa (probability i), or
if he is the third and my is not before him (proba. 1 - %) He is not matched if
he is the fourth. Man mg is matched if he is the first (proba. 1), or if he is the
second and myg is the first (proba. i . %) Women wy and wg have to share mo,
so each of them is matched if and only if she precedes the other one. Finally,
women wg, wy and wig can only be matched with m; or ms, and each of them

is matched whenever she is not the last of the three (proba. %)
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The allocation matrix implementing the above utility profile is not unique

in this example. Its restriction to the assignment problem (M9, W° R) could,
for example, be

1 1 5
:Z = — _— N Z :Z = — N
Ly 0= 5w + 1o W2 28 10 = 7502
5 2 7 5
or 7 12w1 + 121027 9 12w1, 8 10 12w2,

Our second averaging solution is similar to—and somewhat more natural
than—random priority. For the matching problem (M, W, R), the utility profiles
associated with the efficient coalitions are the extreme points of the efficiency
frontier UV®(M, W, R) (Lemma 6). It is natural to average (by means of a
uniform lottery) directly over the set E(M, W, R) of efficient coalitions instead
of indirectly over priority orderings: there is no compelling reason to give more
weight to an efficient coalition because it is matched under a larger number of
priority coalitions. Given the decomposition of E(M, W, R) in Lemma 2, this
amounts to average over the efficient coalitions in the two disjoint assignment
problems (M? W°, R) and (M°, W R).

In our example, we have five efficient coalitions for the male assignment prob-
lem (M? W°, R): we can choose any two men out of M? = {mz, mg,mg,mio}
except the pair (mg,m1g). Each of m; and mg belongs to three of them, so their
utility is %, while that of mg and myq is % For the female assignment problem

(M°, W, R), efficient coalitions include one women from the set {wr,ws} and
two from {wg, wy, w10} , so there are six of them. We obtain that

3
un __ un __ . un __ un __
U =Ug = ;5 Ug = U =

1
un un . un un un
5’ b =g = 9’ U =Ug =TV =

5 3
Definition 2 The uniform assignment solution for the problem (M, W, R) is the
following utility vector, where E(M, W, R) denotes the set of efficient coalitions
wm M :

un _ ‘Em(M’ VV? R)|
-= TEORAD] for all m,
where E,,(M,W,R) = {Se€EM,W,R)|meS}

The uniform matching solution is the canonical extension of the above so-
lution to matching. In view of Lemma 2, it can also be defined by the above
formula, where E(M, W, R) is the set of efficient coalitions S, B of the matching
problem.

6 Strategyproofness and groupstrategyproofness

We investigate in this section the strategic opportunities in the direct revela-
tion mechanisms associated with solutions (or welfarist solutions) of the as-
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signment or matching problems. Recall that a solution g maps every problem
(M,W, R) into a random allocation matrix Z, whereas a welfarist solution f
maps (M, W, R) into a utility profile u (or (u,v)). Thus every solution g projects
onto the following welfarist solution f(M, W, R) = u(g(M, W, R)).

Strategyproofness is not a welfarist concept: its definition requires to spec-
ify how the allocation matrix is affected when the reported preferences change.
When we speak below of a welfarist solution (such as the three solutions de-
fined in the previous section) being strategyproof (or any group variant of this
property) we always refer to the most demanding interpretation, namely “f is
strategyproof” means that “every solution g projecting onto f is strategyproof”.

It is convenient to discuss assignment solutions and welfarist solutions first,
because R is the only preference profile involved in the assignment problem
(M, W, R). The matching problem is more complicated because the two prefer-
ence profiles RM and RW are in play.

Definition 3 (assignment). The assignment solution g is called strategyproof
(SP) if for all m € M and any two preference matrices R, R' with g(R) = Z
and g(R') = 7"

{R’rrb’ = R;n’ fO’/” all m/ 7é m} = u'm(Z’m) > u’UL(Z':yL)

The solution is called weakly groupstrategyproof (WGSP) if for all S C M,
and any two matrices R, R' with g(R) = Z and g(R') = Z' :

{Ryy =R, for allm' & S} = {um(Zmn) > un(Z,,) for some m € S}

The solution is called groupstrategyproof (GSP) if under the same premises:

{R,w = R, forallm' ¢ S} and um(Z),) > wm(Zm) for allm € S}
= A{un(Z),) = um(Zm) for allm € S}

Clearly a priority solution is strategyproof, even weakly groupstrategyproof:
for any priority ordering > and any coalition S, the agent m with the highest
priority in S is preceded in > by a coalition T disjoint from S, hence this agent
cannot improve upon his own utility e(T' U {m}) — e(T).

But a priority solution is not groupstrategyproof as soon as M contains
three agents or more: the example at the end of Section 1 can be read as an
assignment problem where the highest priority agent m; can help the lowest
priority agent mgs at no cost to himself. It turns out that all deterministic
solutions are similarly vulnerable.

Lemma 7 With three or more agents and two or more objects, no deterministic
assignment solution is groupstrategyproof.

We observe now that SP is preserved by fixed probability combinations, but
WGSP is not. This explains the first two statements in our next result.
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Lemma 8 The random priority assignment solution is strateqyproof; it is not
weakly groupstrategyproof. The same is true for the uniform assignment solu-
tion.

Theorem 2 The egalitarian assignment solution is groupstrategyproof.

Comparing Lemma 7 and Theorem 2, we find that randomization is neces-
sary to achieve GSP in our model. We are not aware of another mechanism
design problem where randomization is necessary to combine efficiency and in-
centive compatibility.

We turn to matching problems. There the revelation mechanism works as
follows: men and women report their preferences RM and RW respectively,
and the solution g applied to the ir-reduced problem RM e RW implements the
random allocation matrix Z. Here the notation AeB stands for the entry-by-
entry product of the matrices A, B of the same size.

Definition 4 (matching). The matching solution g is called male-strategyproof
if for allm € M, and any three matrices RM, RM' and RW with g(RMeRW') =
Z and g(RM' e RW) =Z":

{RMyy = RM', for all m' # m} = wn(Zm) > um(Z,,)

The solution is called strategyproof if it is both male- and female-strategyproof.
The solution is called male-groupstrategyproof if for all S C M, and any three
matrices RM, RM'and RW, with g(RM e RW) = Z and g(RM' ¢« RW) = 7' :

{RM,,, = RM),, forallm' ¢S and u,(Zy) > um(Z,,) for allm e S}
= Aum(Zn) = un(Z),) for allm € S}

m

An efficient matching solution guarantees the utility 1 to every non dispos-
able person who therefore has no incentive to misreport. From the analysis of
efficiency in Lemma 6, it follows at once that if an efficient assignment solution
g? is strategyproof, its canonical extension g™ to matching is strategyproof as
well. Similarly, if g is efficient and groupstrategyproof (Definition 3), then g™

is both male- and female-groupstrategyproof. Hence

Corollary to Lemma 8 and Theorem 2 The random priority and uni-
form matching solutions are strategyproof. The egalitarian matching solution is
both male-groupstrategyproof and female-groupstrategyproof.

We turn to joint misreports by coalitions mixing some men and some women.
A simple example shows that no efficient solution is groupstrategyproof.

Assume M = {m}, W = {w;,wz}, and both women are compatible with
the unique man. Here m can enforce matching (m,w) by reporting that he only
likes w, so if a matching mechanism chooses (m,w;) with positive probability,
the coalition m, w;, j # ¢, can manipulate to the benefit of woman w;.
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When we only require weak groupstrategyproofness, a comparable impossi-
bility result obtains. Its proof is more involved, however. We start with the
definition of WGSP.

Definition 5 (matching). The matching solution g is called weakly groupstrate-
gyproof if for all S C M, all B C W, and any four matrices RM, RW, RM', RW’,
with Z = g(RM ¢ RW) and Z' = g(RM' « RW’') « RM e RW :

{RM,,» = RM], forallm’¢ S and RW,, = RW,, for allw' ¢ B}

m’

= Aum(Zm) > um(Zm) for some m € B or vy,(Z") > v, (Z2"™) for some w € B}

Definition 5 uses the full force of the individual rationality assumption. Fol-
lowing the misreport RM', RW’ by coalitions S and B, the solution g imple-
ments the allocation matrix Z = g(RM'e RW'). The pair (m, w) is incompatible
if RM - BWinw = 05 if Z > 0 for such a pair, the match (m,w) will be
implemented by g with positive probability, given the reported preferences, yet
it will not happen ex post because it is not voluntary for at least one of the
two persons. Thus the allocation matrix actually implemented under individual
rationality is Z ¢ RM e RW, as shown in Definition 5.

Consider the following example with four men and four women. Let m; and
wy like persons of the opposite gender numbered 2, 3 and 4, mo and ws like
persons 1, 3 and 4, while m3, m4 and ws, wy only like person 1. We have:

w1 wa w3 Wy w1 wa w3 Wy
mp; 0 1 1 1 mp; O 1 1 1
RM = my 1 0 1 1 ,RW= ms 1 0 0 0 |,
ms 1 0 0 0 ms 1 1 0 0
my 1 0 0 0 mg 1 1 0 0
wyp W2 W3 W4
my 0 1 1 1
soR = mo 1 0 0 0
ms 1 0 0 0
my 1 0 0 0

Consider the manipulation by S = {ms, m4,ws,ws}, where all pretend to also
like person 2. We get:

0 1 1 1 0 1 1 1 01 1 1
, 1.0 1 1 , 1.0 1 1 , 1.0 1 1
RM =1 1 o o BW =1 1 g o %°8=1 1 ¢ o
1 1.0 0 1 1.0 0 1 1 0 0

Note that the preference matrix R’ allows a perfect match.
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Consider an efficient solution g that also treats equals equally, namely for all
problem (M, W, R) with g(M, W, R) = Z and all m,m/, w,w’ :

Rm — Rm’ = Zm — m’; Rw — Rw/ = Zw — Zw,

The above property plus efficiency determine g at R and R’ :

9(R) = , 9(R) =

wlw|—w|—= O
S O Owl-
S O Owli-
S O Owl
== O O
N=o—= O O
O Ol
O Ol

Because persons 3, 4 reject, ex post, a match with person 2, the allocation
matrix actually implemented is:

VAR

== O O
OO OO
S O O
O O O

thus the misreport strictly benefits everyone in S. We conclude that g violates
WGSP.

A welfarist solution is WGSP if all solutions projecting onto it are WGSP.
In the Appendix, we use the same 4x4 example to prove the second statement
in our next result.

Theorem 3 Assume at least 4 men and 4 women.No efficient matching solu-
tion treating equals equally is weakly groupstrategyproof. No efficient welfarist
matching solution is weakly groupstrategyproof.

A priority solution that always selects a deterministic allocation matrix is
an example of a WGSP efficient solution. Indeed, consider a member of the
deviating coalition with the highest priority. He or she can improve only if
somebody with higher priority, who was matched initially, does not get a match
after manipulation. The only way this can happen is when another member of
the deviating coalition pretends to like such a person, is matched to this person
by some implementation of the priority solution, but refuses this match ex post.
But this means that under the manipulation the utility of this last member of
the deviating coalition is zero, so this person does not improve.

7 Assignment problem: fairness and competi-
tive interpretation.

Except for the second statement in Theorem 4, valid for matching as well as
assignment problems, all results in this section are for assignment problems only.
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Our first result is the competitive interpretation of the egalitarian solution
for assignment problems. Consider an allocation matrix Z,Z € Z(M,W, R),
implementing the egalitarian profile u°. It must assign all the objects in R(7})
to coalition 73 in order to achieve the total utility » ;. uf, = r(71). All the
objects in R(T5, W1) = R(T2)\R(T1) must be assigned to coalition T5 to secure
the utility 3, ug, = r(T2, W1), given that R(T}) is not available. By repeating
this argument we see that Z must assign precisely the objects R(Ty, Wi_1) =
R(Ti)\R(Th,... x—1) to coalition T}, for k =1, ..., K, with the qualification that
if Ty = M* (ie.,ax > 1), only |M?| objects in R(Tx Wk_1) C W™ need to
be assigned to Tk .

In short, coalition T} receives at stage k all the objects it likes among those
not assigned in earlier stages.

Define now the following price vector p :

1
Po = — if we R(Ty,Wi—1) fork=1.,K-1
k
1
D = max{La—} if ’LUER(TK,WKfl) (11)
K

Consider the competitive demand at price p, for an agent m in T} with
income of 1. This agent will buy only (a fraction of) the cheapest objects in R,,,.
The above discussion shows that these are precisely the objects in the non-empty
set Ry, N R(Ty, Wi—1). They all cost O%C (or 1if M€ # () and m € Tx = M*®)
therefore with a budget of one, agent m buys a fraction (probability or time-
share) ay, of his good objects.

We just proved that every egalitarian allocation matrix Z ( i.e., any Z im-
plementing u€) is “equal income competitive” for the price vector (11). The
converse statement holds true as well.

Corollary to Theorem 1

Given are a positive price vector p, py, > 0 for all w € W, and a matriz
7,7 € Z(M,W,R). Suppose Z is “equal income competitive” at price p and
income of one, namely meets the following properties:
— competitive demand for all m : set wp, = ming, P then for all w, zmw >
0= pw="mm and Yy Zmw = ﬂl
— market clearing: Z is efficient, i.e., Y ;o Zmw = (M, W, R)

Then Z is an egalitarian matriz and the price p is given by (10), except
perhaps for the objects in W™ :

Pw > 1 for all w e W™°,

with equality for at least some subset of size |M®| assignable to M*

Note that the aggregate supply of problem (M, W, R) is unambiguously de-
fined if |W™°| = |M“|, in which case all objects are assigned in any efficient
assignment. If [IW™°| > |M“|, an efficient supply contains W°, and a subset of
| M| objects in W™ (to be assigned to M®) : there may be several such subsets.
This explains the somewhat unusual form of the market clearing condition, and
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the (inconsequential) possibility of p,, > 1 for some redundant objects in W"°:
these objects are not assigned by Z.

We turn now to the discussion of several fairness properties, shared by our
three solutions, among others. Our three solutions are fair in the basic sense
of treating symmetrically all agents (equal treatment of equals: R,, = R, =
U = Uy ) as well as all objects (the familiar neutrality property). The microe-
conomic fair division literature (see e.g., Thomson and Varian [1985], Moulin
[1995]) emphasizes the two specific tests of “fair share” and “no envy”, as well
as monotonicity properties with respect to changes in the resources or the set
of agents among which the resources must be shared. The next two definitions
adopt these concepts to our assignment model.

Definition 6 Fiz an assignment problem (M, W, R), and a utility profile u €
UM, W,R). We say that u guarantees a Fair Share if

Uy, > min{1, %m”} forallm € M. (12)

We say that u satisfies No Envy if:

Um(Zm) - Z Zmuw Z Z Zmlw = um(Zm’) (13)

Rm Rm

for all m,m’ € M, and all Z implementing u

The fair share property amounts to give to agent m a \_1\1/1|‘th claim on every
object he likes, thus rewarding an agent whose preferences are more flexible.
Notice that | R,,| > | M| can only occur if m is efficient, m € M® : any assignment
of M\um to W leaves free at least one object in R,,, implying e(M, W, R) =
e(M~\um, W, R)+1, and the claim by (7). Thus Fair Share requires u,, = 1 only
when efficiency does too.

Definition 6 bears on utility profiles, as requested in order to apply the two
properties to welfarist solutions. As in Section 6, we adopt the most demanding
interpretation of the non welfarist No Envy property: a welfarist solution is non
envious only if all solutions projecting onto it are non envious.

Our last two fairness properties pertain respectively to the addition of one
more object, or one more person, to a given problem (M, W, R).

Definition 7 The (welfarist) assignment solution f is resource monotonic
if for any problem (M, W, R) we have:
f(M,W,R) > f(M, W\w,é) for allw e W

The solution is population monotonic if for any problem (M, W, R) we
have:
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fn(M, W, R) < fon (M0, W, R) for all m,m' € M,m #m/

Resource and population monotonicity are hard to meet in the fair division
problem with divisible goods and classical microeconomic preferences, less so in

the assignment problem with strict preferences’.

Theorem 4 FEach one of the egalitarian, uniform, and random priority solu-
tions meets Fair Share and No Envy.

The egalitarian and random priority solutions are resource and population
monotonic.

We do not know whether the uniform solution is monotonic, either with
respect to resource or population.

Finally, we note that the second statement in Theorem 4 applies to matching
problems as well. In the matching interpretation of our model, the two prop-
erties of Definition 6 correspond to the familiar complementarity properties of
bilateral matching: adding one man to the matching problem (M, W, R) cannot
be bad news for any woman (i.e., no woman’s utility decreases), and cannot be
good news for any man (see Roth and Sotomayor [1990]).

If an efficient assignment solution is resource and population monotonic,
its canonical extension as an (efficient) matching solution meets the comple-
mentarity properties. This follows at once from the following properties of the
Gallai-Edmonds decomposition (Lemma 1): removing a non-disposable man
changes neither W° nor M¢9; removing a disposable man changes neither 17/ ¢
nor M°.

8 Concluding comments

1. The properties of efficiency and strategyproofness are preserved by prob-
abilistic selections (with fixed probabilities) among matching (or assignment)
solutions. The same remark applies to all fairness properties discussed in Sec-
tion 7: equal treatment of equals, neutrality, fair share, no envy, as well as the
two complementarity (or monotonicity) properties. Therefore the requirements
of efficiency, fairness and strategyproofness allow for an infinite set of solutions
in our model; it would be interesting to know the contours of this set.

2. In the assignment problem (M, W, R) the row R, of the preference matrix
R partitions W into “good” objects and “bad” objects. For our results to make
sense, agent m must strictly prefer consuming any good object to any bad one.
He must also view “no object” as at least as good as a bad object. But it is not
necessary that he strictly prefers “no object” to a bad one (or that he prefers a
good object to no object): it is always efficient to never give m an object that
he does not strictly prefer to “no object”, as we do in our model.

"See Ehlers and Klaus [2000], Ehlers, Klaus and Papai [2000].
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Moreover, our model also accommodates the case where “no object” is not
an option and, naturally, [W| > |N|. In this case efficiency implies that if m is
unhappy (receives an object he views as bad) no other unhappy agent views m’s
object as good. Thus the distribution of objects to unhappy agents is irrelevant
and the two assignment problems, without the “no object” option or with that
option strictly between a good or a bad object, are isomorphic.

3. The roommate problem is the natural generalization of bilateral matching
where the (gender neutral) agents must form pairs (to share a hypothetical
room). Under the assumption of dichotomous preferences and the restriction to
voluntary (individually rational) matching, an ir-reduced problem is described
by a pair (N, G) where N is the set of agents, G is an undirected graph on N,
and an edge between two agents means that they are mutually compatible.

The Gallai-Edmonds decomposition generalizes to the matching problem
(N, Q) : see Theorem 3.2.1 in Lovasz and Plummer [1986]. In particular all
inclusion maximal matchings compatible with G have the same cardinality, so
we can still speak of the efficiency size e of an arbitrary problem. Hence for
random matchings, it is still true that ex post and ex ante efficiency coincide:
a random matching is efficient if and only if, with probability one, it matches
exactly 2e agents.

It is straightforward to extend the definition of fixed priority, random priority
and uniform solutions to the roommate problem. One checks just as easily
that these solutions are strategyproof. Therefore, the latter two solutions are
efficient, strategyproof and fair (in the sense of Equal Treatment of Equals).

As in bilateral matching, weak groupstrategyproofness is out of reach in
the roommate problem, if we also insist on efficiency and fairness. Unlike in
bilateral matching, this fact does not depend upon the ex post rejection of
matches. Consider the three person problem where each one of agents 1, 2 and
3 like the other two, so that G is the complete graph. An efficient solution
treating equals equally must match each pair {7, j} with probability %, resulting
in the utility % for each. Now if 1 and 2 both report that they only like each
other, they are matched with probability 1 (by efficiency).
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Appendix: Proofs

1. Proofs for Section 4

Lemmas 1-3 can all be retrieved from matching theory upon translating
our economic terminology into the graph-theoretical terminology of matching.
See in particular in Lovasz and Plummer [1986], Chapter 3. For the sake of
completeness, we give a sketch of the proof.

Lemma 1:

Interpret our problem as an assignment problem for men. For any subset
B of objects, B C W, consider the property Q(B) “R” can be assigned to
B”. The property is clearly stable by union: let W™° be the largest set —
possibly empty — for which Q(B) holds. Set M® = RW"™. We check that
We = WNW™ is overdemanded by M% = M\ M?, in the sense of property
(4). fW° =0 < M? = () we are done, so we assume W° # ().

For any w € W, R* N M? = () or R* N M9 = {m} implies Q(W™° U {w}),
contradicting the definition of W™°. Therefore (4) holds for any singleton {w}.
Suppose B, a subset of W°, fails (4) but every proper subset of B meets (4).
As B contains at least two objects, we can pick B’ C B, non empty and of size
|B| — 1. Because B’ meets (4) we have:

Bl = B +1< |R¥ 0 M| < [RE 0 M| = |[RP 0 | = |B

By Hall’s theorem, B can be assigned to R® N M?.

Because these two sets are of the same size, R® N M9 can be assigned to
B. Now RW""YB = MU (RP N M?) can be assigned to W"° U B and we have
reached a contradiction.

To prove that the decomposition is unique, check that properties i), i), iii)
imply that W"° is the largest subset B meeting Q(B).

To prove the lemma for matching problems, consider (M, W"",E) as an
assignment problem for women. We obtain the unique decomposition of M?*
into M° and MP, and of W™ into W¢ and WP.

Lemma 2:

As before, it is enough to check the lemma for assignment problem, and to
apply it then in turns to male and female assignments. By Lemma 1, e is the
largest number of agents that can be assigned in any assignment p. Hence the
“if” statement: p is efficient if it assigns e agents.

To prove “only if”, we show by induction on |M| the following property.
Pick a coalition S that is assigned by some pu € A(M,W,R) and such that
|S| < e. Then there exists a larger S’ containing S, that can also be assigned.
The property is obvious for |M|=1,2.

Notice that e < |M| therefore |S| < |M], and let 1 be an agent outside S. If
|S| < e =e(M\1,W, E), the induction hypothesis gives the desired conclusion.
As ¢’ cannot be less than e — 1, we are left with the following situation:
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e(MN\1,W,R) = |S| < e(M,W, R) = e(M\1,W,R) + 1

Since e does not increase when we add a disposable agent, it must be that
1 € M®. Now p assigning S (see above) must assign S N M? to W° (no one
in M4 likes any object in W"°), and on the other hand (S N M%) U {1} can be
assigned to W™: therefore S U {1} can be assigned.

Lemma 3:

Follows immediately from Lemma 2, given that the exclusion of a non-
disposable man changes neither the set of overdemanded women nor that of
disposable men.

Lemma 4: _
a) Submodularity of S — e(S, W, R). It is enough to show the inequality:

e(T+m+m')+e(T)<e(T+m)+e(T+m') (14)

for all T'C M, and m,m’ distinct outside T. We use the lighter notation T'+m+
m’ instead of T'U{m,m'}, and so on. Because e(S+k)—e(S) =0or 1 for all S
and k, inequality (14) is clear if e(T'+m) =e(T)+ 1 or e(T +m’) =¢e(T) + 1.
All we need to prove is that the configuration:

e(T+m)=e(T+m')=e(T); e(T+m+m')=e(T)+1 (15)

is impossible. We assume (15) and derive a contradiction. By (6), m and m/
are both efficient in (T +m + m’, W, R).

The following claim about the decomposition of Lemma 1 is easy to prove:
starting from problem (M, W, R) with the efficient set of men M® = M° U MP,
if the set M’ obtains from M by taking away some agents in M“, the efficient
set of men for (M’, W, R) is simply M’ N M?*, and e(M',W,R) = e(M,W, R) —
IMNM|.

Applying the claim to M = T+ m+m' and M’ = T, we get e(T) =
e(T +m+m’) — 2, contradicting (15).

b) Submodularity of B — e(M, B, E) : same as above, upon exchanging the
roles of M and W. _

¢) Supermodularity of (S, B) — e(S, B, R)

It is enough to show:

e(S+m,B+w)+e(S,B) >e(S,B+w)+e(S+m,B)

whenever m is outside S and w outside B. This is obvious if e(S, B) = e(S +
m, B), therefore we only need to prove that for all S, B, m ¢ S and w ¢ B :
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e(S+m,B)=e(S,B)+1=e(S+m,B+w)=e(S,B+w)+1 (16)

Under the premises of (16), men m is efficient in (S 4 m, B, R) (by (6)) and
the desired conclusion follows yet another simple fact about the decomposition
of Lemma 1 (the proof of which is left to the reader): starting with problem
(M, W, R) with the efficient set of men M?, if we add one new woman to W, the
efficient set of men can only grow; formally, the mapping W — M is inclusion
monotonic.

Lemma 5:

The easy proof of the first statement is omitted. The second statement
is proved by Bogomolnaia and Deb [2000] in the more general context with
complete and transitive preferences.

Lemma 6:

a) Statement ¢: Clear from Lemma 2 and the discussion before Lemma 6.

b) Statement di:

Let Zy be the subset of Z(M, W, R) containing the allocation matrices of
deterministic assignments, and Z§ be the subset of Z; corresponding to efficient
deterministic assignments. By Lemma 2, maxz, Y /. Zmw = €, and Z§ is
precisely the set of solutions of this maximization program. Now Z is the convex
hull of Zy, and by statement i, its subset Z¢ of efficient allocation matrices is the
convex hull of Z§. Therefore Z¢ is the solution set for the program maxz Y Zn.-

c¢) Statement 4: Follows immediately from Lemmas 1, 2 and the discussion
after them.

d) Statement iv:

Check it first for assignment problem. For any coalition S and any determin-
istic assignment p, p € A(M, W, R), with associated utility profile u, the sum
> g Um is the number of agents in S assigned by p. Therefore if p is efficient its
utility profile meets system (8). By linearity, so does the utility profile of any
efficient random assignment.

To prove the converse statement, let u € [0, 1]™ be a solution of system (8).
By a classical result about submodular (concave) cooperative games (Shapley
[1971]), w is a convex combination of marginal contribution profiles u~. For a
strict ordering > of M, this vector is defined by:

u, = e(TU{m},W,R) — e(T,W, R) for all m
where T is the set of agents preceding m in > .
By Lemma 5, v™ is the utility profile of the (efficient) >priority assignment.
Thus w is the utility profile of an efficient random assignment.

Statement jv for matching problems follows now from property .

2. Proofs for Section 5: Theorem 1
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Step 1 Preliminary result.

Let f be a non negative submodular function defined over the non-empty
subsets of M. Fix a coalition S, S C M, and consider the program of minimizing
% over all non-empty subsets of S. It is easy to check that the set of its
solutions is stable by union, therefore the largest solution is well-defined; this
set is denoted arg ming %

For any subset B of W, the function T' — (T, B) is obviously submodular,
therefore the sequence Ty, k = 1, 2... is well-defined by (9).

Step 2. Another algorithm

We apply the above result to the submodular function T — e(T, W, R) de-
noted simply e(T"). We construct inductively two sequences 3y, Sk, k = 1,2... by
an algorithm similar to (9), introduced by Dutta and Ray [1989]:

Nog = M, eyg=ce; next for k=1,2...
_ . 6k:—1(T). _ . 6k:—1(T).
61(: - ]I\}ilfll |T‘ ) Sk = arg 11\217111 |T‘ )
N, = M\Si,. .5 e(T)=e(TUS1,  x)—e(Si,. k) (17)

By construction, the sets Sy are disjoint and there is a step L such that
S1,...Sp partition M, at which point the sequence stops.

Dutta and Ray’s egalitarian solution for the submodular (concave) cooper-
ative game T — e(T) is the utility profile z, x,,, = 8, if m € Sk, k =1,..., L.
They show that = is in the core of the game (M,e), and Lorenz dominates
every other utility profile in the core. Translated with our terminology, the
core property is system (7), thus the result says that x is an efficient profile,
x € U¢(M,W,R), and it Lorenz dominates every other feasible utility profile
(even inefficient ones).

For the sake of completeness, we prove below that z is in U°¢(M, W, R), and
that is maximizes the leximin ordering over this set. We also show that the
sequence [, is strictly increasing. Then we proceed to check that (8, Sk) and
(ag, Tr) are two sequences of the same length, K = L, and that they coincide
with the possible exception of the last term.

The equality Y~ ,, z, = e(M) is clear from (17). Feasibility of x requires
Yogxm < e(S) for all S. Suppose S C Sy, then Y gz, = |S|- 5, < e(S) by
definition of 3,. Suppose S C 512, and set §* = SN S;,i = 1,2. By definition
of B, and submodularity of e :

e(S?2U Sy) —e(S1) < e(S) —e(S1h)
157 I A

B2 <

Combining this with 3; < el(;l') gives () - | S| + B, - [ S?| < e(S), as desired.

And so on inductively.
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Next we check that §, is strictly increasing. Note first that e(T) < |T| for
(T)

all T, implying 3, < 1 for all k. The inequality 3, < 3,,; means 3, < ETTT

for all T'C Nj. Assume the latter fails for some T, namely:

€CL—1 (Sk) > €L (T)

S =I5 2T

Both ratios above are at most 1 therefore:

6k,1(5k) +€k(T) 6k,1(TUSk)
[Sel + [T = T U Sk

By =

ek_l(T)
1T
It is now easy to check that x maximizes the leximin ordering over U°.

Suppose y, another profile in €, is leximin preferred to x. Then for all m €

S1, Ym > T7 = T, and moreover:

But Sy, is the largest solution of min , contradiction.

6(51) > Zym > Z$7n = 6(51)
S1 S1

therefore y and x coincide on S;. Next:

for all m € S, Ym > yl*SlHl > m\*Sl\—s-l =T,

and moreover:

6(51 U 52) > Z Ym > Z Tm = 6(51 U SQ)
S1US> S1US2

so that ¢y and x coincide on S; U .S3. And so on.
For the sake of brevity, we refer the reader to Theorem 3 in Dutta and Ray
[1989] for a proof of the fact that z is Lorenz dominant in /€.

Step 3. Equality of the two sequences

We check by induction that, as long as 3, remains strictly below 1, the two
algorithms (9) and (17) coincide. More precisely we prove the following property
P(k) by induction on & :

Bp<l={fort=1,..k:ar=0, T, =S}, e(Tr,. k) =r(Th,. k)11, % C Mé

Step 3.a. Proof of P(1)
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Assume we know e(S7) = r(S1). This implies 5; = &fll))‘ > 1. On the other

hand e(T) < r(T) for all T implies 8; < a1, so that 8; = «; and S1 C Tj.
Next we have 8, = a1 = % > %, implying 77 C S;. Thus the equality
e(S1) = r(S1) is enough to conclude oy = 34, S1 = T1.

We assume e(S1) < r(S1) and show a contradiction of the assumption 8; <
1. In the Gallai-Edmonds decomposition of (S, W, E), S¢ is non-empty (other-
wise e(S1) = 7(S1), see Lemmas 1, 2). If S¢ is empty, e(S1) = |S1| = 8, = 1.
Thus both S¢ and S are non-empty and we have, with the notations of Lemmas
1, 2:

e(S{) _ IWel _ [We+]S7] _ e(S1)
IS I I o O I Y

where the inequality follows from |WW°| < |Sf| , namely the overdemanded char-
acter of W°. We have reached a contradiction of the definition of 3;.

To conclude the proof of P(1), we check T3 = S; C M?. We have e(T) = |T|
for all T C M?® therefore Ty C M® is impossible. Set T* = TI\M%, q =
[Ty N M9, so that e(T1) = e(T*) + ¢ (by Lemma 1 and Figure 1).

If g is not zero, we have:

o) o(T)—q _ o(T)
IR ET I (18)

again a contradiction of the definition of oy = 3

Step 3.b. Induction step

Assume P(k—1) and ), < 1. Consider an arbitrary coalition T' C Mj_;. By
P(k—1),e(Th,. x—1) =r(T1,. k—1), which means that all objects in R(7Th,.. 1)
can be assigned to Ty ., ,. Clearly this implies:

e(TUTy, k1) = e(Th, x-1)+e, WNRT1, k1))
= ek_l(T)ze(T,Wk_l) (19)

We see now that the k-th step in our two algorithms are to minimize, re-

spectively, E(T’m"’l) and "(T’lvjtfr’l). Upon changing W to Wj,_1, the same ar-

gument as in Step 3.a shows now: ay = B, T = Sk, as well as e(Ty, Wi_1) =
7(Tk, Wi—1). Combining this with (19) and P(k — 1), we get:

e(Th, . . k—1) = e(Tr,. . . k—1) + (T, Wi—1) = (11, x—1) + 7(Thes Wi—1) = (11, x—1)

)

To complete Step 3.b it remains to show T, C M?. >From Ty, k-1 C
M9 we get R(Ty... k—1) € W° implying that Wj;_; contains W"°. Therefore
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e(T,Wy_1) = |T| for all T C M*. We see now that T}, is not contained in M* and
set T* = TI\M?*, g = [T, N M?|. Check that e(Ty, Wi—1) = e(T*, Wi_1) + ¢
and derive a contradiction if ¢ is not zero, as in (18).

Step 4. Proof of Theorem 1

The sequence 3}, increases, and 8, < 1.If Ty x = M and B < 1, P(K)
establishes the full equality of the two algorithms, and we are done. Incidentally,
in this case M = M9 (as Ty x C M%), i.e., all objects must be overdemanded
in problem (M,W,R). If 85_; < 1= Bk, then (19) is valid and 8y = 1 reads
e(T,Wk_1) =|T| for all T C Ng_;. Thus Sk = Mk_1 and the algorithm (17)
stops there. Moreover Nx_1 = Mg _1 can be assigned to Wx_1, and on the
other hand only the agents in Mg 1 like Wi _1 :

Recall that W™ is the largest subset B of W such that RP can be assigned
to B (see the proof of Lemma 1): therefore M® contains Mg _;. By P(K — 1),
M? contains M\ Mg _1, thus both inclusions are equalities: T, k-1 = Mé,
Sk = M®. Moreover Wy _1 = W™,

Turning to the K-th step of algorithm (9) we see that ax > 1, because
Ng_1 = N¢ is assignable to Ax_1 = A°. Therefore the algorithm (9) stops here
too. This completes the proof of Theorem 1, and of the properties discussed
immediately after its statement.

4. Proofs for section 6

Lemma 7:

It is enough to consider |M| = 3,|W| = 2. Let a deterministic assignment
mechanism among M = 1,2,3 and W = a, b be groupstrategyproof and efficient.
We derive a contradiction by considering the following eight different preference
matrices R :

= ‘f ? 110 170 170
- (1]; L] [2]; L10] [3]; 1 [4]
B |11 1 1 11
Ry | 1|1
11 011 01 111
110 [5]; 110 [6]; 110 [7]; 110 8]
11 11 01 01

The efficiency size of all eight problems is 2. We write an assignment (i, j) to
indicate that object a goes to agent ¢ and b to j. We write a two-person coalition
simply as 7.

Suppose, without loss of generality, that our mechanism chooses (1,2) at
[1]. Then it must choose (1,2) at [2] : if u; = 0 or ug = 0 at [2], coalition
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12 can manipulate at [2] by R’ = [1]. Consider [3] next: the only two efficient
assignments are (1,3) and (2, 3); if (2,3) is selected, 23 manipulates at [2] by
R’ = [3], hence (1, 3) is chosen at [3]. Then (1,3) is chosen at [4] as well: the
other efficient choice (2,3) allows 13 to manipulate at [4] by reporting [3] (and
23 to manipulate at [3] by [4]!). Now at [5] the efficient coalition 13 must be
chosen (by way of (1,3) or (3,1)) or 13 could manipulate at [5] by R’ = [4].

Consider [6]: if (2,1) is selected, 12 manipulates at [5] by [6]; if (2,3) is
selected, 13 manipulates at [6] by R’ = [4]. Thus (3, 1) is selected. Now if (2, 3)
is selected at [7], 23 manipulates at [6] by [7]; therefore, by efficiency, (2,1) is
chosen at [7]. Consider [8]: if (1,3) or (2,3) is selected, 12 manipulates at [8]
by [7], thus (2,1) is chosen at [8] as well. Recall that (1,3) is chosen at [3]:
therefore 13 manipulates at [8] by [3], and we have reached a contradiction.

Lemma 8:

Step 1: both solutions are strategyproof.

Consider the uniform solution. We fix (M, W, R), m € M, and a misreport
R/,. The matrix R’ obtains from R by replacing R,, by R/,. We write E/, =
E,(M,W,R’). Note that E’ ,, = E_,,. Pick a coalition S € E/ , such that any
w assigning S has pu(m) ¢ R,,. Then m gets zero utility when an assignment
corresponding to this coalition is selected. On the other hand, if S € E/, is such
that at least one p assigning S has u(m) € R,,, then S € FE,,. Therefore for any
matrix Z’ implementing the uniform solution at R’ we have:

E/,NE,|  |E,NE,| | Ep

n m

™m Z/ <| -
wnlZm) S =ET T BT 1B S TEoml + 1Bl

m

= Um (Zm)

Random priority: a fixed priority mechanism is clearly strategyproof, and
this property is preserved by convex combinations.

Step 2: both solutions fail weak groupstrategyproofness.

In the following assignment problem with seven agents and four overde-
manded objects we compute the random priority solution:

Ry ={a,b,d}; R = {b,¢,d}; Ry = {a,c,d}; Ry = {a}; Rs = {b}; Rg = {c}; Ry = {d}

The symmetries of the problem imply that agents 1,2, 3 have the same utility
x. We compute the expected value of u; +us+uz = Y when the priority ordering
> is drawn at random with uniform probability.

If the first four in > include 1,2,3 then Y = 3. If the first four in > include
two among 1,2,3 then Y = 2 because in this case the first four always form
an efficient coalition. If the first four in > include one among 1,2, 3, say 1,
then Y = 1 if the other three are 456,467 or 567(because the first four are then
efficient). If the other three are 457, objects a, b, d are taken by three among the
first four, agent 1 among these three with probability %; and object ¢ is taken
by the first among 2, 3, and 6. Therefore the expected value of Y when the first
four include one of 1,2,3 is % + l(% +2) = %. Finally Y = 0 if the first four in

1 3
> are 4,5,6,7. Thus we have:
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1 53
=—(14- 18-2+12- — =1. =0.
Br=c=(4-3418-24+12- 2 £0) = 175 = & =0.583

Next suppose that the agents 1,2, 3 jointly misreport by R} = {a,d}, R, =
{b,d}, Ry = {c,d}. We compute the expected value of Y’ = u; +ug+us according
to the number g of agents in 1,2,3 among the first four in >:

1 13
q:3:>EY’:3;q:2:>EY’:2E;q:1:>EY':E;q:0:>Y':O

For instance, suppose 1,2 are among the first four (¢ = 2). Then if the
other two contain 6 (probability 1), the first four form an efficient coalition and
Y’ = 2; if the other two are 45, then E(u; +us) = 3 (every subset of three from
1245 can be assigned to abd) and that of ug is %; if the other two are 47 or 57,
then E(uy +uz) = 1+ 2 (either agent 1 gets a for sure, or 2 gets b for sure) and
E(u3) = 3. We omit the similar computation of EY’ when ¢ = 1. Summing up

to compute the expected utility =’ of 7 = 1,2, 3 after the misreport:

1 1 13
f= —(4-3418-2— +12- =) = 1.77 = 2/ = 0.590

3 =35 18 12

The same manipulation in the same problem is also profitable under the
uniform mechanism. In the truthful profile, out of 35 coalitions of four agents,
only 1457,2567 and 3467 are not efficient therefore u; = % fori =1,2,3. After
the misreport, there are only 20 efficient coalitions:

a b c d | # coalitions
lord | 2o0or5|30r6 |78
4 2or5|3o0r6|1]4
lord |5 3or6 |24
lord | 20r5 |6 314

=

1

Therefore u; = % > = fori=1,2,3.

wW

2

Theorem 2:

We fix two profiles R, R, respectively the true and the false profile, and two
allocation matrices Z € o(M,W,R), Z' € o(M,W,R"). We define the sets of
losers, winners and indifferent agents in the manipulation at R by R’ :

m € W iff u,(Z),)= Zz;nw > U (Z);
R

m c I lﬁ um(Z;n) - um,(an);
m € E lff U/m(Z,,ln) < u’rrL(Z’rrL)
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We assume R, = R), for all m € L (the losers cannot be part of the
deviating coalition) and prove by induction W = (). This establishes groupstrat-
egyproofness because R, R’ are arbitrary.

We write ag, Ty, Wy, and o), T}, W/, for the sequences corresponding to R
and R’ respectively. We prove by induction the property P(k) :

Ty, x»CITUL; 2,,=0forwe R(Ty, k) andme WUIL)NTyt1,.. K

mw

We assume P(k — 1) and prove P(k). In the case k = 1, P(0) is void. We
assume k < K — 1, so that u,,(Z,,) = ay, for all m € Tj,. We set T, =T, N L,
T,j' =T, N (WUZI), either of which can be empty. For any m’ € T/, m € T,:',
we have:

u, (Z/ /) = um’(Zr/ /) < um’(Z'rrL’) = 0 = um(Zm) < u’m(Z/ ) < Uf{m(Z/ )

m’ m m m m

(20)

where the first equality comes from R, = R/, and the last inequality holds
because the support of Z, is contained in R/ . Therefore m/ belongs to an
“earlier” member of the partition 7] —a set with a smaller index [—than m,
implying that no object that m’ likes (at R, = R).) is assigned to m at
R :2,,=0forwe R, . By the assumption P(k — 1), Z’' does not give to m

any share of an object from R(T} . 1) either. Therefore:

.....

{w € Ry, and 2, > 0} = {w € R(Ty, Wy—1)\R(T, )} for all m € T;F (21)

muw

Now we define an allocation matrix Z* restricted to Ty, R(Tk, Wi—_1), where
7 — p(Z) simply deletes the coordinates outside R(Ty, Wi—1) :

v = p(Zn) form' €T,

m’

zr = p(Z],) formeT;

By the definitions of Ty, and Wj_1, up/(Z;,) = ay, for all m’ € T,~, and by
(21) up(Z2) = um(Z.,) > ay, for all m € T} . Next the support of any Z, and
that of any Z¥, are disjoint: see (21). Therefore Z* is feasible. By definition of
Ty, all inequalities u,,(Z%,) > oy must be equalities, which proves T,j CZ,and
the first statement in P (k).

Moreover Z* must exhaust all objects of R(Ty, Wi—_1). Among these, those in
R(Ty,, W—1)\R(T},) are assigned in full by Z’ to the agents of T} : no fraction
of those objects goes to anyone in Tj41 .. k. To complete the proof of P(k) we
must check that the objects in R(7T) ) are not assigned at all to any agent n in
WUZ)NTgta,.. .k by Z'. For such an agent n we have:
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u:v,(Z;z) > u'"'(Z’:L) > un(Zn) > apt1

therefore (20) implies u,(Z},) > u,,,(Z,,,) for all m’ € T} .

Thus m/ appears in the sequence T} earlier than n, implying that all objects
he likes (at R, = R],) are allocated before n is served, i.e., n gets none of
R(Ty).

The proof of P(K — 1) is now complete. If ax < 1, then u,,(Z,,) = ak for
m € Tk and the above argument shows P(K). If ax > 1, then u,,(Z,) =1
implies T N W = ). Thus W is empty in both cases.

Theorem 3:

The first statement is proven by means of the 4 x 4 example just before the
theorem. To prove the second statement, fix an efficient welfarist solution f,
and consider the same 4 x 4 example. We write u = f(R) for the utility profile
chosen by f. Without loss of generality we can assume wy,, > Ums > Um, and
Vs 2 Vws > Uy, as my and wy are overdemanded, uy,, = vy, = 1. This implies
U, Vs < % and U, Vo, < %

Consider the same manipulation RM’, RW’ by the coalition S = {ms, m4, w3, w4 }.
By efficiency, f(R') = (1,1,1,1). Let g be a solution projecting on f and such
that g(R’) is the allocation matrix:

g(R') =

o oflegl~
o oGl

Sl o o
Slgle o ©

Then Z' = g(R') e R is:

75
0o 05 b
7 =
é 0 0 0
% 0 0 0
and the (true) utililcy profile of Shafter the misreport is ul,,, = v},, = %5 > 1
Upy, = Uy, = % > 5. Therefore g is not weakly groupstrategyproof, and neither
is f.

5. Proofs for Section 7

The straightforward proof of the Corollary to Theorem 1 is omitted for
brevity.

Theorem 4

For the convenience of exposition, we regard assignment y as a function from
M to W. Thus, u(m) = w means that an agent m is assigned to an object w.
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1) Random Priority Solution

a) Fair Share

The probability that agent m comes up among the first |R,,| agents in the
random ordering of > is %. When this happens, at least one object in R,, is
still available when agent m gets to choose. Fair share follows.

b) No Envy

We fix two agents 1,2 and an arbitrary ordering > of M where 1 precedes
2. We write »=* for the ordering where 1 and 2 are permuted, everything else
unchanged. We select a >priority assignment p, and p* for =* . We check that
agent 1 does not envy agent 2 in the assignment matrix Z = §(u + p*). This
establishes No Envy because every random priority allocation matrix Z obtains
by convex combinations of such matrices, and the inequality (13) is preserved
by such combinations.

Let T be the coalition preceding 1 and 2 in > and >*, and S that in between
1 and 2 in both > and =* . Assume, without loss of generality, that 1 precedes
2 in > and follows him in =*. If uy () =0, i.e., 1 ¢ S(>) (see Lemma 4) then
agent 1 does not like any object that 2 may get under u, otherwise we could
have given such an object to 1 without affecting the utilities of T', contradiction.
Similarly, 1 does not like any object 2 may get under p*, so 1 does not envy 2
at Z if uy(u) = 0. If ug (1) = 1, the only way 1 could envy 2 at Z is if:

1(1) = a, pu(2) = b; p*(2) = ¢, p*(1) = 0; 1 likes a, b,

where a # b but object ¢ could be equal to a or b.

Let w,w* be the S—utility profiles at > and >*respectively. Write lex for
the >lexicographic ordering of [0,1]%. Let u’ be equal to p* on T and S, and
w(1) = ¢ it gives the same utility as p to T" and 1, and the same as p* to S,
therefore wlexw*. Now compare the full utility profiles u at p and u* at p* :
they coincide for T and 2, on S wu is >lexicographically superior or equal to u*,
and u; > uj. This contradicts the definition of u*.

¢) Population and resource monotonicity. The Shapley value of a concave
(submodular) cooperative game is population monotonic (Sprumont [1990]),
and the random priority utility profile in Definition 1 is the Shapley value of
the game T — e(T, W, R). The supermodularity of e(T, B, R) with respect to
T, B (Lemma 3) and Lemma 4 imply that a fixed priority mechanism is resource
monotonic; this property is stable by convex combinations.

2) Egalitarian solution

a) Fair Share. If m € M?, there is nothing to prove. Pick m € M, and
m € T;. Recall that the sets R(Ty, Wi_1), k = 1,...,1, form a partition of
R(Ty,.. ;) and:

(T, Wi—1) _ (T, W;_1)

|R(T1,...1)l <
T | T3]

Uy -
Ty, 4 — "

=u,, for k =1,...,1. Hence
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Inequality (12) follows because R(T7 .. ;) contains Ry,.

b) No Envy. An equal income competitive allocation meets No Envy: this
well-known fact applies here to any “equal income competitive” allocation ma-
trix Z, as defined in the Corollary.

c¢) Population monotonicity. Lemma 5.6 in Dutta [1990] shows that the
egalitarian solution is population monotonic. As shown in the proof of Theorem
1, the profile u® is the egalitarian solution of the concave game T — e(T, W, R).

d) Resource monotonicity. Fix a problem (M, W, R) and an object w € W.
The utility profiles and sequences (9) for the initial problem and the reduced
problem (M, W\w,ﬁ) are denoted w,ag,Tk,... and o/, af, T}... respectively.
Suppose, to the contrary, that v’ < wu fails. Then there is an agent m and an
index k such that:

’ ’
m € Ti; Uy, > Up = Ok} Upy < Uy for all m' € Ty, o1

N

Let m € T'j in the algorithm of the reduced problem. We claim 77, .1
Tll,...,j—l' Indeed for all m' € Ty . ,_1 we have ulm, < Uy < Uy < U, < a;-
therefore m’ € 17 4. Notice that u;, < o is possible if u;, = 1, but
Um = Qf aS Uy < 1.

The set V' = Tp\Tj, ;1 is non-empty: it contains agent m. Set V' =
TpNTy . ;_y (possibly empty). We show next:

r(V, Wi \R(V))
|‘1/| < ag (22)

where R, 7 refer to the problem (M, W, R). If V! = (), V = T}, we have an equal-

ity. If V' # () we have % > ay, so if (23) is false we get a contradiction:

(V! Wi—1) + r(V, W1\ R(V")) _ (T, Wi—1)
V] +[V'] | T

o <
Now we check Wjﬁl C W1\ R(V"), where WJLl refers to the reduced

problem (M, W\uw, }N%) :

WJ/'—l = (W\w)\R(Tll,...,j—l) - W\R(Tll,“.,j—l)
C AR, k-1 UV") =W NR(V)
We get finally the desired contradiction:

r(VWit) _ r(V, Wi R(V'))
v~ V]

’
/
Uy, < 0 < < ag =upy
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3) Uniform solution

a) Fair Share: Fix (M, W, R) and an agent m € M?. We restrict attention
to the problem (M® W°, E), that we write (M, W, R) for simplicity.

Denote £ = E(M,W,R), E,, = Ep,(M,W,R) and E_,, = E\ Ep,, all non-
empty. Define a bilateral graph between E_,, and F,, as follows: S € F_,, and
T € E,, are matched if T\m C S.

Note that each T' € E,, is matched with at most |M| — |W]| coalitions S in
E_,,. Indeed, all coalitions in E are of the same size |W|, so T\um C S implies
|S\T| = 1, this unique agent being from M\T.

We claim that each S € E_,, is matched with at least |R,,| coalitions T
in E,,. For if u assigns S, each object in R,, must be assigned (by (6)); thus
for each w € R,,, we create an efficient assignment by giving w to m in lieu of
p~t(w), and the corresponding coalitions in F,, are all distinct. This proves
the claim.

Let k be the number of pairs (S,T') that are matched. Denoting p = |M| —
|W| we have shown that kK <p-|E,,| and k > |R,,| - |E_,s|. Hence:

o Bl _|Ral
|Em| + |E—m| T p+ |Rm|

The desired inequality (12) follows at once.

b) No Envy. Fix (M, W, R) and two agents m,m’. If an agent is in M* she
is neither envious nor envied (Lemma 1) therefore we can assume m,m’ € M?
and restrict attention to (M<, W°, ]A%) as in the proof of Fair Share. Let E7,, be
the subset of E,,, made of those S such that in at least one assignment where
everyone in S is assigned, m’ receives an object in R,,. Then the coalition §(S)
given below is in F,, for all S'in E}, :

6(8) = S fSeE, NE,
= (S\ml) Jdm lf S S E:n/ n E—m,

Clearly 6 is one-to-one, thus |E? ,| < |E,,| Finally, in any allocation matrix Z

*
)‘71,

implementing the uniform solution, w,,(z,/) < ‘ITI implying wm, (2m,) < %
as desired.
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