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Abstract

This paper develops a bootstrap theory for models including autoregressive time
series with roots approaching to unity as the sample size increases. In particu-
lar, we consider the processes with roots converging to unity with rates slower
than n−1. We call such processes weakly integrated processes. It is established
that the bootstrap relying on the estimated autoregressive model is generally
consistent for the weakly integrated processes. Both the sample and bootstrap
statistics of the weakly integrated processes are shown to yield the same normal
asymptotics. Moreover, for the asymptotically pivotal statistics of the weakly
integrated processes, the bootstrap is expected to provide an asymptotic refine-
ment and give better approximations for the finite sample distributions than the
first order asymptotic theory. For the weakly integrated processes, the magni-
tudes of potential refinements by the bootstrap are shown to be proportional
to the rate at which the root of the underlying process converges to unity. The
order of boostrap refinement can be as large as o(n−1/2+ε) for any ε > 0. Our
theory helps to explain the actual improvements observed by many practition-
ers, which are made by the use of the bootstrap in analyzing the models with
roots close to unity.
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1. Introduction

It is now widely understood that the standard bootstrap theory based on the independent
sampling extends well to the dependent time series model, if an appropriate model is fit and
the bootstrap samples are obtained by resampling independent constituents of the model
and reconstructing the data using estimated parameters. For stationary AR processes, Bose
(1988) shows that the bootstrap is consistent and does provide the asymptotic refinement
exactly as for the simple independent and identically distributed model, once the correct
model is fit and the bootstrap samples are generated from the repeated samples of the fitted
errors using estimated AR coefficients. The idea of fitting a model and recovering bootstrap
samples based on the fitted model works even for an infinite order AR, as demonstrated
by Kreiss (1992), as long as we increase the order of the fitted AR with the sample size at
an appropriate rate. The procedure, which is often referred to as the sieve bootstrap, was
further investigated and developed by Bühlmann (1997).

It is, however, well known that such a method relying on the fitted model does not work
for nonstationary integrated processes. Indeed, Basawa et al. (1991) show that for AR(1)
model the bootstrap based on the fitted regression becomes inconsistent if the process has
a unit root, i.e., the resulting bootstrap distribution is different from the sample distribu-
tion even asymptotically. Though the result itself is surprising, it is not at all difficult to
rationalize. We have a sharp discontinuity in the asymptotics of AR regressions around the
neighborhood of the unit root, and the estimated model is not close enough to yield the
same asymptotics. This is precisely the reason that we have the bootstrap inconsistency for
the unit root model. If the unit root is imposed to generate samples, the bootstrap does
what it is expected to do also for the unit root models. As shown recently by Park (2003a),
the bootstrap becomes consistent and gives an asymptotic refinement if the presence of the
unit root is imposed in generating bootstrap samples.

For the model with a root in the neighborhood of unity, the validity/invalidity of the
bootstrap depends on whether or not the model can be estimated within the boundary
that permits the continuity of the asymptotics. For the unit root model, the asymptotics
are continuous in the op(n

−1)-neighborhood, while the estimated coefficient is only in the
Op(n

−1)-neighborhood. This would naturally lead to the inconsistency of the bootstrap
based on the estimated model. Though not mentioned explicitly in the literature, it is also
clear that the bootstrap becomes inconsistent for the models with roots approaching to
unity at the n−1-rate, which have been referred to as models having roots local-to-unity,
since the estimation error is of order Op(n

−1). For such models, the estimation error is of
the same order as the rate at which the root is approaching to unity. This, however, is not so
for all models with roots approaching to unity. As Park (2003b) shows, the processes with
roots approaching to unity at a rate slower than n−1, so called weakly integrated processes,
have characteristics very different from the near -integrated processes with roots converging
to unity at n−1-rate.

This paper develops a bootstrap theory for the weakly integrated processes. The error
involved in estimating the weakly integrated process is of a smaller order of magnitude
than the rate of its root approaching to unity, and the estimation error therefore becomes
negligible. It is thus well expected that we have the bootstrap consistency for the weakly
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integrated processes. The estimated model generates the bootstrap samples with roots
approaching to unity at the same rate as the original samples. Moreover, the bootstrap
provides a refinement for the limiting distribution. As we show in the paper, the bootstrap
distribution more closely approximate the distributions of sample statistics in finite samples.
For the AR(1) model, the refinement can be as large as o(n−1/2+ε) for some ε > 0. Unlike
the bootstrap for stationary models, the primary refinement for weakly integrated processes
comes from utilizing the information on the estimated AR coefficients. For the weakly
integrated processes, the estimated AR coefficients contain useful information and it is this
information that provides the primary asymptotic refinement.

The theory developed in the paper helps to explain the actual improvements observed by
many practitioners, which come from the use of the bootstrap in analyzing the models with
roots close to unity. In fact, Nankervis and Savin (1996) clearly demonstrates through an
extensive simulation that there is a huge potential for improvements, which can be achieved
by using bootstrap in models with weakly integrated processes. Their simulation evidence
indeed makes it clear that the potential for bootstrap refinement becomes larger as the root
of the model gets closer to unity. Neverthless, none of the existing bootstrap theory is able
to give an insight to this observational fact. Our results provide some, if not all, obvious
reconciliations. They predict that the bootstrap for the weakly integrated processes yields
the distributions for sample statistics closer than their first order normal asymptotics just
as for the stationary processes, and that the magnitudes of refinements become larger for
the processes with the roots approaching to unity faster as we observe in practice.

The rest of the paper is organized as follows. Section 2 introduces the model and
the main issues for the bootstrap of weakly integrated processes. Technical preliminaries
involving the probabilistic embeddings of the partial sum processes to the limit Ornstein-
Uhlenbeck processes are also given there with a discussion on the distributional effects of
approximation errors. The sample and bootstrap asymptotics and their expansions are
developed in Section 3. Also discussed there are the bootstrap refinements. The extensions
to the bootstrap for more general weakly integrated processes driven by linear processes
are made in Section 4. A sieve bootstrap based on an approximated finite AR model
is considered and the relevant asymptotics are derived. Moreover, bootstrap refinements
for more general models are also discussed. Section 5 concludes the paper, and all the
mathematical proofs are given in Appendix.

2. The Model and Preliminaries

2.1 The Model and Main Issues

Consider the time series (xt) generated as

xt = αxt−1 + εt (1)

where we assume

Assumption 2.1 Let

α = 1 − m

n
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where n,m → ∞ and m/n → 0.

Assumption 2.2 Let (εt) be iid random variables with Eεt = 0, Eε2
t = σ2 and E|εt|p < ∞

for some p > 2.

In our formulation of α in Assumption 2.1, m just controls the rate of convergence for α to
unity. Whenever it becomes more convenient to properly interpret our subsequent results,
we will set m explicitly as a function of n, i.e.,

m = ν(n) (2)

such as ν(n) = log n or nκ with 0 < κ < 1. The condition for (εt) in Assumption 2.2
is not necessary and will be relaxed to a more general stationary process later in Secion
4. In particular, the iid asumption is not required for the subsequent development of our
theory. We may easily allow them to be a general martingale difference sequence. The iid
assumption is made just to make more meaningful the bootstrap of the model, which we
will discuss below.

Under Assumptions 2.1 and 2.2, the time series (xt) represents a process that behaves
asymtotically as a random walk. If we let n be the sample size, our model describes a time
series that has a root approaching to unity as the number of samples increases. Such a
time series has been modelled previously by various authors using the formulation similar
to ours with m replaced by a constant c 6= 0, and referred to as a near-integrated process
or a process with a near-unit root or a root local-to-unity. Our model is different in that
we let m grow as the sample size n increases.

For the formulation of α in Assumption 2.1, it is important how we set m in relation
to n. We consider three possibilities: m = 0, m = c 6= 0 and m → ∞ such that m/n → 0.
The first specification with m = 0 yields an exact unit root or integrated process. Both the
second and third cases generate processes with roots that are asymptotically unity. The
only difference between them is that the root for the former converges faster than that for
the latter. However, it turns out that the distinction between the the last two cases is much
more meaningful than the one between the first two cases. The specifications m = 0 and
m = c 6= 0 do generate processes behaving differently in large samples. Nevertheless, the
difference in their asymptotic behaviors is of no qualitative nature and of no importance
from the practical point of view. The models with time series specified as above with
m = 0 and m = c 6= 0 have asymptotic properties that are largely comparable: They have
estimators and test statistics converging at the same rates and limiting distributions having
similar statistical properties. This is well known. On the other hand, as shown by Park
(2003b), the specifications m = c 6= 0 and m → ∞ such that m/n → 0 yield time series
having properties that are drastically different.

For this reason, we follow Park (2003b) and refer to the time series with each of the
specifications m = 0, m = c 6= 0 and m → ∞ such that m/n → 0 respectively as the exact,

near and weakly integrated processes. Under this convention, the time series (xt) in our
model is a process having a weak unit root, and compares itself with a process having a root
in the n−1-neighborhood of unity, i.e., a near-unit root that has frequently been considered
in the literature.
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Our main purpose is to show that the bootstrap of a weakly integrated process does
provide an asymptotic refinement, i.e., the bootstrap yields a distribution that is closer to
the finite sample distribution, relative to the first order asymptotic theory. To bootstrap
(xt), we first fit the model

xt = α̂xt−1 + ε̂t (3)

and obtain bootstrap samples (ε∗t )
n
t=1 from the centered fitted residuals

(

ε̂t −
1

n

n
∑

t=1

ε̂t

)n

t=1

We may then generate bootstrap samples (x∗
t )

n
t=1 recursively by

x∗
t = α̂x∗

t−1 + ε∗t

starting from x∗
0 = x0. Throughout the paper, we assume x0 = 0 for expositional simplicity.

It should be emphasized here that the suggested bootstrap procedure uses the estimated
coefficient α̂ to generate bootstrap samples (x∗

t ). As will be shown in the next section, we
have

α̂ = 1 − m

n
+ Op

(√
m

n

)

(4)

and therefore the bootstraps for models involving weakly integrated processes become gen-
erally consistent. Note that, for the weakly integrated processes, the bootstrap samples
generated using the fitted AR coefficient behave again like weakly integrated processes. As
can clearly be seen from (4), the estimation error in α̂ is of order smaller than the distance
of α from unity, and becomes negligible as the sample size increases.

This is not so for the exact or near-integrated processes. For the exact unit root model,
the bootstrap samples roughly behave like near-integrated processes if the estimated AR
coefficient is used. Note that the estimated AR coefficient has an error of order Op(1/n)
in this case. As shown by Basawa et al. (1991), the use of estimated AR coefficient would
thus lead to bootstrap inconsistency. Likewise, it is easy to see that such a problem also
arises for the near-unit root model. Our result in (4) holds in this case with m = c, and the
estimation error becomes nonnegligible and affects bootstrap samples persistently even for
large samples. The bootstrap samples from the near-unit root model, if generated using the
estimated AR coefficient, are near-integrated processes just like the original samples, since
the estimation error is of order Op(1/n). They, however, have differing local parameters c,
and the bootstrap becomes inconsistent just as for the exact unit root model.

For the weakly integrated process, the bootstrap refinement comes primarily from uti-
lizing the information on α in the sample that is revealed through α̂. The primary source
of refinement here is therefore somewhat different from that of the usual bootstrap, which
is the empirical distribution estimating underlying distribution nonparametrically and con-
sistently. For the weakly integrated process, the estimated AR coefficient α̂ contains useful
information on its weakly unit root property, and it is by utilizing this information that
the bootstrap provides most significant refinement over the first order asymptotics. There-
fore, the way that the bootstrap samples (ε∗t ) are obtained has only secondary importance,
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though it may well have nonnegligible effects on the bootstrap distribution of (x∗
t ). Our

theories are applicable to any parametric, as well as the usual nonparametric, bootstrap. As
long as the bootstrap samples (x∗

t ) are generated using the estimated AR coefficient α̂, they
will have the weakly unit root property inherited from (xt) and thus provide the asymptotic
refinement that we recognize and establish in the paper. This point will be made clear in
the next section.

2.2 Technical Preliminaries

The sample and bootstrap asymptotics developed in the paper rely on the probabilistic
embedding

Vmn(r) =d n−1/2x[nr] (5)

for r ∈ [0, 1], where [z] denotes the largest integer not exceeding z. The process Vmn in (5)
is defined for each n and m ≥ 0. Recall that the root of (xt) depends on m, as well as on
n. For any fixed m > 0, it is well known that as n → ∞

Vmn →d Vm

where Vm is an Ornstein-Uhlenbeck process. More explicitly, we let V0 be Brownian motion
with variance σ2, and define Vm as

Vm(r) =

∫ r

0
exp(−m(r − s))dV0(s) (6)

for r ∈ [0, 1]. Note that, if we set m = 0 in (6), Vm indeed reduces to the Brownian motion
V0.

As shown in Park (2003b), we may construct the processes Vmn and Vm in the same
probability space so that

Lemma 2.3 Under Assumptions 2.1 and 2.2, we have

Vmn(r) = Vm(r) + Op(n
−1/2+1/p) + Op(mn−1)

uniformly in r ∈ [0, 1] and m ∈ R+.

Lemma 2.3 allows us to represent, up to negligible errors, the distributions of various statis-
tics of time series (xt) by the integrals of the corresponding functionals of continuous process
Vm. Furthermore, the magnitudes of the errors incurred by the approximations can be given
explicitly. For the special case of m = 0, the result in Lemma 2.3 is well known, and has
been used extensively in the analysis of nonlinear models with integrated processes. See,
e.g., Park and Phillips (2001).

Before we present the corresponding result for the bootstrap samples (x∗
t ), it is necessary

to introduce some notations that will be used in the paper for the bootstrap samples and
statistics. Note that we use the superscript “∗” to signify the bootstrap samples and
statistics, following the usual convention. Likewise, P∗ denotes the bootstrap probability
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conditional on the realization of (εt), and E∗ is used for the expectation taken with respect
to P∗. As usual, →d∗ denotes the weak convergence of distributions, and =d∗ denotes the
distributional equality, conditional on the realization of the samples. Moreover, ‘in P’ means
‘with probability close to unity for all large n’, implying that the probability of (εt) being
realized for which the designated statement holds can be made arbitrarily close to unity
by requiring n to be sufficiently large. Our asymptotics in the paper involve the bootstrap
stochastic order symbols, which are introduced in Chang and Park (2003). In particular,
we denote by Z∗

n = O∗
p(1) in P if for any ε > 0 there exists K such that

P {P∗{|Z∗
n| > K} > ε} < ε

for all sufficiently large n.
We now define

V ∗
mn(r) =d∗ n−1/2x∗

[nr] (7)

for r ∈ [0, 1], correspondingly as Vmn introduced in (5). Then we have

Lemma 2.4 Under Asumptions 2.1 and 2.2, we have

V ∗
mn(r) = Vm(r) + O∗

p(n
−1/2+1/p) + O∗

p(mn−1) in P

uniformly in r ∈ [0, 1] and m ∈ R+.

Lemma 2.4 implies that we may have the probabilistic embedding for the bootstrap samples
similarly as for the original samples. The distributions of various statistics of the bootstrap
samples (x∗

t ) can also be approximated by the corresponding functionals of Vm. Upon
comparing the results in Lemmas 2.3 and 2.4, it is now well expected that the bootstrap
would provide the asymptotic refinement for models with weakly integrated processes. Note
that Vmn and V ∗

mn have the common leading term Vm. Therefore, various functionals of
Vmn and V ∗

mn are expected to be represented by the same functionals of Vm up to the
approximation errors, which would become asymptotically negligible under appropriate
regularity conditions. This will be shown in later sections.

Lemmas 2.3 and 2.4 only provide the stochastic orders of the error terms, and cannot be
used directly to show the asymptotic refinement of the bootstrap tests. In particular, our
results in Lemmas 2.3 and 2.4 do not necessarily imply that Vmn can be approximated by
Vm with an error which is distributionally of order O(n−1/2+1/p) or O(mn−1). Therefore,
we may not readily compare the rejection probabilities of the bootstrap tests with those of
the asymptotic tests. To investigate the distributional orders of the approximation errors
appearing in Lemmas 2.3 and 2.4, we need to establish that

Corollary 2.5 Under Assumptions 2.1 and 2.2, we have

P

{

mκ sup
0≤r≤1

|Vmn(r) − Vm(r)| > δmn

}

≤ KδmnE|εt|p

P∗

{

mκ sup
0≤r≤1

|V ∗
mn(r) − Vm(r)| > δmn

}

≤ KδmnE
∗|ε∗t |p in P
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for any (δmn) such that

δmn ≥ max
(

mκp/(1+p)n(2−p)/2(1+p),m1+κn−1+ε
)

with arbitrarily small ε > 0, where K is an absolute constant depending only upon p.

We now let D[0, 1] be the set of cadlag functions defined on [0, 1], and let Γm be a
functional defined on D[0, 1] such that

|Γm(Vmn) − Γm(Vm)| ≤ Kmκ sup
0≤r≤1

|Vmn(r) − Vm(r)|

where K is an absolute constant possibly depending only upon p, and such that that Γm(Vm)
has a density bounded uniformly in m. Clearly, Γm may be viewed as a Lipschitz functional
defined on D[0, 1] endowed with the supremum norm. As a direct consequence of Corollary
2.5, we have

P {Γm(Vmn) ≤ x} = P {Γm(Vm) ≤ x} + Rmn

P∗ {Γm(Vmn) ≤ x} = P {Γm(Vm) ≤ x} + Rmn in P (8)

uniformly in x ∈ R, where

Rmn = o
(

mκ/p(1+p)n(2−p)/2(1+p)+ε
)

+ o
(

m1+κn−1+ε
)

for any ε > 0. This can be shown using the result in, e.g., Lemma A4 of Park (2003a).
As an illustration, we consider the k-th sample moments of (xt) and (x∗

t ). It follows
directly from the embeddings in (5) and (7) that

mk/2

n1+k/2

n−1
∑

t=0

xk
t =d

∫ 1

0
V k

mn(r) dr,
mk/2

n1+k/2

n−1
∑

t=0

x∗k
t =d∗

∫ 1

0
V ∗k

mn(r) dr

Moreover, if we let Mk be the k-th moment of N(0, σ2/2) distribution and given by Mk = 0 if
k = 2j−1 and Mk = (σ2/2)jΠj

i=1(2i−1) if k = 2j for j = 1, 2, . . ., then mk/2
∫ 1
0 V k

m(r) dr →a.s.

Mk and m1/2
(

mk/2
∫ 1
0 V k

m(r) dr − Mk

)

converges weakly to normal law, as m → ∞. This is

shown in Park (2003b). The k-th sample moment of (xt) or (x∗
t ) may therefore be effectively

analyzed if we consider

Γm(V ) = m1/2

(

mk/2

∫ 1

0
V k(r) dr − Mk

)

(9)

Clearly, the functional Γm is Lipschitz and Γm(Vm) has a density bounded uniformly in m.
Our results in (8) are thus applicable for the functional Γm defined in (9) with κ = (k+1)/2.

All the test statistics we will subsequently consider can be represented as simple func-
tions of the sample moments of (xt) and (x∗

t ). We may therefore directly compare the
rejection probabilities of the bootstrap tests with those of the asymptotic tests as above
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using the functional Γm introduced in (9), and show that the bootstrap provides the asymp-
totic refinement. This, however, will not be formally pursued in the paper. The exact orders
of the discrepancies in the rejection probabilities depend upon m, which we do not observe.
Therefore, the absolute magnitudes of the orders are not very useful. In the subsequent
lemmas, theorems and corollaries, we simply provide the results as those in Lemmas 2.3
and 2.4, identifying only the leading terms in the expansions with the stochastic orders of
magnitude for the approximation errors. However, it should be emphasized here that all
the error terms in our subsequent results can be made as small as op(n

−1/2+ε) stochastically
and o(n−1/2+ε) distributionally, for any ε > 0, under stringent enough moment conditions
for (εt) and sufficiently slow divergence rates for m.

3. Sample Asymptotics and Bootstrap Refinements

3.1 Sample Asymptotics

As before, we denote by α̂ the least squares estimator for the AR coefficient α in regression
(3). Let Smn be the normalized coefficient given by

Smn =
n√
m

(α̂ − α) =

n

n
∑

t=1

xt−1εt

√
m

n
∑

t=1

x2
t−1

and Tmn be the t-ratio given by

Tmn =
α̂ − α

s(α̂)
=

n
∑

t=1

xt−1εt

σ̂

(

n
∑

t=1

x2
t−1

)1/2

where σ̂2 is the usual error variance estimator and s(α̂) is the standard error for α̂.

Lemma 3.1 Under Assumptions 2.1 and 2.2, we have

m

n2

n
∑

t=1

x2
t−1 =d m

∫ 1

0
V 2

m(r)dr + Op(m
1/2n−1/2+1/p) + Op(m

3/2n−1)

√
m

n

n
∑

t=1

xt−1εt =d

√
m

∫ 1

0
Vm(r)dV0(r) + Op(m

1/2n−1/2+1/p) + Op(m
3/2n−1)

as n → ∞, uniformly in m ∈ R+.
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Theorem 3.2 Under Assumptions 2.1 and 2.2, we have

Smn =d Sm + Op(m
1/2n−1/2+1/p) + Op(m

3/2n−1)

Tmn =d Tm + Op(m
1/2n−1/2+1/p) + Op(m

3/2n−1)

where

Sm =

√
m

∫ 1

0
Vm(r)dV0(r)

m

∫ 1

0
V 2

m(r)dr

, Tm =

√
m

∫ 1

0
Vm(r)dV0(r)

σ

(

m

∫ 1

0
V 2

m(r)dr

)1/2

as n → ∞, uniformly in m ∈ R+, and

Sm√
2
, Tm →d N(0, 1)

as m → ∞.

The role of m in our asymptotics should first be clarified to properly interpret the
results in Theorem 3.2 and the subsequent results. To do so, we let (S, T ) represent the
limit random variables of (Sm, Tm), and assume that (Smn, Tmn) is defined on the same
probability space as (Sm, Tm) and (S, T ). Then we write

Smn = S + (Sm − S) + (Smn − Sm)

Tmn = T + (Tm − T ) + (Tmn − Tm)

It now follows from Theorem 3.2 that

Am = Sm − S or Tm − T

become small as m → ∞, and that

Bmn = Smn − Sm or Tmn − Tm

can be made negligible uniformly in m ∈ R+ as n → ∞.
Unless m increases too fastly relative to n, we may well expect

|Am| > |Bmn| = Op(m
1/2n−1/2+1/p) + Op(m

3/2n−1) (10)

Indeed, this is what is likely to happen when

m = o
(

min(n2/3−4/3p, n4/7)
)

since Am is of order at most Op(m
−1/4), as one may see from the proof of Theorem 3.2.

Here we should notice that Theorem 3.2 does provide asymptotic expansions for (Smn, Tmn),
if Am and Bmn satisfy the condition given in (10). In such cases, Sm = S + (Sm − S) and
Tm = T + (Tm − T ) represent the two leading terms of the expansions for Smn and Tmn,
respectively.
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The precision and usefulness of the expansions, of course, depend on how slowly m
increases relatively to n. Our expansions, in particular, are not valid when m increases as
fast as n, in which case (xt) becomes a stationary AR process. Recall that we assume m/n →
0. If m increases at a slower rate relative to n, the approximation errors have reduced orders,
and the leading terms in the expansions become more dominant. As m increases slowly
(fastly) relative to n, m/n diminishes fastly (slowly) to zero, which in turn implies that
α = 1 − m/n approaches fastly (slowly) to unity. Therefore, our expansions are generally
more useful for the time series with roots closer to unity. If, for instance, m = log n and
α = 1−m/n = 1− log n/n, the expansions have the error terms of order op(n

−1/2+1/p log n).
The order would further be reduced to op(n

−1/2+ε) for any ε > 0, if all moments of (εt) are
finite. The leading terms in this case would thus provide reasonably good approximations for
the finite sample distributions of Smn and Tmn. Note that (Smn, Tmn) are asymptotically
pivotal, and the distributions of (Sm, Tm) and (S, T ) do not depend upon any nuisance
parameter.

Under stringent enough moment conditions for (εt), it readily follows from the results
in Theorem 3.2 that

P{Smn ≤ x} = P{Sm ≤ x} + o(m1/2n−1/2+1/p+ε) + o(m3/2n−1+ε) (11)

P{Tmn ≤ x} = P{Tm ≤ x} + o(m1/2n−1/2+1/p+ε) + o(m3/2n−1+ε) (12)

which hold uniformly in x ∈ R for any ε > 0. The asymptotic expansions in (11) and (12)
are more comparable to the Edgeworth type expansions for the usual stationary models,
and also more directly applicable to investigate the asymptotic refinement of the bootstrap
as we will see later. Given Corollary 2.5, the results in (11) and (12) can easily be derived
exactly as in the proof of Corollary 3.8 in Park (2003a).

The usual asymptotics can also be easily derived from Theorem 3.2. Indeed, it can be
easily deduced from Theorem 3.2 that

Smn√
2

, Tmn →d N(0, 1)

as long as n,m → ∞ such that m/n → 0. Alternatively, we may set m explicitly as a
function of n as in (2) with ν(n) such that ν(n)/n → 0 as n → ∞. Then it follows from
Theorem 3.2 that

Sν(n)n√
2

, Tν(n)n →d N(0, 1)

as n → ∞, more conformably with the usual asymptotics. The models with weakly inte-
grated processes, if correctly specified, have normal asymptotics in sharp constrast with the
unit root and cointegrated models. The reader is referred to Park (2003b) for more details
on the asymptotics of models with weakly integrated time series.

We also consider the estimators for α in the regressions with constant and linear time
trend as given by

yt = µ̂ + α̂µxt−1 + ε̂t (13)

yt = µ̂ + τ̂ t + α̂τxt−1 + ε̂t (14)
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in addition to regression (3). In what follows, we will only consider the least squares
estimators α̂µ and α̂τ of α in regressions (13) and (14). The least squares estimators of
other parameters can be analyzed similarly.

Lemma 3.3 We have

1√
n

n
∑

t=1

εt =d

∫ 1

0
dV0(r) + Op(n

−1/2+1/p)

1

n3/2

n
∑

t=1

tεt =d

∫ 1

0
rdV0(r) + Op(n

−1/2+1/p)

√
m

n3/2

n
∑

t=1

xt−1 =d

√
m

∫ 1

0
Vm(r)dr + Op(m

1/2n−1/2+1/p) + Op(m
3/2n−1)

√
m

n5/2

n
∑

t=1

txt−1 =d

√
m

∫ 1

0
rVm(r)dr + Op(m

1/2n−1/2+1/p) + Op(m
3/2n−1)

as n → ∞, uniformly in m ∈ R+.

Define (Sµ
mn, T µ

mn) and (Sτ
mn, T τ

mn) respectively for regressions (13) and (14), correspond-
ingly as (Smn, Tmn) defined for regression (3). Moreover, denote by (Sµ

m, T µ
m) and (Sτ

m, T τ
m)

the leading terms in the asymptotic expansions of (Sµ
mn, T µ

mn) and (Sτ
mn, T τ

mn), respectively,
analogously as our notations (Sm, Tm) for (Smn, Tmn). Then we have

Corollary 3.4 Let (Sµ
m, T µ

m) and (Sτ
m, T τ

m) be defined analogously as (Sm, Tm) with Vm

replaced respectively by V µ
m and V τ

m, where

V µ
m(r) =d Vm(r) −

∫ 1

0
Vm(s) ds

V τ
m(r) =d Vm(r) + (6t − 4)

∫ 1

0
Vm(s) ds − (12t − 6)

∫ 1

0
sVm(s) ds

Then Theorem 3.2 continues to hold for (Sµ
mn, T µ

mn) and (Sτ
mn, T τ

mn) with (Sm, Tm) replaced
respectively by (Sµ

m, T µ
m) and (Sτ

m, T τ
m).

In particular, Corollary 3.4 implies that (Sµ
mn, T µ

mn) and (Sτ
mn, T τ

mn) have the leading ex-
pansion terms (Sµ

m, T µ
m) and (Sτ

m, T τ
m). Our earlier remarks on the interpretations of the

leading expansion terms (Sm, Tm) for (Smn, Tmn) also apply to the leading expansion terms
(Sµ

m, T µ
m) and (Sτ

m, T τ
m) respectively for (Sµ

mn, T µ
mn) and (Sτ

mn, T τ
mn). Furthermore, the for-

mal asymptotic expansions similar to those in (11) and (12) can also be obtained for both
(Sµ

mn, T µ
mn) and (Sτ

mn, T τ
mn) under appropriate moment conditions for (εt).

We now turn to the distributions of the leading terms in our asymptotic expansions.
Note that they are dependent only on m, and converge in distribution to normal distribu-
tions as m → ∞. Figures 1 and 2 present the densities of (Sm, Sµ

m, Sτ
m) and (Tm, T µ

m, T τ
m),

respectively, for the values of m = 10, 100 and 1000, and compare them with their limit
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normal densities. The distributions of (Sm, Tm) are pretty close to the limit normal distribu-
tions, even when m is fairly small. Even for m = 10, their distributions are not significantly
different from the limit normals. On the other hand, the distributions of (Sτ

m, T τ
m) are very

distinct from their limit distributions unless m becomes fairly large. When m is as small as
10, their discrepancies from the limit normals are quite substantial. It also appears that the
distributions of (Sµ

m, T µ
m) can be quite different from their normal limits, though the differ-

ences are not as large as (Sτ
m, T τ

m). The distributions of Sµ
m and Sτ

m are noticeably skewed
when m is small. This is not the case for T µ

m and T τ
m, whose distributions are mislocated

but remain to be symmetric even for very small m.

3.2 Bootstrap Refinements

Let α̂∗ be the least squares estimator for the AR coefficient α in regression (3) obtained
using bootstrap samples (x∗

t ). Define the bootstrap version of Smn by

S∗
mn =

n√
m

(α̂∗ − α̂) =

n

n
∑

t=1

x∗
t−1ε

∗
t

√
m

n
∑

t=1

x∗2
t−1

and the bootstrap version of Tmn by

T ∗
mn =

α̂∗ − α̂

s(α̂∗)
=

n
∑

t=1

x∗
t−1ε

∗
t

σ̂∗

(

n
∑

t=1

x∗2
t−1

)1/2

where σ̂∗2 is the error variance estimator computed from bootstrap samples (x∗
t ), and s(α̂∗)

is the standard error for α̂∗. Moreover, define (Sµ∗
mn, T µ∗

mn) and (Sτ∗
mn, T τ∗

mn) for the bootstrap
versions of the regressions (13) and (14), respectively, analogously as (S∗

mn, T ∗
mn) for the

bootstrap version of regression (3).

Lemma 3.5 Under Assumptions 2.1 and 2.2, we have

m

n2

n
∑

t=1

x∗2
t−1 =d∗ m

∫ 1

0
V 2

m(r)dr + O∗
p(m

1/2n−1/2+1/p) + O∗
p(m

3/2n−1) in P

√
m

n

n
∑

t=1

x∗
t−1ε

∗
t =d∗

√
m

∫ 1

0
Vm(r)dV0(r) + O∗

p(m
1/2n−1/2+1/p) + O∗

p(m
3/2n−1) in P

as n → ∞, uniformly in m ∈ R+.
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Lemma 3.6 Under Assumptions 2.1 and 2.2, we have

1√
n

n
∑

t=1

ε∗t =d∗

∫ 1

0
dV0(r) + O∗

p(n
−1/2+1/p) in P

1

n3/2

n
∑

t=1

tε∗t =d∗

∫ 1

0
rdV0(r) + O∗

p(n
−1/2+1/p) in P

√
m

n3/2

n
∑

t=1

x∗
t−1 =d∗

√
m

∫ 1

0
Vm(r)dr + O∗

p(m
1/2n−1/2+1/p) + O∗

p(m
3/2n−1) in P

√
m

n5/2

n
∑

t=1

tx∗
t−1 =d∗

√
m

∫ 1

0
rVm(r)dr + O∗

p(m
1/2n−1/2+1/p) + O∗

p(m
3/2n−1) in P

as n → ∞, uniformly in m ∈ R+.

Theorem 3.7 Under Assumptions 2.1 and 2.2, we have

S∗
mn =d∗ Sm + O∗

p(m
1/2n−1/2+1/p) + O∗

p(m
3/2n−1) in P

T ∗
mn =d∗ Tm + O∗

p(m
1/2n−1/2+1/p) + O∗

p(m
3/2n−1) in P

where Sm and Tm are defined in Theorem 3.2.

Corollary 3.8 Theorem 3.7 continues to hold for (Sµ∗
mn, T µ∗

mn) and (Sτ∗
mn, T τ∗

mn) with (Sm, Tm)
replaced respectively by (Sµ

m, T µ
m) and (Sτ

m, T τ
m).

Lemma 3.5 and Theorem 3.7 are completely analogous to Lemma 3.1 and Theorem 3.2,
and provide the asymptotics for regression (3). Lemma 3.6 and Corollary 3.8 correspond
to Lemma 3.3 and Corollary 3.4, and are for regressions (13) and (14) with intercept and
linear time trend.

Theorem 3.7 shows that the bootstrap distributions of (S∗
mn, T ∗

mn) are asymptotically
identical to those of (Smn, Tmn) as n,m → ∞ such that m/n → 0. Both have limit normal
distributions. The bootstrap consistency is thus established. More importantly, however,
Theorem 3.7 shows that the bootstrap provides the asymptotic refinements for (Smn, Tmn).
The asymptotic expansions for (Smn, Tmn) and (S∗

mn, T ∗
mn) have the same leading terms

(Sm, Tm), which approximate the finite sample distributions of (Smn, Tmn) and (S∗
mn, T ∗

mn)
up to the errors that become negligible if m increases slowly enough. Note that the leading
terms in the asymptotic expansions of (S∗

mn, T ∗
mn) have distributions not depending upon the

sample realizations. Due to Corollary 3.8, all these discussions on the asymptotic refinement
of the bootstrap for (Smn, Tmn) extend to (Sµ

mn, T µ
mn) and (Sτ

mn, T τ
mn) for the regressions

with intercept and linear time trend.
Analogously as (11) and (12), we may deduce from the results in Theorem 3.7 that

P∗{S∗
mn ≤ x} = P{Sm ≤ x} + op(m

1/2n−1/2+1/p+ε) + op(m
3/2n−1+ε) (15)

P∗{T ∗
mn ≤ x} = P{Tm ≤ x} + op(m

1/2n−1/2+1/p+ε) + op(m
3/2n−1+ε) (16)
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uniformly in x ∈ R for any ε > 0. Similarly as (11) and (12), the bootstrap asymptotic
expansions in (15) and (16) can be derived in a straightforward manner from Corollary 2.5
as in the proof of Corollary 3.11 in Park (2003a), under stringent enough moment conditions
for (εt). The bootstrap asymptotic expansions for (Sµ∗

mn, T µ∗
mn) and (Sτ∗

mn, T τ∗
mn) corresponding

to those in (15) and (16) can be obtained similarly.
Let a∗λ and b∗λ denote, respectively, the bootstrap critical values for the size λ tests based

on the statistics Smn and Tmn, which are given by

P∗{S∗
mn ≤ a∗λ}, P∗{T ∗

mn ≤ b∗λ} = λ

Then we may easily deduce, by comparing (11) with (15) and (12) with (16), that

P{Smn ≤ a∗λ}, P{Tmn ≤ b∗λ} = λ + op(m
1/2n−1/2+1/p+ε) + op(m

3/2n−1+ε) (17)

for any ε > 0. The results in (17) show that the bootstrap provides the asymptotic re-
finements for Smn and Tmn as long as (10) holds. In this case, the tests relying on the
bootstrap critical values a∗λ and b∗λ, in place of their asymptotic values, have the actual re-
jection probabilities that are closer to their nominal values. Of course, similar results hold
for (Sµ

mn, T µ
mn) and (Sτ

mn, T τ
mn) for the regressions with intercept and linear time trend.

The orders of the bootstrap refinements here depend on how fast α = 1−m/n approaches
to unity. If m increases slowly relative to n and α = 1 − m/n coverges to unity fastly, the
magnitudes of the error terms become smaller and the common leading terms (Sm, Tm)
in the asymptotic expansions of (Smn, Tmn) and (S∗

mn, T ∗
mn) more precisely represent their

finite sample distributions. If we set m = log n so that α = 1−m/n converges to the unity
nearly as fast as in the case for the quasi-integrated process, then the orders of the bootstrap
refinements can be made as large as o∗p(n

−1/2+ε) for any ε > 0. This rate can actually be
attained if the innovation has moments finite at all orders. The magnitudes of bootstrap
refinements also depend upon how far away are the distributions of the leading terms from
the limit normal distributions. Of three regressions (3), (13) and (14), we may expect most
substantial bootstrap refinements for the regression with linear time trend, since as shown
in Figures 1 and 2 the distributions of the leading terms are most distinct from the limit
normal distributions. This is indeed exactly what was found by Nankervis and Savin (1996)
through an extensive simulation.

4. Extensions

4.1 A Sieve Bootstrap

Now we consider more general model

xt = αxt−1 + vt (18)

where α is specified as in Assumption 2.1, and (vt) is a general linear process given by

vt = π(L)εt

with π(z) =
∑∞

i=0 πiz
i.
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Assumption 4.1 We assume that
(a) (εt) are iid random variables such that Eεt = 0, Eε2

t = σ2 and E|εt|p < ∞ for some
p ≥ 4,
(b) π(z) 6= 0 for all |z| ≤ 1, and

∑∞
i=0 |i|q|πi| < ∞ for some q ≥ 1.

Let
Vmn(r) =d

x[nr]

π(1)
√

n

and Vm be defined as in Section 2. Then we have

Lemma 4.2 Under Assumptions 2.1 and 4.1, we have

Vmn(r) = Vm(r) + Op(n
−1/2+1/p) + Op(mn−1)

uniformly in r ∈ [0, 1] and m ∈ R+.

Under Assumption 4.1, we may write (vt) as an infinite order AR. In what follows, we
will write

β(L)vt = εt (19)

with β(z) = 1 −∑∞
i=1 βiz

i. Consequently, (xt) is generated as

(1 − αL)β(L)xt = εt

i.e., an infinite order AR process with a weak unit root. If we define βκ(z) = 1−∑κ−1
i=1 βiz

i,
then we may write

(1 − αL)βκ(L)xt = εκ,t

We assume that κ satisfies

Assumption 4.3 Let

max
(

m1/2q,min(n1/2q−1/pq,m−1/qn1/q)
)

≤ κ ≤ n1/p

as n,m → ∞ such that m/n → 0.

The time series (xt) is now approximated by a κ-th order autoregression. The approximation
order κ is assumed to increase with the sample size n at a controlled rate. Note that we
may allow κ to increase slowly for larger values of q. If (vt) is generated as an invertible
ARMA process, then q = ∞. In this case, we may permit κ to grow at a logarithmic rate.

Bootstrap samples for the weakly integrated process (xt) can be obtained similarly as
before by first fitting (xt) using an autoregression of order increasing with the sample size.
For the fitted autoregression, we may use the linear specification

xt = α̂1xt−1 + · · · + α̂κxt−κ + ε̂κ,t (20)
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or the nonlinear specification

xt = α̂xt−1 +

κ−1
∑

i=1

β̂i (xt−i − α̂xt−i−1) + ε̂κ,t (21)

with order κ set to increase as the sample size. The fitted parameters in (20) and (21) are
related each other by

α̂1 = α̂ + β̂1

α̂i = β̂i − α̂β̂i−1, i = 2, . . . , κ − 1 (22)

α̂κ = −α̂β̂κ−1

and the fitted residuals are identical.
We may then obtain bootstrap samples (ε∗t ) from the centered fitted residuals

(

ε̂κ,t −
1

n

n
∑

t=1

ε̂κ,t

)n

t=1

and generate the bootstrap samples (x∗
t ) recursively using

x∗
t = α̂1x

∗
t−1 + · · · + α̂κx∗

t−κ + ε∗t (23)

or

x∗
t = α̂x∗

t−1 +

κ−1
∑

i=1

β̂i

(

x∗
t−i − α̂x∗

t−i−1

)

+ ε∗t (24)

correspondingly as the fitted models (20) and (21), given the intinial values x∗
t = xt for

t = 0, . . . ,−κ + 1. The bootstrap samples (x∗
t ) generated using the fitted models (20) and

(21) are identical. The simple linear regression (20) may therefore be preferred to use in
practise.

For the asymptotic analysis of the bootstrap sample (x∗
t ) based on (20) or (21), it will

be convenient to look at the fitted regressions

(

xt −
κ−1
∑

i=1

βixt−i

)

= α̃

(

xt−1 −
κ−1
∑

i=1

βixt−i−1

)

+ ε̃κ,t (25)

(xt − αxt−1) =

κ−1
∑

i=1

β̃i(xt−i − αxt−i−1) + ε̃κ,t (26)

Of course, these regressions are not feasible since α and (βi) are unknown. They are
introduced here simply to analyze the fitted regressions (20) and (21). From now on, we
will concentrate on the estimation of the parameters in regression (21). The estimates of
the parameters in regression (20) can be obtained using the relationships in (22). The next
lemma shows that α̂ and (β̂i) in regression (21) are asymptotically equivalent to α̃ and (β̃i)
in regressions (25) and (26).
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Lemma 4.4 Under Assumptions 2.1, 4.1 and 4.3, we have

n√
m

(α̂ − α) =
n√
m

(α̃ − α) + Op((m/n)1/2)

and for any κ fixed

√
n(β̂i − βi) =

√
n(β̃i − βi) + Op((m/n)1/2)

uniformly in i = 1, . . . , κ − 1 and m ∈ R+.

Lemma 4.5 Under Assumptions 2.1, 4.1 and 4.3, we have

n√
m

(α̃ − α) =d

√
m

∫ 1

0
Vm(r)dV0(r)

m

∫ 1

0
V 2

m(r)dr

+ Op(n
−1/2+1/p) + Op(mn−1)

as n → ∞, uniformly in m ∈ R+.

The asymptotic properties of (β̃i) are well known. In particular, if we define β̃κ(z) =
1 −∑κ−1

i=1 β̃iz
i, then we have

β̃κ(1) = βκ(1) + Op(κn−1/2) + o(κ−q)

= β(1) + Op(κn−1/2) + o(κ−q)

as shown in the proof of Lemma 3.1 in Park (2002). Due to the condition on κ in Assumption
4.3, and the result in Lemma 4.4, it therefore follows that

β̂κ(1) = β(1) + Op(n
−1/2+1/p) + Op(mn−1) (27)

where β̂κ(z) = 1 −∑κ−1
i=1 β̂iz

i. The approximation error incurred by using β̂κ(1) for β(1)
would thus become negligible within our error bound.

We now let

π̂(1) =
1

β̂κ(1)

and define

V ∗
mn(r) =d∗

x∗
[nr]

π̂(1)
√

n

Then we have analogously as in Lemma 4.2 that
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Theorem 4.6 Under Assumptions 2.1, 4.1 and 4.3, we have

V ∗
mn(r) = Vm(r) + O∗

p(n
−1/2+1/p) + O∗

p(mn−1) in P

uniformly in r ∈ [0, 1] and m ∈ R+.

Our results in Lemma 4.2 and Theorem 4.6 make it clear that we may expect, also for the
weakly integrated time series generated by general linear processes, the asymptotic refine-
ments similar to those in the previous section established for the simple weakly integrated
processes. We are only required to fit an approximated autoregression of order increasing
with the sample size, and to obtain the bootstrap samples based on the fitted regression.
The error bounds are exactly the same as for the first order autoregressive processes with
weak unit roots.

4.2 Bootstrap Refinements for General Models

It follows rather straightforwardly from Lemma 4.2 and Theorem 4.6 that

Corollary 4.7 Under Assumptions 2.1, 4.1 and 4.3, we have

m

n2

n
∑

t=1

x2
t =d m

∫ 1

0
V 2

m(r)dr + Op(m
1/2n−1/2+1/p) + Op(m

3/2n−1)

m

n2

n
∑

t=1

x∗2
t =d∗ m

∫ 1

0
V 2

m(r)dr + O∗
p

(

m1/2n−1/2+1/p
)

+ O∗
p(m

3/2n−1) in P

as n → ∞, uniformly in m ∈ R+.

which extends the results in Lemmas 3.1 and 3.3 to general weakly integrated time series
driven by linear processes.

One of the immediate implications of the results in Corollary 4.7 is the bootstrap re-
finement for the model

yt = βxt + ut (28)

Let β̂ be the least squares estimator for β. If the errors (ut) are iid and independent of (xt),
we have

n√
m

(β̂ − β) =

(

m

n2

n
∑

t=1

x2
t

)−1 √
m

n

n
∑

t=1

xtut

=d

√
m

∫ 1

0
Vm(r)dU(r)

m

∫ 1

0
V 2

m(r)dr

+ Op(m
1/2n−1/2+1/p) + Op(m

3/2n−1) (29)
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where U is Brownian motion independent of Vm. Similarly, we have in this case

n√
m

(β̂
∗ − β̂) =

(

m

n2

n
∑

t=1

x∗2
t

)−1 √
m

n

n
∑

t=1

x∗
t u

∗
t

=d∗

√
m

∫ 1

0
Vm(r)dU(r)

m

∫ 1

0
V 2

m(r)dr

+ O∗
p(m

1/2n−1/2+1/p) + O∗
p(m

3/2n−1) in P (30)

where (x∗
t ) are bootstrap samples of (xt) obtained as described in the previous subsection,

and (u∗
t ) are resamples of the centered fitted residuals (ût − (1/n)

∑n
t=1 ût). Therefore, the

bootstrap for regression (28) provides the refinement up to the order given by the maximum
of o(m1/2n−1/2+1/p+ε) and o(m3/2n−1+ε) for arbitrarily small ε > 0, just as in the case of

simple autoregression. The leading terms of the standardized β̂ and β̂
∗

all have normal
limit distributions, as shown in Park (2003b).

The model given above in (28) may represent a quite general weak cointegrating regres-
sion, if we specify (ut) as a linear process jointly with (vt) generating (xt). To consider such
a general model, we define

wt = (ut, vt)
′

and let (wt) be a linear process given by

wt = Π(L)εt

where (εt) are now iid random vectors and Π(z) =
∑∞

i=0 Πiz
i. We impose conditions on (εt)

and (Πi) comparable to those in Assumption 4.1. Under this specification, the usual least
squares method is not efficient. An efficient way of estimating β is to run the regression

yt = βxt +
∑

|i|≤κ

βivt−i + uκ,t (31)

Of course, (vt) are not observed and should be replaced for the practical implementation
by the fitted residuals (v̂t) from the regression

xt = α̂xt−1 + v̂t

and the number κ of leads and lags is assumed to satisfy Assumption 4.3.
To bootstrap the general weak cointegrating regression, we first let

ẑt = (ût, xt)
′

where (ût) are the fitted residuals from regression (28), and fit

ẑt = Â1ẑt−1 + · · · + Âκẑt−κ + ε̂κ,t (32)

We may now obtain resamples (ε∗t ) from the centered residuals (ε̂κ,t) and construct the
bootstrap samples (z∗t ) using the fitted vector autoregression in (32). The order κ needs
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not be the same for regressions (31) and (32). We just use the same symbol, since they are
required to satisfy the same conditions.

Both the sample and bootstrap asymptotics for the general weak cointegrating regres-
sions are quite similar to those for the simple weak cointegrating regressions driven by iid
errors, if we fit the augmented regression (31) to estimate β. For the general weak cointe-
grating regressions, we indeed have exactly the same representations as in (29) and (30),
only with reduced variance for the process U . We do not provide the details of the proofs
here, because they are quite straightforward from our results in the previous section and
the sample and bootstrap asymptotics developed in Chang, Park and Song (2003) for the
similar cointegrating regressions augmented with leads and lags of differenced regressors.
The models with fitted mean and trend can be analyzed similarly. The finite order autore-
gressive model can also be considered as a special case within our framework. In particular,
it is rather straightforward to show that the result by Inoue and Kilian (2002) continues
to hold for weakly integrated processes. Undoubtedly, the bootstrap would provide refine-
ments for more general models as well. It is indeed obvious from Park (2003b) that the
bootstrap yields distributions closer to finite sample distributions compared to the first
order asymptotics for nonlinear, as well as linear, regression models.

5. Conclusions

In this paper, we consider the bootstrap for weakly integrated processes with roots ap-
proaching to unity as the sample size increases at rates slower than n−1. As shown in
Park (2003b), models with such processes yield normal asymptotics, in sharp contrast to
those with the exact unit roots or the roots converging to unity at rates equal to or faster
than n−1. For such models, the relevant asymptotic theories are generally nonstandard and
nonnormal. We establish the bootstrap consistency and asymptotic refinement for models
with weakly integrated processes. That is, it is shown that the usual bootstrap is not only
first order equivalent to the asymptotics, but also yields the distributions that are closer to
the finite sample distributions than the first order asymptotics if applied to the asymptoti-
cally pivotal statistics. It is well known that the bootstrap becomes inconsistent for models
with exact unit roots, unless the unity of the root is imposed when we generate bootstrap
samples.

We consider relatively simple models in the paper. This is, however, just for the con-
creteness of the arguments and by no means implies that the bootstrap works only for such
simple models. The bootstrap theory presented here and the asymptotic theory developed
in Park (2003b) indeed make it very clear that the bootstrap works for much more general
models, including nonlinear and nonparametric models, with weakly integrated processes.
The general conclusion drawn by our theory is also well expected to hold for more general
models. Outside a certain proximity of the unit root, the bootstrap provides better ap-
proximations for finite sample distributions and therefore the bootstrap correction becomes
more important, as the root approaches faster to unity. Inside an immediate neighborhood
of the unit root, however, the bootstrap samples fail to mimic even the first order asymp-
totics unless the exact information on the root is utilized when we generate the bootstrap
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samples.

Appendix: Mathematical Proofs

Let f be the density for N(0, 1/2), which is given by

f(x) =
1√
π

e−x2

As shown in Park (2003b), we have

Lemma A1 For k ≥ 0, we have

mk/2

∫ 1

0
V k

m(r) dr →a.s. σk

∫ ∞

−∞
xkf(x) dx

mk/2

∫ 1

0
rV k

m(r) dr →a.s.
1

2
σk

∫ ∞

−∞
xkf(x) dx

as m → ∞.

Proof of Lemma 2.3 The stated result follows as a special case of Lemma 2.3 in Park
(2003b). The proof of Lemma 2.3 in Park (2003b), however, does not show how we may
establish the corresponding result for the bootstrap samples. Here we give a more detailed
proof to motivate the bootstrap version of the result given in Lemma 2.4 below.

It follows as in the proof of Lemma 2.3 in Park (2003b) that

Vmn(r) = V0n(r) − m

∫ r

0
exp(−m(r − s))V0n(s) ds + Rmn(r)

where the remainder term Rmn is bounded by a constant multiple of

m

n

∣

∣

∣

∣

m

∫ r

0
exp(−m(r − s))V0n(s) ds

∣

∣

∣

∣

(33)

uniformly in r ∈ [0, 1]. However, due to Sakhanenko (1980), we may choose V0n up to
the distributional equivalence such that it is defined in the same probability space as the
Brownian motion V0 and

P

{

sup
0≤r≤1

|V0n(r) − V0(r)| > cn

}

≤ Kc−p
n n1−p/2 E|εt|p (34)

where K is an absolute constant depending only upon p. In particular, we have for cn =
n−1/2+1/pM with some large M > 0

P

{

sup
0≤r≤1

|V0n(r) − V0(r)| > n−1/2+1/pM

}

< ε (35)

where ε > 0 is arbitrary. The stated result therefore follows directly from (33) and (35). �
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Proof of Lemma 2.4 We first apply the result by Sakhanenko (1980) in (34) to V ∗
0n to

deduce

P∗

{

sup
0≤r≤1

|V ∗
0n(r) − V0(r)| > cn

}

≤ Kc−p
n n1−p/2 E∗|ε∗t |p (36)

Then we show

E∗|ε∗t |p =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂t −
1

n

n
∑

t=1

ε̂t

∣

∣

∣

∣

∣

p

= Op(1)

The stated result would then follow immediately, analogously as in the proof of Lemma 2.3.
Note that

α̂ = α + Op(m
1/2n−1) = 1 + Op(mn−1)

as we show in Theorem 3.2.
We write

1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂t −
1

n

n
∑

t=1

ε̂t

∣

∣

∣

∣

∣

p

≤ cp(An + Bn + Cn)

where cp is a constant depending only on p, and

An =
1

n

n
∑

t=1

|εt|p, Bn =
1

n

n
∑

t=1

|ε̂t − εt|p, Cn =

∣

∣

∣

∣

∣

1

n

n
∑

t=1

ε̂t

∣

∣

∣

∣

∣

p

It will be shown below that An, Bn, Cn = Op(1).
By the strong law of large numbers, An →a.s. E|εt|p = O(1). To show that Bn = Op(1),

we note that

1

n

n
∑

t=1

|ε̂t − εt|p =
(m

n

)p/2
(

m

n2

n
∑

t=1

x2
t−1

)−p ∣
∣

∣

∣

∣

√
m

n

n
∑

t=1

xt−1εt

∣

∣

∣

∣

∣

p(

1

n1+p/2

n
∑

t=1

|xt−1|p
)

As shown in Lemma 3.1 and Theorem 3.2, we have

(

m

n2

n
∑

t=1

x2
t−1

)−1

,

√
m

n

n
∑

t=1

xt−1εt = Op(1)

Moreover, we have

1

n1+p/2

n
∑

t=1

|xt−1|p =d mp/2

∫ 1

0
|Vmn(r)|pdr = Op(1)

and it follows that Bn = Op((m/n)p/2). Finally,

1

n

n
∑

t=1

ε̂t =
1

n

n
∑

t=1

εt −
1√
n

(

m

n2

n
∑

t=1

x2
t−1

)−1(√
m

n

n
∑

t=1

xt−1εt

)(√
m

n3/2

n
∑

t=1

xt−1

)

from which we may easily deduce that Cn = Op(n
−1/2). The proof is therefore complete.�
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Proof of Corollary 2.5 The stated results can easily be deduced from (34) and (36)
with

cn = m−κδmn

Note that
(m−κδmn)−p n1−p/2 = δmn

yields
δmn = mκp/(1+p)n(2−p)/2(1+p)

as was to be shown. �

Proof of Lemma 3.1 Write

m

n2

n
∑

t=1

x2
t−1 =d m

∫ 1

0
V 2

mn(r)dr

We have
∫ 1

0
V 2

mn(r)dr −
∫ 1

0
V 2

m(r)dr

=

∫ 1

0
(Vmn(r) − Vm(r))2dr + 2

∫ 1

0
Vm(r)(Vmn(r) − Vm(r))dr

and, by Cauchy-Schwarz inequality,

∣

∣

∣

∣

∫ 1

0
Vm(r)(Vmn(r) − Vm(r))dr

∣

∣

∣

∣

≤
(∫ 1

0
V 2

m(r)dr

)1/2(∫ 1

0
(Vmn(r) − Vm(r))2dr

)1/2

The first result now follows directly from Lemma 2.3. Note that
∫ 1

0
V 2

m(r)dr = O(m−1) a.s.

due to Lemma A1.
To derive the second result, we first construct Vmn through the Skorohod type embed-

ding, i.e., the embedding of the partial sum of (εt) directly into a Brownian motion with
properly chosen stopping times, as in Park (2003a). Then it follows that

√
m

n

n
∑

t=1

xt−1εt =d

√
m

∫ 1

0
Vmn(r)dV0(r) + Op((m/n)1/2)

Now we note that
∫ 1

0
Vmn(r)dV0(r) −

∫ 1

0
Vm(r)dV0(r) =

∫ 1

0
(Vmn(r) − Vm(r))dV0(r)

has quadratic variation

σ2

∫ 1

0
(Vmn(r) − Vm(r))2dr = Op(n

−1+2/p)

whose order is given by Lemma 2.3. The proof is therefore complete. �
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Proof of Theorem 3.2 It follows from Lemma A1 that

m

∫ 1

0
V 2

m(r) dr →a.s. σ2

∫ ∞

−∞
x2f(x) dx =

σ2

2

Moreover, if we define a continuous martingale

Mm(r) =
√

m

∫ r

0
Vm(s) dV0(s)

it follows immediately that

[Mm](1) = m

∫ 1

0
V 2

m(r) dr →a.s.
σ2

2

as m → ∞, and that

[Mm, V0](1) =
√

m

∫ 1

0
Vm(r) dr →a.s. σ

∫ ∞

−∞
xf(x) dx = 0

as m → ∞, due to Lemma A1. We have thus shown that Mm is a continous martingale
such that it is asymptotically independent of V0 and hence of Vm for all m, and it has the
quadratic variation which converges to 1/2. Therefore, we may now deduce that

Mm(1) →d N

(

0,
σ2

2

)

as m → ∞. Finally, note that

σ̂2 =
1

n

n
∑

t=1

ε2
t −

1

n

(

m

n2

n
∑

t=1

x2
t−1

)−1(√
m

n

n
∑

t=1

xt−1εt

)2

=
1

n

n
∑

t=1

ε2
t + Op(n

−1)

= σ2 + Op(n
−1/2)

which completes the proof. �

Proof of Lemma 3.3 The first two results are straightforward from (35). The third
result can also be easily deduced from Lemma 2.3, since

√
m

n3/2

n
∑

t=1

xt−1 =d

√
m

∫ 1

0
Vmn(r) dr

Finally, we have √
m

n5/2

n
∑

t=1

txt−1 =d

√
m

∫ 1

0
rVmn(r) dr + Rmn

where the remainder term Rmn is bounded by

√
m

∫ 1

0

∣

∣

∣

∣

r − [nr]

n

∣

∣

∣

∣

|Vmn(r)| dr ≤ 1

n

(√
m

∫ 1

0
|Vmn(r)| dr

)

= Op(n
−1)

and the fourth result follows immediately from Lemma 2.3. �
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Proof of Corollary 3.4 Given Lemma 3.3, the stated results follow exactly as in Theorem
3.2. The proof is therefore omitted. �

Proof of Lemma 3.5 Given Lemma 2.4, the proof is entirely analogous to that of Lemma
3.1. The proof is therefore omitted. �

Proof of Lemma 3.6 Given Lemma 2.4, the proof is entirely analogous to that of Lemma
3.3. The proof is therefore omitted. �

Proof of Theorem 3.7 Given Lemma 3.5, the stated results follow exactly as in Theorem
3.2. The proof is therefore omitted. �

Proof of Corollary 3.8 Given Lemma 3.6, the stated results follow exactly as in Corol-
lary 3.4. The proof is therefore omitted. �

Proof of Lemma 4.2 The stated result follows exactly as in the proof of Lemma 2.3, only
with the inequality (34) due to Sakhanenko (1980) replaced by the corresponding inequality
extended by Akonom (1993) for linear processes. �

Proof of Lemma 4.4 For given κ, we consider the model

xt = αxt−1 + (xt−1 − αxt−2)(κ)′β(κ) + εκ,t

where

β(κ) = (β1, . . . , βκ−1)
′

(xt−1 − αxt−2)(κ) = (xt−1 − αxt−2, . . . , xt−κ+1 − αxt−κ)′

In the subsequent proof, we regard β(κ) and (xt−1−αxt−2)(κ) as scalars, and simply denote
by β and xt−1 − αxt−2, respectively. This is purely for expositional brevity. The proof for
the vector-valued β(κ) and (xt−1 − αxt−2)(κ) are essentially identical, requiring only some
obvious changes in notation.

Define

Q(α, β) =

n
∑

t=1

(xt − (α + β)xt−1 + αβxt−2)
2

and denote by Q̇(α, β) and Q̈(α, β) the first and second derivatives of Q(α, β). Also, we let

νn = diag

(

n√
m

,
√

n

)

and consider
0 = ν−1

n Q̇(α, β) +
(

ν−1
n Q̈(ᾱ, β̄)ν−1

n

)

νn(α̂ − α, β̂ − β)′

where (ᾱ, β̄) lies on the line segment connecting (α̂, β̂) and (α, β).
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For the subsequent proof, we will use the fact

n
∑

t=1

x2
t−i,

n
∑

t=1

xt−ixt−j = Op(n
2/m) (37)

n
∑

t=1

xt−ivt−j = Op(n) (38)

n
∑

t=1

xt−iεκ,t = Op(m
−1/2n) (39)

which hold uniformly for i, j = 1, . . . , κ − 1. The result in (37) follows immediately from
Lemma 4.2 as in the proof of Theorem 3.1. To deduce the result in (38), see the proof of
Lemma 4.1 in Park (2002) and the proof of Lemma 3.2 in Chang and Park (2002). To prove
the result in (39), we first write

n
∑

t=1

xt−iεκ,t =

n
∑

t=1

xt−iεt +

n
∑

t=1

xt−i(εκ,t − εt)

and write

xt−i =

t−i
∑

j=1

vj −
1 − α

α

t−i−1
∑

j=1

αt−i−j

(

j
∑

k=1

vk

)

Following the proof of Lemma 3.1 in Chang and Park (2002), we may deduce

n
∑

t=1





t−i
∑

j=1

vj



 (εκ,t − εt) = op(κ
−qn)

n
∑

t=1

(

j
∑

k=1

vk

)

(εκ,t − εt) = op(κ
−qn)

uniformly in i and j. We therefore have

n
∑

t=1

xt−i(εκ,t − εt) = op(κ
−qn)

uniformly in i. The result in (39) now follows immediately upon noticing

nκ−q = O(m−1/2n)

since κ ≥ m1/2q, and
n
∑

t=1

xt−iεt = Op(m
−1/2n)

which holds uniformly in i ≥ 1.
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It is easy to check that the conditions AD1 - AD4 in Park and Phillips (2001) hold.
Moreover, with the choice of µn = ν1−δ

n for small δ > 0, the condition AD7 in Park and
Phillips (2001) is satisfied. We now let

ᾱ = α +

√
m

n
, β̄ = β +

1√
n

and define

Q̈(ᾱ, β̄) − Q̈(α, β) =

(

∆11 ∆12

∆21 ∆22

)

where

∆11 =
1

n

n
∑

t=1

x2
t−2 −

2√
n

n
∑

t=1

(xt−1 − βxt−2)xt−2 = Op(n
3/2/m)

∆22 =
m

n2

n
∑

t=1

x2
t−2 −

2
√

m

n

n
∑

t=1

(xt−1 − αxt−2)xt−2 = Op(m
1/2)

∆12 = −
√

m

n
xt−2(xt−1 − β̄xt−2) −

1√
n

(xt−1 − αxt−2)xt−2

−
√

m

n
(xt−1 − β̄xt−2)xt−2 −

1√
n

(xt−1 − αxt−2)xt−2

= Op(n/m1/2)

which follow from (37) and (38). Consequently, we have

ν−1
n

(

Q̈(ᾱ, β̄) − Q̈(α, β)
)

ν−1
n = Op(n

−1/2)

Moreover, if we denote by Q̈0(α, β) the diagonal matrix whose diagonal entries are the same
as those of Q̈(α, β), then

ν−1
n Q̈(α, β)ν−1

n = ν−1
n Q̈0(α, β)ν−1

n + Op((m/n)1/2)

Note that the off-diagonal entry of ν−1
n Q̈(α, β)ν−1

n is given by
√

m

n

1√
n

(

n
∑

t=1

xt−2εκ,t +
n
∑

t=1

(xt−1 − αxt−2)(xt−1 − βxt−2)

)

=

√
m

n

1√
n

Op(m
−1/2n) +

√
m

n

1√
n

Op(n)

= Op((m/n)1/2)

as was to be shown.
We now have

νn(α̂ − α, β̂ − β)′ = −
(

ν−1
n Q̈0(α, β)ν−1

n

)−1 (

ν−1
n Q̇(α, β)

)

+ Op((m/n)1/2)

However, as can be easily shown,

νn(α̃ − α, β̃ − β)′ = −
(

ν−1
n Q̈0(α, β)ν−1

n

)−1 (

ν−1
n Q̇(α, β)

)

and the proof is complete. �
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Proof of Lemma 4.5 It follows from the proof of Lemma 3.2 in Park (2002) that

sup
0≤r≤1

∣

∣

∣

∣

∣

∣

[nr]
∑

t=1

(εκ,t − εt)

∣

∣

∣

∣

∣

∣

= Op(κ
−qn1/2)

We therefore have

1√
n

[nr]
∑

t=1

εκ,t =
1√
n

[nr]
∑

t=1

εt + Op(κ
−q)

uniformly in r ∈ [0, 1]. Consequently, if we define

yκ
t = βκ(L)xt

and
V κ

mn(r) = n−1/2yκ
[nr]

then it follows that

V κ
mn(r) = Vm(r) + Op(n

−1/2+1/p) + Op(mn−1) + Op(κ
−q)

The stated result may now be derived easily. Note that

κ−q ≤ max
(

n−1/2+1/p,mn−1
)

under the condition in Assumption 4.3, and the Op(κ
−q) error term is of order smaller than

either the Op(n
−1/2+1/p) term or the Op(mn−1) term. �

Proof of Theorem 4.6 The fitted residual (ε̂κ,t) from regression (20) or (21) can also be
obtained from the fitted regression

xt = ᾱxt−1 +

κ−1
∑

i=1

β̄i(xt−i − αxt−i−1) + ε̂κ,t (40)

which is just a reparametrized version of (20). Define

vκ,t = (vt−1, . . . , vt−κ+1)
′

and denote by β̄ = (β̄1, . . . , β̄κ−1)
′ and β̃ = (β̃i, . . . , β̃κ−1)

′ the least squares estimates of
β = (β1, . . . , βκ−1)

′ from regressions (26) and (40), respectively. It follows that

ᾱ − α =





n
∑

t=1

x2
t−1 −

(

n
∑

t=1

xt−1v
′
κ,t

)(

n
∑

t=1

vκ,tv
′
κ,t

)−1( n
∑

t=1

vκ,txt−1

)





−1

·
(

n
∑

t=1

xt−1εκ,t −
(

n
∑

t=1

xt−1vκ,t

)

(β̃ − β)

)
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and

β̄ = β̃ − (ᾱ − α)

(

n
∑

t=1

vκ,tv
′
κ,t

)−1( n
∑

t=1

vκ,txt−1

)

Moreover, we have

ε̂κ,t = xt − ᾱxt−1 − v′κ,tβ̄

=
(

(xt − αxt−1) − v′κ,tβ̃
)

− (ᾱ − α) xt−1

+ (ᾱ − α)

(

n
∑

t=1

xt−1v
′
κ,t

)(

n
∑

t=1

vκ,tv
′
κ,t

)−1

vκ,t

= ε̃κ,t − (ᾱ − α)xt−1 + (ᾱ − α)

(

n
∑

t=1

xt−1v
′
κ,t

)(

n
∑

t=1

vκ,tv
′
κ,t

)−1

vκ,t

where (ε̃κ,t) are the fitted residuals from regression (26).
Let ‖ · ‖ denote the usual Euclidean norm if applied to a vector, and the standard

operator norm if applied to a matrix. We have
∥

∥

∥

∥

∥

∥

(

n
∑

t=1

vκ,tv
′
κ,t

)−1
∥

∥

∥

∥

∥

∥

= Op(n
−1) (41)

∥

∥

∥

∥

∥

n
∑

t=1

vκ,txt−1

∥

∥

∥

∥

∥

= Op(κ
1/2n) (42)

which follows from Lemma 3.2 of Chang and Park (2002) and our earlier result in (38).
Moreover, we have

∥

∥

∥
β̃ − β

∥

∥

∥
= Op(κ

1/2n−1/2) + o(κ−q) (43)

which follows as in the proof of Lemma 3.5 in Chang and Park (2002a). We may have
the corresponding ‘in probability’ result from e.g., Proposition 3.1 in Shibata (1980). As he
himself noted, the normality assumption is not necessary there as long as sufficient moments
exist.

It follows from (37), (39), (41), (42) and (43) that

ᾱ − α = Op(m
1/2n−1) + Op(κmn−3/2) + op(κ

1/2−qmn−1) if κ ≤ n/m

= Op(κ
−1m−1/2) + Op(n

−1/2) + op(κ
−1/2−q) if κ ≥ n/m

We may now easily deduce that

ᾱ − α = Op

(

min((m/n)1/2, κ−1)
)

(44)

For κ ≤ n/m, we have

m1/2n−1, κmn−3/2, κ1/2−qmn−1 = O(mn−1)
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since m → ∞, κ ≤ √
n and κ1/2−q → 0 with q ≥ 1, respectively, and

m/n = O((m/n)1/2), O(κ−1)

in this case. On the other hand, if κ ≥ n/m,

κ−1m−1/2, n−1/2, κ−1/2−q = O(κ−1)

since m → ∞, κ ≤ √
n and q ≥ 1, respectively, and

κ−1m−1/2, n−1/2, κ−1/2−q = O((m/n)1/2)

since κ−1 ≤ m/n, m → ∞, κ−1 ≤ m/n and q ≥ 1, respectively.
We have

n
∑

t=1

|xt−1|p = Op(m
−p/2n1+p/2) (45)

for p ≥ 0. Moreover, since
(

n
∑

t=1

(u2
t−1 + · · · + u2

t−κ+1)
p/2

)2/p

≤
κ−1
∑

i=1

(

n
∑

t=1

|ut−i|p
)2/p

= Op(κn2/p)

by Minkowski’s inequality, we also have

n
∑

t=1

∥

∥

∥

∥

∥

vκ,t −
1

n

n
∑

t=1

vκ,t

∥

∥

∥

∥

∥

p

= Op(κ
p/2n) (46)

for p ≥ 2.
Now write

E∗|ε∗t |p =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̂κ,t −
1

n

n
∑

t=1

ε̂κ,t

∣

∣

∣

∣

∣

p

≤ cp(An + Bn + Cn)

where cp is a constant depending only upon p, and

An =
1

n

n
∑

t=1

∣

∣

∣

∣

∣

ε̃κ,t −
1

n

n
∑

t=1

ε̃κ,t

∣

∣

∣

∣

∣

p

Bn = |ᾱ − α|p
(

1

n

n
∑

t=1

|xt−1|p +

∣

∣

∣

∣

∣

1

n

n
∑

t=1

xt−1

∣

∣

∣

∣

∣

p)

Cn = |ᾱ − α|p
∥

∥

∥

∥

∥

∥

(

n
∑

t=1

vκ,tv
′
κ,t

)−1
∥

∥

∥

∥

∥

∥

p ∥
∥

∥

∥

∥

n
∑

t=1

vκ,txt−1

∥

∥

∥

∥

∥

p(

1

n

n
∑

t=1

∥

∥

∥

∥

∥

vκ,t −
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It is shown by Park (2002) that An = Op(1) in the proof of Lemma 3.2. Also, we have from
(44) and (45) that Bn = Op(1). Finally, it follows from (44) and (46), together with (41)
and (42) that Cn = Op(1). We therefore have

E∗|ε∗t |p = Op(1)

and the stated result now follows as in the proof of Lemma 2.4. �
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Proof of Corollary 4.7 The stated result follows immediately from Lemma 4.2 and
Theorem 4.6, exactly as in the proofs of Lemmas 3.1 and 3.3. The details are therefore
omitted. �
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Figure 1: Probability Densities for Sm
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Figure 2: Probability Densities for Tm


