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Abstract 

The microenvironment surrounding cells influences gene expression, such that a cell’s 

behavior is largely determined by its interactions with the extracellular matrix, 

neighboring cells, and soluble cues released locally or by distant tissues.  We describe the 

essential role of context and organ structure in directing mammary gland development 

and differentiated function, and in determining response to oncogenic insults including 

mutations.  We expand on the concept of ‘dynamic reciprocity’ to present an integrated 

view of development, cancer, and aging, and posit that genes are like piano keys: while 

essential, it is the context that makes the music. 
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Glossary 

Mesenchyme: mass of connective tissue, mainly derived from mesoderm, in 

embryonic and developing organs which will develop into the stroma.  Mesenchyme 

directs the morphogenesis of epithelial cells, and in turn is induced to differentiate by the 

epithelium. 

 

Microenvironment: local and systemic constituents surrounding a cell, including 

ECM, other cells, and soluble factors released locally or transmitted from distant organs, 

such as hormones.     

 

Morphogenesis: (from the Greek morphE form and gignesthai to be born) the 

process of development by which a tissue or organ achieves its final structure.  

Morphogenesis involves changes in the shape, growth, division, migration, and death of 

individual cells within tissues. 

 

Stroma: (from the Greek stornyai to spread out) the supporting connective tissue 

scaffold of an organ.
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Acronyms 

3D, three-dimension(al) 

ADAM, a disintegrin and metalloproteinase 

AER, apical ectodermal ridge 

BM, basement membrane 

ECM, extracellular matrix 

ECM-RE, ECM-response element 

EGF, epidermal growth factor 

EGFR, epidermal growth factor receptor 

EMT, epithelial-to-mesenchymal transition 

ER-α, estrogen receptor-α 

GDNF, glial cell-derived neurotrophic factor 

GJIC, gap junctional intercellular communication 

HGF, hepatocyte growth factor 

lrECM, laminin-rich ECM 

MGF, mammary gland factor 

MMP, matrix metalloproteinase 

TDLU, terminal ductal lobular unit 

TGF-β, transforming growth factor-β 

WAP, whey acidic protein 

VEGF, vascular endothelial growth factor 
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I. INTRODUCTION  

 

The function of an organ relies upon its constituent cell types and its overall 

organization.  It is the obvious uniqueness of this structure that distinguishes a breast 

from a kidney, and that directs the cells within the former to make milk and within the 

latter to filter blood and make urine: all this, despite the fact that they share an identical 

genome.  However, while “tissue specificity” is a fact, there is little evidence for 

“terminal differentiation”, except in organs where differentiation is defined by cell death 

or loss of nuclei.  The instability and plasticity of the differentiated state (Bissell 1981, 

Blau & Baltimore 1991) allow phenotypic evolution to occur over the lifetime of a cell, 

tissue, organ, and organism to ensure adaptability and survival.  The differentiated 

phenotype accomplishes this while being both robust (stable to minor perturbations: the 

breast almost never turns into a kidney in vivo) and labile [responsive to external 

influences: given the appropriate cues, a resting mammary gland can easily be coaxed 

into a spectacular reversible differentiation program during pregnancy, corneal 

epithelium can be induced to sprout feathers or hair (Coulombre & Coulombre 1971, 

Ferraris et al 1994), and aggressive carcinoma cells can be tamed to form normal tissues 

by changing their microenvironment (Mintz & Illmensee 1975)].  The interactions 

between a cell and its surroundings thus determine its pattern of gene expression and 

resultant differentiated phenotype.  Here we describe the process of tissue specificity 

from the point of view of the mammary gland (our ‘experimental organism’), but the 

fundamentals of the issues discussed extend far beyond this organ.  In the end, the unit of 

functional differentiation is the organism itself. 
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II. TISSUE ARCHITECTURE IS BOTH A CONSEQUENCE AND A CAUSE 

(THE END AND THE BEGINNING) 

 

Dynamic reciprocity redux 

The structure of a tissue or organ is critical for its function.  Loss of tissue 

architecture is a prerequisite for, and one of the defining characteristics of, most cancers.  

Conversely, normal organ architecture can act as a powerful tumor suppressor, 

preventing malignant phenotype even in cells stricken with gross genomic abnormalities 

(Howlett et al 1995, Weaver et al 1997).  But, if organ function and homeostasis are 

driven by organ architecture, and if every cell in every organ carries the same genetic 

information, then how are tissue-specific form and function achieved?  Elegant work by 

early developmental biologists, some of which is described in the following sections, 

inspired us to postulate that tissue-specific function is achieved by interactions between 

the cell and its surrounding extracellular matrix (ECM), a model dubbed “dynamic 

reciprocity” (Bissell et al 1982): extending the dynamic bidirectional crosstalk from the 

ECM with the cell membrane (Bornstein et al 1982) to the broad realm of gene 

expression by connecting ECM/ECM receptor interactions to the cytoskeleton and to the 

nuclear matrix and chromatin, and back again (reproduced as Figure 1A).  An important 

feature of this model was that it took the then evolving work in the role of ECM in 

development as a possible scaffold to ECM as an extension of the tissue.  Most 

importantly, ECM was viewed as an instructional entity crucial for attaining cell- and 

tissue-specificity and homeostasis.  Although the original depiction of dynamic 

reciprocity dealt mainly with the role of the ECM, the cellular microenvironment also 
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includes adhesive and soluble paracrine signals from neighboring cells, distant tissues, 

and systemic cues (updated as Figure 1B).  That being the case, organ structure (and 

consequently, organ function) is determined by the dynamic and reciprocal interactions 

between its constituent tissues, the structure and function of which are determined by the 

dynamic and reciprocal interactions between the cells comprising a given tissue.  And, 

lest we forget, each organ is choreographed to function in a dynamic scenario with other 

organs and is, in and of itself, of little use when removed from the greater context of the 

organism. 

 

Tissue interactions in development 

Every organ is comprised of tissues derived from the embryonic germ layers: 

endoderm (which becomes epithelium of the lungs and digestive organs), mesoderm 

(which generates bone, muscle, and mesenchymal connective tissue), and ectoderm 

(which gives rise to the nervous system and epithelium of the skin and its derivatives, 

including the mammary gland).  Epithelial and mesenchymal components interact during 

development to direct tissue morphogenesis (the physical creation of normal tissue 

architecture) and differentiation (acquisition of tissue-specific functions).  That tissue 

development is not “cell autonomous” but is instead instructed by the surrounding 

environment was hypothesized as early as 1817 (Pander 1817), but first demonstrated a 

century later by the elegant experiments of Ethel Browne, Hans Spemann and Hilde 

Mangold using hydra and amphibian embryos, respectively (Browne 1909, Spemann 

1918, Spemann & Mangold 1924).  The famous organizer experiment showed that certain 
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regions of the embryo could direct the development of adjacent groups of cells into 

specific tissues (Spemann 1918, Spemann & Mangold 1924).   

These early studies preceded a flurry of work over the following 80 years 

demonstrating in many systems that cells derived from the different germ layers carry on 

an extensive crosstalk to direct tissue development.  Studies of vertebrate skin (Figure 

2A) revealed that the identity, location, and pattern of development of ectodermal 

epidermal appendages (e.g., hair follicles in mammals and scales and feathers in birds) 

are determined by the dermis (a mesodermal derivative).  Using tissue recombination 

techniques developed in the 1950s, Saunders and colleagues found that thigh mesoderm 

inserted beneath the ectoderm of an embryonic chick wing would induce the wing to 

form leg feathers instead of flight feathers (Cairns & Saunders 1954, Saunders & 

Gasseling 1968).  Chimeric feathers were occasionally found at the border of the graft 

site, demonstrating the specificity of the mesodermal signal.  In similar studies 

recombining skin tissues from chick and duck, duck mesoderm was found to instruct 

chick ectoderm to form feathers anatomically shaped like those of a duck; the converse 

was also found to be true (Dhouailly 1967, Dhouailly 1970).  In perhaps the most striking 

example, mesoderm from a mouse (which normally would induce mouse ectoderm to 

form hair follicles) was combined with corneal epithelium from a chick (which normally 

would become an appendage-free transparent surface), resulting in the development of 

feathers (Coulombre & Coulombre 1971).  Ectoderm can play an instructive role during 

development as well.  In vertebrates, the mesenchyme of the outgrowing limb is 

surrounded by a dorsal rim of ectoderm, the apical ectodermal ridge (AER).  When the 

AER is removed, the limb fails to develop properly; when the AER covering the eventual 
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wing is grafted onto the stump of a growing leg, the region develops wing parts 

(Saunders 1948).  The mechanisms underlying induction by AER, skin mesoderm, and 

Spemann’s organizer have been studied extensively [reviewed recently in (Wolpert 1998, 

Capdevila & Izpisua Belmonte 2001, Niehrs 2004)], and involve common paracrine 

signaling molecules including members of the fibroblast growth factor, transforming 

growth factor (TGF)-β, Wnt, and hedgehog families.  

 

The impressionable epithelium 

Some of the clearest examples of the importance of epithelial/mesenchymal 

interactions in morphogenesis and differentiation have come from recombination 

experiments using isolated tissues from the mammary gland and other organs (Figure 

2B).  Whereas mammary epithelium recombined with mammary mesenchyme develops a 

typical mammary tree, recombination with salivary gland mesenchyme generates 

structures resembling the salivary epithelial tree (Kratochwil 1969, Sakakura et al 1976).  

Conversely, mammary mesenchyme can induce epithelial cells from other tissues to build 

a lactation-competent gland (Cunha et al 1995).  These experiments demonstrated that 

even adult cells retain a capacity for alternative modes of morphogenesis and 

differentiation.  The importance of reciprocal interactions between epithelium and 

mesenchyme, and the identification of the molecular mediators, has now been 

demonstrated for several organs, including the lung, kidney, prostate, salivary and 

mammary glands [reviewed in (Hieda & Nakanishi 1997, Cardoso 2001, Marker et al 

2003, Parmar & Cunha 2004, Yu et al 2004)].  The molecular players involved in 
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epithelial/mesenchymal interactions during mammary gland development are detailed in 

Table 1; similar roles for many have been found in the development of other organs. 

 

Tissue interactions are thus a major source of information regulating tissue-

specific activation of genes leading to proper development of cells, tissues, and organs 

(Wessells 1977).  As an example, Figure 3 depicts reciprocal interactions amongst the 

cells and tissues that comprise the adult mammary gland, and between the mammary 

gland and other organs.  As alluded to above and discussed in depth in Part III, the 

morphogenesis of the mammary epithelium is regulated by its interactions with 

mesenchymal cells.  During branching morphogenesis of mammary and other organs, 

nerves, blood vessels, and epithelium grow out simultaneously in intimately interacting 

trees (Coughlin 1975, Gebb & Shannon 2000).  The details of these presumed 

communications have yet to be uncovered for the mammary gland, but in skin, peripheral 

nerves determine the pattern of arterial branching by stimulating localized secretion of 

vascular endothelial growth factor (VEGF)(Mukouyama et al 2002).  Additionally, the 

kinetics of development and functional differentiation (milk synthesis and secretion) are 

controlled by influences external to the epithelium, including pituitary and ovarian 

hormones, and mechanical cues from suckling at the nipple which activates contraction 

of the myoepithelial cells. 

 

Of “terminal differentiation” and “molecular vitalism” 

In this age of genomics and gene expression arrays, one could easily accept the 

argument that the status of a cell (its identity, the identity of the tissue and organ in which 
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it resides, etc.) could be inferred mainly by examining the genes that it expresses.  

Whereas this may very well prove to be true, it is a fallacy of logic to argue that therefore 

it is the genes themselves that determine and regulate the pattern of gene expression.  

Additionally, are the genes expressed the sole determinant of the status of a cell or how it 

may behave?  The data from tissue recombination studies suggest that even differentiated 

cells retain a high degree of flexibility, or as described so eloquently by Marc Kirschner 

and colleagues: an “interconvertible multi-statedness is a key aspect of multicellular self-

organization” (Kirschner et al 2000).  This flexibility is clearly apparent during tissue 

regeneration and repair, and to a remarkable degree in organisms such as the newt that 

can regenerate entire organs and limbs even in the adult animal.  That a differentiated cell 

(meaning, for example, a cell that has decided it is epidermal and functions within the 

context of the skin) can even respond to cues that direct the development of a different 

tissue to form a mammary gland should have dispelled the notion that the process of 

differentiation locks cells into a particular fate without recourse.  Indeed, cultured cells 

that invariably lose their differentiated phenotypes when grown in a Petri dish can be 

induced to form both normal and diseased tissue structures when returned to the 

appropriate environment in vivo (DeOme et al 1959, Daniel & DeOme 1965).  Similarly, 

cells in culture can regain their differentiated phenotypes if the microenvironment of the 

culture vessel is tailored to mimic the cell’s normal microenvironment in vivo [reviewed 

(Bissell 1981) and in the following sections].   
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III. THREE-DIMENSIONAL MODELS OF MAMMARY GLAND 

DEVELOPMENT: RATIONALE AND EXAMPLES 

 

The structure of the human breast 

The mammary gland is an excellent example of an organ the development and 

differentiation of which require dynamic and reciprocal signaling between cells and their 

(micro)environment.  Unlike other organs, the majority of mammary gland development 

occurs postnatally during puberty.  In females, a surge of steroid hormones induces the 

anlage (the mammary ductal rudiment present at birth) to undergo a burst of branching 

morphogenesis.  The mammary gland is comprised of two tissue compartments, the 

ectodermally-derived epithelium and the mesodermally-derived stroma, depicted 

schematically in Figure 3.  The epithelium is a bi-layered ductal tree, consisting of a 

central layer of luminal epithelial cells surrounded by a layer of myoepithelial cells and 

basement membrane (BM), a specialized laminin-rich form of ECM.  In humans, the 

epithelium (both luminal and myoepithelial) is surrounded by a loose intralobular 

connective tissue stroma and a denser interlobular stroma, which together account for 

80% of the volume of the resting breast and house nerves, blood vessels, and lymphatics 

(Drife 1986).  The ducts terminate in lobular structures, known as terminal ductal lobular 

units (TDLUs), which give rise to alveolar buds during pregnancy that become secretory 

alveoli during lactation.  Luminal epithelium is induced during lactation to produce and 

vectorially secrete milk into the ducts; milk is squeezed through the mammary tree to its 

opening at the nipple by concerted contraction of myoepithelial cells induced by suckling 

of the nipple.  Once lactation is terminated by cessation of suckling, the gland remodels 
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during involution by the concerted action of hormones, metalloproteinases, and 

molecules involved in apoptosis (Talhouk et al 1991, Talhouk et al 1992)[for a recent 

review, see (Hennighausen & Robinson 2005)]. 

 

Signaling by the microenvironment 

Interactions between luminal epithelial cells, ECM and its remodeling enzymes, 

and the other cells of the gland are critical for development and differentiation (Fata et al 

2004, Parmar & Cunha 2004).  Myoepithelial cells secrete laminin-1 to build the BM that 

surrounds the epithelial compartment (Gudjonsson et al 2002), direct the polarization of 

luminal epithelial cells (Runswick et al 2001, Gudjonsson et al 2002), and regulate 

morphogenesis of the ductal tree (Niranjan et al 1995); loss of these activities correlates 

with breakdown of normal mammary architecture and leads to tumor progression 

[reviewed in (Adriance et al 2005)].  During branching morphogenesis at puberty (Witty 

et al 1995, Simian et al 2001, Wiseman et al 2003), and later during involution of the 

gland upon weaning (Talhouk et al 1992, Lund et al 1996), extensive breakdown and 

remodeling of the ECM occurs via precise expression/activation/inhibition of matrix-

degrading enzymes, especially members of the matrix metalloproteinase (MMP) family.  

Inappropriate expression of MMPs causes breakdown of the BM, disrupting functional 

differentiation (milk protein expression) of luminal epithelial cells (Sympson et al 1994, 

Witty et al 1995), and in the case of MMP-3, leading to epithelial-to-mesenchymal 

transition (EMT), apoptotic cell death, genomic instability, induction of a reactive fibrotic 

stroma, and eventually tumor formation (Sympson et al 1995, Alexander et al 1996, 

Lochter et al 1997, Thomasset et al 1998, Sternlicht et al 1999, Sternlicht et al 2000, 
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Radisky et al 2005).  One mechanism by which destruction of BM leads to EMT and 

genomic instability is through increased levels of cellular reactive oxygen species, which 

upregulate expression of certain transcription factors as well as cause oxidative DNA 

damage (Radisky et al 2005). 

 

Proper development of the ductal tree relies on permissive and instructive cues 

from the stromal compartment.  For example, both epithelial and stromal cells express 

estrogen receptor (ER)-α and mammary glands from ER-α-knockout mice have a 

rudimentary underdeveloped ductal tree (Bocchinfuso & Korach 1997).  Experiments 

recombining epithelium and stroma from wild type and ER-α-knockout mice 

demonstrated that estrogen signaling is required in stromal cells during ductal 

morphogenesis (Cunha et al 1997).  Further experiments in culture revealed that, in 

response to estrogen, stromal fibroblasts produce hepatocyte growth factor (HGF), which 

acts in a paracrine role to induce growth of the epithelial tree (Zhang et al 2002a).  

Reciprocal signaling from epithelium to the stroma is also required for the development 

of the gland.  Epidermal growth factor receptor (EGFR) is required in the stromal 

compartment (Wiesen et al 1999).  The EGFR ligand, amphiregulin, is expressed on and 

cleaved from the surface of the epithelium by the cell-surface sheddase ADAM (a 

disintegrin and metalloproteinase)-17, presumably in response to estrogen signaling 

(Sternlicht et al 2005).  Consequently, mammary development is impaired in mice 

expressing signaling-defective EGFR (Fowler et al 1995, Xie et al 1997, Sebastian et al 

1998).  These positive signals are balanced by negative cues, including TGF-β.  Members 

of the TGF-β superfamily and their receptors are expressed throughout development of 
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the gland [reviewed in (Daniel et al 2001, Serra & Crowley 2005)], with TGF-β in 

particular inhibiting branching morphogenesis during puberty (Silberstein & Daniel 1987, 

Robinson et al 1991, Pierce et al 1993), blocking formation of alveoli and secretion of 

milk during pregnancy (Jhappan et al 1993, Kordon et al 1995, Siegel et al 2003), and 

promoting apoptosis during involution (Nguyen & Pollard 2000, Gorska et al 2003, 

Bailey et al 2004).   

 

The mesenchymal compartment also expresses morphogens, including 

epimorphin and members of the Wnt and notch families, that guide the development of 

the epithelial tree (Hirai et al 1998, Uyttendaele et al 1998, Hirai et al 2001, Simian et al 

2001).  That overexpression of epimorphin in the mammary gland leads to the 

development of tumors (Bascom et al 2005) highlights the importance of the stroma in 

regulating conversion to the malignant phenotype, a concept introduced over 100 years 

ago (Paget 1889).  Normal stroma has tumor-suppressive properties compared to stroma 

derived from breast cancer.  Embryonic mammary mesenchyme can induce 

differentiation of mammary tumors (DeCosse et al 1973).  Conversely, human breast 

cancer xenografts produce significantly faster growing tumors when the cells are mixed 

with carcinoma-derived fibroblasts than with normal fibroblasts (Camps et al 1990, van 

Roozendaal et al 1996, Dong-Le Bourhis et al 1997), or when the cancer cells are 

injected into a previously irradiated stroma (Barcellos-Hoff & Ravani 2000).  The latter 

effect is apparently due to irradiation-induced activation of TGF-β, which was shown to 

be the culprit in wound-induced tumors (Sieweke et al 1990) and is known to lead to a 

fibrotic response in abnormal microenvironments by increasing synthesis of ECM 
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molecules such as collagen I (Ehrhart et al 1997).  Increased tissue stiffness itself can 

promote malignant transformation by leading to deregulated integrin signaling (Paszek et 

al 2005) and patients with such fibrotic lesions have a poor prognosis (Colpaert et al 

2001).   

Breast carcinomas consist not only of the aberrant epithelial cells and stroma, but 

also recruited blood vessels, activated fibroblasts, and infiltrating macrophages, 

lymphocytes, and leukocytes.  Growing evidence points to recruitment of macrophages as 

important for breast tumor progression, with macrophage infiltration correlating with a 

poor prognosis (Leek et al 1996, Goswami et al 2005).  Finally, alterations in the stroma 

are not solely due to changes in the constituent population of cells or deposition of ECM, 

since stroma associated with breast tumors has been found to contain both genetic and 

epigenetic alterations (Deng et al 1996, Washington et al 2000, Allinen et al 2004, Hu et 

al 2005), and stromal fibroblasts in which the TGF-β type II receptor is inactivated 

stimulate the development of tumors in the adjacent epithelium (Bhowmick et al 2004).  

Clearly, the context in which an epithelial cell receives an oncogenic insult plays a large 

role in whether or not that cell generates a frank tumor, as shown in a number of earlier 

studies [for review, see (Kenny & Bissell 2003)]. 

 

Organotypic culture models to study form, function, and dysfunction 

Many of the details of microenvironmental signaling in the mammary gland have 

been uncovered using three-dimensional (3D) culture models [for a historical overview, 

see (Nelson & Bissell 2005)].  Differentiated mammary epithelial cell structure and 

function can be reproduced in culture when cells are given an appropriate 
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microenvironment that recapitulates aspects of the above-described tissue structure.  

When grown on plastic substrata, human and rodent mammary epithelial cells flatten out 

and fail to respond to lactogenic cues, that is, they “forget” their mammary phenotype.  

However, when grown within a malleable laminin-rich ECM (lrECM), these same cells 

will assemble into polarized 3D acinar structures that resemble alveoli in vivo (Emerman 

& Pitelka 1977, Barcellos-Hoff et al 1989, Aggeler et al 1991).  Cells that are not 

attached to BM undergo apoptosis (Boudreau et al 1995), and apoptosis of cells in the 

center of the structures leads to formation of hollow lumina (Blatchford et al 1999, 

Debnath et al 2002, Mills et al 2004), a process similar to canalization of the ducts in 

vivo (Humphreys et al 1996).  When stimulated with lactogenic hormones, cultured acini 

of rodent epithelial cells express and secrete milk proteins into the central lumina 

(Emerman & Pitelka 1977, Lee et al 1984, Lee et al 1985, Streuli et al 1995b).  Laminin-

1 binding to integrin and non-integrin cell surface receptors (now shown to include 

dystroglycan-1; Wier, Muschler et al, submitted), causes both a change in cell shape and 

biochemical signaling to induce functional differentiation (Streuli et al 1991, Roskelley et 

al 1994, Streuli et al 1995b, Muschler et al 1999).  Even though milk appears to be 

expressed upon parturition with all protein constituents simultaneously, 3D culture 

studies have revealed that there is specificity in the regulation by microenvironmental 

context: lactoferrin expression only requires cell rounding, β-casein can be expressed by 

single rounded cells in contact with laminin, whereas the expression of whey acidic 

protein (WAP) requires formation of the polarized acinus [reviewed in (Roskelley et al 

1995)]. 
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In addition to acinus formation and milk protein secretion, 3D culture models 

have been highly successful in recapitulating the epithelial remodeling and invasion 

central to branching morphogenesis that builds the initial epithelial tree during puberty.  

Primary epithelial organoids or mammary epithelial cell lines cultured within gels of 

collagen I or lrECM can be induced to form branching structures by co-culture with 

stromal fibroblasts or by exogenous addition of growth factors, such as HGF or epidermal 

growth factor (EGF) (Brinkmann et al 1995, Soriano et al 1995, Yang et al 1995, Hirai et 

al 1998, Niemann et al 1998, Simian et al 2001) or cytokines, such as members of the 

tumor necrosis factor (TNF)-α family (Lee et al 2000, Michaelson et al 2005).  Blocking 

either MMP activity or cell binding to epimorphin prevents branching (Hirai et al 1998, 

Lee et al 2000, Simian et al 2001, Michaelson et al 2005).  To initiate a branch, epithelial 

cells must transiently loosen their interactions with neighboring cells and invade the 

surrounding ECM.  Culture models of mammary and kidney epithelial branching have 

revealed that cells at the leading edge of branches undergo a transient or partial EMT 

(O'Brien et al 2004, Chen et al 2006)—one of many developmental processes frequently 

hijacked by cancer cells—which require coordinate signaling from growth factors, 

MMPs, and epimorphin.     

 

Recreating the microenvironment in culture also allows one to distinguish clearly 

between cells that do and do not differentiate (such as between normal and tumorigenic 

breast cells), something difficult to achieve in traditional two-dimensional culture.  

Whereas normal cells form polarized growth-arrested acini when cultured in 3D lrECM, 

breast cancer cell lines or cells derived from carcinomas form highly disorganized and 
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proliferative colonies reminiscent of tumors (Petersen et al 1992, Weaver et al 1995).  

Antagonizing one or more of the many pathways that are dysregulated in tumor cells 

causes them to functionally “revert” to a normal phenotype: the cells stop growing, form 

polarized acini, and are less tumorigenic when injected into nude mice (Hirschi et al 

1996, Weaver et al 1997, Wang et al 1998, Kirshner et al 2003, Liu et al 2004, Park et al 

2006).  Additionally, the activation levels of the other signaling pathways normalize to 

levels seen in non-tumorigenic cells [for review see (Bissell et al 2005)].  These results 

demonstrate that tumorigenicity is context dependent, that tissue structure can be 

dominant over genotype, and that recreating normal tissue context is a potentially 

powerful strategy for cancer therapy. 
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IV. TISSUE SPECIFICITY IN THE MAMMARY GLAND AND BEYOND: 

CONTEXT IS ALL  

 

From ECM to ECM-response elements 

 In the presence of a malleable laminin-containing substratum, mammary epithelial 

cells round up, organize into acinar structures, hollow out to form a central lumen, and 

secrete milk proteins including β-casein in response to lactogenic hormones.  The 

laminin-induced expression of β-casein involves activation of an ECM-response element 

(ECM-RE) in the promoter of the casein gene (Schmidhauser et al 1990, Schmidhauser et 

al 1992) by β1-integrin-induced phosphorylation of the prolactin receptor, thus allowing 

prolactin to regulate the DNA-binding activity of the Stat5 transcription factor (Streuli et 

al 1995a, Edwards et al 1998).  ECM-REs have been found in the promoter regions of 

several proteins, including αs1-casein (Jolivet et al 2005), albumin (Liu et al 1991) and 

TGF-β, which is regulated negatively (Streuli et al 1993).  Given that the 

microenvironment is comprised of a multitude of ECM molecules, we can imagine that 

the family of ECM-REs will be refined in the future to include “laminin-response 

element”, “collagen-response element”, etc, and various combinations thereof.  ECM also 

regulates the expression of tissue-specific transcription factors, such as mammary gland 

factor (MGF/Stat5a)(Schmitt-Ney et al 1991), which can thereby transduce context-

dependent information indirectly by binding to the promoter regions of milk protein 

genes (Groner & Gouilleux 1995). 
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 The ECM-induced formation of the polarized acinus affects signaling between 

epithelial cells.  In response to laminin, mammary epithelial cells upregulate expression 

of several of the connexin gap junction proteins, enhancing gap junctional intercellular 

communication (GJIC)(El-Sabban et al 2003).  Inhibiting GJIC downregulates β-casein 

expression.  That loss of connexin expression leads to and correlates with tumor 

progression, and that re-expression of connexins can revert the tumor phenotype, 

highlights the importance of cell-cell communication in determining and responding to 

tissue architecture (Carystinos et al 2001).  Indeed, disrupting tight junctions prevents 

establishment of tissue polarity and disrupts the structure of already polarized cells, 

leading to neoplastic growth (Itoh & Bissell 2003). 

  

Aside from inducing signal transduction through integrins and determining tissue 

morphology, the microenvironment also affects the structure of the nucleus.  Laminin 

induces histone deacetylation (Pujuguet et al 2001), and the expression of the β-casein 

gene can be modulated by altering the organization of histones (Myers et al 1998).  

Histone acetylation promotes chromosome decondensation and unfolding, increasing the 

accessibility to transcription factors and other regulatory machinery, thereby enhancing 

transcription (Jenuwein & Allis 2001).  Recent experiments have demonstrated that cell 

rounding itself, independently of cell-ECM interactions, leads to histone modifications (J. 

Le Beyec, R. Xu, S.Y. Moonlee, C.M. Nelson & M.J. Bissell, unpublished data).  

Because the cytoskeleton appears to physically connect cell-ECM adhesions to the 

nucleus (Maniotis et al 1997), it is tempting to speculate that the effects due to changes in 

cell morphology are transmitted through the cytoskeleton.  Taken together, these data 
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lead to an updated view of dynamic reciprocity (Figure 1B), whereby tissue specificity is 

determined and maintained by integrin- and non-integrin-mediated interactions with 

surrounding ECM and neighboring cells.  These interactions activate downstream 

signaling pathways, in conjunction with altering cytoskeletal structure and cell and 

nuclear morphology, to modulate binding of transcription factors to the 

microenvironment-specific response elements in the promoter regions of tissue-specific 

genes.  The resulting changes in gene expression modify a panoply of signaling proteins 

produced by the cell, including ECM proteins and tissue-specific transcription factors, 

cementing the tissue-specific phenotype. 

 

Tissue specificity throughout evolution 

If context directs development, then do organs that develop similar structures do 

so using similar contextual cues?  The answer, at least for the branched organs of 

placental mammals, appears to be a qualified “yes”.  Pancreas, lung, kidney, prostate, 

salivary and mammary gland all develop by branching morphogenesis, driven by 

epithelial/mesenchymal interactions, involving stimulatory signaling from HGF and EGF, 

balanced by inhibitory signaling from members of the TGF-β family, and regulated by 

ECM and MMPs [reviewed in (Davies 2002)].  This conservation of contextual signaling 

was first glimpsed in the tissue recombination experiments of the 1960s, discussed in 

Section II.  Interestingly, the epithelium in these organs is initially derived from different 

germ layers: endoderm in pancreas and lung; mesoderm in kidney; ectoderm in mammary 

gland.  However, there are also major differences in the contexts under which each of 

these organs develops which likely play a role in the final tissue-specific architecture and 
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function achieved.  The pattern of branching of the lung is determined by embryonic 

patterning cues (Chuang & McMahon 2003), the kidney has its own growth factor (glial 

cell-derived neurotrophic factor, GDNF), and the mammary gland develops uniquely in 

the context of puberty. 

 

Although the mammary gland is a relatively recent acquisition evolutionarily 

(Oftedal 2002), the similarities between its development and that of other, more ancient 

organs (such as the pancreas, which is present as a branched structure even in 

cartilaginous fish, of which the last common ancestor to mammals was 450 million years 

ago) suggests that some of the above-described mechanisms for directing tissue 

specificity might be conserved [last reviewed in (Ashkenas et al 1996)].  Indeed, 

homologs of ECM proteins and integrins are present in many invertebrates.  The 

nematode worm C. elegans expresses collagens and a β1-integrin homolog, βpat-3; 

mutations in the collagen IV homologs emb-9 and let-2 are embryonic lethal, suggesting 

the importance of BM in worm development (Kramer 1994).  The fly D. melanogaster 

expresses laminins, dystroglycan, and a number of α- and β-integrins, and similar to the 

mammary gland, dystroglycan is required for generation of apico-basal polarity in fruit 

fly epithelial cells (Deng et al 2003).  Hydra express laminins, collagens, MMPs, and a 

putative β1-integrin, which are required for proper epithelial morphogenesis during head 

and tentacle regeneration (Shimizu et al 2002, Zhang et al 2002b).  Even the slime mold 

D. discoideum expresses ECM during its multicellular slug phase and stalk development, 

which is regulated by a Stat transcription factor homolog (Shimada et al 2004). ECM-

REs are also evolutionarily conserved, at least functionally, if not in nucleotide sequence: 
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sea urchin embryonic development requires collagen-induced activation of a short 

promoter element in the LpS1 gene (Seid et al 1997).  Since cytoskeleton is, in general, 

conserved through different phyla (Muller et al 2005), it is likely that tissue context plays 

an analogous role in the development, differentiation, and homeostasis of many 

organisms. 
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V. INTEGRATION  

A fundamental property of all known (and, presumably, therefore successful) 

forms of life is the ability to adapt to changes in the environment, both the environment 

external to the organism and the internal (micro)environment.  Terminal change – an 

inability to adapt – in all dynamic systems leads to equilibrium, which for living things is 

death.  Dynamic reciprocity, then, is scalable both in time and space, and is a mechanism 

by which single cells within tissues maintain homeostasis in spite of an uncertain 

environment over the lifetime of the organism.  Tissue-specific context is thus important 

not only for development and differentiation, but also as a protective mechanism against 

cancer and other diseases.  However, as much as we might wish otherwise, tissue context 

is not static even in the adult, succumbing eventually to the effects of living: reactive 

oxygen species, carcinogens, diet, shrinking telomeres, in sum, the effects of aging 

(Hasty et al 2003).  An old breast is not the same as a young breast.  As menopause 

approaches, epithelial cells die off, the stromal compartment alters, the entire morphology 

of the organ changes.  It behooves us, then, to combine our knowledge of tissue 

specificity and developmental biology so as to generate an integrated way of thinking 

about development, homeostasis, cancer, and aging. 

 

What we have argued here is that the integration of signaling hangs on the 

structure of an organ, for structure has information, a kind of information distinct from 

the genomic “software” of the cell.  When one considers all of the signaling pathways 

involved in differentiation, the complexity is staggering.  There is clearly more than one 

way of integrating the same combination of signals into a phenotype: precisely why 
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development is so miraculously robust.  The process of development is stochastic, not 

written in stone. 
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VI. FUTURE DIRECTIONS – DECODING THE LANGUAGE OF FORM 

 Organ architecture is thus both a consequence and a cause for development, 

differentiation, and homeostasis.  But, how does the architecture of an organ (or tissue, or 

cell) make itself heard?  We understand something about the alphabet (ECM, receptors, 

cytoskeleton, nuclear matrix, chromatin) and even less about the rules of grammar that 

turn random words into commands (activation of tissue-specific response elements).  We 

believe that decoding this language requires abandoning the currently fashionable 

“molecule-centric” style of inquiry, and adopting a more interdisciplinary approach that 

takes into account dynamic changes, spatial segregation of events, and tissue architecture. 

 

VII. SUMMARY POINTS  

• Development, differentiation, and homeostasis are controlled by a cell’s 

interactions with its neighbors, ECM and its receptors, ECM degrading enzymes, 

and soluble cues (hormones, cytokines, and growth factors); 

• Physiological function requires form; 

• Phenotype can be dominant over genotype. 
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Figure 1.  (A) The original model of dynamic reciprocity, or “the minimum required unit 

for tissue-specific functions”.  N=nucleus; MT=microtubules; IF=intermediate filaments; 

MF=microfilaments; C=collagen.  Reprinted from (Bissell et al 1982) with permission 

from Elsevier. (B) An updated view of dynamic reciprocity. 

 

Figure 2.  The dramatic effect of tissue-tissue interactions.  (A) Embryonic 

ectoderm/mesoderm recombination experiments determined that the identity of the 

mesoderm dictated the identity of the ectodermal appendage.  (B) 

Epithelial/mesenchymal recombination experiments determined that the identity of the 

mesenchyme dictated the architecture of the developing epithelium.  In the case of 

mammary gland (MG) epithelium recombined with salivary gland (SG) mesenchyme, 

although the epithelial tree resembles salivary gland, it can still produce milk.  (B) 

adapted from (Parmar & Cunha 2004). 

 

Figure 3. The structure and function of the mammary gland are influenced by 

communication with distant organs and between constituent tissues.  (A) The human 

breast is a bilayered epithelial ductal tree (red) embedded in a complex stroma.  Signals 

released from distant organs influence ductal and acinar morphogenesis during puberty 

(*) and pregnancy (#) [reviewed in (Hovey et al 2002)].  (B) The epithelium consists of a 

layer of luminal epithelial cells (LEPs) surrounded by myoepithelial cells (MEPs) and 

basement membrane (BM).  The epithelium is surrounded by a fibrous stromal 

compartment and adjacent fatty stroma.  Molecular details of epithelial/mesenchymal 

interactions are described in Table 1. 
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TABLE 1.  Epithelial/mesenchymal interactions in the mammary gland. 
 
 

 Signaling by stroma Signaling by epithelium 
 Stromal 

ligand/cue 
Epithelial 
receptor 

Epithelial 
ligand/cue 

Stromal receptor 

HGF cMet Amphiregulin EGFR (ErbB1) 
IGF-I IGF-I receptor TGF-β TGFβR-I, -II 
Activin/inhibin B Activin 

receptors 
PTHrP PTHrP receptor 

Epimorphin unknown   

During ductal 
development/puberty 

MMP-2, -3, -9, -
11 

n/a   

Neuregulin ErbB3/ErbB4   
Activin/inhibin B Activin 

receptors 
  

KGF (FGF-7) FGFR2-IIIb   
Epimorphin unknown   

During alveolar 
development/ 
pregnancy 

MMP-3 n/a   
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