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Abstract

This paper proposes a new class of asymmetric Student-¢ (AST)
distributions, and investigates its properties, gives procedures for es-
timation, and indicates applications in financial econometrics. We de-
rive analytical expressions for the cdf, quantile function, moments, and
quantities useful in financial econometric applications such as the ex-
pected shortfall. A stochastic representation of the distribution is also
given. Although the AST density does not satisfy the usual regular-
ity conditions for maximum likelihood estimation, we establish consis-
tency, asymptotic normality and efficiency of ML estimators and derive
an explicit analytical expression for the asymptotic covariance matrix.
A Monte Carlo study indicates generally good finite-sample conformity
with these asymptotic properties.
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1 Introduction

The Student-¢ distribution is commonly used in finance and risk manage-
ment, particularly to model conditional asset returns for which the tails of
the normal distribution are almost invariably found to be too thin. For
example, Bollerslev (1987) used the Student-t to model the distribution of
foreign exchange rate returns; Mittnik, Rachev and Paolella (1998) fitted
a return distribution using a number of parametric distributions including
Student-t, and found that the partially asymmetric Weibull, Student-¢ and
the asymmetric stable distributions provide the best fit according to various
measures. Recent applications include Alberg et al. (2008) and Franses et
al. (2008).

Hansen (1994) was the first to consider a skewed Student’s ¢ distribution
to model skewness in conditional distributions of financial returns. Since
then, several skew extensions of the Student-t distribution have been pro-
posed for financial and other applications; see for example Fernandez and
Steel (1998), Theodossiou (1998), Branco and Dey (2001), Bauwens and
Laurent (2002), Jones and Faddy (2003), Sahu et al (2003), Azzalini and
Capitanio (2003), Aas and Haff (2006) and others.

All but two of these skew t-type distributions have two tails with identical
polynomial rate of decay. The first of the exceptions is the skew extension
of Jones and Faddy (2003), which has two tail parameters to control the
left and right tail behavior, respectively, but does not embody a third that
allows skewness to change independently of the tail parameters. The second
is due to Aas and Haff (2006), who argued for a special case of the gener-
alized hyperbolic (GH) distribution, called the GH Student-¢ distribution,
in which one tail is determined by a polynomial rate, while the other has
exponential behavior. For detailed descriptions of various skew Student-t
type distributions, refer to the review in Aas and Haff (2006). However, in
general, a skewness parameter mainly controls the asymmetry of the central
part of a distribution. Therefore a class of generalized asymmetric Student-¢
(AST) distributions which has one skewness parameter and two tail param-
eters offers the potential to improve our ability to fit and forecast empirical
data in the tail regions which are critical to risk management and other
financial econometric applications. In this paper, we propose such a class of
distributions, describe estimation methods and investigate properties of the
distribution and of the estimators.

There are various methodologies for generation of a skewed Student-t
distribution. One is the two-piece method; Hansen (1994) used this method
to propose the first skew extension to the Student-t. More generally, Fer-



nandez and Steel (1998) introduced a skewness parameter « to any univari-
ate pdf which is unimodal and symmetric, resulting in a skewed version of
the Student-t equivalent to that of Hansen (1994); Bauwens and Laurent
(2002) generalized the procedure used in Fernandez and Steel (1998) to the
multivariate case. A second methodology is the perturbation approach of
Azzalini and Capitanio (2003), which can generate the multivariate skew
elliptical distributions proposed by Branco and Dey (2001) and Sahu et al.
(2003) using the conditioning method. ! In this paper we will extend the
two-piece method to allow the additional parameter.

Allowing an additional parameter offers the potential to fit more subtle
features of the distribution than is possible with two-parameter versions,
with the attendant potential for better descriptions of tail phenomena, and
better predictions of quantitites such as expected shortfall which depend
on the shape of the tail. Of course, relatively large sample sizes may be
necessary in order to realize this potential: even if a three-parameter form
provides in principle a better description of a given type of data, the two-
parameter approximation may not be detectably poorer in a finite sample.
However, we show here by simulation that the parameters can be distin-
guished in realistic sample sizes, and in a companion empirical study (Zhu
and Galbraith 2009) we show that improved fit and forecast performance
can be observed in financial return data.

The paper is organized as follows. Section 2 gives the definition of the
AST distribution and section 3 provides an interpretation of parameters
and gives some properties such as a stochastic representation and analyti-
cal expressions for the cdf, quantiles, moments, value at risk and expected
shortfall. In section 4 we establish consistency and asymptotic normality of
the MLE, and section 5 provides some finite-sample Monte Carlo results.
Technical results and proofs are collected in the appendices.

2 Definition of the AST Distribution

The asymmetric Student-t (AST) distribution proposed in this paper is de-
fined as follows. Its standard (location parameter is zero, scale parameter is

!By using the conditioning method, Branco and Dey (2001) and Sahu et al. (2003)
construct two different classes of multivariate skew Student t distributions, which however
coincide in the univariate case.



unity) probability density function has the form
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where o € (0,1) is the skewness parameter, v; > 0 and ve > 0 are the left
and right tail parameters respectively, K(v) = I'((v + 1)/2)/[v/7vI(v/2)]
(where T'(+) is the gamma function), and «* is defined as

o = aK(v)/[aK(v1) + (1 — a)K(v9)]. (2)

Denoting by p and o the location (center) and scale parameters, respectively,

the general form of the AST density is expressed as %fAST(y;“; a, v1,02).
Note that

o' 11—«

S K@) = 1L K () = aK (@) + (1~ K@) = B. (3

The AST density (1) is continuous and unimodal with mode at the center,
y = u = 0, and is everywhere differentiable at least once. In the limit as
« approaches either 0 or 1, the shape of the density resembles a Student-¢
truncated at the mode. The parameter a* provides scale adjustments re-
spectively to the left and right parts of the density so as to ensure continuity
of the density under changes of shape parameters («, vy, v2).

A new parameterization of a skewed Student-t (SST) distribution is given
by letting v1 = vy = v (implying o = «) in the AST; the general form of
its density is

fSST(%OéaU,MvU) = —(U+1)/2 (4)
LK) [1+ Lt ] Ly

This parameterization of the SST is equivalent to those of Hansen (1994) and
Fernandez and Steel (1998), but it will provide an interesting new interpre-
tation of the skewness parameter in terms of L, distances. By reparameter-
ization with o = 1/(1++?) and o = (y+1/7v)0’/2, the SST (4) will become
that of Fernandez and Steel (1998); letting a = (1—))/2, 0 = /(v — 2) /v
and pu = —a/b, the density (4) will be that of Hansen (1994, eq. 10). With



a =1/2, the SST reduces to the general form of Student-¢ distribution. The
skewed Cauchy and skewed normal distribution are special cases of the SST
with v = 1 and v = oo, respectively. By the skewness measure of Arnold
and Groeneveld (1995), the SST density is skewed to the right for a < 1/2
and to the left for a > 1/2.

When one of the tail parameters goes to infinity, say, v9 — oo, the AST
behaves as a Student-t on the left side and as a Gaussian on the right side,
implying one heavy tail and one exponential tail. This type of tail behavior
is similar to that of the GH Student-¢ in Aas and Haff (2006). With these two
tail parameters the AST can accommodate empirical distributions of daily
returns of financial assets that are often skewed and have one heavy tail
and one relatively thin tail. A potential disadvantage of the AST, compared
with the GH Student’s ¢ and that of Jones and Faddy (2003), is the fact
that the density function is differentiable only once at the mode u; however,
it is not an impediment in applications, because we can show that the usual
VT asymptotics of MLE still hold for the AST.

The definition in (1) above is useful in theoretical analysis, but it will
sometimes be convenient to re-scale for computations and applications. We
can give an alternative definition of the AST density as follows:

o7 —(v1+1)/2
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fast(y;0) = a2 (5)
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where 0 = (a, vy, v2, 1, o)” and p and o are the location and scale parame-
ters respectively. From the rescaled AST density (5), we can clearly observe
the effects of the shape parameters on the distribution. This also yields a
simple closed-form expression for the information matrix of the maximum
likelihood estimator (MLE).

3 Properties of the AST distribution

3.1 Stochastic representation, moments, and implications of
parameters

Suppose that Y is a random variable with the standard AST density (x = 0,
o = 1). Define a A b = min{a, b}, a Vb = max{a,b}, by Fi(-;v) the cdf of
standard Student-t with non-integer degrees of freedom v, and by Ft_l(-; v)



the inverse function of Fi(-;v). The cdf and quantile function of the AST
r.v. Y are given by a straightforward calculation as follows:

Fast(y) =20k} (%2?%) +2(1 - ) [Ft (2(1y\_/2*);v2> - ;] (6)

and
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where o* is defined in (2). Note that F3(0;v) = %, which implies Fag57(0) =
o and FXSIT(a) = 0 (recall that « is the skewness parameter here). This
means that the a-quantile of a standard AST r.v. is always zero. For a
general AST with location u and scale o, the location p corresponds to the a-
quantile of the general AST random variable. This is the basic interpretation
of the parameters o and pu.

A stochastic representation of the AST is useful in studying properties
of the distribution, and in simulation studies. Denote by T'(v) a random
variable having the standard Student-¢ distribution with v degrees of free-
dom. Consider three independent random variables U, T(v1) and T'(vs),
where U ~ U(0, 1), the uniform distribution on [0, 1]. Define

Frdr(p) =20 F7"

Y =ao" |T(v)|[sign(U — a) — 1] + (1 — &™) |T(v2)] [sign(U — «) + 1], (8)

where o is defined as in (2), sign(z) = +1if x > 0, —1 if x < 0, and 0 if
x = 0. Then it is easy to show that Y is a standard AST random variable
that has the density (1) with the three shape parameters («,v1,v2). The
following moment properties of Y can be obtained using this stochastic
representation.

Note that the absolute moment of T'(v), E |T(v)|", can be expressed as

E‘T(U)‘r:\/fr(r—;_l)F(U;T) /r(%), —l<r<uv. (9)

This formula can be found in Mittnik and Paolella (2003), or it can be
derived from a straightforward calculation by using eq. 1I-10 in Farrell and
Ross (1963, p55). We then obtain

E(Y[Y <0) = RaTET()]", re(=10) (10)
E(Y"|Y>0) = [20—a")] B|T(w)", re(-1w) (11)



and

EIY] = aB(Y[|Y <0)+(1-a)E(Y] |Y >0)
= a2’ E|T(v1)]" + (1 = )21 = )" ET(v2)]", (12)
where r € (—1,v; A v3), implying that the r-th absolute moment of the

standard AST r.v. Y can be obtained by combining (9) and (12). Similarly,
for any positive integer k < v1 A vg, the k-th moment is given by

E(YF) = a|-20*1*E |T(v)|* + (1 — a)[2(1 — a*)]FE [T (v2)[* . (13)

In particular, the mean and variance of a standard AST random variable
are:

E(Y) = 4 [aa*vi}f(ﬁvll) +(1—a)1- a*)“iﬁ“f)]
= 4B [—a*Z Ul“i A= a*)zv;jf J ; (14)

Var(Y) = 4 [aa*QUIUi 2 +(1—-a)(l- Oz*)zwvi 2}

2
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where K (-) and B are defined respectively in (1) and (3). We see that all the
moments can be expressed simply and conveniently in terms of the Gamma
function. For the skew Student-t, where v1 = v9 = v and o* = «, we can
obtain simplified expressions for various moments:

Val(g)

B = Vi [0t TEUTCED
E(|Y‘T) — (2\/17)1’ [ar+1+(1_a)r+1] w

<

(17)

where k is a non-negative integer less than v, and —1 < r < v.
An interpretation of the parameters can be given by using the conditional
L,—norm deviations,

di(r) = [B(Y —u | Y <w)]V7, dr(r) = [B(Y —ul" | Y > )", (18)



where r > 0 is any given constant, u is the location parameter and here
= 0 for the standard AST r.v. Y. Substituting (10) and (11) into (18)
yields

di(r) = 20" (B|T(un)[)", dr(r) =2(1 = o) (B|T(2)])"". (19)

As we know from the alternative definition (5), the parameters v; and vg
separately control the shapes of the left and right sides of the AST, so they
can be referred to as the left and right shape parameters respectively. We can
see this point also from the left and right “conditional generalized kurtosis”
defined for every r > 0 as

_ o ET(0)]”

kurp(r) = [dp(2r)/dp(r)] = E o) (20)
2r

kurp(r) = [dr(2r)/dr(r))? = E|T(w)l (21)

(BT (w)[")*

where each depends on only one of the shape parameters v1 and vy. For the
case in which v; = v9 = v, the skewness parameter « has an interesting
interpretation. Recall that a* = « when v; = vg. It follows from (19) that

dp(r) = 2o (E|T(0)[)", dr(r) =2(1—a) (E|T()[)/".  (22)

This implies that the ratio of the probability («) that Y occurs on the left
side of y to the probability (1 — «) that Y occurs on the right side of u is
equal to the ratio of the left deviation d (r) to the right deviation dg(r), i.e.,
af/(1—a) =dr(r)/dr(r). Define d(r) = dr(r) + dgr(r), the total conditional
deviation; then for any r > 0,

a =dg(r)/d(r) = dp(r)/[dL(r) + dr(r)], (23)

implying that the skewness parameter a can also be interpreted as the ratio
of the left deviation dr,(r) to the total deviation dr,(r) + dgr(r).

By substituting (9) into (20) and (21), the left and right (generalized)
kurtosis are given as follows:

e VAN -N() (1w
kurp(r,v1) = (F(hyr () , ¥ €< 5 2), 1 >0 (24)
and
VA I D) (1w
kurg(r,ve) = (F(T—Zl)F(”22_T))2 .V e( 5 2), o > 0. (25)



We can show that both kurp(r,v) and kurg(r,v) are strictly decreasing
in v and strictly increasing in r (see Lemma 7 in Appendix A). From the
expressions for kurr(r,v1) and kurg(r,v2) in (24) and (25), the heaviness
of the left (or right) tail of the AST is controlled by only v;(or va). If v1 <
vg, then kurp(r,v1) > kurg(r,ve), implying that the left tail is heavier than
the right one; the smaller the value of v; (or vy), the heavier the left (or the
right) tail. If v; > 4, then for r = 2 the left (or right) kurtosis has the simple
expression kurp(2,v1) =3+ 6/(v1 —4) (or kurr(2,v2) =3+ 6/(v2 —4)).

3.2 Value at Risk and Expected Shortfall

The Value at Risk (VaR) and the Expected Shortfall (ES) are two very
widely used risk measures, defined for a standard AST random variable Y
at a confidence level p or a point in the support of the distribution ¢ as

VaRasT(p) = FXSIT(p)v ESast(q) = E(Y |Y <q).

We will now show that each of these risk measures can be expressed in
terms of the cdf and pdf of the standard Student-t, Fy(-;v) and fi(-;v), with
parameter values of v; and ve. VaRasr(p) has been given in (7); we can
express ESas7r(q) in terms of Fi(-;v;) and ESi(q;v;) (see (40) in Lemma
8 of Appendix A), where ES;(q;v) = E(T(v) | T(v) < q) is the expected
shortfall of a standard Student-t r.v. T (v) with degrees of freedom v, and
i =1,2. Note that FSy(q;v) can be simply expressed as

o (2) bl e

Then, substituting £.S;(+; v) into (40), we obtain the expression for £'S4s7(q)
as follows: ESasr(q) =

(1-v1)/2

— — | |14+ — + (1 —a™)*

Fusr(q) (1)1 — 1) [ U1 ( 2ar* ( )
(1—v2)/2

. <U2Ui 1) [1 + U12 (M)zl -1 ; (27)

where again a A b = min{a, b} and a Vb = max{a, b}, and B is defined as in
(3).

For ¢ < 0, ve vanishes from the expression and existence of the ES
requires only vy > 1.




When considering the ES as a function of the confidence level p by taking
q=VaRasr(p) = FgéT(p), we obtain ES%¢p(p) = ESast [FgéT(p)] =

4B { v1a*? [1 . 1 (Ft—l (p/\awl)>1 (1-v1)/2 . va(1 — 04*)2'

p |vr—1 U1 2 vy — 1

(1—v2)/2
1 1 (pVa+l-2a 2
1+v2<Ft ( 21-a) ’“2>>] !

4 Asymptotic Properties of the MLE

We now investigate asymptotic properties and finite-sample performance
of ML estimators of the parameters of the AST distribution. In order to
obtain a relatively straightforward form of information matrix of the MLE,
we adopt the alternative definition of the AST density given in (5). This
density is a parameter transformation (re-scaling) of the original one in (1).
For any one-to-one parameter transformation, { = h(#), the information
matrices of MLEs for ¢ and 6, denoted by J(¢) and (), can be shown to
have the following relationship:

J7HC) = Vo h(0)I71(0)Vgh(6),

where Vg h(0) = (Voh(0)) = (0¢;/06;) whose element in the i-th row and
j-th column is 0¢;/06;, i, j = 1,2,...5.

Now consider the MLE of the parameters of the AST. Let f(y;#) be the
AST density (5). The true value of 6 is denoted by 6y = (av, vo1, Vo2, fo, 00)-
Suppose that g € A= {0 | 0 = (a,v1,v2,u,0), 0, v1,v3 >0, € (0,1), u €
(—o00,+00)}, the parameter space. Given an i.i.d. sample y = (y1, y2, ..., Y1)
of size T' we can write the log-likelihood function I7(6 | y) = Zthl In f(y;0)
as follows:

v+ 1w
1
Ilr(@ | y)=-Tlno — 5 tE 1 In

L y—p \
14— —— Ty <
* U1 (2@0K(U1)> (e = 1)
T 2
vy +1 1 Yt — b
In |14+ — 1 .
2 ; m Vo <2(1 —a)oK(v9) (e > 1)

Note that because the log-likelihood function is differentiable only once at
iy, the AST distribution does not satisfy the usual regularity conditions
under which the ML estimator has v/T—asymptotics. In this case, however,
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we can still establish the usual asymptotics by using Theorem 2.5 in Newey
and McFadden (1994, p2131) and Theorem 3 as well as its corollary in
Huber (1967). In addition, we obtain the closed-form expression for the
Fisher information matrix 1(#). We use the notation H(#) for the Hessian
matrix.

Proposition 1 The MLE §T of Oy is consistent, i.e., §T —P 6.
Proof: See Appendix B.

Proposition 2 The information matriz equality 1(6y) = —H(0y) holds.
The elements of the Fisher information matriz, denoted by ¢;j, are

Oln f(ys;60) 9ln f(ys;00)
00); 00, ’

¢ij =F [ (28)

where ¢;; = ¢j; and 0; represents the jth element of the parameter vector
0 = (o, v1,v2, 1, o)1, and:

— v1+1 va+1 _ v1D(v1) .
¢11 =3 [a(vl—i-?)) + (1 a)(v2+3)] P12 = v1+1 + v1+3 0’

— 1 vaD(v), — 24 . — 2| v v |.
¢13 T v+l vo+3 ¢14 - 30’¢117 ¢15 T o |:U1+3 vo+3 |’

D?( 2D
¢22 = % {U1U1+§1 v1(-il-}1) a D/(Ul)} ; ¢23 - 0; ¢25 - %¢12;

b =& [k — BEHDO)] s on =4 [P - BHD)]: (@)
2
P33 = 3% {UQ:;JF(;&) - 252%) - D'(W)} o dss = — 1%
_ 1 +1 1 +1 1 . _ 2 .
¢44 — 402 [azﬁﬁg) KZ(u1) + (172§(v2+3) KZ(UQ)] ) ¢45 = _§¢157

b5 = o |ty + (1 - )i |
where all the ¢;; are evaluated at the true values (v, Vo1, Vo2, o, 00), K(+)

is defined in (1), D(v) = U(%) — ¥(¥), and ¥(v) = I'(v)/T(v) is the
digamma function.

11



Proof: See Appendix C.
Oln f

Note that for the SST (v1 = vz = v), its score component “5-- is the sum

of the AST score components agglf and %l—ij. Thus, by combining the terms

of ¢;;j involving vy and vy, i.e., P12+ P13, P22 + P33, P24 + P34 and Po5 + P35,
we can obtain the information matrix for the MLE of the SST parameters
(ar, v, p, 0); the result appears in Gémez et al. (2007, Proposition 2.2).

Proposition 3 The MLE §T of 0y is asymptotically normal,
VT (B — 60) 2N (0, 17 (6)),
where I1(0y) is the Fisher information matriz,

I(00) = E[(VoIn f(yt;60)) (Vo In f (115 00))'];
provided by (29); it can be consistently estimated by I(07).

Proof: See Appendix B.

From the proof of the Proposition, we can see that I(6) is continuous in
some neighborhood of g, so it follows from the consistency of 5T that I (5T)
is a consistent estimator of I(6p).

5 Simulation performance of the MLE

To assess the asymptotic properties of the MLE in finite samples we report a
numerical investigation of bias and variance of the estimators using sample
sizes of T' = 1000 and 5000. We choose po = 0, g = 1 and various different
true values of («a, v1, v2): a = 0.3, 0.7 and v; 2 = (0.7,2.5),(2.0,2.0), and
(2.0,5.0); these cases are representative of a larger number of simulations
producing qualitatively similar results. For each set of true values of the
parameters and every sample size, N = 10000 simulated samples are drawn
from the AST distribution with that set of parameter values, and then ML
estimates 6 (i = 1,2,..., N) are obtained using these samples. We obtain
the sample means and standard errors of the MLE’s of the parameters on

~ ~

these 10 000 replications, denoted respectively by M (#) and SE(0),

LN LN , 1/2
M) =5 > 0, SE®) = (N > |0 - @) ) ,
=1 i=1
and compare these standard errors with the theoretical standard deviations

which are taken from the square root of the diagonal elements of the Cramer-
Rao bound (i.e., I71(#)/T ). Simulation results are reported in Table 1(a/b)

12
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and in Figure 1. All entries in Table 1a (labeled ‘mean’) report M (), and
those in Table 1b (‘se’) report SE(6).

To describe the ratios of simulated standard errors SE(@) to theoreti-
cal ones from I~1(6)/T, we report results graphically in Figure 1 for the
larger set of sample sizes T = {1000, 2000, ...,10000}; these results are
conveniently viewed in graphical form since asymptotically the result will
converge on unity, and we wish to see examples of the speed of convergence
and the degree of finite-sample discrepancy.

Finally, note that all random samples from a standard AST are generated
by using the stochastic representation (8) of the AST multiplied by B =
aK(v1) + (1 — a)K(v), X = BY, which has the AST density (5) with
shape parameters («, v1,v2), location u = 0 and scale o = 1.

From these simulations the estimates @ of all parameters appear asymp-
totically unbiased in each case and their variances appear to be approaching
the Cramer-Rao bound. However, ML estimates of the tail parameters have
a slower convergence rate than those of the other parameters. In fact, skew-
ness, scale and location parameters can be estimated well even for sample
sizes smaller than 500; however, even for moderately large values of the tail
parameters, such as 5.0, a sample size of 1000 or 2000 may not be large
enough to give a good estimate. The highest variances that we observed
arose for large values of v; where o was less than 0.5, and correspondingly
for vo where av was greater than 0.5; the last lines of Table 1a/1b and panel
D of Figure 1 illustrate such a case. Note in Figure 1 that the vertical scale
in panel D differs from those of panels A-C.

Estimates of tail parameters depend crucially on the relatively sparse
tail observations, suggesting that relative to the Student-¢t and the SST
which have only a single tail parameter, approximately double the number of
observations will be needed in order to obtain good tail parameter estimates
in the AST, because the two tail parameters in the AST are distinct. For
a = 0.3 in our simulation studies there are fewer observations on the left
side, so estimates of the left tail parameter should show poorer finite sample
performance than those of the right tail parameter. Note that a smaller
(larger) value of a tail parameter implies a heavier (thinner) tail, so that
there are more (fewer) observations in the tail. As well, the shape of the
distribution changes less with a one-unit change in the tail parameters when
the value is large; that is, sensitivity of shape is greater at small values.
These considerations suggest that we should observe lower standard errors
for small tail parameter values than for large values.

13



6 Concluding remarks

Many processes display a relative frequency of extreme values which far
exceeds what could be accounted for by a Gaussian distribution. This is
true in particular for financial data, where the Student-¢ distribution has
commonly been found valuable in modelling conditional returns. However,
equality of the relative frequency of extreme returns in left and right tails
(losses and gains) often seems violated in practice. Hence generalizations
of the Student-t that allow asymmetry are potentially valuable in empirical
modelling and forecasting.

The present study offers a three-parameter form which is more general
than those available in the literature. The proposed distribution allows ana-
lytical computation of important quantities related to risk, and ML estima-
tion of parameters with the usual v/ asymptotics. We show by simulation
that finite-sample performance of ML estimation is reasonable, and also
through empirical analysis that the potential of the more general form is re-
alized both in better in-sample fits, and in better forecasts of tail-dependent
quantities of interest such as the expected shortfall. This distribution there-
fore appears to offer a device for continuing to increase the subtlety of our
understanding of financial returns and other heavy-tailed data.
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7 Appendix A

Appendix A provides some lemmas that will be used in the proofs of prop-
erties of the AST.

We will use the Gamma function of a positive real variable only, and
so for x > 0 we take ['(z) = [;* " te~!dt as our definition of the Gamma
function. I'(z) has derivatives of arbitrarily high order:

V() ., 1 1

I'(z) ¢ + ; ﬂz-f—z (30)
dk 1 T(x o
drk-1 <F((5L‘))> N Z :L‘+z = fork 22 (31)

=0

C' is Euler’s constant. See e.g. Artin, 1964, pp. 16 ff. for these and other
properties. Let W(z) = I'(z)/T'(z); this is called the digamma function.

Lemma 4 Let D(v) = U(%) — U(Y) for any v > 0. Then U(v) is strictly
increasing while D(v) is strictly decreasing, and the following equalities hold:

2

‘P(U+1):%+\IJ(U), D(w+2) = —

Proof. From (31), taking k = 2, we get V'(z) = Y 02, 1/(z +4)? > 0
for all z, implying that W(v) is a strictly increasing function. From the
above expression for W'(z), we can also see that W'(z) is a strictly deceasing
function for z > 0, implying D'(v) = ¥/(“E)—¥/(¥) < 0. So D(v) is strictly
decreasing. If the first equality in (32) holds, then the second one is easily
verified. Now we proceed to show the first equality. In fact, differentiating
both sides of I'(z + 1) = zI'(z) leads to I'(z + 1)/T'(z) = 1 + 2¥(z), and
then rewriting it does yield the first equality in (32). B

Lemma 5 For any v > 0, recall K(v) =T((v+1)/2)/[y/7vl'(v/2)]. Then
the following equalities hold:

L2 = wtEh - u() = D) (33
v 1/2 K(U) B 1, ]:_O,
(U+2J'> K(w+2j) v/(v+1), j=1L (34)
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Proof. The proofs are immediate. For equality (33), taking the log of
the expression for K(v) and then differentiating both sides, it follows that

K'(v)  dnK(v) 1
Ko) 7 —d[lnf((v+1)/2)—lnF(U/Q)—21nv—lnﬁ /dv
1 v+1 v 1
- 2[‘” 2 *‘”Qw]-

So we have shown that (33) holds. From the definition of K (v), the left side
of equality (34) is expressed as

( v )1/2 K _T(w+1)/2) T(v/2+})
v+ 25 K

(v + 27) L(v/2) T((v+1)/2+j)

Using the fact I'(v + 1) = vI'(v), the proof of equality (34) is easily com-
pleted. R

Lemma 6 For any v > 0, we have the following integral equalities:

+o0o 1
2 —(0+)/24,  —
/O (1+2%)~WHizg 2 oK () (35)
/+OO<1 T 22)7('04»1)/2 ln(l + ZQ)dZ _ D(U) (36)
0 2\/’17K(”U)
+00 2 !
L2~ (HD)/2 [y 52 2 > D*(v) —2D'(v)

/O (14 22) In(1 + 22))d s 6)

where K(-) and D(-) are defined as the above, and D'(v) is the derivative
function of D(v). Below we will continue to use I'(v), ¥(v), K(v) and D(v)
to denote these functions defined earlier.

Proof. For the Student-t density f;(z) = K (v)(1 + 22/v)~@+)/2 from
fj;o fi(x)dz = 1, we obtain equality (35) immediately. Differentiating both
sides of equality (35) with respect to v, by Lemma 3.6 of Newey and Mc-
Fadden (1994, p.2152) that ensures that the order of differentiation and
integration can be interchanged, it follows that

N B S’y SN S IS SR )
) O e = g o - )

Rewriting this equality and combining with equality (33) yields (36). Simi-
larly, by differentiating both sides of ( 36) with respect to v and combining
with (33), we obtain (37). W
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Lemma 7 The inequalities Okury(r,v)/0v < 0 and Okurg(r,v)/0r > 0
hold for the AST.

Proof. Taking the log of kury(r,v), we have two partial derivatives as
follows:

o w0
and

The inequality (38) can be verified by using the mean value theorem and the
fact that W'(z) is strictly decreasing for > 0; then (39) follows immediately
because ¥(x) is an increasing function. l

Lemma 8 The expected shortfall of the AST distribution, ESas7(q), can
be expressed as

1 N qNO q/\O *
— <4 E — F; 4(1 — 1-—
Fast(q) { oo Bs ( 20 ,U1> ' ( 20 1) tall - a)l-a’)

- [ESt <M;U2) o) <2(ff(;*);v2) _ ;ESt(O;vg)] } (40

Proof. The expression for ES 4s7(g) in (40) is unified from the following
two cases. When ¢ < 0, by the definition of expected shortfall and the change
of variable, u = x/(2a*), we have

ESasr(q) = EY |Y <q)
= </q g;fAST(x;a,vl,vg)dx> /Fast(q)

! a2 fi(5E; v1)da — doa® fq/(za*)uf (u;v1)du
FAST(q) 20F; (555 01)
= 2a" ESt(2 *,’Ul)

Similarly, when ¢ > 0, using the change of variable z = x/(2(1 — a*)), and
noting that

0
/ ng( v1)dx = daa” ESy(0;v1) Fy (0; 1)

*7
. 20
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and q
/ z2fi(z;v)dz = ESi(q;v)Fi(q;v), Vq,

we obtain
BSuerla) — J2 o w & g de + [ ad=t filsiaeyi vo)da
ASTA) = Fasr(q)
1
= — {4aa™ES;(0;v1)F; (0;v1) + 4(1 — a)(1 — a¥)-

Fast(q)

[ ra/(2(1-a%)) 0
/ zft(z;vg)dz/ z2fi(z;v9)dz

1 * ‘v ) — —Oé* .
_ m{m@ ESy(0;v1)F; (0;01) +4(1 — o) (1 — o)

| Es(—1

(mﬂﬂ)Ft(

ﬁ5 v2) = %Est(o; U2)] } .I

8 Appendix B

Appendix B is devoted to establishing consistency and asymptotic normality
of the MLE of all parameters of the AST distribution.

Proof of Proposition 1 (consistency of MLE). The consistency of the
MLE §T can be shown by verifying the conditions of Theorem 2.5 in Newey
and McFadden (1994, p.2131), which holds under conditions that are primi-
tive and also quite weak. Condition (ii) of Theorem 2.5, compactness of the
parameter set, is ensured by considering a compact parameter set © C A
such that it includes the true parameter 6y as an interior point. Condition
(iii) of Theorem 2.5 requires that the log-likelihood In f(y | 8) be continuous
at each § € © with probability one. This condition holds by inspection.
We only need to check the identification condition and dominance condition
(corresponding to conditions (i) and (iv) of Theorem 2.5 respectively).

For the identification condition, it is sufficient to show that for any given
0 # 60y and 6 € O,

Inf(y [ 0) #Inf(y| o), ae. (41)

on a set of positive probability. The fact that the AST random variable
Y has a positive probability on any interval will be used in the proof. If
W # o, say, i > o, then on interval (pg, p] the log-density function In f(y |
0) is strictly increasing, but In f(y | 6y) decreases strictly, so (41) holds
for y € (uo,p]. Now suppose p = pg. We can show that (41) is true on
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(—00, o] or (po, + 00) respectively if v1 # vg1 or v2 # vg2. In fact, assuming
vy # vp2 and letting C(0) = (vg + 1)/2, for y € (uo, + 00), we have
Inf(y|0)=—Inoc—C(0)In R(y;0) with u = pg, and In f(y | g) = —Ilnog—
C(6o) In R(y; 00), where R(y;0) is defined in (55). Note that R(y;#) with
p = po and R(y; 0p) are quadratic and strictly increasing on (g, +00). Thus,
both log-density functions intersect at no more than two points, so that (41)
holds on (po, + 00). Similarly, for p = po, v1 = vo1 and v = vog, it is easy
to show that (41) holds if a # «agp or o # 0¢ (see Newey and McFadden, p.
2126).

The dominance condition of Theorem 2.5, E[supyeg [In f(Y | 0)|] < oo,
can be verified by the compactness of parameter set © and equalities (63)
and (64). The parameter set © is assumed to be compact, so that any
continuous function of € is bounded on O, and it is easy to show that there
exist certain positive constants K; (j = 1,...,5) such that

1< L(y;0) < K1L(y;00), 1< R(y;0) < K2R(y;00), V0 €O6  (42)
and thus
In f(y | 0)] < K3+ Ky[In L(y; 60)] 1(y < po) + K5 [In R(y; 00)] 1(y > po)

for all # € ©. Using equalities (63) and (64), the dominance condition
follows.H

Proof of Proposition 3 (asymptotic normality of the MLE). The proof
of the asymptotic normality result proceeds by verifying the conditions of
Theorem 3 as well as its corollary in Huber (1967). Following the notation
of Huber (1967), let ¢ (y,0) = %‘gy’m, the score vector, and set

)‘(9) = Ew(yv 9)7 u(ya 67 d) = Bfgg* ‘w(yv 9*) - w(ya 0)| ) (43)

where D* = {0* | |§* — 0| < d} and all expectations are always taken with re-
spect to the true underlying distribution f(y; 6y) with 8y = (v, vo1, Vo2, fo, 00)-
Similar to Example 1 of Huber (1967), the condition N-1 (i.e., for each fixed
0, ¥(y,0) is measurable and separable: see Assumption (A-1) of Huber
(1967)) is immediate; both conditions (N-2) and (N-4), i.e., A(fp) = 0 and
E[|ib(y,00)*] < oo, hold immediately from (71) and the fact that ¢ in
(28) are finite. By the definition of the MLE 6, we have ST Uy, 6) =0,
implying that Equation (27) of Huber (1967) holds. Since consistency has
been proved, the remaining condition of Huber’s (1967) Theorem 3 is the
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condition (N-3): there are strictly positive numbers a, b, ¢, dy such that

\ ) > ald—6|, for |6 — 6| < do, (44)
E[u(y,0,d)] < bd, for |0 —6|+d<dy,d>0, (45)
Elu(y, 0, d)2] < cd, for |6 —6p|+d<dy,d>0, (46)

where |0| denotes any norm equivalent to the Euclidean norm.
To prove (44), it is sufficient to show

0%1n f(y,0)

5000

sup
0O

‘<M<oo, (47)

where M is some positive constant; it then follows by Lemma 3.6 of Newey
and McFadden (1994, p2152) that A(0) is continuously differentiable in any
neighborhood of 6y, hence (44) can be verified by using the mean-value
theorem and the fact that Hessian H () is negative definite. Actually, (47)
is immediate by (42) and the fact that the expressions for the diagonal

elements of 6?972(9,) can always be written as
AT+ [Au() + A ()L + A () L% 1y < p)
+[An (1) + A ()R + An(nR 1y > w), (48)

where A(-) and A;;(-) are some continuous functions of shape and scale
parameters 7 = (o, v1,v2,0), and L = L(y,0) and R = R(y,0) are defined
as in (54) and (55).

Now we check condition (45). Separate the location parameter from the
other parameters, 7 = (a,v1,v2,0), i.e. § = (7,u) and 6* = (7%, u*). Then

u(y79> d) < sup ‘¢(y,7'*,,u*) _¢(y37*a#)‘+ Sup |¢(y77—*wu) _Q/J(yﬂ—a /’L)|
0*eD* |7*—7|<d
(49)

The condition (45) is easily verified for the second part in (49), because the
location p is fixed and ¥ (y, T, ) as a function of 7 is smooth enough. For
the first part in (49), note from (56) to (60) that each element of ¥ (y, T, i)
can be expressed in the following form:

2 4
Z Cru(m)(In L)~ + > Cii(r) (1 — y)i?’Ll] y < p

=3

Zcm 1nR“+ZCQ@ (y—p)' "R
=3

Wy > p)(50)
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where C(-) and Cj;(-) are also certain continuous functions of 7 = («, v, v2, 7).
Without loss of generality, we need just to prove that

E | sup |1(y<u*)—l(y<u)||w(y,f*,u*)|] < bd, (51)
16+ ~6]<d
E | sup IlnL(y,T*,u*)—lnL(y,T*,u)ll(y<u)] < bd, (52)
|0 ~6]<d
and
B s Jor = o) i)™ = - ) L)1l < m] < bd

(53)
where k = 0,1. The similar inequalities for R(y,6) can be proved in the
same way. Equation (51) is immediate by (42) and the boundedness of
[y, 7*, 1w*)| f(y;00). The other two equations (52) and (53) are easily veri-
fied by using the mean-value theorem. Finally, verification of condition (46)
is similar. W

9 Appendix C

Appendix C is devoted to deriving a closed-form expression for the informa-
tion matrix and to verifying the information matrix equality.

Suppose that y; (t = 1,2,...T) are i.i.d. observations from the AST with
density f(y;6p) defined in (5), where 6y = (v, vo1, Vo2, to, 00). Expectations
are always taken with respect to the true underlying distribution f(y;6o).
Let

_ T 1 ye—p \°
_ o 1 Yt — W 2
R = Ry0)=1+ V9 <2(1 — a)aK(w)) ’ (55)

where 0 = (a,v1,v9, u,0) € A, the parameter space. Then the log-density
function with parameter 6 is In f(y;;0) =

v+ 1 vy + 1

—Ilno —

[In L(y; 0)] L(ye < p) — [In R(ye; 0)] 1y > )
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and the score vector for observation t, % In f(y; 0), is given by

Ly, 0 } Wy < p)

Oln f v+ 1
Oa
+1 1
— | Lyt > p), o6
[ gy | 1> (50
Oln f 1 v +1 L(y;0) — 1
= <—=InL(y;0 D(vy)————
- { i Liu0) + 2 Do) PO L 1, < ), )
Oln f 1 v +1 R(y;0) — 1
= ¢—2=1 ;0
o) + 2 D) M 0, 65
Oln f vi+1 1 1 2(ye — p)
= — 1
ou > L 0) v BacK(o e ¥ <M
v+l 1 1 2(yr — )
— 1
2 Rly:0) vn 21— a)ok ()2 U 7 ) (59)
Oln f 1 uv+1 1
= = 1-—|1
do o o [ L(yt;H)] (v < 1)
vy + 1 [ 1 :|
+ — ——— | Wyt > p), 60
> Rinoy| 1w =1 (60)
where we used equality (33) in the expressions for the components alnf and
%132]0. To derive the information matrix 1(6y) = [89 In f (v, 6o) 2 707 In f(yt, 6o)]

and the Hessian H(6y) = FE [8687826' In f(yt;6p)] and to verify the information
matrix equality I(0y) = —H (6p), the following Lemma is needed.

Lemma 9 For any j,m =0,1,2, ..., the following moment equalities hold:
1 (] )1/2 K(’Ul)
ES—1(y < = o , ; 61
{zarto <o} = o(5%%5) Farm ©
@, J=0,

= avy/(v1 + 1), j=1,

v1(v1+2) F_ 9.

o I A

1 (%) >1/2 K(UQ)
ES ———1(y: > = (1-« ; —~ (62
{[R(ytﬂo)] (o MO)} t=a <v2 +2%7) K+

(1-a), j=0,

= (1 - Q)UQ/((U2 +)1)7 ] = 17
va(va+2 .
(1 - O() (U2i1)2(1}2+3)’ J =4
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E{mL(M1(yt<uo)} = a( o .>1/2KK(U1),D(UI+2J')

Ly o) U1+ 2j (01 + 27)
= { bl ji=0.
_ { Oz(v1+11)D(v1 +9), =1, (63)

{111 R(yt; 6o)

In R(ys; 60) Vo )1/2 K (v2)D(vg + 25)
[R(yt;00))

1(yt>M0>} = (1_0‘)<U2+2j K(v2 + 2j)

_ { (1~ a)D(vs), j=0,

(1—a)(=2)D(s +2), j=1; OV

(y+ — po)[In L(yt; 60)]™ 2™l 200 K (v)]?
E{ [ HIY Hew < M0>} T 20(vp 25— 1)mFL (65)

(ye — po)[In R(ys; 60)]™ _ 2™ mlus[2(1 — )oK (vp))?
E{ Rlgeboh ¥~ “0)} T 20(ve 2 — 1) ((;6)
E{[In Ly 0021 (1 < o)} = o[D(v1) — 2D/ (vy)], (67)

E{[nR(ys;00)]*1(ys > po)} = (1= a)[D*(v1) —2D'(u1)],  (68)

where the right hand sides of all the equalities from (61) to (68) are evaluated
at the true values (o, Vo1, Vo2, fo, 00)-

Proof? We discuss equalities (61), (63), (65) and (67). Other equalities
can be proved in the same manner. Note that, for any j,m =0,1,2, ...,

ELi(j,m) = E{ (ye; 0 ]j[IDL(yt;g)]ml(yt<N)}
— [ IO Lo (s 0)) 2y,

and that L(y;0) = 1+ (#@;1))2 Then using the change of variable

z=— ) yields

Yy—K
2a0+/v1 K (v1
400 )
EL1(j,m) = 20y/01 K (1) / (14 22"+ HD2In(1 4+ 22)™dz. (69)
0

Setting m = 0, m = 1, and (j,m) = (0, 2) respectively, and correspondingly
taking into account equality (35) with v = v; + 2§, equality (36) with v =

2For simplicity, we omit the subscript on the true parameters 6y in all the following
proofs.
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v1 + 27, and equality (37) with v = v;, we obtain equalities (61), (63),
and (67). These proofs use (34). Now consider equality (65). Denote by
ELs(j,m) the expectation of the left side of equality (65), and note that the
change of variable z = 711(#/(%1))2 yields

v1[200 K (v1)]?

+o0o )
/ (14 2)~ @2 D/2)10(1 4 2)mds. (70)
0

Subject to v1 +2j — 1 > 0, by integration by parts it follows that

2

ELy(j = s

>EL2(j,m—1) :m!< )mELQ(j,O).

vl +2j—1

A straightforward calculation for (70) gives E'L2(j,0) = —%. [ ]

Lemma 10 The score vector for observation t, %ln f(ys; 0), satisfies the
equation

E [; 1nf<yt;9o>} 0. (71)

Proof. By using the equalities from (61) to (68), this Lemma is easily
verified. In fact,

(i).
o[ - e[ ] <o)
= et e (- ) =
(i).
E[aalglf] _ E{[_lnugyt;e)+U1;1D(U1)L(gt<;j39; 1} 1(yt<u)}

1 v+ 1 (1
— —-aD D 1- -
2a (v1) + 5 (v1)a ( — 1>

(iii). Similarly, we have

o[- o[ B )
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Olnfl]  wvi+1 11 20y —p
E{ au] - E{L@t;e))vl [2aaf<<v1>121(yt<“)}

vy + 1 11 2(ye — )
* {R<yt;e> o2 20— a)oK ()P “)}

2
w4+l =2 w4l 2
N 2 o(v1+1) 2 o(vg+1)
(v).
ol f| 1 v +1 1
o5 - el e}

+U2: 1EH1 - R(;t;e)} y: > u)}
1 u1+1a<1_ u1> vy +1(1—a)

- _;+ o v+ 1 c wv+1

1 1
= -+ 242" % om
(o o g

Proof of Proposition 2. We prove this by computing expectations on the
both sides of the following equations and then verifying them,

Oln f(y;;0) Oln f(ys;0), 0%In f(yi; 0) .
Bl—g, 09, ]__[W]’ b

j=1,2,..5.

In the proof, the fact that 1(y: < w)l(yx > p) = 0 and the equalities
(61)-(68) are used repeatedly. In addition, we use E[% In f(y;600)] = 0
shown in (71) and D(v + 2) = —ﬁ + D(v) given in (32). Note that
by the construction of the AST distribution, the left-tail parameter v1 and
the right-tail parameter vy have a symmetry property. Hence we do not
consider the terms of the information matrix equality involved in the right-

tail parameter vs.
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(a)

o[5] —( ) AL s <)

(S
- ( ) P Ul*wvﬁ%&?m]

+<11 +a1) (1= )[ v2v+21+ (uﬁ(?f;(;? 3)]

B 3[<vt§>+<—f3jl+a}
b {azzﬂ N _UloglE{[H L(ylt;f)) N [L(yi 0)]2] My < ”)}
<ﬁi§E{P+R@ﬂ>[m;mH1@>“%
v+ 1

2
- _ut a[1+ v v (v +2) }
a v +1 (v1 4+ 1)(v1 + 3)

B () _9 U2(U2—|—2) :|
(1 — a)2 vo + 1 (’UQ + 1)(’1}2 + 3)
_ 3 [ v +1 vy + 1 ]
afv1+3)  (1—a)(va+3)]"
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Table 1a

Means of simulated MLE’s of AST parameters
T = 1000, 5000; 10000 replications; c =1, 4 =20

T: o, U,V mean & mean ¥y mean ¥s mean d  mean [
1000  0.3,0.7,2.5 0.300 0.709 2.547 1.001 6x10~4
5000 0.3,0.7,2.5 0.300 0.701 2.511 1.000 3x107°
1000 0.3,2.5,2.5 0.301 2.668 2.543 1.001 0.002
5000 0.3,2.5,2.5 0.300 2.534 2.510 1.000 5x1074
1000 0.3,2.0,5.0 0.301 2.083 5.311 1.001 0.002
5000 0.3,2.0,5.0 0.300 2.018 5.051 1.000 6x1074
1000 0.8,0.7,2.5 0.798 0.702 2.806 1.002 -0.002
5000 0.8,0.7,2.5 0.800 0.700 2.559 1.000 -3x1074
1000 0.8,2.5,2.5 0.798 2.533 2.826 1.001 -0.003
5000 0.8,2.5,2.5 0.800 2.506 2.543 1.000 -4x1074
1000 0.8,2.0,5.0 0.798 2.021 10.93 1.001 -0.003
5000 0.8,2.0,5.0 0.800 2.003 5.282 1.000 -7x1074

Table 1b
Simulation standard errors of MLE’s of AST parameters
T = 1000, 5000; 10000 replications; o =1, p =10

T: U1,V se(&) se(v1) se(vU2) se(o) se(ft)
1000 0.3,0.7,2.5 0.022 0.078 0.323 0.042 0.025
5000 0.3,0.7,2.5 0.010 0.033 0.133 0.019 0.011
1000 0.3,2.5,2.5 0.030 0.688 0.334 0.038 0.035
5000 0.3,2.5,2.5 0.013 0.244 0.139 0.017 0.015
1000 0.3,2.0,5.0 0.029 0.435 1.364 0.036 0.035
5000 0.3,2.0,5.0 0.013 0.171 0.471 0.016 0.015
1000 0.8,0.7,2.5 0.023 0.042 1.905 0.051 0.027
5000 0.8,0.7,2.5 0.010 0.019 1.435 0.023 0.012
1000 0.8,2.5,2.5 0.026 0.301 2.535 0.038 0.031
5000 0.8,2.5,2.5 0.011 0.128 0.313 0.017 0.013
1000 0.8,2.0,5.0 0.028 0.207 26.90 0.038 0.034
5000 0.8,2.0,5.0 0.012 0.089 1.228 0.017 0.015
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Figure 1
Ratio of simulation standard error to Cramer-Rao bound 3
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3Case A: o« = 0.3,v;1 = 2.0,va =5.0,0 =1, p=0; Case B: @« = 0.3,v1 = 2.0,vy =
2.0,0 =1, u = 0; Case C: o = 0.3,v1 = 0.7,v2 = 2.5,0 = 1, p = 0; Case D:
a=038,v1 =2.0,v2=5.0,0 =1, pu=0.
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