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1 Introduction

Consider a market where a particular good is produced by K firms. The demands

are given by functions Gi(pi,p−i), and firms compete in prices. How can we find the

firms’ optimal prices in a static setting? Surprisingly, the answer to this very basic

question of oligopoly theory is yet incomplete.

Faced with such a question, one can first search for a pure strategy equilibrium. It

is relatively straightforward to write out the profit functions, differentiate them, and

try to solve the resulting system of equations. There exists a large body of literature

examining restrictions on demand or best reply functions that ensure the existence

and uniqueness of a pure strategy price equilibrium (see Vives (1999) for an overview

of the latest results in this area). However, as is well-known, not all demand functions

result in a pure strategy price equilibrium. In such cases, one must proceed to search

for mixed strategy equilibria.

The use of mixed strategy equilibria in oligopoly pricing models has also been

extensive. Some examples that result in price dispersion include literature on sales

(Shilony (1977), Varian (1980), Gal-Or (1982), Narasimhan (1988) and Baye et al.

(1992)), capacity constraints (Beckmann (1965), Levitan and Shubik (1972), Kreps

and Scheinkman (1983), Osborne and Pitchik (1986), Davidson and Deneckere (1986),

and Allen and Hellwig (1993)), and consumer search (Burdett and Judd (1983), Rob

(1985), Stahl (1988), Dana (1994), andMcAfee (1995)). An important feature of these

models is that they all use discontinuous demands and predict that the firms pick their
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prices from an interval according to some continuous probability distribution function.

This is not a coincidence, as Dasgupta and Maskin (1986) have shown that in the

symmetric case, for the type of discontinuities encountered in the above models, the

equilibrium mixed strategies are atomless on the set of discontinuities. The technique

for computing these equilibria is by now standard.

But what happens when Gi do not have singularities and do not result in a pure

strategy equilibrium? As an example, take any of the price dispersion models and

"smooth" the demand discontinuity by adding some heterogeneity into consumer

preferences.1 As shown by Benessy (1989) for the model of price competition with

capacity constraints, if this heterogeneity is small enough, a pure strategy equilibrium

does not exist. The technique for computing an atomless mixed strategy equilibrium

does not work for such demands. Thus, we know that the mixed strategy equilibrium

exists2, but do not know anything else about it.

The purpose of this work is to fill in this gap in the oligopoly pricing theory.

I prove that for analytic demand functions a mixed strategy price equilibrium is

characterized by each firm charging a finite number of prices. This characterization

covers the functions typically used to model the demand for differentiated products,

1For example, instead of consumers purchasing the product with the lowest price, assume that

their tastes are heterogeneous, and the price premium they are willing to pay for the firm’s product

is distributed according to some CDF. In consumer search models assume that all consumers have

differing search costs, thus there will be no mass of consumers with zero search costs.
2This existence result is provided by Glicksberg (1952).
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for example, logit, probit, or CES. The finiteness result gives a theoretical foundation

for the computational technique used to find the mixed strategy equilibria when

demands are analytic.

To illustrate an application of the theory developed in the first part of the paper,

I compute the optimal pricing strategies for a simple example of a duopoly with some

loyal consumers and some switchers, whose preferences for the goods are distributed

normally.

2 Main Result

Consider a market where a particular good is produced by K firms at a zero marginal

cost. Firms compete in prices p that range between 0 and r, where r is the maximum

price any consumer is willing to pay for the product. The set of consumers has

measure 1. Consumers have heterogeneous tastes for the goods produced by the firms.

These tastes result in the demand functions Gi(p) that show the percent of consumers

captured by firm i as a function of prices of all firms p, where p = (p1, p2, ..., pK). The

demand functions Gi(p) are analytic, which means that each function has a Taylor

series about each point x that converges to this function in an open neighborhood of

x.

Since all analytic functions are continuous, the demand functions Gi are continu-

ous, and the profit function of each firm is also continuous. Glicksberg (1952) proved

that for the case with continuous payoffs and a non-empty and compact set of actions
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there exists a mixed strategy equilibrium. Thus, the following proposition holds:

Proposition 1 For the setting described above there exists a mixed strategy Nash

equilibrium.

Now, in Theorem 1, I will show that the support of the mixed strategy Nash

equilibrium consists of a finite number of prices.

Theorem 1 Let the demand function Gi(p) be an analytic function on [0, r]K. In

addition, Gi(p) > 0 for any p = (p1, ..., pi−1, 0, pi+1, ..., pK). Then the support of the

price distribution of firm i in any mixed strategy Nash equilibrium has a finite number

of points.

Proof. Without loss of generality I will prove the theorem for i = 1. Assume

that firms 2, ..., K are charging the prices from the set Λ = [0, r]K−1 according to

some probability distribution function F (p−1), where p−1 = (p2, ..., pK). Then, the

expected profit function of firm 1 is

π1(p1) =

Z
Λ

p1G1(p1,p−1)dF (p−1) =

Z
Λ

p1G1(p)dF (p−1). (1)

Assume that the support of the price distribution of firm 1 contains an infinite

number of points. p1G1(p) is an analytic function since it is a product of analytic

functions. Then, by Theorem 7.1.1 from Karlin (1959), π1(p1) = c for all p1 ∈ [0, r].3

3This theorem is stated as follows. If the kernel is analytic and if one of the players has an

optimal strategy whose support contains an infinite number of points, then every strategy that is

optimal for the other player is an equalizing strategy (Karlin (1959)).
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However, π1(0) = 0, therefore the profit function must be equal to zero at every point

of the price support.

G1(p) > 0 for any p = (0, p2, ..., pK). Since G1 is a continuous function, then

G1(p) > 0 for any p = (ε, p2, ..., pK) provided that ε is small enough. It means that

firm 1 charging price ε will have a positive demand regardless of the competitors’

prices. Thus π1(ε) > 0 — contradiction.

Remark 1 Theorem 1 easily extends to the case of general cost functions. First, as-

sume that the cost function C1(·) is everywhere analytic. Then ψ(p) = p1G1(p1,p−1)−

C1(G1(p1,p−1)) is analytic since the sums, products, and compositions of analytic

functions are analytic. Thus, using the same argument as above, π1(p1) =
R
Λ

ψ(p)dF (p−1) =

c for all p1 ∈ [0, r] if the support of the price distribution of the first firm contains

an infinite number of points. Now, in addition to the previous assumption that the

firm sells a positive amount at price zero, also assume that C1(·) is nondecreasing

and that G1(p1,p−1) is nonincreasing in p1. Since π1 is a constant, π1 must be equal

to π1(0) everywhere on [0; r]. Now, consider charging a price ε. Since G1(p1,p−1) is

nonincreasing in p1, by charging ε the firm will produce at most the amount that it

produces at price 0. Since C1(·) is nondecreasing, the firm’s costs when charging ε

will be at most the costs that it has when charging 0. If ε is small enough, the firm is

assured of a positive demand, thus, its revenues are positive. Therefore, by charging

ε instead of zero the firm increases its revenues and does not increase the costs, so

π1(ε) > π1(0) — contradiction.
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Remark 2 The relation between the analyticity of the payoff functions and the finite-

ness of the support of a mixed strategy equilibrium was also addressed by Karlin

(1959). In Theorem 7.1.2 he proved this result for the analytic payoff functions that

are strictly decreasing at some point ξ0 for any strategy of the rival. This require-

ment is rather restrictive for the pricing games, as it implies that the profit function

p1G1(p1,p−1)−C1(G1(p1,p−1)) is strictly decreasing at some p1 for all possible p−1.

Proposition 1 and Theorem 1 together imply that for the demand functions typ-

ically encountered in practice (such as logit, probit, or CES) a mixed strategy Nash

equilibrium exists and, moreover, the solution must involve a finite number of prices.

Knowing that each firm charges a finite number of prices, it is possible to write

out a standard set of equations, the solution to which gives the mixed strategy equi-

librium.4 It is beyond the scope of this work to perform a technical analysis of how

to compute these mixed strategy equilibria or to examine their properties. Instead,

to illustrate the application of Theorem 1, in the next section I will provide a simple

example of a duopoly model and calculate mixed strategy equilibria for a few values

of the parameters of the demand function.

4These equations include the first order conditions — the profit function must be maximized at

each point of the support of the price distribution. Also, the profits at all the points of the support

of the price distribution have to be equal to each other.
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3 Application

Consider a market where a particular good is produced by two firms. Assume that

prices range between 0 and 1 (1 is the maximum price any consumer is willing to pay

for the product). Marginal cost is equal to zero. Each consumer buys one unit per

period. There are two types of consumers: loyals and switchers. Each firm has share

α (between 0 and 1
2
) of loyal consumers — those who buy only from their favorite firm,

provided that the price is lower than 1. The remaining (1 − 2α) are switchers with

heterogeneous tastes for the products that are distributed normally with mean 0 and

variance σ2 (σ shows the degree of consumer heterogeneity). Thus, the demand is

Gi(pi, pj) = α + (1 − 2α)
Ã
1− 1

σ
√
2π

pi−pjR
−∞

e−
1
2
( x
σ
)2dx

!
. The shape of this function is

shown in Figure 1.

This demand function satisfies the conditions of Proposition 1 and Theorem 1,

thus there exists a mixed strategy Nash equilibrium that must have a finite number

of prices. Figure 2 presents the equilibrium pricing strategies for the different values

of the parameters of the demand function.

I fix α to be 0.25 and let σ change from 0.3 (where a pure strategy equilibrium

exists) to 0.068 (where in the mixed strategy equilibrium each firm mixes between

five prices). For each value of σ in that range I plot the optimal pricing strategies

of the firms. For example, for σ = 0.1, each firm uses four prices, and the mixed

strategy equilibrium involves the firms charging prices {p1 = 0.4673; p2 = 0.7307;

p3 = 1; p4 = 0.9384} with corresponding probabilities {γ1 = 0.6284; γ2 = 0.2296;
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Figure 1: Percent of consumers buying good 1 as a function of p1 − p2
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γ3 = 0.0636; γ4 = 0.0784}.

4 Conclusion

This work extends the theory of static price competition to the case of analytic

demands and costs functions, for which no pure strategy price equilibrium exists.

I show that the mixed strategy equilibrium is characterized by each firm charging

a finite number of prices. This is in contrast with the existing literature on mixed

equilibria in prices, which uses discontinuous demands and, thus, has firms mixing

over a continuum of prices. This characterization provides researchers with a tool to

calculate mixed strategy equilibria in situations for which previously it was unclear
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Figure 2: Optimal pricing strategies for α = 0.25
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