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1 Introduction

Modern economic theory relies heavily on the language of game theory and its so-
lution concepts. We often formalize an economic problem as a “game” and apply
some solution concept, such as Nash equilibrium, to the game in order to obtain
the predictions. A game consists of three components: the set of players; the set
of strategies for each player; and the payoff function for each player. We assume,
often implicitly, that all the ingredients of the game and each other’s rationality
are “common knowledge,” which implies the assumption that all players know all
players know... all players know about the game and about each other’s rationality,
actions, knowledge, and beliefs. This common knowledge requirement seems to be
very stringent. Thus, we take the requirement as at best a simplifying assumption.
The question now arises how crucial this informational assumption is. I shall clar-
ify if there is any assumption weaker than common knowledge that is sufficient to
approximate the previously given predictions.

The objective of this paper is to propose notions of the “proximity” of informa-
tion. By the proximity of the information I mean the coarsest detail of the informa-
tion so that much finer details of the information do not matter for the prediction
in terms of outcomes. Throughout I assume that the analyst is certain both the
physical rules of the game (henceforth the game form) and the set of payoff types.
In this paper, I focus on complete information games and employ undominated Nash
equilibrium (UNE) as a solution concept. To scrutinize the robustness of UNE, I
fix a game form and a finite set of payoff types and “perturb” only its information
structure about the set of payoff types. By perturb the information structure I mean
that the analyst casts doubt into his specification of the information structure. Thus,
the perturbation is the way the analyst is able to check to what extent his hypothesis
is innocuous for the conclusions he drew.

Let me illustrate the logic of my main results within the context of a simple
example. 3 The two men are players. I call them Andy and Bob. There are three
possible outcomes, a, b, and c. There are two possible payoff states, called α and
β. I assume that the men’s preferences over the three outcomes are strict and state
dependent as follows:

Andy: b �α
A a �α

A c and b �β
A a �β

A c

Bob: a �α
B c �α

B b and a �β
B b �β

B c

I read a �θ a
′

as “a is preferred to a
′

in state θ.” The crucial assumption I
make here is that the analyst knows that there is common knowledge between both
Andy and Bob about the payoff state. This is called an environment with complete
information. The game form Γ∗ = (M,g) (shown below) is given, in which Andy

3The example is adapted from Jackson and Srivastava (1996, Example 5).
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chooses the row and Bob chooses the column. The analyst is concerned with the
set of UNE outcomes of the game. Here M = MA ×MB = {mA,m

′
A} × {mB ,m

′
B}

refers to the set of action profiles. The outcome function g : M → {a, b, c} assigns
to each action profile m an alternative g(m) ∈ {a, b, c}.

Bob
Γ∗ = (M,g) mB m

′
B

Andy mA a a

m
′
A c b

The profile (mA,mB), leading to outcome a, is the unique UNE of the game
Γ∗(α) and the only UNE of the game Γ∗(β) is (m

′
A,m

′
B) leading to the outcome

b. Given the complete information assumption and the use of UNE as a solution
concept, the analyst will be able to predict the outcome of the game if he knows the
true game. Namely, the analyst predicts outcome a if he knows the game is Γ∗(α)
and he predicts outcome b if he knows the game is Γ∗(β). Now, I am concerned with
the analyst who acknowledges that complete information is an idealization and that
in the true environment Andy and Bob may be uncertain about the payoff state.

I shall construct the “nearby” environments in which Andy and Bob may be
uncertain about the payoff state. Consider the following story which is adapted
from the simplest finite truncated version of the email game of Rubinstein (1989).
With probability p, the game Γ∗(α) is played and the game Γ∗(β) is played with
probability 1 − p. Which is the true game is known initially only to Andy. The
players can communicate, but the means open to them do not allow the game to
become common knowledge. Specifically, the players are restricted to communicate
via computers under the following protocol. If the game is Γ∗(α), then Andy’s
computer automatically sends a message to Bob’s computer; if the game is Γ∗(β),
then no message is sent. The technology has the property that there is a small
probability ε > 0 that the message does not arrive at Bob’s computer. If the message
does not arrive, then the communication stops. This process is summarized in the
following matrix:

Bob’s signal
0 1

Andy’s signal 0 1 − p 0
1 pε p(1 − ε)

There are three states of the world in the nearby environments parameterized by
ε: (0, 0), (1, 0), and (1, 1). Here (0, 0) stands for the state where Andy does not send
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a message and therefore, Bob does not receive the message. (1, 0) stands for the state
where Andy sends a message to Bob but Bob does not receive the message. Finally
(1, 1) stands for the state where Andy sends a message to Bob and Bob receives the
message. The row is Andy’s signal and the column is Bob’s signal. It is important
to note that the original complete information assumption is embedded in this set
of nearby environments. Because (0, 0) corresponds to β and (1, 1) corresponds to
α when ε = 0. Assume now that the analyst knows the game is Γ∗(β) (i.e., the
state is (0, 0)). However, the analyst acknowledges that Andy and Bob might face
the nearby environments described above. Then, the analyst knows that Andy and
Bob receive signal 0, respectively, but he also knows that this fact is not common
knowledge between Andy and Bob. Suppose, under this noisy communication, that
Bob has the belief about Andy’s strategy of the game as follows: “Andy plays m

′
A

when he receives signal 1 and plays mA when he receives signal 0.”

Given Bob’s belief specified above, playing mB after receiving signal 0 gives the
following lottery:

• a = g(mA,mB) in Γ∗(β) with probability (1 − p)/(1 − p+ pε);

• c = g(m
′
A,mB) in Γ∗(α) with probability pε/(1 − p+ pε).

Given Bob’s belief specified above, playing m
′
B after receiving signal 0 gives the

following lottery:

• a = g(mA,m
′
B) in Γ∗(β) with probability (1 − p)/(1 − p+ pε);

• b = g(m
′
A,m

′
B) in Γ∗(α) with probability pε/(1 − p+ pε).

It turns out that mB can be a strict best response for any ε > 0. Then, the
analyst is no longer confident that mB is dominated in the game Γ∗(β). Rather,
the analyst thinks that even a dominated Nash equilibrium (mA,mB), leading to
g(mA,mB) = a, is likely to be played in the game Γ∗(β) if he casts doubts into the
complete information assumption. Note that at state (1, 0), Andy and Bob have a
completely different opinion about the game being played. That is, at (1, 0), Andy
knows the game is Γ∗(α) but Bob believes with high probability that the game is
Γ∗(β). In section 3, I will characterize this noisy communication as a perturbation
of the probability distributions. Using the same game form in this simple example,
Kunimoto (2005) also explicitly construct a perturbation of the probability distribu-
tions under which dominated strategies continue to be dominated. The basic idea
for this perturbation is rather simple: I construct a perturbation of the probability
distributions so that it is common knowledge at any state that Andy and Bob believe
with high probability that the same game is played. In particular, Andy and Bob
then might believe with high probability that the false game is to be played. How-
ever, the important thing for the domination argument to go through continuously
is that their misperception about the game must be common. The reader is referred
to Kunimoto (2005) for the detail.
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In order to perturb the information structure, I keep track of the original in-
formation structure and let it be embedded in a measurable space. I translate the
original complete information structure into a probability distribution. Mathemat-
ically, I define each such proximity in terms of topology over the set of probability
distributions. In defining the topology, I will distinguish two probability distribu-
tions in the realm of the corresponding conditional probabilities. Each proximity of
information is aimed at characterizing a class of nearby games within which a given
equilibrium concept is robust. I say that the undominated Nash equilibrium “con-
cept” is robust within a class of nearby games if any undominated Bayesain Nash
equilibrium (UBNE) outcome of any game within the class of games is approximated
by some UNE outcome of the original complete information game. Then, I am able
to reduce my robustness requirement to the upper hemi-continuity of the UBNE
correspondence with respect to any topology with which I am concerned.

While this looks a very similar argument in Fudenberg, Kreps, and Levine (1988),
Dekel and Fudenberg (1990), and Kajii and Morris (1997), I make a very distinct
argument. In this paper, I fix the set of payoff types from the complete informa-
tion and perturb only the information structure. These authors are, on the other
hand, concerned with the situation in which there is no common knowledge among
the players about the set of payoff types. These papers rather ask which solution
concepts (including non-equilibrium concepts) are immune to payoff uncertainty so
that they are able to identify robust solution concepts. The objective of this paper
is different from those authors’. Here I take a solution concept as given. I relegate
more discussion on the related literature to section 6.

I identify a topology (induced by what I call d∗) with respect to which the
UBNE correspondence associated with any game form is upper hemi-continuous at
any complete information prior. This is my main result (Theorem 1). Within the
nearby games characterized by d∗, the analyst can be confident about his prediction
by the UNE outcomes. Those nearby games are the situations in which the analyst
is certain that there is approximate common knowledge in the sense of Monderer and
Samet (1989) (which I will carefully define later). I also identify a slightly coarser
topology (induced by what I call d∗∗) than that induced by d∗ with respect to which
the UBNE correspondence associated with some game form exhibits a failure of the
upper hemi-continuity at any complete information prior. Within the nearby games
characterized by d∗∗, the analyst might have second thought about rejecting the
outcomes. This is the situation in which the analyst is nearly (but not quite) certain
that there is approximate common knowledge. In this particular sense, the topology
induced by d∗ is the coarsest one so as to sustain the upper hemi-continuity of the
UBNE correspondence for “any” game form.

I apply the robustness analysis to implementation theory. Using UNE as a so-
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lution concept, Palfrey and Srivastava (1991) showed that almost any social choice
function is implementable. As a corollary combined with my Theorem 1, I show
that almost any social choice function is robustly undominated Nash implementable
relative to d∗. Therefore, my robustness analysis gives us a way of robustifying the
permissive result of Palfrey and Srivastava (1991). Nevertheless, appealing to the
robustness result relative to d∗∗, the topology induced by d∗ is the best possibility
of making the permissive result more robust . Thus, I give a precise sense in which
Palfrey and Srivastava’s permissive result is dubious if we believe that the robustness
relative to d∗ is very restrictive. In a related fashion, Chung and Ely (2003) show
that only monotonic social choice functions can be robustly undominated Nash im-
plementable. Then, I show that Chung and Ely’s robustness requirement is indeed
the robustness relative to d∗∗ and clarify when Chung and Ely’s Theorem 1 (2003)
applies.

The rest of the paper is organized as follows. In section 2, I formalize the setup
and definitions and show the main result. In section 3, I show the tightness of the
main result through the same example. In section 4, I apply our robust equilibrium
analysis to implementation theory. In section 5, I relate my results to the literature.
Section 6 concludes.

2 Formalities and the Main Result

2.1 The Environment

There is a finite set N = {1, . . . , n} of players. Let Θ denotes the set of a finite
number of payoff states, and A denotes the set of pure outcomes. Associated with
each state θ is a preference profile �θ, which is a list (�θ

1, . . . ,�θ
n) where �θ

i is player
i’s state θ preference relation over A. I read a �θ a

′
as “a is at least as good as a

′

in state θ.” I assume that players have strict preferences over A. 4

Players do not observe the state directly but are informed of the state via payoff
types. Player i’s set of payoff types is Si which we set |Si| = |Θ| for each i ∈ N . A
payoff type profile is an element s = (s1, . . . , sn) ∈ S = ×i∈NSi. Let μ be a prior
probability over Θ × S. I designate sθ to be the payoff type profile in which each
player’s payoff type corresponds to the state θ. Complete information refers to the
environment in which μ(θ, s) = 0 whenever s �= sθ. This specification of the payoff
type space and the common prior over it is without loss of generality as long as we
only consider environments with complete information.

Given a game form Γ = (M,g), an analyst is interested in the set of UNE
4All the results in the paper can be extended to hednic preferences. See Chung and Ely (2003)

for its definition.
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outcomes under complete information. 5 Here M ≡ ×i∈NMi, Mi is player i’s pure
action space and g : M → A is the outcome function. Following the literature in
game theory, I can instead define ui : M × Θ → R and I take as given the von
Neumann-Morgenstern representation associated with ui. Since I am also concerned
with the minimally necessary representation for preferences under uncertainty, the
only part of players’ preferences that is taken as exogenously given is their ordinal
preferences over pure outcomes. This justifies, to some extent, that I take the basic
structure of the environment (A, Θ, and �θ) given and thereafter consider a game
form. Aumann and Brandenburger (1995) identified sufficient “epistemic” conditions
for Nash equilibrium to result in strategic form games. 6 I take the position that
these sufficient conditions are fulfilled in games. Later, I come back to one of the
sufficient conditions, the common prior assumption. Dekel and Fudenberg (1990), for
instance, provide an argument in favor of “one” round deletion of weakly dominated
strategies by introducing small uncertainties about the payoffs. 7 In doing so,
Dekel and Fudenberg applied the notion of iterated deletion of weakly dominated
strategies as a solution concept to the nearby games. Combining with Proposition
7 of Fudenberg, Kreps, and Levine (1988), Dekel and Fudenberg concluded that “a
refinement is robust if and only if it is contained in the closure (with respect to
convergence in payoffs) of the set of Nash equilibria in the game remaining after
weakly dominated strategies are deleted.” 8 In sum, I take UNE as a reasonably
robust solution concept for games with complete information.

Even when the analyst knows things about the structure of game Γ, he entertains
the possibility that players face uncertainty about payoffs. Then, the planner has to
take into account the set of “nearby” incomplete information structures in which the
original complete information structure is subsumed. The analyst employs undom-
inated Bayesian Nash equilibrium (UBNE) as a solution concept for those nearby
incomplete information games.

5I conjecture that all the analyses can be generalized into games with incomplete information.
This is expected to be done for my future work.

6Players’ epistemic state dictates what they know or believe about the game and about each
other’s actions, knowledge, and beliefs.

7Within their class of perturbations of payoffs, Dekel and Fudenberg (1990) assume that each
player is informed of his/her payoff functions. On the other hand, they allow for excessively rich
perturbations of the payoffs of other players. In fact, each player is aware that any action of any
other players’ can be a dominant action under some perturbation. This perturbation corresponds
to a sequence of the full support trembles in the refinement literature.

8Alternatively, Börgers (1994) showed that one round deletion of weakly dominated strategies
can be justified in any situation where it is approximate common knowledge in the sense of Monderer
and Samet (1989) that players do not use weakly dominated strategies. Note that there is a situation
in which it cannot be exact common knowledge that players do not use weakly dominated strategies,
while the common knowledge of rationality is simultaneously satisfied. The reader is refereed to
Samuelson (1992) for the detail.
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2.2 Definitions and Notations

Mathematically, the coarser the topology chosen, the larger the set of continuous
correspondences with respect to it and therefore, the harder the achievement of
robustness of a given equilibrium concept with respect to it. By the same token,
the finer the topology chosen, the less it demands that the set of correspondences be
continuous with respect to it. One of my objectives is to choose a coarsest possible
topology with respect to which the UBNE correspondence associated with any game
form is continuous. In order to talk about the topology, I explicitly expound the
topological structure of the domain of the UBNE correspondence into which the
players’ belief structure is embedded. Let (Θ × S, μ) be a complete information
structure. I shall construct the set of states of the world that is consistent with
a given complete information environment. I denote by Ω the set of states of the
world. I keep track of the complete information environment and let it be embedded
in a measurable space (Ω,Σ) so that I am able to coherently discuss the epistemic
states of all players when the environment is subject to incomplete information.

Definition 1 A payoff type space Θ × S is (algebraically) immersed in Ω if
there exists a one-to-one correspondence h : Θ × S → Ω.

h is said to be an immersion of Θ × S into Ω. I assume that Ω is a countable
(possibly infinite) set. Let (Ω,Σ) be a measurable space.

Definition 2 Assume that Θ × S is immersed in Ω. A probability space (Ω,Σ, P ∗)
is a consistent extension from the complete information structure (Θ × S, μ) if
(Ω,Σ, P ∗) is equivalent to the probability space

(
Θ × S, 2Θ×S , μ

)
, where P ∗ ≡ μ◦h−1.

Moreover, a generic complete information prior is denoted as P ∗.

Let (Ω,Σ, P ∗) be a probability space consistently extended from the complete
information structure (Θ × S, μ). I fix a measurable space (Ω,Σ) throughout the
argument while I change the probability distributions. In particular, I am interested
in a net of probability distributions {P k}∞k=1 for which each P k is a perturbation
of P ∗ and more importantly, P k → P ∗ as k → ∞ in a certain property preserving
way. Note that the way I introduce incomplete information into the analysis reveals
that the common prior assumption (CPA) continues to be satisfied. One of the most
important questions is whether the CPA is necessary for obtaining my main result
(Theorem 1). 9 We enlarge on this issue.

As I already discussed in Section 2.1, we assume that Aumann and Branden-
burger’s (1995) sufficient conditions are fulfilled all the time. Their conditions in-
clude a common prior when the number of players is at least three. Since a Bayesian
Nash equilibrium is a Nash equilibrium of the Bayesian game which is a game of
complete information, we consider the CPA as a reasonable assumption to make the

9I am grateful to an anonymous referee for pointing this out.

7



use of Nash equilibrium appropriate. However, when the number of players is two,
the common prior is not necessary to guarantee the appropriateness of Nash equilib-
rium. Relying on my example with two players, an anonymous referee constructed
a nearby information structure without common prior which satisfies all sufficient
conditions in my Theorem 1 but the UBNE correspondence exhibits a failure of up-
per hemi-continuity at any complete information prior. Thus, the CPA seems to be
very crucial for my result.

Lipman (2003) characterizes the finite order implications of the CPA - that is,
what restrictions it imposes for beliefs about the beliefs about... the beliefs of others,
where “beliefs about” is repeated only a finite number of times. He show that in
models with finite number of states, the only finite order implications of the CPA
are those stemming from the weaker assumption that priors have a common support.
10 It turned out that the counterexample without common prior to my Theorem 1
does not satisfy the common support assumption. Therefore, I conclude that the
CPA is crucial for my results to the extent that the common support assumption is
indispensable, as long as I am concerned with finite models. In Section 2.4 after the
proof of Theorem 1, I argue that there is essentially no loss of generality to assume
that Ω is finite if Θ is finite. With this remark, the CPA is used throughout the
paper.

Let P be the space of all probability distributions over Ω. Let F be the space
of all partitions of Ω, the elements of which are in Σ. For each Π ∈ F and ω ∈ Ω,
I denote by Π(ω) the element of Π which contains ω. An element of the form
Π = (Πi)i∈N ∈ Fn is called a partition structure. I follow the results of Aumann
(1976) here. I define Ki(E) = {ω ∈ Ω|Πi(ω) ⊂ E} be the set of states in which
player i knows event E obtains. I call Ki : Ω → Σ player i’s knowledge operator.
An event E is said to be self-evident if E ⊂ Ki(E) for each i ∈ N . This means that
whenever E is true, everyone knows E is true. An event E is common knowledge
at ω if there exists a self-evident event F such that ω ∈ F ⊂ ⋂

i∈N Ki(E). Let
Π∗ : Ω → Σ be the finest possibility correspondence that is coarser than Πi for each
i ∈ N . Put differently, an event E is common knowledge at ω if ω ∈ Π∗(ω) ⊂ E.

I take for granted Nash equilibrium as a reasonable solution under complete in-
formation. Therefore, players are assumed to choose their strategy independently
of other players’ choice provided the common knowledge of the payoffs is satisfied.
To elaborate on this strategic independence, suppose, for example, that there are
just two players i and j, the choice of strategy by i will depend on what i believes
j’s choice will be, which in turn will depend on what i believes j believes i’s choice
will be and so on. An infinite regress of this kind underlies the idea of “rational-
izable” strategies. In particular, Brandenburger and Dekel (1987) have established

10The common support assumption means that if some agent assigns zero probability to a certain
event, then all other agents also assign zero probability to the same event.
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an equivalence between the set of correlated rationalizable strategies and the set of
subjective correlated equilibria. In games with complete information, this regress
in beliefs can be generally “cut through” by the imposition of Nash equilibrium. If
the analyst believes that the requirement of “being cut through” is too restrictive,
his choice of Nash equilibrium as a solution is far from appropriate “from the be-
ginning of the analysis.” Then, all the analyst has to do is either (1) to employ
much less demanding solution concept, such as rationalizability, from the beginning
or (2) to include this (possibly infinite) regress as an explicit correlation and/or com-
munication and thereafter employ (Bayesian) Nash equilibrium in the appropriately
extended (Bayesian) game. This paper takes the idea (2). The idea of (2) implies
that the amount of incomplete information I allow for the robustness analysis should
not contradict the use of solution concept in the beginning.

The formalization of this is summarized by the following measurability condition
on possible strategy profiles. In doing so, I fix a partition structure Π = (Πi)i∈N ∈
Fn for the moment. Player i’s strategy in the game Γ(P ) is a function σi : Ω →Mi

which is Πi-measurable. Let σ be a strategy profile in a game Γ(P ). This construction
of the strategy reveals that I focus only on pure strategies when defining Bayesian
Nash equilibrium and dominations. 11

Definition 3 Let a partition structure Π ∈ Fn and a game Γ(P ) associated with Π
be given. A strategy profile σ is consistent with the complete information structure
if, for any ω, ω

′ ∈ Ω, whenever there exists a profile (θ, sθ) ∈ Θ × S such that
h(θ, sθ) = ω̃ for any ω̃ ∈ Π∗(ω) ∪ Π∗(ω′

), then we have σi(ω) = σi(ω
′
) for each

i ∈ N . When σ is consistent with the complete information structure, we simply say
that it is a consistent strategy profile.

Remember that sθ denotes the payoff type profile in which each player’s payoff
type corresponds to the state θ. By the focus only on consistent strategy profiles, I
exclude the correlation of equilibrium strategies which invalidates the original equi-
librium analysis under complete information. This is my stance consistent with the
use of Nash equilibrium for the original complete information game.

An act is a mapping α : Ω → A. A belief is a probability distribution β on Ω.
The notation C(β) denotes the support of β. I assume that for any given belief β
each player i has a preference relation �β

i over acts. I also make the following two
requirements about this family of preference relations under uncertainty 12:

11In fact, mixed strategies can easily be incorporated into the definition of Bayesian Nash equi-
librium. However, this incorporation can be a non-trivial task for dominations in order to obtain
the same results we currently pursue.

12These two requirements are also used by Chung and Ely (2003).
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Assumption 1 Let α and α̂ be two acts, and β a belief. Then
[
α(ω) �θ

i α̂(ω) ∀ω ∈ C(β)
]

=⇒ α �β
i α̂,

where h(θ, s) = ω for some (θ, s) ∈ Θ × S, and if one of the preferences on the
left-hand-side is strict, then the preference on the right-hand-side is strict.

The following is a continuity property for preferences over lotteries:

Assumption 2 For every pair of acts α and α̂, the set
{
β
∣∣ α �β

i α̂
}

is open relative
to the weak topology.

A characterization of the type of preferences under uncertainty assumed here can
be obtained from Theorem 1 of Myerson (1979). I need a variant of the substitution
axiom to obtain the subjective expected utility representation. Hence, what I need
here is something weaker than Anscombe and Aumann’s (1963) type of subjective
expected utility representation. Because I take ordinal preferences over pure out-
comes as given, it is important to know what is the minimally needed representation
for preferences under uncertainty as far as my robustness analysis is concerned. The
act αΓ

σ induced by σ under Γ is defined by αΓ
σ(ω) = g(σ(ω)) for any ω ∈ Ω. With

these notations, I shall define Nash equilibrium (NE) and Bayesian Nash equilibrium
(BNE), respectively.

Definition 4 Let a partition structure Π = ×i∈NΠi ∈ Fn and a game Γ(P ) as-
sociated with Π be given. A consistent strategy profile σ is a Bayesian Nash
equilibrium (BNE) of Γ(P ) if σi is Πi-measurable for each i ∈ N , and for each
i ∈ N , state ω with P (Πi(ω)) > 0, and strategy σ

′
i which is Πi-measurable, we have

αΓ
σ �P (·|Πi(ω))

i αΓ
σ
′
i ,σ−i

.

The above definition suffices for σ to be a Nash equilibrium if P = P ∗. Because
σ is consistent. This paper studies undominated Nash equilibrium (UNE) and un-
dominated Bayesian Nash equilibrium (UBNE) in a given game in which no player
uses a dominated strategy. The following is a definition of interim weak dominance
for this setting. 13

Definition 5 Let a partition structure Π = ×i∈NΠi ∈ Fn and a game Γ(P ) asso-
ciated with Π be given. A strategy σi which is Πi-measurable is dominated for
some ω with P (Πi(ω)) > 0 if there exists a strategy σ

′
i which is Πi-measurable

such that for every strategy profile σ−i for which σj is Πj-measurable for j �= i,
αΓ

σ
′
i ,σ−i

�P (·|Πi(ω))
i αΓ

σ with strict preference for at least one σ−i. A strategy σi is

undominated if it is not dominated for any ω with P (Πi(ω)) > 0.
13As I mentioned when defining strategy, I define dominations in terms of pure strategies. To my

knowledge, there is one paper by Börgers (1993) which advocates the idea that dominations should
be defined in terms of pure strategies.

10



If I choose a generic payoff structure in a strategic game form, weak dominations
are always strong dominations. My rational for taking weak dominance seriously is
summarized as follows: I take an extensive form game as a primitive, reduce it into
an equivalent strategic game form, and then ask the effects of weak dominations in
the reduced strategic game. Furthermore, in the context of implementation theory, a
game form is the designer’s construction so that weak dominations are often explicitly
utilized. Finally I shall define UNE and UBNE, respectively.

Definition 6 Let a partition structure Π = ×i∈NΠi ∈ Fn and a game Γ(P ) associ-
ated with Π be given. A consistent strategy profile σ is an undominated Bayesian
Nash equilibrium (UBNE) of Γ(P ) if it is a Bayesian Nash equilibrium (BNE) of
Γ(P ) for which σi is undominated for each i ∈ N .

The same definition suffices for UNE if P = P ∗. The set of acts is denoted as
A ≡ AΩ. I define ψUBNE

Γ : P → A as the UBNE correspondence associated with
the game form Γ. Here, I endow A with product topology. I shall introduce a
topology which enables us to determine how close any two probability distributions
are. To define such topologies, I need some definitions and notations.

Monderer and Samet (1989) introduced the concept of “common p-belief ” as an
approximation to common knowledge, which is common 1-belief. Let Bq

i (E) ≡ {ω ∈
Ω|P (E|Πi(ω)) ≥ q} denote the set of states in which player i assigns probability at
least q to the event E. I call this player i’s q-belief operator. In particular, when
q = 1, I call B1

i player i’s 1-belief operator corresponding to player i’s knowledge
operator. 14 An event E is said to be q-evident if E ⊂ Bq

i (E) for all i ∈ N . This
means that whenever E is true, everyone believes with probability at least q that E is
true. An event E is said to be common q-belief at ω if there exists a q-evident event
F such that ω ∈ F ⊂ ⋂

i∈N Bq
i (E). I will loosely say that an event E is approximate

common knowledge at ω if E is common q-belief at ω, for q close to 1. I consider the
notion of the closeness of probability distributions. Define d0 by the rule

d0(P,P
′
) = sup

E⊂Ω
|P (E) − P

′
(E)|.

Note that d0(P,P
′
) = 0 if and only if P = P

′
. Let P ∗ be the complete information

prior. I will require extra conditions on conditional probabilities. Define as G (η) the
set of all states in which there is a common (1 − η)-belief about what game being
played as follows:

G (η) =
{
ω ∈ Ω

∣∣ ∃θ ∈ Θ such that Γ(θ) is common (1 − η)-belief at ω
}
.

Let

d1(P ) = inf{η | P (G (η)) = 1}, and
d∗(P,P

′
) = max{d0(P,P

′
), d1(P ), d1(P

′
)}.

14Here I define “knowledge” as belief with probability 1.
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Note that d1(P ∗) = 0 by definition. By construction, d∗ is non-negative and sym-
metric, and d∗(P,P ′

) = 0 if and only if P = P
′

and both P and P
′

are complete
information priors. I find it very convenient to define a topology by specifying what
nets converge to which points. I use Theorem 9 of Kelly (1955) (in p74 ) which shows
that every convergence class is actually derived from a topology. Then, it remains
to prove that any convergent net according to d∗ belongs to some convergence class.

Definition 7 Let C be a class consisting of pairs (S, s), where S is a net in X and
s a point. C is a convergence class for X if it satisfies the conditions listed below.
We say that S converges (C ) to s or that limk Sk ≡ s (C ) if and only if (S, s) ∈ C .

1. If S is a net such that Sn = s for each n, then S converges (C ) to s.

2. If S converges (C ) to s, then so does each subnet of S.

3. If S does not converge (C ) to s, then there is a subnet of S, no subnet of which
converges (C ) to s.

4. Let D be a directed set, let Em be a directed set for each m ∈ D, let F be
the product D × ∏

m∈D Em and for (m, f) ∈ F , let R(m, f) = (m, f(m)). If
limm limn S(m,n) ≡ s (C ), then S ◦R converges (C ) to s. Here, S(m,n) is a
member of a topological space for each m in D and each n in Em.

Let C ∗ be a class consisting of all pairs of a net {P k}∞k=1 with d∗(P k, P ∗) → 0 as
k → ∞ for some complete information prior P ∗ and a complete information prior.

Proposition 1 Let C ∗ be a class given above. Then, C ∗ is a convergence class for
P, where P is the space of all probability distributions over Ω.

Proof of Proposition 1: We must check four properties for the convergence
class. Let P ∗ be a complete information prior. Set {P k}∞k=1 as P k = P ∗ for each k.
Then, we have that d∗(P k, P ∗) = 0 for each k, therefore, ({P k}, P ∗) ∈ C ∗. Thus,
C ∗ satisfies property 1. Let P k → P ∗ and d∗(P k, P ∗) → 0 as k → ∞ for some
complete information prior P ∗, that is, P k → P ∗ (C ∗). It is straightforward to see
that any subnet of {P k} also converges to P ∗ (C ∗). Hence, property 2 is satisfied
for C ∗. Suppose that P k does not converge to P ∗ as k → ∞ according to C ∗. Then,
there exists δ > 0 for which there exists k̄ such that d∗(P k, P ∗) ≥ δ for each k ≥ k̄.
Consider a subnet {P l}∞l=1 ≡ {P k}∞

k=k̄
. By construction, there is δ > 0 such that

d∗(P l, P ∗) ≥ δ for each l. Then, it is straightforward to see that no subnet of {P l}∞l=1

converges to P ∗ according to C ∗. Thus, property 3 is satisfied for C ∗. Let a double
indexed net S(k, l) ≡ {{P kl}∞l=1}∞k=1. Now we know by our hypothesis that for any
ε > 0, there exist k̄ and l̄ such that d∗(P kl , P ∗) < ε for any k ≥ k̄ and any l ≥ l̄. Then,
in order to check if property 4 is satisfied, it remains to show that, for any ε, we are
able to find a member (k, f) ∈ F such that, if (n, g) ≥ (k, f), then d∗(Png(n) , P ∗) < ε.
By our hypothesis we can choose k ∈ D so that d∗(liml P

nl , P ∗) < ε for any n ≥ k.
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For each such n, choose a member f(n) ∈ En such that d∗(Pnl , P ∗) < ε for any
l ≥ f(n). If n is a member of D which does not follow k, let f(n) be an arbitrary
member of En. If (n, g) ≥ (k, f), then n ≥ k, hence d∗(Pnl , P ∗) < ε, and since
g(n) ≥ f(n), we have that d∗(Png(n) , P ∗) < ε. Thus, property 4 is satisfied. �

Theorem 9 of Kelley (1955): Let C be a convergence class for a set X, and for
each subset A of X, let Ac be the set of all points s such that, for some net S in A,
S converges (C ) to s. Then c is a closure operator, and (S, s) ∈ C if and only if S
converges to s relative to the topology associated with c.

Note that d∗(P k, P ∗) → 0 as k → ∞ if and only if P k → P ∗ as k → ∞ and
there exists εk → 0 such that P k(G (εk)) = 1 for each k. The topology induced
by d∗ is associated with a closure operator which is applied only to the set of com-
plete information priors. We shall define the upper hemi-continuity of the UBNE
correspondence with respect to the topology induced by d∗.

Definition 8 Let Γ be a game form. ψUBNE
Γ is upper hemi-continuous at a com-

plete information prior P ∗ with respect to the topology induced by d∗ if, ψUBNE
Γ (P k) →

ψUNE
Γ (P ∗) as k → ∞ whenever d∗(P k, P ∗) → 0 as k → ∞. Here ψUNE

Γ (P ∗) denotes
the set of UNE outcomes of the game Γ(P ∗).

2.3 The Main Theorem

I shall show that the topology induced by d∗ guarantees the upper hemi-continuity
of the UBNE correspondence associated with any game form at any complete infor-
mation prior.

Theorem 1 Suppose that preferences are strict. Let Γ be a game form. Then, the
UBNE correspondence associated with Γ, ψUBNE

Γ is upper hemi-continuous at any
complete information prior with respect to the topology induced by d∗.

Proof of Theorem 1: Let {P k}∞k=1 be a net of probability distributions con-
verging to a complete information prior P ∗ with the property that there exists the
corresponding sequence {qk}∞k=1 converging to 1 for which there is a common qk-belief
at any ω ∈ Ω with P k(ω) > 0 about which game being played for each k. Thus,
{P k}∞k=1 is a convergent net according to d∗. We have the corresponding sequence
of partition structures, {Πk}∞k=1 along the sequence. If Ω is finite, we can always
decompose the sequence {Πk}∞k=1 into the finite set of subsequences for each of which
the corresponding partition structure is fixed. After the proof of this theorem, we
will establish a result (Proposition 2) saying that there is no loss of generality to
assume that Ω is finite as long as Θ is finite. We focus on such an arbitrary sub-
sequence of {Πk}∞k=1 and call it Π. We fix this Π throughout the argument. Let
{σk}∞k=1 be the corresponding sequence of UBNE strategy profiles such that σk

i is
Πi-measurable for any k ∈ N and any i ∈ N . Suppose, by way of contradiction, that
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the UBNE correspondence associated with Γ is not upper hemi-continuous at the
complete information prior P ∗ with respect to the topology induced by d∗. Thus, we
assume that σk → σ as k → ∞ in terms of outcomes with product topology. Then,
there exists ω̃ ∈ Ω such that h(θ, sθ) = ω̃ and σ∗(ω̃) with P k(ω̃) > 0 for any k big
enough. Remember that sθ denotes the payoff type profile in which each player’s
payoff type corresponds to the state θ.

Let Ek
θ be the maximal set of states in which it is a common qk-belief that the

game Γ(θ) is to be played. If Ω is finite, there exists K̄ ∈ N and Eθ such that
Ek

θ = Eθ for any k ≥ K̄. Therefore, we can, without loss of generality, assume that
Ek

θ = Eθ for k big enough. First, we show the following claim. We aim at showing
that Eθ is the largest possible neighborhood that ought to be considered when we
talk about interim dominations and equilibrium of strategies in nearby incomplete
information games.

Claim 1 Πj(ω) ⊂ Eθ for any j ∈ N and any ω ∈ Eθ.

Proof of Claim 1: Suppose not. That is, there exist ω ∈ Eθ and j ∈ N for
which there exists ω̃ ∈ Ω with P k(ω̃) > 0 for k big enough such that ω̃ ∈ Πj(ω) but
ω̃ /∈ Eθ. Since Πj is partitional and ω̃ ∈ Πj(ω), we have that Πj(ω) = Πj(ω̃). Thus,
player j cannot distinguish between ω and ω̃. Because ω ∈ Eθ, player j believes at ω
with high probability that the game Γ(θ) being played. Since Πj(ω) = Πj(ω̃), player
j, at state ω̃, must also believe with high probability that the game Γ(θ) is to be
played. Recall that we require that there be a common qk-belief at ω̃ about what
game being played for each k. This implies that there must be a common qk-belief
at ω̃ about the game Γ(θ) being played for each k. Due to the maximality of Eθ, we
conclude that ω̃ ∈ Eθ, which is a contradiction. �

We must consider two cases: (1) m∗ is a weakly dominated strategy profile of the
game Γ(θ); and (2) g(m∗) is a non-Nash equilibrium outcome of the game Γ(θ).

(1) m∗ is a weakly dominated strategy profile of Γ(θ)

By our hypothesis, there exists a nonempty subset of players I ⊆ N such that
for any i ∈ I, there exists m

′
i with the following two properties:

• αΓ
m

′
i,m̃−i

�θ
i α

Γ
m∗

i ,m̃−i
for any m̃−i ∈M−i;

• αΓ
m

′
i,m̂−i

�θ
i α

Γ
m∗

i ,m̂−i
for some m̂−i ∈M−i.

Choose one player i ∈ I. We construct a sequence of player i’s strategies {σ̂k
i }∞k=1

such that for any k ∈ N, σ̂k
i is Πi-measurable with the following properties:
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• σ̂k
i (ω̃) = m

′
i for any ω̃ ∈ Πi(ω) whenever ω ∈ Eθ;

• σ̂k
i (ω̃) = σk

i (ω̃) for any ω̃ /∈ Πi(ω) whenever ω ∈ Eθ;

• σ̂k
i (ω̃) = σk

i (ω̃) for any ω̃ /∈ Eθ.

We shall show the following lemma.

Lemma 1 There exists K̄ ∈ N such that for any k ≥ K̄, σ̂k
i dominates σk

i in the
neighborhood Eθ. That is, the following two conditions hold:

1. αΓ
σ̂k

i ,σ̃−i
�P k(·|Πi(ω))

i αΓ
σk

i ,σ̃−i
for any σ̃−i and any ω ∈ Eθ;

2. αΓ
σ̂k

i ,σ̃−i
�P k(·|Πi(ω))

i αΓ
σk

i ,σ̃−i
for some σ̃−i and some ω ∈ Eθ.

By Lemma 1 we aim at showing that σk is not an UBNE of the game Γ(P k) for
any k ≥ K̄, which contradicts the hypothesis that {σk}∞k=1 is a sequence of UBNE
strategy profiles.

Proof of Lemma 1: Since σk
i → σi as k → ∞ in terms of outcomes with product

topology, we know that σk
i (ω) = m∗

i for k big enough if ω ∈ Eθ. Set σ̃−i(ω) = m̂−i

for any ω ∈ Eθ. By Assumption 1, condition (2) in Lemma 1 is satisfied. Hence,
that condition (1) in Lemma 1 is also satisfied remains to be checked. To continue
the argument, we need the following ordering over all players other than i.

Claim 2 Assume that Πi(ω) = Eθ for any ω ∈ Eθ. For any ω ∈ Eθ and any
permutation τ : N \ {i} → N \ {i}, we can construct an order {jτ(1), . . . , jτ(n−1)}
over N \ {i}.

Proof of Claim 2: Fix any ω ∈ Eθ. By Claim 1 and the assumption that
Πi(ω) = Eθ, we have that Πi(ω) ⊇ Πj(ω) for any j �= i. If we define Πjh

(ω) ≡⋂τ(h)
j=τ(1) Πj(ω), by construction, Πjh

(ω) is monotonically non-increasing in h for any
permutation τ . �

We argue that there is no loss of generality to assume that Πi(ω) = Eθ for any
ω ∈ Eθ. Suppose not. That is, suppose, by Claim 1, there exists ω ∈ Eθ such
that Πi(ω) � Eθ. Then we can eliminate the set of agents J from N\{i} for whom
Πi(ω) � Πj(ω) for j ∈ J . When we employ Ẽθ = Πi(ω) as a smaller neighborhood
in Lemma 1, instead of Eθ, the same argument goes through. Besides, we can make
the identical argument in Claim 2 after eliminating J from our consideration. Hence
we may assume that Πi(ω) = Eθ for any ω ∈ Eθ.

Fix any permutation τ . Note that, for k big enough, it is common qk-belief at any
ω ∈ Eθ that the game Γ(θ) is to be played. Fix any such ω ∈ Eθ. Then, for ε0 > 0
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small enough and k big enough, there exists a minimal set of states E0 ⊆ Πi(ω) such
that the game Γ(θ) is to be played at any ω̃ ∈ E0 with the property that:

• P k
(
E0

∣∣Πi(ω)
) ≥ 1 − ε0;

• P k
(
Πi(ω)\E0

∣∣Πi(ω)
) ≤ ε0.

Since preferences over pure outcomes are strict, we use the following important
fact repeatedly:

Fact 1 For any m̃−i ∈M−i, the following two must hold:

1. g(m
′
i, m̃−i) �= g(m

′
i, m̃−i) =⇒ g(m

′
i, m̃−i) �θ

i g(m
∗
i , m̃−i);

2. g(m
′
i, m̃−i) = g(m

′
i, m̃−i) =⇒ g(m

′
i, m̃−i) ∼θ̃

i g(m
∗
i , m̃−i) for any θ̃.

Observe that players other than i may be conditioning their behavior upon in-
formation not available to player i. In that case, other players’ behavior appears
random to player i. Thus, we must ensure that σ̂k

i is undominated against such
possibly correlated strategy profiles. If ω ∈ E0, by Assumption 1 and Fact 1, we
have that, for any σ̃−i and k big enough,

g
(
σ̂k

i (ω), σ̃−i(ω)
)
�P k(·|Πi(ω))

i g
(
σk

i (ω), σ̃−i(ω)
)
.

That is, σ̂k
i dominates σk

i for k big enough. Because we already set σ̂k
i (ω) = m

′
i

for any k by construction and σk
i (ω) = m∗

i for k big enough. If ω /∈ E0, then we
have that ω ∈ Πi(ω)\E0. By Claim 2, we can choose the smallest integer h with
1 ≤ h ≤ n− 1 such that Πi(ω)\E0 ⊇ Πτ(h)(ω).

If there is no such h, we have that, for any h, there exists ω̃ ∈ E0 such that
ω̃ ∈ Πτ(h)(ω). Suppose that player i hypothesizes ω /∈ E0 despite the fact that he
cannot distinguish between ω ∈ E0 and ω /∈ E0. Then, due to the minimality of E0,
and conditional on his hypothesis that ω /∈ E0, player i still knows that all other
players believe with high probability that E0 obtains. In other words, conditional
on his hypothesis, player i knows that all other players believe with high probability
that the game Γ(θ) is to be played. Then, by Assumption 2, Fact 1, and consistency
of strategy profiles, σ̂k

i dominates σk
i for k big enough.

Assume that there is such an h. Since it is common qk-belief at any ω ∈ Eθ

for k big enough that the game Γ(θ) is to be played, player τ(h) believes with high
probability that the game Γ(θ) is to be played. Then, for εh > 0 small enough and
k big enough, there exists a minimal set of states Eh ⊆ Πτ(h)(ω) such that the game
Γ(θ) is to be played at any ω̃ ∈ Eh with the property that:
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• P k
(
Eh

∣∣Πτ(h)(ω)
) ≥ 1 − εh;

• P k
(
Πτ(h)(ω)\Eh

∣∣Πτ(h)(ω)
) ≤ εh.

Recall that players τ(h) through τ(n−1) may be conditioning their behavior upon
information not available to player i. In that case, their behavior appears random
to players i, τ(1), . . . , τ(h − 1). Again, we must ensure that σ̂k

i is undominated
against such correlated strategy profiles. Since preferences are strict, if ω ∈ Eh, by
Assumption 1 and Fact 1, we have that, for any σ̃−i and k big enough,

g
(
σ̂k

i (ω), σ̃−i(ω)
)
�P k(·|Πτ(h)(ω))

i g
(
σk

i (ω), σ̃−i(ω)
)
.

That is, even conditional upon the hypothesis that ω ∈ Eh but ω /∈ E0, σ̂k
i dominates

σk
i for k big enough. Because we already set σ̂k

i (ω) = m
′
i for any k by construction

and σk
i (ω) = m∗

i for k big enough. If ω /∈ Eh, then we have that ω ∈ Πτ(h)(ω)\Eh.
By Claim 2, we can choose the smallest integer h

′
with h < h

′ ≤ n − 1 such that
Πτ(h)(ω)\Eh ⊇ Πτ(h

′
)(ω).

If there is no such h
′
, we have that, for any h

′
with h < h

′ ≤ n−1, there exists ω̃ ∈
Eh such that ω̃ ∈ Πτ(h′ )(ω). Suppose that player i hypothesizes ω ∈ Πτ(h)(ω)\Eh

although he cannot distinguish between ω ∈ Eh and ω ∈ Πτ(h)(ω)\Eh. Then, due
to the minimality of Eh, and conditional upon his hypothesis that ω ∈ Πτ(h)(ω)\Eh,
player i knows that all players τ(1) through τ(h−1) believe with high probability that
E0 obtains and that all players τ(h) through τ(n− 1) believe with high probability
that Eh obtains. Accordingly, conditional on his hypothesis, player i still knows
that all other players believe with high probability that the game Γ(θ) is to be
played. Therefore, by Assumption 2, Fact 1, and consistency of strategy profiles, σ̂k

i

dominates σk
i for k big enough.

Assume that there is such an h
′
. Since it is common qk-belief at any ω ∈ Eθ

for k big enough that the game Γ(θ) is to be played, player τ(h
′
) believes with high

probability that the game Γ(θ) is to be played. Then, for εh
′
> 0 small enough and k

big enough, there exists a minimal set of states Eh
′ ⊆ Πτ(h′ )(ω) such that the game

Γ(θ) is to be played at any ω̃ ∈ Eh
′

with the property that:

• P k
(
Eh

′ ∣∣∣Πτ(h′ )(ω)
)
≥ 1 − εh

′
;

• P k
(
Πτ(h′ )(ω)\Eh

′ ∣∣∣Πτ(h′ )(ω)
)
≤ εh

′
.

Here the identical argument goes through. That is, if ω ∈ Eh
′
, by Assumption 1

and Fact 1, σ̂k
i dominates σk

i for k big enough. If not, the iteration of the same type
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of the above argument can be carried out inductively with respect to the number of
players and therefore, it must stop in finite steps. Furthermore, the argument does
not depend upon τ or ω. Hence, we show that, for k big enough, σ̂k

i dominates σk
i

for any ω ∈ Eθ. We complete the proof of Lemma 1. �

(2) g(m∗) is a non-Nash equilibrium outcome of Γ(θ)

By our hypothesis, there exist a player i and a message m
′
i with the following

property:

αΓ
m

′
i,m

∗
−i

�θ
i α

Γ
m∗ .

Let Ek
θ be the maximal set of states in which it is common qk-belief that the game

Γ(θ) is to be played. If Ω is finite, Ek
θ = Eθ for k big enough. We construct a sequence

of player i’s strategies of {σ̂k
i }∞k=1 such that for any k ∈ N, σ̂k

i is Πi-measurable with
the following properties:

• σ̂k
i (ω̃) = m

′
i for any ω̃ ∈ Πi(ω) whenever ω ∈ Eθ;

• σ̂k
i (ω̃) = σk

i (ω̃) for any ω̃ /∈ Πi(ω) whenever ω ∈ Eθ;

• σ̂k
i (ω̃) = σk

i (ω̃) for any ω̃ /∈ Eθ.

As we argued in the previous section, we may, without loss of generality, assume
that Πi(ω) = Eθ for any ω ∈ Eθ. In this case, we shall show the following lemma.

Lemma 2 There exists K̄ ∈ N such that for any k ≥ K̄ and any ω ∈ Eθ, we have

αΓ
σ̂k

i ,σk
−i

�P k(·|Πi(ω))
i αΓ

σk
i ,σk

−i
.

By Lemma 2 we aim to show that σ̂k
i is a strictly better reply to σk

−i than σk
i for

any k ≥ K̄ and any ω ∈ Eθ. Thus, this contradicts the hypothesis that {σk}∞k=1 is a
sequence of UBNE strategy profiles.

Proof of Lemma 2: Note that it is common qk-belief at any ω ∈ Eθ for k big
enough that the game Γ(θ) is to be played. Fix any permutation τ and any such
ω ∈ Eθ. Then, for ε0 > 0 small enough and k big enough, there exists a minimal
set E0 ⊆ Πi(ω) such that the game Γ(θ) is to be played at any ω̃ ∈ E0 with the
property that:

• P k
(
E0

∣∣Πi(ω)
) ≥ 1 − ε0;

• P k
(
Πi(ω)\E0

∣∣Πi(ω)
) ≤ ε0.
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We know that σ̂k
i (ω) = m

′
i for any k by construction, and σk

i (ω) = m∗
i for k

big enough. Observe that players other than i may be conditioning their behavior
upon information not available to player i. In that case, other players’ behavior
appears random to player i. Conditional on ω ∈ E0, player i knows that all other
players believe with high probability that the game Γ(θ) is to be played. Therefore,
by consistency of strategy profiles {σk}∞k=1, player i believes with high probability
that σk

−i(ω) = m∗
−i for k big enough. By Assumption 1 and 2, we have that, for k

big enough,

αΓ
σ̂k

i ,σk
−i

�P k(·|Πi(ω))
i αΓ

σk .

That is, σ̂k
i is a strictly better reply to σk

−i than σk
i if ω ∈ E0. If ω /∈ E0, then we

have that ω ∈ Πi(ω)\E0. By Claim 2, we can choose the smallest integer h with
1 ≤ h ≤ n− 1 such that Πi(ω)\E0 ⊇ Πτ(h)(ω).

If there is no such h, we have that, for any h, there exists ω̃ ∈ E0 such that
ω̃ ∈ Πτ(h)(ω). Suppose that player i hypothesizes ω /∈ E0 despite the fact that he
cannot distinguish between ω ∈ E0 and ω /∈ E0. Then, due to the minimality of
E0, and conditional upon his hypothesis that ω /∈ E0, player i knows that all other
players believe with high probability that E0 obtains. As a result, conditional on his
hypothesis, player i knows that all other players believe with high probability that the
game Γ(θ) is to be played. Then, by consistency of strategy profiles {σk}∞k=1, player
i believes with high probability that σk

−i(ω) = m∗
−i for k big enough. Therefore, by

Assumption 2, σ̂k
i is a strictly better reply to σk

−i than σk
i for k big enough even if

ω /∈ E0.

Assume that there is such an h. Since it is common qk-belief at any ω ∈ Eθ

for k big enough that the game Γ(θ) is to be played, player τ(h) believes with high
probability that the game Γ(θ) is to be played. Then, for εh > 0 small enough and
k big enough, there exists a minimal set of states Eh ⊆ Πτ(h)(ω) such that the game
Γ(θ) is to be played at any ω̃ ∈ Eh with the property that:

• P k
(
Eh

∣∣Πτ(h)(ω)
) ≥ 1 − εh;

• P k(Πτ(h)(ω)\Eh
∣∣Πτ(h)(ω)) ≤ εh.

We know that σk
i (ω) = m

′
i for any k by construction, and σk

i (ω) = m∗
i for k big

enough. Recall that players τ(h) through τ(n−1) may be conditioning their behavior
upon information not available to players i, τ(1), . . . , τ(h − 1). In that case, their
behavior appears random to players i, τ(1), . . . , τ(h − 1). Conditional on ω ∈ Eh,
player i knows that all other players believe with high probability that the game
Γ(θ) is to be played. Therefore, by consistency of strategy profiles {σk}∞k=1, player i
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believes with high probability that σk
−i(ω) = m∗

−i for k big enough. By Assumption
1 and 2, we have that, for k big enough,

αΓ
σ̂k

i ,σk
−i

�P k(·|Πτ(h)(ω))

i αΓ
σk .

Therefore, σ̂k
i is a strictly better reply to σk

−i than σk
i for k big enough if ω ∈ Eh.

If ω /∈ Eh, then we have that ω ∈ Πτ(h)(ω)\Eh. By Claim 2, we can choose the
smallest integer h

′
with h < h

′ ≤ n− 1 such that Πτ(h)(ω)\Eh ⊇ Πτ(h′ )(ω).

If there is no such h
′
, we have that, for any h

′
with h < h

′ ≤ n − 1, there
exists ω̃ ∈ Eh such that ω̃ ∈ Πτ(h′ )(ω). Suppose that player i hypothesizes ω /∈ Eh

although he cannot distinguish between ω ∈ Eh and ω ∈ Πτ(h)(ω)\Eh. Then, due to
the minimality of Eh, and conditional on his hypothesis that ω ∈ Πτ(h)\Eh, player
i knows that all players τ(1) through τ(h− 1) believe with high probability that E0

obtains and that all players τ(h) through τ(n−1) believe with high probability that
Eh obtains. As a result, conditional on his hypothesis, player i knows that all other
players believe with high probability that the game Γ(θ) is to be played. Then, by
consistency of strategy profiles {σk}∞k=1, player i believes with high probability that
σk
−i(ω) = m∗

−i for k big enough. By Assumption 2, σ̂k
i is a strictly better reply to

σk
−i than σk

i for k big enough even if ω /∈ Eh.

Assume that there is such an h
′
. Since it is common qk-belief at any ω ∈ Eθ

for k big enough that the game Γ(θ) is to be played, player τ(h
′
) believes with high

probability that the game Γ(θ) is to be played. Then, for εh
′
> 0 small enough and

k big enough, there exists a minimal set Eh
′ ⊆ Πτ(h′ )(ω) such that the game Γ(θ) is

to be played at any ω̃ ∈ Eh
′

with the property that for k big enough,

• P k
(
Eh

′ ∣∣∣Πτ(h′ )(ω)
)
≥ 1 − εh

′
;

• P k
(
Πτ(h′ )(ω)\Eh

′ ∣∣∣Πτ(h′ )(ω)
)
≤ εh

′
.

Once again we can continue the identical argument. This induction argument on
{τ(1), . . . , τ(n − 1)} necessarily stops in finite steps. Also, the argument does not
rely upon τ or ω. Thus, we show that, for k big enough, σ̂k

i is a strictly better reply
to σk

−i than σk
i for any ω ∈ Eθ. We complete the proof of Lemma 2. �

With Lemma 1 and 2, we complete the proof of Theorem 1. �

2.4 How Restrictive is the Finiteness of Ω?

One important assumption I make in the proof of Theorem 1 is the finiteness of Ω.
In this section, I argue that there is essentially no loss of generality to assume that
Ω is finite in our setup. The formalization of this is given as the proposition below.
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Proposition 2 Suppose that Θ is finite. Let σ be a consistent strategy profile. For
any countably infinite Ω, there exists a finite partition Π̂ over Ω such that, for any
ω ∈ Ω, we have that σ(ω

′
) = σ(ω

′′
) for any ω

′
, ω

′′ ∈ Π̂(ω).

Proof of Proposition 2: Let Π0 be a partition over Ω with the property that
for any θ ∈ Θ, we have that Π0(ω) = Π0(ω

′
) for any ω, ω

′ ∈ Ω for which ω = h(θ, s)
for some s ∈ S and ω

′
= h(θ, s

′
) for some s

′ ∈ S. In other words, Π0 induces an
equivalence class over Ω with respect to Θ. Since Θ is finite, Π0 is a finite partition
over Ω. The proof consists of two steps: In step 1, we construct the desired Π̂ by
minimally refining Π0 inductively (i.e., Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · ⊂ Π̂) and show that
each refinement of the partition in the induction argument is finite (i.e., Πk is finite
for each k ≥ 0); and in step 2, we argue that the number of steps of this induction
needed for constructing Π̂ is at most finite. (i.e., ΠK = Π̂ for some finite K.)

Step 1: Suppose that for any ω ∈ Ω, we have σ(ω
′
) = σ(ω

′′
) for any ω

′
, ω′′ ∈

Π0(ω). Then, set Π̂ = Π0 and we are done. Suppose, on the other hand, that
there exists ω0 ∈ Ω for which there exist ω

′
0, ω

′′
0 ∈ Π0(ω0) such that σ(ω

′
0) �= σ(ω

′′
0 ).

Because of consistency of σ, there are two distinct θ and θ
′
, a sequence of states

ω̃0, . . . , ω̃L and a sequence of players i1, . . . , iL, for some finite L with ω̃0 = ω
′
0 and

ω̃L = ω
′′
0 , and

ω̃� ∈ Πi�(ω̃�−1),  = 1, . . . , L,

where ω̃0 = h(θ, s) for some s ∈ S and ω̃L = h(θ
′
, s

′
) for some s

′ ∈ S. Then, set
Π1 = Π0 ∨ ∨L

�=1 Πi�(ω̃�). Note that Π0 ∨ Πi�(ω̃�) is equivalent to Π0 at all states
except ω̃� at which the coarsest common refinement of Π0 and Πi� is taken. Suppose
that for any ω ∈ Ω, we have σ(ω

′
) = σ(ω

′′
) for any ω

′
, ω

′′ ∈ Π1(ω). Then, set Π̂ = Π1

and we are done. Suppose, on the other hand, that there exists ω1 ∈ Ω for which
there exist ω

′
1, ω

′′
1 ∈ Π1(ω1) such that σ(ω

′
1) �= σ(ω

′′
1 ). Because of consistency of σ,

we make the same argument so that we can define Π2 analogously from Π1. Note
that Π2 is finite. Now, suppose that for any ω ∈ Ω, we have σ(ω

′
) = σ(ω

′′
) for any

ω
′
, ω

′′ ∈ Π2(ω). Then, set Π̂ = Π2 and we are done. If not, we continue the identical
argument so that we can inductively define Π3,Π4, · · · as we wish.

Step 2: Let Πm be a finite partition over Ω which is defined inductively in m
steps as described in Step 1. Suppose that there exists ωm ∈ Ω for which there exist
two states, ω, ω

′ ∈ Πm(ωm) such that σ(ω) �= σ(ω
′
). By consistency of σ, there must

be two distinct payoff states θ and θ
′
) for which (θ, s) = h−1(ω) for some s ∈ S

and (θ
′
, s

′
) = h−1(ω

′
) for some s

′ ∈ S. By consistency of σ, there exist a sequence,
{ω0, . . . , ωL} with ω0 = ω and ωL = ω

′
for some finite L and a pair of sequence of

players {i1, . . . , iL} such that

ω� ∈ Πi�(ω�−1) for  = 1, . . . , L
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Set Πm+1 = Πm ∨∨L
�=1 Πi�(ω�). By construction, we have Πm+1(ω)∩Πm+1(ω

′
) = ∅.

Assume that there are two other states ω̃, ω̃
′ ∈ Πm(ωm) with σ(ω̃) �= σ(ω̃

′
).

Assume further that (θ, s) = h−1(ω) = h−1(ω̃) and (θ
′
, s

′
) = h−1(ω

′
) = h−1(ω̃

′
) for

which there is a sequence of states (ω̃0, . . . ω̃L) with ω̃0 = ω̃ and ω̃L = ω̃
′

with the
property that

ω̃� ∈ Πi�(ω̃�−1) for  = 1, . . . , L.

Then, we have ω̃ ∈ Πm+1(ω) and ω̃
′ ∈ Πm+1(ω

′
). This implies that Πm+1(ω̃) ∩

Πm+1(ω̃
′
) = ∅. Since the number of players, L, Θ and S are all finite, we do not

have to treat (ω, ω
′
) and (ω̃, ω̃

′
) independently. If we distinguish between ω and ω

′

with Πm+1, we necessarily distinguish between ω̃ and ω̃
′

with Πm+1, as well. In
other words, we can define an equivalence class over Ω by Πm+1 within which ω
is equivalent to ω̃ and ω

′
is equivalent to ω̃

′
. This implies that we really need at

most finite K steps to exhaust all countably infinite number of states so that for any
ω ∈ Ω, we have σ(ω

′
) = σ(ω

′′
) for any ω

′
, ω

′′ ∈ ΠK(ω). �

3 Tightness of the Main Result

3.1 The Example Revisited

I show in the previous section that the upper hemi-continuity of the UBNE corre-
spondence at any complete information prior is obtained if with probability 1, there
is approximate common knowledge about what game being played. I shall argue
that the main result (Theorem 1) cannot be improved in the following sense: If the
perturbed probability distributions only satisfy the property that, with sufficiently
high probability (not probability 1), there is approximate common knowledge about
what game being played, the upper hemi-continuity of the UBNE correspondence
at any complete information prior is not preserved for some game form. I build on
the example discussed in the introduction. The noisy communication between Andy
and Bob is summarized in the following matrix:

Bob’s signal
0 1

Andy’s signal 0 1 − p 0
1 pε p(1 − ε)

Therefore, I have the following perturbed probability distribution P ε over {(0,0), (1, 0), (1, 1)}.

P ε(0, 0) = 1 − p; P ε(1, 0) = pε; and P ε(1, 1) = p(1 − ε).
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Denote by P ∗ ≡ P 0 the complete information prior. Let Ω = {(0,0), (1, 0), (1, 1)}.
Andy’s knowledge is characterized by the partitional correspondence: ΠA(0, 0) =
{(0,0)} and ΠA(1, 0) = ΠA(1, 1) = {(1,0), (1, 1)}. Similarly, Bob’s knowledge is
characterized by the following partitional correspondence: ΠB(0, 0) = ΠB(1, 0) =
{(0,0), (1, 0)} and ΠB(1, 1) = {(1,1)}. Let Si = {sα

i , s
β
i } for each i = A,B and

S = SA × SB . Note that (sθ
A, s

θ
B) is the payoff type profile in which each player’s

payoff type corresponds to the state θ. Define h as a mapping from Θ×S to Ω with
the following property:

h−1(0, 0) = (β, sβ
A, s

β
B); h−1(1, 0) = (α, sα

A, s
β
B); and h−1(1, 1) = (α, sα

A, s
α
B).

Therefore, h is an immersion of Θ × S into Ω. Note that there is no common
knowledge at any state about which game being played. I shall claim that there is
no approximate common knowledge at (1, 0) about which game being played.

Lemma 3 There is no approximate common knowledge at (1, 0) about which game
being played. On the contrary, there is approximate common knowledge at (0, 0) and
(1, 1) about which game being played.

Proof : Fix ε > 0 sufficiently small so that we can take q sufficiently close to 1.
Since Andy always knows which game is to be played, we consider two events, {(0,0)}
and {(1,0), (1, 1)} and apply each player’s q-belief operator to those events. When
we apply Andy’s q-belief operator to {(0,0)}, we have Bq

A({(0,0)}) = {(0,0)}. When
we apply Bob’s q-belief operator to {(0,0)}, we have Bq

B({(0,0)}) = {(0,0), (1, 0)}.
Since {(0,0)} is q-evident but {(0,0), (1, 0)} is not q-evident, it is approximate com-
mon knowledge at (0, 0) that the game Γ∗(β) is to be played but it is not approximate
common knowledge at (1, 0) that the game Γ∗(β) is to be played. When we apply
Andy’s q-belief operator to the event {(1,0), (1, 1)}, we have Bq

A({(1,0), (1, 1)}) =
{(1,0), (1, 1)}. When we apply Bob’s q-belief operator to {(1,0), (1, 1)}, we have
Bq

B({(1,0), (1, 1)}) = {(1,1)}. Since {(1,1)} is q-evident, it is approximate common
knowledge at (1, 1) that the game Γ∗(α) is to be played. Since {(1,0), (1, 1)} is not
q-evident, it is not approximate common knowledge at (1, 0) that the game Γ∗(α) is
to be played. �

At state (1, 0), Andy knows the true state is α, while Bob believes with probability
sufficiently close to 1 that the state is β. Hence, at state (1, 0), there is completely
asymmetric information about the game being played between Andy and Bob. Here,
I consider a slightly coarser topology than that induced by d∗. Let

d̃1(P ) = inf
{
η
∣∣P (G (η)) ≥ 1 − η

}
.

Define d∗∗(P,P ′
) as follows:

d∗∗(P,P
′
) = max

{
d0(P,P

′
), d̃1(P ), d̃1(P

′
)
}
.
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Note that d∗∗ is non-negative, symmetric, and d∗∗(P,P ′
) = 0 if and only if P = P

′

and both P and P
′

are complete information priors. Clearly, any convergent net
according to d∗ is always a convergent net according to d∗∗. But the converse is
not generally true. Let C ∗∗ be a class consisting of all pairs of a net {P k}∞k=1

with d∗∗(P k, P ∗) → 0 as k → ∞ for some complete information prior P ∗ and a
complete information prior. In Section 2.2, I establish the equivalence between the
topology induced by d∗ and the corresponding convergence class C ∗. Analogously,
I can show that C ∗∗ is a convergence class for the set of probability distributions,
P. Applying Theorem 9 of Kelly (1955), I conclude that the convergence class C ∗∗

indeed generates a topology over P. Note that d∗∗(P k, P ∗) → 0 as k → ∞ if and
only if P k → P ∗ as k → ∞ and there exists εk → 0 such that P k(G (εk)) ≥ 1 − εk

for each k. I shall define the upper hemi-continuity of the UBNE correspondence at
any complete information prior with respect to the topology induced by d∗∗.

Definition 9 Let Γ be a game form. ψUBNE
Γ is upper hemi-continuous at a com-

plete information prior P ∗ with respect to the topology induced by d∗∗ if, ψUBNE
Γ (P k) →

ψUNE
Γ (P ∗) as k → ∞ whenever d∗∗(P k, P ∗) → 0 as k → ∞. Here ψUNE

Γ (P ∗) denotes
the set of UNE outcomes of the game Γ(P ∗).

Corollary 1 There exists a sequence of priors {P k}∞k=1 converging to the complete
information prior P ∗ such that d∗∗(P k, P ∗) → 0 as k → ∞.

Proof : Let us define qA(ε) = 1 − ε. Then, there is a common qA(ε)-belief at
(1, 1) that the game Γ∗(α) is to be played. Let us define

qB(ε) =
1 − p

1 − p+ pε
.

Then, there is a common q2(ε)-belief at (0, 0) that the game Γ∗(β) is to be played.
Define

q∗(ε) = min{1 − pε, qA(ε), qB(ε)}.
We take a sequence {εk}∞k=1 converging to 0. We denote P εk ≡ P k and q∗(εk) ≡ qk

for each k, respectively. Then, we know that qk goes to 1 as k → ∞. Therefore, with
probability at least qk, there is a common qk-belief about which game being played.
This completes the proof. �

I already confirmed in the introduction that the UBNE correspondence associated
with the game form in the example displays a failure of upper hemi-continuity at
any complete information prior. The following corollary attributes the failure of the
upper hemi-continuity to the topology induced by d∗∗.

Corollary 2 The UBNE correspondence associated with the game form Γ∗ is not
upper hemi-continuous at any complete information prior P ∗ with respect to the
topology induced by d∗∗.

24



In this particular sense, the above corollary shows that d∗ is the coarsest possible
topology with respect to which the UBNE correspondence associated with any game
form is upper hemi-continuous at any complete information prior.

4 An Application to Implementation Theory

4.1 Robust UNE Implementation

I show that the UBNE correspondence associated with any game form is upper hemi-
continuous at any complete information prior with respect to the topology induced
by d∗. I shall apply this result to the concept of robust UNE implementation. First, I
formalize UNE implementation under complete information. A mapping f : Θ → A
is said to be a social choice function.

Definition 10 A game form Γ UNE implements a social choice function f : Θ → A
under complete information prior P ∗ if (1) ψUNE

Γ (P ∗) �= ∅, and (2) α(ω) = f(θ) for
each α ∈ g

(
ψUNE

Γ (P ∗)
)

and ω with h(θ, sθ) = ω.

Condition (1) in the above definition states that there always exists an UNE in
the game Γ(P ∗). Condition (2) in the above definition says that every UNE outcome
coincides with that of f . Second, I shall define the implementability in undominated
Nash equilibrium.

Definition 11 A social choice function f is UNE implementable under complete
information if there exists a game form Γ that UNE implements f under any complete
information prior P ∗.

Finally I can define robust UNE implementability.

Definition 12 A social choice function f is robustly UNE implementable rela-
tive to d∗ if (1) f is UNE implementable under complete information and (2) the
UBNE correspondence associated with some implementing game form is upper hemi-
continuous at any complete information prior with respect to the topology induced by
d∗.

I collect a set of UNE implementable mechanisms and eliminate each game form if
it is not robust relative to d∗. The remaining set of implementable mechanisms is the
set of robust UNE implementable mechanisms relative to d∗. To state a permissive
robust implementation result, I need one requirement called “no-veto-power.”

Definition 13 A social choice function f satisfies no-veto-power if, for any θ ∈
Θ, whenever a �θ

i b for any b ∈ A and for at least n− 1 players, f(θ) = a.
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Theorem 2 (Palfrey and Srivastava (1991)) Suppose that there are at least three
players and preferences are strict. Then any social choice function satisfying no-veto-
power is implementable in undominated Nash equilibrium.

I shall establish a permissive robust UNE implementation result relative to d∗.

Corollary 3 Suppose that there are at least three players and preferences are strict.
Then, any social choice function f satisfying no-veto-power is robustly UNE imple-
mentable relative to d∗. 15

Proof : Theorem 2 enables us to construct a canonical game form that UNE
implements any social choice function f satisfying no-veto-power under complete
information. Theorem 1 has shown that the UBNE correspondence associated with
the canonical game form is upper hemi-continuous at any complete information prior
with respect to the topology induced by d∗. Therefore, any social choice function f
satisfying no-veto power is robustly UNE implementable relative to d∗. �

This corollary clarifies the extent to which Palfrey and Srivastava’s permissive
implementability result can be robustified. In the next subsection, I will argue that
the topology induced by d∗ characterizes the maximal extent to which the permissive
UNE implementability is robustified. Because I shall show that only monotonic social
choice functions can be robustly UNE implementable relative to d∗∗. I do not think
that the permissive robust UNE implementation result necessarily lend much support
to the use of Palfrey and Srivastava’s game form. Rather, this robustification gives
us a precise sense in which the Palfrey and Srivastava’s game form is not robust if
we believe that the robustness relative to d∗ is very restrictive. I come back to this
point shortly in the next subsection.

Jackson, Palfrey, and Srivastava (1994) characterize “separable” environments
within which they can design a mechanism that UNE implements any social choice
function. Most importantly, this mechanism also works with two players. Hence,
in separable environments with strict preferences, I conclude that any social choice
function is robustly undominated Nash implementable relative to d∗ irrespective of
the number of players.

4.2 When is Monotonicity Necessary?

In the previous section, I introduce the topology induced by d∗∗ with respect to
which the UBNE correspondence is not upper hemi-continuous at any complete
information prior for some game form. In what follows, I am going to show that any
game form that UNE implements a non-monotonic social choice function exhibits
a failure of upper hemi-continuity of the UBNE correspondence at any complete

15This result can be extended to social choice correspondences
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information prior with respect to the topology induced by d∗∗. That is, monotonicity
is a necessary condition for robust UNE implementation relative to d∗∗. First, I give
the formal definition of monotonicity.

Definition 14 A social choice function f is monotonic if for every pair of states
θ and θ

′
such that for each player i and for each a ∈ A,

a �θ
′

i f(θ) =⇒ a �θ
i f(θ),

we have f(θ) = f(θ
′
).

Monotonicity was first introduced in Maskin (1999) and identified as a necessary
condition for Nash implementation. Before stating the formal result (Theorem 3),
we shall illustrate our argument concerning monotonicity again through the same
example. Let f∗ be defined as a social choice function such that f∗(α) = a and
f∗(β) = b. Then, it is easy to see that the mechanism Γ∗ (shown in section 2) UNE
implements f∗ under complete information. Next I claim that f∗ is not monotonic.
Suppose, by way of contradiction, that f∗ is monotonic. Since f∗(α) �= f∗(β), by
monotonicity, there must exist player i and outcome y such that y �β

i f∗(α) and
f∗(α) �α

i y. Such a player must be Bob. Because Andy has the state uniform
preference. Because f∗(α) = a and a is the best outcome for Bob, there is no
such better y, which is a contradiction. Thus, I can attributes the failure of the
upper hemi-continuity of the UBNE correspondence to non-monotonicity of the social
choice function which is UNE implemented by Γ∗.

I shall show that monotonicity is a necessary condition for robust UNE imple-
mentation relative to d∗∗.

Theorem 3 Let f be a social choice function. Suppose that a game form Γ UNE
implements f under complete information. Assume that preferences are strict. As-
sume further that ψUBNE

Γ is upper hemi-continuous at any complete information
prior with respect to the topology induced by d∗∗. Then, f is necessarily monotonic.

Proof of Theorem 3: We build on the argument of Chung and Ely’s Theorem
1. Let complete information prior μ be given, and let f be a UNE implementable
social choice function with implementable game form Γ = (M,g).

Suppose that θ and θ
′

are two possible states satisfying a monotonic transfor-
mation between θ and θ

′
. Since the game form Γ implements f in undominated

Nash equilibrium by our hypothesis, there exists an undominated Nash equilibrium
(UNE), m∗ of Γ(θ). We claim that m∗ is a NE of Γ(θ

′
). If not, there must exist a

player i and a message mi such that g(mi,m
∗
−i) �θ

′
i g(m∗). But by monotonic trans-

formation, this implies that g(mi,m
∗
−i) �θ

i g(m
∗), which is a contradiction since m∗

is presumed to be a NE of Γ(θ).
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To avoid a trivial case where we can automatically conclude that f(θ) = f(θ
′
), we

must assume that m∗ is dominated in Γ(θ
′
). Then let I ⊂ N be the nonempty set of

players for whom m∗
i is dominated in Γ(θ

′
) for each i ∈ I. With abuse of notations,

we use the expression that |I| = I ≥ 1. Chung and Ely construct the following
family of information structures νε, parameterized by ε > 0. Let τ i represent the
profile of signals (s1, . . . , sn) defined by si = θ

′
for some i ∈ I and sj = θ for all

j �= i. The perturbed information structure is given below:

νε(θ, τ i) =
ε

I
μ(θ, sθ) for all i ∈ I

νε(θ, sθ) = (1 − ε)μ(θ, sθ),

νε(θ̃, sθ̃) = μ(θ̃, sθ̃), for all θ̃ �= θ.

In this information structure, when the state is anything other than θ or θ
′
, the

state is common knowledge. Furthermore, when a player observes the signal θ, that
player knows that the state is θ. Therefore, without loss of generality, we may make
the rest of the argument as if there were only two states, θ, θ

′
. Define as follows:

p = μ(θ, sθ|{θ, θ′}) and 1 − p = μ(θ
′
, sθ

′
|{θ, θ′})

We decompose the set of players of N into the following:

N = I ∪ J = {i1, . . . , iI , j1, . . . , jJ},

where I = {i1, . . . , iI}, J = {j1, . . . , jJ} and I∩J = ∅. Again with abuse of notation,
we use the expression that |J | = J . Let us denote θ = 1 and θ

′
= 0. There are 2 + I

possible states, ω0, ω1, ω2, . . . , ω1+I .

• ω0 = (0, . . . , 0︸ ︷︷ ︸
n

) with probability 1 − p;

• ω1 = (1, . . . , 1︸ ︷︷ ︸
n

) with probability p(1 − ε);

• ω2 = (

i1︷︸︸︷
0 , 1, . . . , 1︸ ︷︷ ︸

i2,... ,iI

,

J︷ ︸︸ ︷
1, . . . , 1) with probability pε/I if si1 = θ

′
and sk = θ for

any k �= i1;

• ω3 = ( 1︸︷︷︸
i1

,

i2︷︸︸︷
0 , 1, . . . , 1︸ ︷︷ ︸

i3,... ,iI

,

J︷ ︸︸ ︷
1, . . . , 1) with probability pε/I if si2 = θ

′
and sk = θ

for any k �= i2;

• ...
...

...
...

...
...

...
...

...
...

...
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• ω1+I = (1, . . . , 1︸ ︷︷ ︸
i1,... ,iI−1

,

iI︷︸︸︷
0 , 1, . . . , 1︸ ︷︷ ︸

J

) with probability pε/I if siI = θ
′

and sk = θ

for any k �= iI

Denote Ω∗ = {ω0, ω1, . . . , ω1+I}. Consider the information structure from the
viewpoint of any player i ∈ I:

i’s signal
0 1

(

N\{i}︷ ︸︸ ︷
0, . . . , 0) 1 0

signals of (

N\{i}︷ ︸︸ ︷
1, . . . , 1) ε/I 1 − ε

N\{i} (

i1︷︸︸︷
0 , 1, . . . , 1) 0 ε/I

players (1,
i2︷︸︸︷
0 , 1, . . . , 1) 0 ε/I

...
...

...

(1, . . . , 1, 0︸︷︷︸
iI

,

J︷ ︸︸ ︷
1, . . . , 1) 0 ε/I

Consider the information structure from the viewpoint of any player j ∈ J :

j’s signal
0 1

(

N\{j}︷ ︸︸ ︷
0, . . . , 0) 1 0

signals of (

N\{j}︷ ︸︸ ︷
1, . . . , 1) 0 1 − ε

N\{j} (

i1︷︸︸︷
0 , 1, . . . , 1︸ ︷︷ ︸

i2,... ,iI

,

J\{j}︷ ︸︸ ︷
1, . . . , 1) 0 ε/I

players (

i1︷︸︸︷
1 , 0︸︷︷︸

i2

,

i3,... ,iI︷ ︸︸ ︷
1, . . . , 1, 1, . . . , 1︸ ︷︷ ︸

J\{j}
) 0 ε/I

...
...

...

(

i1,... ,iI−1︷ ︸︸ ︷
1, . . . , 1, 0︸︷︷︸

iI

,

J\{j}︷ ︸︸ ︷
1, . . . , 1) 0 ε/I
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We can define the partitional function for each player i ∈ I as follows:

Πi(ω0) = Πi(ω1+i) = {ω0, ω1+i}
Πi(ω1) = Πi(ω1+k) for all k ∈ I\{i}

= {ω1, . . . , ω1+I}\{ω1+i}
We can also define the partitional function for each player j ∈ J as follows:

Πj(ω0) = {ω0}
Πj(ω1) = Πj(ω2) = · · · = Πj(ω1+I)

= {ω1, . . . , ω1+I}
We will show that with small probability, there is no approximate common knowl-

edge at ω2, . . . , ω1+I about what game is to be played.

Claim 3 It is approximate common knowledge at ω0 that the game Γ(θ
′
) is to be

played. Besides, it is approximate common knowledge at ω1 that the game Γ(θ) is
to be played. Moreover, there is no approximate common knowledge at ω2, . . . , ω1+I

about what game is to be played.

Proof of Claim 3: Since each player j ∈ J always knows what game is to be
played, we consider two events, {ω0} and {ω1, . . . , ω1+I} and apply each player’s q-
belief operator to those events. When we apply player j’s q-belief operator to {ω0},
we have Bq

j ({ω0}) = {ω0} for each j ∈ J . Let us define

qI(ε) =
1 − p

1 − p+ pε/I
.

When we apply player i’s q-belief operator to {ω0}, we have Bq
i ({ω0}) = {ω0, ω1+i}

for q = qI(ε). Therefore, we have, for q = qI(ε),
⋂
i∈N

Bq
i ({ω0}) =

⋂
i∈I

Bq
i ({ω0})

⋂
j∈J

Bq
j ({ω0}) = {ω0}.

Since {ω0} is qI(ε)-evident, it is a common qI(ε)-belief at ω0 that the game Γ(θ
′
)

is to be played. Besides, it is not approximate common knowledge at ω2, . . . , ω1+I

that the game Γ(θ
′
) is to be played.

Let us define

E1 ≡ {ω1, ω1+1, . . . , ω1+I}.
When we apply each player j’s q-belief operator to the event E1, we have Bq

j (E1) =
E1 for each j ∈ J . Let us define

qJ(ε) = 1 − ε.
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When we apply each player i’s q belief operator to the event E1, we have,

Bq
i (E1) = E1\{ω1+i}.

Thus, we have, for q = qJ(ε),⋂
i∈N

Bq
i (E1) =

⋂
i∈I

Bq
i (E1)

⋂
j∈J

Bq
j (E1) = {ω1}.

Since {ω1} is qJ(ε)-evident, it is a common qJ(ε)-belief at ω1 that the game Γ(θ)
is to be played. Besides, it is not approximate common knowledge at ω2, . . . , ω1+I

that the game Γ(θ) is to be played. Therefore, there is no approximate common
knowledge at ω2, . . . , ω1+I about which game is to be played. �

Define q∗(ε) = min{1 − pε, qI(ε), qJ (ε)}. Consider a sequence of {εk}∞k=1 con-
verging to 0. Set qk ≡ q∗(εk) for each k. Then, the above claim shows that, with
probability at least qk, there is a common qk-belief about what game is to be played
for each k. Therefore, νε converges to μ as ε → 0 according to the topology in-
duced by d∗∗. We define σi(ω) = m∗

i for all i ∈ N and all ω ∈ Ω∗. Chung and Ely
have shown that this strategy profile σ constitutes an undominated Bayesian Nash
equilibrium of the game Γ(νε) for any ε > 0. Because of upper hemi-continuity of
ψUBNE

Γ at any complete information prior with respect to the topology induced by
d∗∗, we must have f(θ) = g(σ(ω0)) = g(m∗) = g(σ(ω1)) = f(θ

′
). Thus, we complete

the proof. �

Now, we can restate Theorem 1 of Chung and Ely (2003) in terms of our termi-
nology.

Corollary 4 (Theorem 1 of Chung and Ely (2003)) Suppose that preferences
are strict. If a social choice function is robustly UNE implementable relative to d∗∗,
it is necessarily monotonic.

In the proof of Theorem 3, I construct a state space Ω which is finite. 16 In my
setup, the finiteness of Ω is already justified by Proposition 2. On a finite state space,
Fudenberg and Tirole (1991) showed that if event E has probability close to 1, there
is high probability that it is common q-belief, for q close to 1. This is indeed the
topology induced by d∗∗. Kajii and Morris (1997) instead considered the situation
in which even if event E has probability close to 1, there is high probability that
it is common q-belief for some q which is not close to 1. In order for this situation
to be realized, Kajii and Morris (1997) explicitly needed a countably infinite state
space which cannot be reduced to the finite state space. Of this type of situations,
the Rubinstein’s email game (1989) is the most famous one. Therefore, Kajii and
Morris (1997) needed the topology much coarser than that induced by d∗∗ as their
robustness criterion.

16I am grateful to an anonymous referee for pointing out the reliance of the finiteness on the proof
of Theorem 3.
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5 Related Literature

Fudenberg, Kreps, and Levine (1988), Dekel and Fudenberg (1990), and Kajii and
Morris (1997) are all concerned with payoff uncertainty in considering the nearby
games. That is, these authors slightly but arbitrarily – though the extent of ar-
bitrariness varies across the papers – perturb the payoff functions. This is very
different from my analysis. In contrast, I fix the set of payoff types from the begin-
ning and slightly perturb players’ beliefs over the fixed set of payoff types. In the
same vein, Monderer and Samet (1989) considered a class of nearby games such that
any Nash equilibrium of the complete information game is approximated by an ε-
Bayesian Nash equilibrium of the nearby Bayesian games. In this paper, I explicitly
topologize the Monderer and Samet (1989)’s class of nearby games and identify it
as the topology induced by d∗∗. Regarding this topology, I consider the upper hemi-
continuity of the UBNE correspondence, while Monderer and Samet (1989) consider
the lower hemi-continuity of the ε-Bayesian Nash equilibrium correspondence.

Monderer and Samet (1996) go further and generalize the idea of Monderer and
Samet (1989) into the general incomplete information game and characterize the rele-
vant topology. If I appropriately extend my original information structure from com-
plete to general incomplete information, the topology Monderer and Samet (1996)
found is the same as the topology induced by d∗∗ with the additional requirement
that the prior probability measure of the original incomplete information is fixed
throughout. Kajii and Morris (1998) also provided another topology which turned
out to be the same topology induced by d∗∗ with the additional requirement that
the original partition structure is fixed throughout. The Kajii and Morris (1998)’s
restricted topology induced by d∗∗ is exactly the same as the one used by Chung and
Ely (2003). In sum, Monderer and Samet (1996) and Kajii and Morris (1998) focus
on the same topology but require a different restriction to be imposed on the set of
limit points of the probability distributions when checking its robustness.

This paper rather restricts possible strategy profiles to be consistent with the
equilibrium concept (Definition 3), while it does not restrict at all the set of limit
points of the probability distributions. Furthermore, as long as the state space Ω is
finite, Kajii and Morris (1997)’s robustness requirement is equivalent to the lower
hemi-continuity of the Bayesian Nash equilibrium correspondence with respect to the
topology induced by d∗∗. 17 Kajii and Morris (1997), however, do not consider the
finiteness assumption of Ω as justifiable. Once I explicitly allow for Ω to be count-
ably infinite, Kajii and Morris (1997)’s robustness induces a much coarser topology
than that induced by d∗∗ with respect to which the Bayesian Nash equilibrium cor-
respondence is required to be lower hemi-continuous. This is well illustrated in the
literature using the Rubinstein’s (1989) email game.

17I am grateful to an anonymous referee for drawing my attention to this connection.
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In this paper, I show that Chung and Ely’s robust UNE implementation is equiv-
alent to the robust UNE implementation relative to d∗∗. Chung and Ely (2003) show
that only monotonic social choice functions can be robustly UNE implementable rel-
ative to d∗∗. Thus, Chung and Ely’s contribution now can be interpreted as follows:
they exploited a non-trivial structure of the game form (through monotonicity) in
which the UBNE correspondence is required to be upper hemi-continuous at any
complete information prior with respect to the topology induced by d∗∗. This is also
consistent with the tightness of my main result, because the upper hemi-continuity
result cannot be extended from d∗ to d∗∗ for “any” game form.

6 Concluding Remarks

I conclude this paper with possible future works. Following “Wilson’s doctrine,”
the recent works of Bergemann and Morris (2005a,b) address some of the issues of
robust mechanism design. 18 In particular, they show that interim (i.e., Bayesian)
implementation on all type spaces is possible if and only if it is possible to implement
the social choice function using an iterative deletion procedure. If, however, one
can characterize a class of type spaces over which robust interim implementation is
defined, I conjecture that it is possible to clarify the extent to which the classical
implementation results can be robustified. Indeed, the methodology developed in this
paper helps us characterize such a class of type spaces via topology. By clarifying
exactly how much structure we need in terms of topology for robustifying the results
of interim implementation, I will be able to argue that many of the permissive
results are very sensitive to the specification of the original information structure.
This can be considered as a complementary approach to Bergemann and Morris
(2005a,b). While this paper rather focus on complete information and undominated
Nash equilibrium, I believe that it has the potential for addressing more general
questions in the context of robust mechanism design.
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