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Abstract

A model to investigate the relationship between one variable and another
usually requires controls for numerous other effects which are not constant across
the sample; where the model omits some elements of the true process, estimates
of parameters of interest will typically be inconsistent. Here we investigate
conditions under which, with a set of potential controls which is large (possi-
bly infinite), orthogonal transformations of a subset of potential controls can
nonetheless be used in a parsimonious regression involving a reduced number of
orthogonal components (the ‘reduced-dimension control regression’), to produce
consistent (and asymptotically normal, given further restrictions) estimates of a
parameter of interest, in a general setting. We examine selection of the particular
orthogonal directions, using a new criterion which takes into account both the
magnitude of the eigenvalue and the correlation of the eigenvector with the vari-
able of interest. Simulation experiments show good finite-sample performance
of the method.
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de recherche en économie quantitative (CIREQ) for research facilities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7130766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

One of the primary uses of the regression model is to allow statistical con-
trols to substitute for the experimental controls which are not available in typical
problems in the social sciences. In many situations, however, the number of po-
tential controls is too large to permit inclusion of each control as a separate
regressor, and it is difficult to choose which elements of a set of possible regres-
sors to include. It is well known that unless a selection of regressors is sufficient
for all information in the set of controls relative to the parameter of interest,
estimates from the resulting model are strictly inconsistent, and the omitted
variable bias may be substantial. The very widespread use of the linear regres-
sion model where the true process is not known a priori makes this problem one
of great practical importance, and in this paper we suggest an approach to the
problem via dimension reduction.

Consider the linear process y = c + Xβ + Zγ + ε, where our interest is
in β, but the subset of regressors Z enters non-trivially in that a model which
omits elements of this subset will yield inconsistent estimates of β if there is
asymptotic correlation between the omitted elements andX. Normally, empirical
researchers try to find β and γ (despite the fact that β is the item of interest).
However, if γ is of high dimension (given N), this may be inefficient or infeasible.
An alternative (principal components regression, e.g. Kendall 1957, McCallum
1970, Farebrother 1972, Greenberg 1975; factor analysis, e.g. Chamberlain 1983,
Forni and Lippi 2001; methods related to central mean subspace estimation, e.g.
Li 1991, Cook and Weisberg 1991, Zhu and Fang 1996, Cook and Li 2002) is to
abandon these interpretable parameters, and fit the full conditional mean using
a dimension reduction method. One does not obtain β but may get very good
fitted values or forecasts (Stock and Watson 2002a,b).

Another alternative, which the present study pursues, is to concentrate on
β alone, and to abandon estimation of immediately-interpretable parameters γ,
while continuing to use the information in Z. Because cases in which Z is of
high dimension are those in which it is most useful to use dimension reduction
methods such as those to be examined here, we treat Z as being of unknown and
possibly non-finite dimension. We then propose a method directed at providing
good regression estimates of β, rather than at uncovering the entire process; we
describe this as a control regression, i.e. a regression designed to allow inference
on a small set of parameters while controlling for variation in others. We examine
the choice of regression directions with which to exploit information from the
controls. When these directions are chosen appropriately, the biases associated
with omitted controls can be eliminated asymptotically and reduced to low levels
in finite samples; the consequences of lack of full knowledge of the true process
can therefore be limited.
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From the theoretical viewpoint, a key element of the present study is the
fact that the process is treated as having unknown and potentially unbounded
dimension. Thus we are able to show that, applied with an appropriate algorithm
for augmenting the set of regressors as N → ∞, linear regression is consistent
for parameters of interest in a more general context than has previously been
established.

More specifically, our asymptotic results examine the possibility of consis-
tent estimation of β when the number of included directions from the space
spanned by Z grows with sample size. We impose the condition that the L1

norm of the vector γ be bounded; then consistency (and asymptotic normal-
ity, with further conditions) holds for the estimates of β in finite models whose
dimension increases with sample size. We then design a criterion for selection
of directions in the regressor space and demonstrate that with this criterion,
dimension reduction in the space of included regressors is achievable. The cri-
terion orders orthogonal directions in the space spanned by Z by magnitude
of the product of the eigenvalue and correlation with X; this implies that the
importance for estimation of β of directions tends to decline with diminishing
value of the criterion. We then show that the dimension of the regressor space
can be reduced by excluding Z ′s with the lowest values of the criterion, without
affecting consistency of estimates of β, and that there is a uniform upper bound
for a given sample size on the number of directions that need be included.

In section 2 we provide a formal definition of the problem and associated
conditions, and asymptotic results. The main results of the paper are in Section
3, which describes the dimension reduction methods used to obtain statistical
controls. We orthogonalize the regressors, and show that our criterion for se-
lecting among the orthogonalized directions allows consistency in a model of
reduced dimension. Together the results of these sections establish consistency
of the regression method for the parameter of interest, using the regressor selec-
tion algorithm to augment model order at a controlled rate, in a general problem
of unknown order. Section 4 provides simulation evidence on the finite-sample
performance of the methods, and section 5 a brief empirical illustration. Proofs
are collected in Appendix 1.

2. Processes, notation and preliminary results

2.1 Processes and notation

We assume that the observed data are associated with realizations of a
multi-dimensional (possibly infinite-dimensional) stationary random process.
Consider a set of real-valued random variables W = {w`i}∞ ∞

`=1,i=−∞ such that
W` = {w`i}∞i=−∞ is a stochastic process for each `, where i indexes the N ob-
servations. For each observation W·i = {w`i}∞`=1 on the set of random variables,
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define random vectors (partitions)W ′
i = (yi;X ′

i;Z
′
i), where yi = w1i represents a

dependent variable, X ′
i = (w2i, . . . wm+1,i) = (x1i, . . . xm,i) a set of m condition-

ing variables of interest, and Z ′i = [z1i, z2i, . . .] = [wm+2,i, wm+3,i, . . .] a vector
of additional conditioning variables; Z ′i may or may not be of finite dimension.
This data generation process is assumed to satisfy the following conditions.

Assumption 1 (A1)
. (i) W` is a stationary stochastic process for every ` :

E(w`i) = µ`, cov(w`iw`j) = φ``(|i− j|);
. (ii) W`1 ,W`2 are co-stationary: cov(w`1iw`2j) = φ`1`2(|i− j|);
. (iii) There exists an increasing sequence of σ− fields {Fi}∞−∞ such that
X ′

i, Z
′
i are measurable with respect to Fi and

E(yi|Fi) = c+X ′
iβ + Z ′iγ; (2.1)

. (iv) The lowest and highest eigenvalues, λ(ΣW ) and λ(ΣW ), of the covari-
ance matrix ΣW of W·i (or of any subset) are such that

0 < ζ < λ(ΣW ) < λ(ΣW ) < ζ <∞.

. (v) sup1≤`≤∞E(w4
`i) <∞.

From Assumption 1 (i),(ii), the w`i span a separable Hilbert space H with the
scalar product given by < w`1i, w`2j >= cov(w`1iw`2j), and there is a Wold
representation for each W`. Equation (2.1) gives the conditional expectation
function, in which β is the key object of interest. Note also that part (iii) of A1
implies that

(c, β, γ) = arg min
c̃,β̃,γ̃

E(yi − c̃−X ′
iβ̃ − Z ′iγ̃)

2
.

Define εi = yi − (c + X ′
iβ + Z ′iγ), i = 1, . . . , N ; then E(εi) = E(εi|Fi) = 0.

Part (iv) of A1 implies that none of the regressors (in X or Z) is in the span
of the others, that the inverse of the covariance matrix has a bounded norm,
and that the corresponding coefficient is therefore identified. As well, for any
non-stochastic m × ∞ matrix A of rank m, E(AWW ′A′) = AΣA′ is of rank
m, since by (iv), ΣW is invertible. Note also that (v) implies supE(w2

`i) <

(supE(w4
`i))

1
2 <∞ by Jensen’s inequality.

Two special cases of the above structure are (i) Fi = Fj = F and all
observations W·i are independent, in which case cov(w`1iw`2j) = γ`1`2(|i − j|)

3



if i = j, zero otherwise; and (ii) the case in which some W` are lagged values of
others, so that for example Z ′i could include yi−h and elements of Z ′i−h, h > 0.
The former case may be an adequate characterization of cross-sectional contexts,
whereas the latter may arise in time series models.
2.2 Preliminary results

Assumption 1 implies a bound on the sum of squared coefficients on the Zi,
and a martingale difference sequence (m.d.s.) structure on the error {εi}.
Lemma 1. If A1 is satisfied, then

- (i)
∑

`(γ
2
` ) <∞

- (ii){εi,Fi} is a m.d.s.

Proof: see Appendix 1.

For any k, the model (2.1) can be represented in the form

y = c+Xβ + Z(k)γ(k) + Z(k + 1,∞)γ(k + 1,∞) + εi, (2.2)

where Z(k) contains k regressors from Z and Z(k + 1,∞) those remaining,
possibly infinite in number; γ(k) and γ(k+1,∞) are the corresponding coefficient
vectors.

The following additional assumption is sufficient for the influence of the tail
part of the process to go to zero:

Assumption 2 (A2) ∑
` |γ`| <∞.

Theorem 1. Under A1 and A2, as k→∞, E(Z(k+1,∞)γ(k+1,∞))2 → 0, and

Z(k + 1,∞)γ(k + 1,∞)
p→0.

Proof: see Appendix 1.
Note that A2 is sufficient, but not necessary. Assumptions A1 and A2

are much weaker than those required for consistent estimation in the standard
context of regression with control variables, which embody not only a finite
model but also that any omitted elements of the process are uncorrelated with
the variable of interest. The assumptions cover the case in which L is finite
(so that A2 is trivially satisfied) but not known, and where an upper bound
on L is not known. Other cases in which A2 can be verified arise where Zγ
represents an infinite expansion of a multivariate function. In a time series
context, suppose that y,X are linear processes and each Z`, ` = 1, . . .m is a
stationary and invertible ARMA process; m is finite, but an unbounded number
of lags of each Z` may be included in the model, leading to unbounded L.
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The process is y = c +
∑m

i=1 βiXit +
∑m

i=1

∑∞
ν=1 γiνZi,t−ν + εt. It follows that∑m

i=1

∑∞
ν=1 |γiν | < ∞, so that A2 holds. If in addition y is an ARMA process,

then
∑m

i=1

∑∞
ν=k |γiν | = O(exp(−k)).

2.3 Consistency and asymptotic normality of the OLS estimator

Theorem 2 establishes consistency as k → ∞ for estimates in the finite
truncation of (2.2),

y = c+Xβ + Z(k)γ(k) + εi, (2.3)

which omits Z(k + 1,∞). Let MZ(k) denote projection orthogonally to Z(k) :
MZ(k) = I − Z(k)[Z(k)′Z(k)]−1Z(k)′.

Theorem 2. Suppose that A1 and A2 hold. Then if N → ∞, k → ∞, and
kN− 1

2 → 0, the OLS estimator β̂k = (X ′MZ(k)X)−1X ′MZ(k)y in (2.3) is a
consistent estimator of β.

Proof: See Appendix 1.
It follows from the proof of Theorem 2 that (β̂k−β) = Op(f(k))+Op((N −

k̃)−
1
2 ), where f(k) =

∑∞
i=1 |γk+i|.

Thus, depending on the rate of decay in the coefficients γ`, we get either
standard parametric or slower convergence rates. In particular, if γ` = O(`−ν)
with ν > 1 (polynomial rate of decay), then we have that

∑∞
k+1 |γ`| = O(k−ν+1),

which even for k ' N
1
2 provides the rate

(β̂k − β) = Op(N− 1−ν
2 ),

which is always slower than the parametric rate. If by contrast γ` = O(α`)
with α < 1 (exponential rate of decay), then

∑∞
`=k+1 γ` = O(αk+1) and for any

k = O(Nγ), γ < 1
2 , the polynomial power dominates and a parametric rate

obtains: that is, (β̂k − β) = Op(N− 1
2 ). The latter is the usual case when the

number of regressors is assumed to be finite, and is the case examined in, for
example, the principal components literature, and also applies in the time series
example above, with stationary ARMA processes.

For the following theorem we define k̃ (0 ≤ k̃ ≤ k) as the number of excluded
sample points (for example, those lost to lags).

Theorem 3. Suppose that A1 and A2 hold, that k→∞ as N→∞, kN− 1
2 → 0,

and also that k can be chosen such that f(k) = o(N− 1
2 ). Then

(N − k̃)
1
2V

− 1
2

k Gk(β̂k − β) D→N(0, Im),
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where Gk = E
(

1
N−k̃

X ′MkX
)

and Vk = E( 1
N−k̃

X ′Mkεε
′MkX). If ε is indepen-

dent of (X,Z) then G−1
k VkG

−1
k = σ2

εE
(

X′MkX

N−k̃

)
.

Proof: See Appendix 1.

The weighting matrix H = G−1
k VkG

−1
k can be estimated consistently by

σ̂2
ε

(
X′MkX

N−k̃

)
, where σ̂2

ε = (N− k̃)−1u′u can be shown to be a consistent estima-

tor of σ2
ε , where u is the residual vector from the regression (2.3) on X and Z(k).

An operational test of H0 : β = β0 is then given by (β̂k − β0)′Ĥ(β̂k − β0)
D→χ2

m.

3. Dimension reduction and estimation of parameters of interest

We now turn to dimension reduction for the finite part Z(k) in the model
(2.3). It will now be necessary to distinguish two column dimensions related to
Z: therefore rather than using k, we will use K for the full column dimension
of Z, and κ (κ ≤ K) for the column dimension of a set of included components,
which are linear transformations of Z. With this distinction, we will establish
properties of a distance measure useful in selecting particular controls on a finite
sample; we also show that the selection rule that is derived ensures consistency
of the estimator based on κ(< K) components.
3.1 Estimation by regression on orthogonal components

Given a finite sample of size N, we use models of finite dimension despite
the possibly-infinite dimension of the vector Z ′i which enters the true process.
Where Z is not of finite column dimension, we treat a finite number K of
included elements of Z, such that K may increase with N : i.e. K is the number
of data series used as potential controls. Define Z(K) and Z(K + 1,∞) as
the included and excluded parts of Z respectively, and partition the parameter
vector conformably. We treat the case in which K < N, i.e. fewer potential
explanatory series than data points. and compute sets of orthogonalized vectors
which span the same space as Z(K).

Define aK ×K matrix C(K) such that C(K)′Z(K)′Z(K)C(K) = Λ, where
Λ is the K ×K matrix with the K eigenvalues (λ`, ` = 1, . . .K) of Z(K)′Z(K)
on the main diagonal, zeroes elsewhere. That is, the columns of C(K) contain
the K eigenvectors of Z(K)′Z(K), and C(K)′C(K) = C(K)C(K)′ = I; C(K)
is therefore a random matrix, which depends on the sample.1 Next define a
selection matrix ΠK×κ such that C(κ) = C(K)Π is a K × κ matrix which

1For simplicity of notation this dependence is not explicitly indicated.
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contains κ of the K eigenvectors: κ will be the number of control regressors
included in the model (we discuss the choice of κ below).2

Finally define the auxiliary model regressors S(κ,K)N×κ = Z(K)C(κ) and
also S(K,K)N×K = Z(K)C(K), which uses the full set of eigenvectors; S(K,K)
contains all principal components of, and spans the same space as, Z(K). From
the representation (2.1) of the process, we can write

yi = c+X ′
iβ + Z ′iγ + εi

= c+X ′
iβ + Z ′i(K)γ(K) + Zi(K + 1,∞)′γ(K + 1,∞) + εi

= c+X ′
iβ + Si(K,K)′δ(K) + Zi(K + 1,∞)′γ(K + 1,∞) + εi

= c+X ′
iβ + Si(κ,K)′δ(κ) + Si(K − κ,K)′δ(K − κ)

+ Zi(K + 1,∞)′γ(K + 1,∞) + εi,

≡ c+X ′
iβ + Si(κ,K)′δ(κ) +R′i(κ,∞)θ(κ,∞) + εi,

(3.1)

where S(K − κ,K) is the N × (K − κ) matrix containing the (K − κ) columns
of S(K,K) not present in S(κ,K), and R collects all of the conditioning vari-
ables R ≡ [S(K − κ,K) : Z(K + 1,∞)] not present in S(κ,K). Note that
S(K,K)δ(K) = Z(K)γ(K) so that C(K)δ(K) = γ(K), and that θ′(κ,∞) is
defined as the vector [δ′(K − κ) : γ′(K + 1,∞)]. Note also that S(K,K) is a
sample-dependent transformation, so that only the first two lines of (3.1) char-
acterize the process itself.

Estimation of β is based on the auxiliary model–a reduction of the data
generation process–

yi = c+X ′
iβ
∗ + Si(κ,K)′δ∗ + ei, (3.2)

which uses the subset S(κ,K) of the available orthogonalized regressors con-
tained in S(K,K). We consider the OLS estimator with κ orthogonalized regres-
sors, i.e. β̂(κ) = (X ′MκX)−1

X ′Mκy, where projection orthogonally to S(κ,K)
is defined by Mκ = I − S(κ,K)(S(κ,K)′S(κ,K))−1S(κ,K)′ with S(κ,K) =
[S1, . . . , Sκ].

Different methods of selection of the elements (columns) of S(κ,K) from
those of S(K,K) are of course possible. If Π selects the eigenvectors correspond-
ing with the κ largest eigenvalues, then S(κ,K) contains the first κ principal

2Each column of Π will have one element equal to one, all others zero, with no
repeated columns; i.e. if Πij = 1, then Πi′j = 0 ∀i′ 6= i, and Πij′ = 0 ∀j′ 6= j.
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components of Z(K). An alternative, where we take X to be a single vector
(m = 1), is to choose the κ eigenvectors of Z(K)′Z(K) corresponding with the
largest values of {λ` · corr(S(K,K)`, X)} ; that is, large eigenvalues are given
more weight if they correspond with eigenvectors that are highly correlated with
X.

3.2 Selection of orthogonalized regressors on a finite sample

We now state a theorem on the selection of the orthogonalized regressors
used in the model (3.2); that is, an ordering principle for the columns of S. We
begin with a general treatment for m ≥ 1, and then consider the case where we
target one parameter of interest in each control regression, so that m = 1 and
the remaining regressors in X are added to Z(K). Any subvector of β can be
estimated from (3.2), using the corresponding submatrix of X, as long as the
excluded components of X are included in Z(K) to be orthogonalized; in this
way the information in components of X not directly included as regressors is
retained through the orthogonalized regressors S. We may estimate the m × 1
vector β in one regression, or component-by-component in a sequence of m
separate control regressions for each individual βi. In finite samples, the latter
may be preferable, as it allows us to focus on selection of controls that are
optimal for each individual coefficient.

In order to judge which are the κ most important regressors to include
from the set S(K,K)), we provide measures of the impact of the addition of
a particular orthogonalized regressor Sν ∈ (S1, . . . SK) on the coefficients of
interest. Assume that κ of the regressors have been selected, and consider the
impact of adding Sν to this set. Given X and the vector β of parameters of
interest, Sν has more impact the larger is the change in the estimate of β :

∆κ,ν = (β̂κ,ν − β)− (β̂κ − β), (3.3)

where β̂κ is the vector of regression coefficients obtained when S(κ,K) is the
matrix of κ initially-included orthogonalized regressors, and β̂κ,ν is the estimate
on a set of orthogonalized regressors which also includes Sν as well as S1 . . . , Sκ.
To evaluate this change, consider a weighted distance measure,

d = ∆′
κ,νD∆κ,ν , (3.4)

where D is a symmetric non-negative definite matrix. Note that we want the
criterion to be invariant to a change in scale of one or more X’s, and D must
be chosen accordingly. We consider the following choices:

(i) d1 = ∆′
κ,νD1∆κ,ν for D1 = N−1X ′X

(ii) d2 = ∆′
κ,νD2∆κ,ν for D2 = N−1X ′MκX.

(3.5)
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We examine ∆κ,ν and show that it can be decomposed into two random
functions, ψ1 and ψ2, one of which (ψ2) has a probability limit of zero as
K,N→∞ and KN− 1

2 → 0, then use this fact to construct selection criteria
based on (3.4). Define e(i) = MκXi, the vector of residuals from regression of
Xi on the κ orthogonalized regressors included in S(κ,K), and also the N ×m

matrix Eκ = (e(1), . . . , e(m)), and Âκ(ν) = λ̂−1
ν (E′

κEκ)−1E′
κSν , where λ̂ν is the

estimated eigenvalue. Denote by ζ̂κ(ν) the coefficient in the OLS regression of
Sν on the regressors in Eκ. Define

ψ1(λ̂ν , Âκ(ν)) ≡ ζ̂κ(ν)θν = −(X ′MκX)−
1
2 λ̂νθνÂκ(ν) (3.6)

and

ψ2(Âκ(ν)) = (X ′MκX)−
1
2 [I − Âκ(ν)Âκ(ν)′]−1

· Âκ(ν)[λ̂−1
ν S′νZ(κ+ 1,∞)γ(κ+ 1,∞) + λ̂−1

ν Ŝ′νε].
(3.7)

As N→∞, ψ1 becomes a good approximation to ∆κ,ν ; therefore our selec-
tion criteria will exploit ψ1.

Theorem 4. Let the conditions A1 and A2 hold. Then

∆κ,ν = ψ1(λ̂ν , Âκ(ν)) + ψ2(Âκ(ν)), (3.8)

and as K,N→∞ and KN− 1
2 → 0,

∆κ,ν − ψ1(λ̂ν , Âκ(ν)) = ψ2(Âκ(ν))
p→0, (3.9)

uniformly over κ and any choice of selected regressors S(κ,K) and Sν . Finally

d1 − θ2ν ζ̂κ(ν)′X ′Xζ̂κ(ν)
p→0 and d2 − θ2ν ζ̂κ(ν)′X ′MκXζ̂κ(ν)

p→0.

Proof. See Appendix 1.

Since θν is unknown, a selection criterion will have to abstract from this
parameter, and therefore will reduce to

d1 = ζ̂κ(ν)′X ′Xζ̂κ(ν) (3.10)
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for d1 (3.5(ii)), or

d2 = ζ̂κ(ν)′X ′MκXζ̂κ(ν) (3.11)

for d2 (3.5(iii)). Note that (3.11) gives the formula for the regression sum of
squares in the regression of Sν on e(1), . . . , e(κ) and is equivalent to the selection

criterion R2
ν(κ)λ̂2

ν , where R2
ν(κ) is the R2 from that regression.

These criteria simplify considerably when we deal with one parameter of
interest (for example because we may use a separate control regression for each
of several such parameters), so that m = 1. For this case we will write x and
e for the N × 1 vectors denoted X and Eκ in the general case of m effects of
interest. Denote the correlation between x and Sj , j = 1, . . . κ, by ρj . Recall
also that MκSν = Sν and e = Mκx, so that e′Sν = x′Sν , and

e′e = x′Mκx = x′x−
κ∑

j=1

(x′Sj)2

λ2
j

= ‖x‖

1−
κ∑

j=1

ρ̂2
j

 .

Therefore

ζ̂(ν) =
ρ̂ν λ̂ν

‖x‖(1−
∑κ

j=1 ρ̂
2
j )
,

and the criteria (3.10) and (3.11) become

d1 =
ρ̂2

ν λ̂
2
ν

(1−
∑κ

j=1 ρ̂
2
j )2

(3.10′)

and

d2 =
ρ̂2

ν λ̂
2
ν

‖x‖(1−
∑κ

j=1 ρ
2
j )

(3.11′)

respectively. Since the denominator does not depend on Sν , either of these
criteria reduce further to selection by ρ̂2

ν λ̂
2
ν , or equivalently, |ρ̂ν |λ̂ν , the product

of the eigenvalue and the absolute value of the correlation between x and the
potential regressor Sν (by contrast, selection by principal components uses λ̂ν

alone). By these rules, then, the set {Sν}K
ν=1 is ordered such that Sν1 is ordered

before Sν2 , i.e. ν1 < ν2, if

|ρ̂ν1 |λ̂ν1 > |ρ̂ν2 |λ̂ν2 . (3.12)
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We now show in Theorem 5 that, with the selection rule (3.12) for the
ordering of the K orthogonalized regressors, consistent estimation can be based
on a subset of κ < K of these regressors, where K satisfies the conditions
of Theorem 2. Consider Ω ≡ Ω({µl}, {φl1l2}, c, β, γ}), the set of all processes
satisfying A1 with the same parameters and bounds.

Theorem 5. Let processes from the set Ω satisfy A1 and A2, with components
selected by the rule (3.12). Then as N→∞,K→∞, KN

1
2 → 0 and κ >

K − o(K
1
2 ),

sup
Ω
|β̂κ − β0|

p→0.

Proof. See Appendix 1.

Note that selecting κ = K − O(f(K))K
1
2 ensures that supΩ |β̂κ − β0| con-

verges at the same rate as |β̂K−β0|. Thus we have shown that uniformly over Ω,
even in the most unfavorable cases, consistency obtains for a reduced dimension
κ.

The criteria just described give an ordering for the eigenvectors and there-
fore the orthogonal components, but do not describe the ‘stopping rule’, or
number of regressors to include. For this purpose, conditional on the ordering
just defined, information criteria may be used. The finite-sample simulations in
the next section suggest the use of the Akaike information criterion for choice
of κ, as well as providing information on the finite-sample performance of the
methods.

We close this section with a summary of the method of implementation of
reduced-dimension control regression in the models (2.3)–(3.2):

- 1. From the (N × K) matrix Z(K) of data on the controls, compute
the eigenvalues (λ̂i) and corresponding eigenvectors of the moment matrix
Z(K)′Z(K).

- 2. Order the eigenvectors by the product λ̂i|ρ̂i|, where ρ̂i is the sample
correlation between the eigenvector and x.

- 3. Select a large κ (e.g. 12, 20) and for each κ = 1, . . . , κ, form the matrix
of eigenvectors C(κ) from the first κ eigenvectors as ordered in step 2, and
then the N×κ matrix S(κ,K) = Z(K)C(κ) of orthogonal components. For
each κ, use the corresponding S(κ,K) to estimate the regression model, and
compute the AIC.3

3The AIC is defined as ln σ̂2
[κ] +

2h
N , where σ̂2

[κ] is the estimated residual variance
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- 4. Select the value of κ that yields the lowest AIC. (If this occurs at or near
the upper bound κ, increase κ and compute further estimates to ensure a
global minimum AIC). The regression with this value of κ is the chosen
control regression and the values of ĉ and β̂ are the final estimates.

4. Finite-sample evaluation of bias and RMSE reduction

The process (2.1) covers a wide class of cases, both time series and cross-
sectional, and does not restrict the number of factors or their relative impor-
tance. It is therefore difficult to specify a small number of representative pa-
rameter configurations for finite-sample evaluation. Rather than specifying a
few examples, we instead use randomly selected sets of coefficients to parame-
terize both the relation between y and Z and the correlation between X and
Z. We report results which are averages across these sets of randomly-selected
data generation processes (as well, of course, as being averages across repeated
experiments on each randomly-chosen DGP). We note therefore that these simu-
lations have the unusual property that, while parameters governing the random
number generation and other elements of structure are chosen by the investiga-
tor, the results are largely determined by the randomly-generated parameters.
By averaging across many such parameter combinations, we expect more repre-
sentative results than would be possible through investigation of a few selected
cases.

There are two classes of cases treated here. In the first, all observable
potential explanatory factors have at least some degree of relevance to the DGP,
so that as N → ∞ all should be selected into the model. In the second class,
there exist two orthogonal groups of regressors; a second group is added which
has no explanatory power, and its elements are therefore irrelevant as statistical
controls.

The overall DGP for the first set of simulations is as follows: N = 200 and

- i) dimZ = L = K = 40; κ = 1, . . . , 20
- ii) γj = 5αjηj , j = 1, . . . , 40, ηj ∼ IN(0, 1), α ∈ (0.5, 1.0)
- iii) Γ′Γ = cov(v) (v is defined below)
- iv) Z = Z0Γ, {Z0}ij ∼ N(0, 1)
- v) xi = Z ′iµ+ e1,i, µj ∼ N(0, 1), e1,i ∼ N(0, 1),
- vi) yi = xi + Z ′iγ + e2,i, e2,i ∼ IN(0, 1)

where κ is the column dimension of S(κ,K) (i.e. the number of controls), K is
the column dimension of Z, and v is a set of K random series defined recursively

for the regression model with κ columns in the matrix of orthogonal components,
Si., h is the total number of regressors (= κ+ 2 here) and N is sample size.
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such that the hth series is a linear combination of series 1 to h−1, with random
weights. The set v allows us to create random correlation structures in Z, so that
results are not specific to particular patterns of correlation. That is, randomly
selected coefficients are chosen, and a decay parameter α is applied (step ii).
The correlation structure of Z is defined for each parameterization by a recursive
form, from which a correlation matrix is obtained from a random realization of
the structure, and is applied to a raw matrix of white-noise entries using the
Cholesky decomposition Γ of the correlation matrix (steps iii-iv). These steps
ii-iv are repeated 200 times; for each of these 200 cases, 1000 replications of
steps v-vi are computed, in each of which x is defined as a linear combination
with weights randomly drawn from N(0,1) of the Z’s, plus white noise (step v),
and y is obtained from each of these explanatory factors (step vi). On each of
these replications, the methods are applied for each value of κ.

The effect of the decay parameter is to vary the average relative importance
of effects within the set of Z’s: with α near unity, each of the Zi’s has an expected
absolute coefficient near 1, and as α falls, the importance of coefficients other
than the first few is reduced correspondingly. For relatively low values of α, e.g.
near 0.5, only a few of the 40 explanatory factors have any substantial weight:
the draw from N(0, 1) is scaled by αj for factor j, so that factors beyond five or
six are very likely to have coefficients near zero. In these cases the DGP is close
to a process with only a small number of relevant factors. By contrast, for α
near 1, the set of coefficients on the Zi is close to a set of independent mean-zero
random variables, and there is some tendency for cancellation to occur among
the factors projecting onto xi. Realistic problems in which there is a substantial
number of explanatory factors, but in which a few tend to dominate, may be best
represented by moderate values of α such as 0.8 or 0.9. We therefore emphasize
these values in the experiments.

The simulations corresponding with the second class of cases mentioned
above uses a structure similar to i)–vi), but with a matrix of additional orthog-
onal variables available as potential explanatory factors. Elements i) and iv)
above are modified, to:

- i′) dimZ = 20, dimZ2 = 20; dim[Z : Z2] = K = 40; κ = 1, . . . , 20
- iv′) Z = Z0Γ, {Z0}ij ∼ N(0, 1); Z2 = Z20Γ, {Z20}ij ∼ N(0, 1) :

that is, of the potential explanatory factors, only half are now in fact relevant
to the DGP. The generation of yi, xi as in v-vi above remains constant in that
only elements of Z are relevant.

Estimation of β (=1 ) is carried out for each class of case by several meth-
ods: using (3.2), as well as by the univariate model, and finally by selection of
un-orthogonalized regressors from Z. In using (3.2), we select the orthogonalized
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regressors both by principal components (largest κ eigenvalues) and by the prod-
uct of eigenvalue and absolute value of the correlation with x (3.12), as described
above (labelled ‘alternative eigenvector selection’ in the figures). The selection
of regressors from Z is included for comparison: this represents a mechanical
implementation of a standard regression method. The selection of regressors is
determined by choosing ten random combinations of κ of the explanatory se-
ries, which are compared by minimum sum of squared residuals (equivalent to
standard information criteria here, since the number of parameters is equal to
κ in each case). The best-fitting combination is taken and compared with the
dimension reduction methods.

For each of the 200 randomly-selected parameterizations and for each class
of case described above, 1000 replications are drawn for each parameterization
and the results for each value of κ are recorded in Figures 1a-d and 2a-d.4 These
figures record the absolute biases and root mean squared errors in models of
the form (3.2), for each of the orthogonal-regressor selection methods, and for
comparison also record the fixed absolute bias (relative to β) in the univariate
model yi = Xiβ

• + e•i , which uses no information in Z, so that plimβ̂• = β +
γ(Z ′Z)−1Z ′X. Each of the means is taken across both sets of parameterizations
and replications of the experiment. Figure 1 records the ‘Class 1’ cases given by
i)-vi) above, and Figure 2 the ‘Class 2’ cases given by substituting i’) and iv’).

Clearly, even a small number of terms in the auxiliary model produces a
substantial bias and RMSE reduction, and bias is typically very close to zero
with approximately eight terms. The effect of bias clearly dominates the RMSE;
increase in variance with κ is small (that is, the RMSE does begin to increase
for large κ, but the effect is so small as to be hard to detect in the figures).

In the first class of cases, selection of orthogonalized regressors by the prod-
uct λ · corr(X,S`) produces small but consistent reductions in bias and RMSE
relative to selection by largest eigenvalue. With respect to selection of untrans-
formed regressors, both standard principal components and the alternative se-
lection method dominate regressor selection with respect to RMSE, although for
κ = 1, 2 all selection methods are approximately equivalent at a decay param-
eter of 0.80. With respect to the bias component, however, regressor selection
is better up to lag 3 for each value of the decay parameter, and thereafter the
orthogonalized regressor methods are preferable. Note of course that very low
values of κ are clearly sub-optimal in general, and that in the region of interest
the orthogonalized regressor methods are clearly superior on both criteria.

In the second class of cases (where some of the potential orthogonalized re-

4In each case, panel a records the absolute bias for α = 0.80; panel b: absolute
bias, α = 0.95; panel c: RMSE, α = 0.80; panel d: RMSE, α = 0.95.
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gressors are irrelevant), the overall pattern of results is very similar; however the
magnitude of the gains produced by the selection method (3.12) which considers
correlation with x is larger, reflecting the greater gains available from focusing
on a subset of potential regressors. With respect to RMSE, the rule (3.12) dom-
inates all others. With respect to bias alone, as in the first class of cases, the
relative performance of selection of untransformed regressors is better, although
the alternative eigenvector method again comes to dominate for κ sufficiently
large (> 6).

Finally, we note the performance of some standard information criteria in
selection of a number of orthogonalized regressors. The RMSE results, showing
a strong asymmetry between deviations of the chosen order below and above the
optimum, suggest that criteria that yield relatively generous parameterizations
will perform relatively well on this problem. In comparing the criteria of Akaike
(1974) (and the Hurvich-Tsai 1989 modification), Hannan-Quinn (1979), and
Schwarz (1978), we find that all of the criteria tend to perform well in selecting an
appropriate number of control regressors–in part a consequence of the tendency
to flatness of the function in the region of the optimum, indicating that small
deviations from the optimum have very low cost. Nonetheless, the relatively
generous AIC performs particularly well, a result of the fact that a given degree
of over-parameterization is in general less costly than the same degree of under-
parameterization.5 6

Further experiments investigated cases specific to time series: one set of
experiments analogous to example 2.3.3 above, and one in which lags of y enter
the process and are either included as part of the set of potential explanatory
factors Z, or are treated specially and used as separate regressors. Results are
not recorded as they follow similar patterns to those in Figures 1 and 2; in
particular, separation of the dynamic effects (lagged y′s) from the other Z ′s
produced little difference in the results.

5. An illustrative application

Although one expects the effect of an increased interest rate (cost of capital)

5The criteria were examined for a variety of sample sizes in addition to the case
with sample size 200 recorded in the figures. For illustration, however, in the
N = 200 case the mean selected orders were: AIC, 11.4; AIC-Hurvich/Tsai,
10.8; Hannan-Quinn, 9.5; Schwarz, 8.8.
6A natural alternative to the use of information criteria would be to compute
the coefficients of interest for various values of κ, and to select a value of κ at
which the estimated values of the coefficient become stable for small changes in
κ. We find that the AIC tends to be successful in making such a choice.
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on production of a capital good such as housing to be negative, the simple regres-
sion of housing starts on short-term real interest rates (i.e., those most directly
subject to influence by monetary authorities) may show a positive estimated
impact of the real interest rate. Using a long-term real interest rate (a rate
which may be of particular interest to house purchasers), the point estimate is
negative in our data, but not significant at conventional levels. Of course, hous-
ing starts are likely to be affected by a large number of other economic factors
which affect the household’s ability to purchase, sense of prosperity, etc., many
of which will be correlated with interest rates. Controlling adequately for this
large number of potential factors might be expected to produce substantially
improved estimates of the true effect of real interest rates on housing starts.

Here we use a sample of US data from 1959:01 through 1999:12 (N = 492),
with estimation on the smaller sample beginning in 1961:1 (N−k̃ = 468) to allow
for lags. The dependent variable is the total number of housing starts, seasonally
adjusted, farm and non-farm; the parameter of interest is the effect of an interest
rate on this quantity. The data set Z of potentially explanatory factors includes
not only the interest rate data to be described below, but also 65 additional
series containing measures of macroeconomic quantities related to industrial
production, personal income, price and wage indices, real sales and consumption,
and employment and hours. Lags of these series or transformations are also used,
for a total of 195 potential explanatory series. It is from this group of 195 series
that eigenvectors will be extracted for statistical controls.

We use three real interest rate variables to investigate this relation: the Fed-
eral Funds rate, three-month Treasury bill rate, and five-year treasury bill rate.
In each case we compute an ex-post real rate from the annualized data by sub-
tracting the previous twelve months’ inflation rate, and investigate the impact
of these rates on the conditional expectation of housing starts. In initial inves-
tigation of lag orders, we find that only the first lag of the real rate is typically
significant at conventional levels, and that the coefficients of the concurrent and
first lagged real rates are approximately equal and opposite. In the results re-
ported here, we therefore report the coefficient on the difference, ∆ri = ri−ri−1.
Table 1 reports the results of the univariate regression hi = c0+β∆ri+εi and the
regression with orthogonal component controls, with number of controls chosen
by AIC and selection by the alternative criterion (3.12), for each of the three
choices of interest rate. Given this criterion and the AIC for selection of κ,
model selection is automatic (the numbers of components selected are 3, 5 and
7 for the three orthogonal component regressions).
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Table 1

Regressions of housing starts on change in real interest rate7

N − k̃ = 468

Univariate Orthogonalized controls8

Parameter ∆r(1) ∆r(2) ∆r(1) ∆r(1) ∆r(2) ∆r(1)
ĉ0 1515 1516 1516 1424 1408 1427

(t−) (101) (101) (101) (79.4) (76.5) (79.7)
β̂ 45.7 23.1 -43.8 -20.3 -45.6 -79.0

(t−) (2.02) (0.87) (-1.29) (-0.96) (-1.88) (-2.58)

All point estimates of effects are negative in the model with orthogonalized
controls. With the long-term rate that one would expect to have the greatest
effect on the housing market, the effect is significant at conventional levels; the
three-month rate as well shows substantial evidence against the null of no effect.

6. Concluding remarks

When a model is designed for the purpose of providing statistical controls for
estimation of a small set of effects of interest, regressor selection can be adapted
to this specific purpose. In particular, control regressors need not correspond
with individually identifiable data series: they can instead be selected using
eigenvectors of the moment matrix of available data so as to provide the greatest
effect for a given number of regressors. That is, a traditional difficulty in classical
principal components regression concerns the interpretation of the coefficients,
but this difficulty does not arise here because of our separation of the effect of
interest from the set of data from which eigenvectors are extracted.

We show that consistent estimation of an effect of interest is possible under
fairly general circumstances that do not require the existence of finite orders
for the number of relevant controls nor for the number of eigenvectors used to
extract information from them. We also show that selection of eigenvectors
by the principal component method can be effective in this context, but that
alternative selection methods designed for the problem at hand, in particular
by taking account of the correlation between an eigenvector and the variable of
interest, can produce better results. Given the increasing availability of large

7∆r(1) = Federal funds rate; ∆r(2) = 3-month Treasury bill rate; ∆r(3) = 5-year
Treasury bill rate.
8Note that coefficients γ̂ on the orthogonalized components are not reported.
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numbers of data series and the applicability of these methods in both cross-
sectional and time series contexts, and given as well the difficulty involved in
specifying a regression model by selecting an appropriate subset from a large
number of regressors, these methods appear to have substantial utility.
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Appendix 1

Proofs of Lemma 1 and Theorems 1–4

Proof of Lemma 1.

(i) Let {µν}∞ν=1 be an orthonormal basis for the Hilbert space H such that
the Wold decomposition for each W` is expressed in this basis. Then we can
express yi − c, X`i, ` = 1, . . .m, and Z`i, ` = 1, . . .∞ in this basis and write

E(yi − c|Fi) =
∞∑

ν=1

aνi
(y)µνi

=
m∑

`=1

β`

∞∑
ν=1

aν(X`i)µνi
+

∞∑
`=1

γ`

∞∑
ν=1

aν(Z`i)µν`
,

where the µνi
are measurable with respect to Fi. Then aν(y) =

∑m
`=1 β`aν(X)+∑∞

`=1 γ`aν(Z). By stationarity of the process,
∑∞

ν=1(aν(y))2 <∞ and∑∞
ν=1(aν(Z))2 <∞. Therefore

∑∞
ν=1 (

∑∞
`=1 γ`aν(Z`))

2
<∞; since∑∞

ν=1 (
∑∞

`=1 γ`aν(Z`))
2 = γ′ΣZγ = ‖Σ

1
2
Zγ‖, we have ‖Σ

1
2
Zγ‖2 <∞. By A1 (iv),

λ(ΣZ) > ζ. Then ‖Σ− 1
2

Z ‖ < ζ−
1
2 and

‖γ‖ ≤ ‖Σ− 1
2

Z Σ
1
2
Zγ‖ ≤ ‖Σ− 1

2
Z ‖‖Σ

1
2
Zγ‖ <∞.

(ii) Since E(εi|Fi) = 0 from (2.1), to show this we need only verify that E|εi|
is finite. Now E|εi| ≤ (E(ε2i ))

1
2 by Jensen’s inequality. Up to the constant, εi =

A′W, A = (1,−β,−γ)′. Therefore ε2t = E(A′WW ′A) ≤ ‖A‖‖ΣW ‖ ≤ λ(ΣW ).
Since ‖A‖ is finite by part (i) of the Lemma, it follows that E|εi| <∞.
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Proof of Theorem 1.

Consider

E(Z(k + 1,∞)γ(k + 1,∞))2 = E(
∞∑

`=1

Zk+`γk+`)2 ≤ sup
`
E(Zk+`)2(

∞∑
`=1

|γk+`|)2.

Here, sup`E(Zk+`)2 is bounded by A1(v), and
∑∞

`=1 |γk+`| → 0 as k→∞ since
by A2,

∑∞
`=1 |γ`| <∞. Thus E(Z(k+1,∞)γ(k+1,∞))2 → 0 and by Chebyshev’s

inequality, Z(k + 1,∞)γ(k + 1,∞)
p→0.

Proof of Theorem 2.

To avoid treating the constant we assume without loss of generality that all
variables are expressed in deviations from the mean. Using the OLS estimator
of β, we have

β̂k − β = (X ′MkX)−1X ′Mk(Z(k + 1,∞)γ(k + 1,∞) + ε), (A2.1)

where Mk = I − Z(k)(Z(k)′Z(k))−1Z(k)′. From Hannan (1960) it follows that
under Assumption A1 (i-iii, v, vi), for any δ1 > 0 and for large enough N,

sup
`1,`2

(N − k̃)E

 1
N − k̃

N∑
i=k̃

W`1,iW`2,i+ξ − φ`1,`2(|ξ|)

2

< δ1,

and so as N →∞, k →∞, and kN−1 → 0,

(N − k̃)−1
N∑

i=k̃

W`1,iW`2,i+ξ − φ`1,`2(|ξ|) = Op(N − k̃)−
1
2 .

Therefore

1
N − k̃

Z(k)′Z(k)− E(
1

N − k̃
Z(k)′Z(k)) = Op(N − k̃)−

1
2 , (A2.2)

1
N − k̃

X ′Z(k)− E(
1

N − k̃
X ′Z(k)) = Op(N − k̃)−

1
2 , (A2.3)

uniformly as N → ∞, k → ∞, and kN−1 → 0. From Assumption A1(iv) it
follows that E( 1

N−k̃
Z(k)′Z(k)) is invertible, that its inverse has a finite norm,
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and from Berk (1974, Lemma 3), for k2N−1 → 0 it is straightforward to show
that9 ∥∥∥∥( 1

N − k̃
Z(k)′Z(k))−1 − [E(

1
N − k̃

Z(k)′Z(k))]−1

∥∥∥∥ = op(1). (A2.4)

Thus, substituting from (A2.2–A2.4), we have

‖ 1
N − k̃

X ′MkX −Gk‖ = op(1), (A2.5)

where Gk = E( 1
N−k̃

X ′MkX) =

E

(
(

1
N − k̃

)
1
2X ′[I − (

1
N − k̃

)
1
2Z(k)Qk(

1
N − k̃

)
1
2Z(k)′](

1
N − k̃

)
1
2X

)
,

with Qk = (E( 1
N−k̃

Z(k)′Z(k)))−1.

Since by Assumption A1(iv) X cannot belong to the space spanned by the
Z ′s, the eigenvalues of Gk are bounded away from zero independently of k; it is
straightforward to show that

∥∥∥∥( 1
N − k̃

X ′MkX)−1 −G−1
k

∥∥∥∥ p→0. (A2.6)

Next consider 1
N−k̃

X ′Mk(Rkθ + ε). For 1
N−k̃

X ′Mkε, write

1
N − k̃

X ′ε−
(

1
N − k̃

X ′Z(k)
)(

1
N − k̃

Z(k)′Z(k)
)−1( 1

N − k̃

)
Z(k)′ε.

For 1
N−k̃

X ′ε, by Hannan (1960) we have

∥∥∥∥ 1
N − k̃

X ′ε− E(
1

N − k̃
X ′ε)

∥∥∥∥ = Op((N − k̃)−
1
2 ,

9The notation ‖.‖ refers to either the vector or matrix norm in the Euclidean
vector space.
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and since εi is a martingale difference sequence with respect to Fi, E( 1
N−k̃

X ′ε) =

0 and so 1
N−k̃

X ′ε = Op((N − k̃)−
1
2 ). Exactly the same considerations provide

1
N−k̃

Z(k)′ε = Op((N − k̃)−
1
2 ). By (A2.3) and (A2.4),

(
1

N − k̃
X ′Z(k)

)(
1

N − k̃
Z(k)′Z(k)

)−1

= Op(1),

and we obtain that 1
N−k̃

X ′Mkε = Op((N − k̃)−
1
2 ).

Finally, 1
N−k̃

X ′Mk(Z(k + 1,∞)γ(k + 1,∞)) is an m × 1 vector with `′th
component

b` =
1

N − k̃

N∑
j=1

(X ′Mk)`j ·
∞∑

i=1

Zk+i+1γk+i+1.

Then

|b`| ≤
(

1
N − k̃

X ′MkX

) 1
2

 1
N − k̃

N∑
j=k

(
∞∑

i=1

Zk+i+jγk+i+j)2

 1
2

≤ Op(1)

 1
N − k̃

N∑
j=k

(
∞∑

i=1

Zk+i+jγk+i+j)2

 1
2

= op(1),

where the second inequality follows from (A2.5) and the last result by Theorem
1.

It follows that β̂k−β = Op(1) ·
∑∞

i=1 |θk+i|+Op((N −k)− 1
2 ), and Theorem

2 follows.

Proof of Theorem 3.

From (A2.1) we can write

(N− k̃) 1
2 (β̂k−β) =

(
X ′MkX

N − k̃

)−1

(N− k̃)− 1
2X ′Mk(Z(k+1,∞)γ(k+1,∞)+ε).

By (A2.6) this is

[G−1
k + op(1)] [(N − k̃)−

1
2X ′MkZ(k + 1,∞)γ(k + 1,∞) + (N − k̃)−

1
2X ′Mkε].
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Since {εi,F〉} is a martingale difference (m.d.) sequence, the moment con-
ditions (v) imply that the m.d. central limit theorem applies to the m.d. array,
and as N→∞, k→∞, k−1N→∞, for Vk = E( 1

N−k̃
X ′Mkεε

′MkX), we have

(N − k̃)
1
2V

− 1
2

k X ′Mkε
D→N(0, Im).

Recall that (N − k̃)− 1
2X ′MkZ(k+1,∞)γ(k+1,∞) is an m×1 vector with

`’th component (N − k)
1
2 b`, where by (A2.8), |b`| ≤ Op(1)

∑∞
i=1 |γk+i|. By the

conditions of Theorem 3,
∑∞

i=1 |γk+i| = o((N − k̃)
1
2 ). Therefore

(N − k̃)
1
2V

− 1
2

k Gk(β̂k − β) D→N(0, Im).

If ε is independent of (X,Z) then G−1
k VkG

−1
k = σ2

εE
(

X′MkX

N−k̃

)
.

Proof of Theorem 4.

Consider (A2.1) and the last line of (3.1), to write

β̂κ − β = (X ′MκX)−1
X ′Mκ(R(κ,∞)θ(κ,∞) + ε); (A4.1)

β̂κ,ν − β = (X ′Mκ,νX)−1
X ′Mκ,ν(R(κ,∞)θ(κ,∞)− Sνθν + ε). (A4.2)

Here we define Pκ,ν as the projection onto the space spanned by S(κ,K) and
Sν , and Mκ,ν = I − Pκ,ν , we note that MκSν = Pκ,νSν = Sν , Pκ,νX =

PκX + λ̂−2
ν SνS

′
νX, and also Mκ,νX = MκX − λ̂−2

ν SνS
′
νX; further, X ′Mκ,νX =

X ′MκX − λ̂−2
ν X ′SνS

′
νX.

For(X ′Mκ,νX)−1 we can write

(X ′Mκ,νX)−1 = (X ′MκX)−
1
2 [I −D]−1(X ′MκX)−

1
2 , (A4.3)

where D = λ̂−2
ν (X ′Mκ,νX)−

1
2X ′MκSνS

′
νMκX(X ′MκX)−

1
2 .

Next consider the m× 1 vector

Âκ(ν) = λ̂−1
ν (X ′MκX)−

1
2X ′MκSν , (A4.4)

and the matrix D = Âκ(ν)Âκ(ν)′. Recall that the matrix norm for this matrix
is
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‖Âκ(ν)Âκ(ν)′‖ = sup‖x‖=1 x
′Âκ(ν)Âκ(ν)′x = Â′κ(ν)Âκ(ν).

For each Xi, Ei = MκXi is the vector of residuals from regressing Xi on
the κ included orthogonal regressors. Consider a regression of Sν on E; the R2

in that regression is

1 ≥ R2 = λ̂−2
ν (S′νE(E′E)−1E′Sν) = Â′κ(ν)Âκ(ν). (A4.5)

We next show that there exists A < 1 such that for any Mκ, Sν ,

P r(Aκ(ν)′Aκ(ν) < A) → 1 as N,K→∞ under the conditions of Theorem 2.
Consider the Wold decomposition of X,Z expressed in the orthonormal ba-

sis of H, {µν}∞ν=1. By A1(iv) there exists some µ` such that for X` the coefficient
on µ`, αµ`

(X`), is non-zero, but for any Zj , αµ`
(Zj) = 0. Then for any projec-

tion M of X` orthogonally to any subset of {Z`}, MX` = E`, the coefficient on
µ` is αµ`

(X`). For any transformation CZ, where CC ′ = I, of Z, the correspond-
ing coefficient is zero. Then for E`, E(E2

` ) = E(E` − αµ`
(X`)µ`)2 + αµ`

(X`)2.
Under the conditions of Theorem 2, and by methods similar to the proof of The-
orem 2, convergence of sample moments to population moments follows. Then

Pr(Â′κ(ν)Âκ(ν) < A) → 1 for A = 1−min1≤`≤m

(
αµ`

(X`)
2

var(X`)

)
.

It follows that

(I − Âκ(ν)Â′κ(ν))−1 = I + Âκ(ν)Â′κ(ν) + · · ·+ (Âκ(ν)Â′κ(ν))n + · · · (A4.6)

is a valid expansion; note that

(I − Âκ(ν)Â′κ(ν))−1 = I + Âκ(ν)(I − Â′κ(ν)Âκ(ν))−1Â′κ(ν). (A4.7)

Express the right-hand side of (A4.3) via Âκ+1 from (A4.4); by applying (A4.7)
we can verify that (A4.3) can be written as

(X ′Mκ,νX)−1

= (X ′MκX)−
1
2 [I + Âκ(ν)(I − Â′κ(ν)Âκ(ν))−1Â′κ(ν))](X ′MκX)−

1
2

= (X ′MκX)−1 + Ωκ,ν ,

(A4.8)

where Ωκ,ν = (X ′MκX)−
1
2 Âκ(ν)(I − Â′κ(ν)Âκ(ν))−1Â′κ(ν)(X ′MκX)−

1
2 .

Next define v = R(κ,∞)θ(κ,∞) + ε. Then

β̂κ,ν − β = [(X ′MκX)−1 + Ωκ,ν ][X ′Mκ − λ̂−2
ν X ′SνS

′
ν ][v − Sνθν ]. (A4.9)
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From (A4.1),(A4.4), (A4.8) and (3.1), (A4.9) becomes

β̂κ,ν − β = β̂κ − β − (X ′MκX)−
1
2 λ̂νθνÂκ(ν) + (X ′MκX)−

1
2

· [I − Âκ(ν)Â′κ(ν)]−1Âκ(ν)λ̂−1
ν [S′νZ(K + 1,∞)γ(K + 1,∞) + S′νε],

(A4.10)
and (3.8) follows. In ψ2(Âκ(ν)) of (3.7), the factor

(X ′MκX)−
1
2 [I − Âκ(ν)Â′κ(ν)]−1Âκ(ν)

= N− 1
2 (X′MκX

N )−
1
2 [I − Âκ(ν)Â′κ(ν)]−1Âκ(ν)

= Op(N− 1
2 ), since ‖Âκ(ν)‖ < A with probability arbitrarily close to 1 (for large

enough N), and

|N− 1
2
Sν

λ̂ν

Z(K + 1,∞)γ(K + 1,∞)| ≤ Op(N− 1
2 )|Z(K + 1,∞)γ(K + 1,∞)|,

which goes to zero in probability by Theorem 1. As well, for any νi and νj ,

E(Sνiεi) = 0 and cov(Sνiεi, Sνj εj) = 0 since εi is a m.d. sequence. Therefore

sup
ν
P (|N−1

N∑
i=1

Sνi
εi| > ε) ≤ sup`E(W 2

` )
Nε

.

Thus (3.9) of Theorem 4 follows. Recall that ψ1(λ̂ν , Âκ(ν)) = (E′
κEκ)−1E′

κSνθν

= ζ̂κ(ν)θν ; the rest of the theorem then follows.

Proof of Theorem 5.

To simplify the proof consider m = 1. All that we need to show in addition
to the result of Theorem 2 is that uniformly over all processes in Ω,∣∣(X ′MkX)−1X ′S(κ+ 1,K)θ(κ+ 1,K)

∣∣→p 0. (A5.1)

Rewrite (X ′MkX)−1X ′S(κ+ 1,K)θ(κ+ 1,K) =

(
X ′MkX

N

)−1(
X ′X

N

) 1
2 K∑

ν=κ+1

ρ̂ν
λ̂ν√
N
θν .

Note that |θν | ≤ ‖γ‖ which by Lemma 1 is bounded. Using the Wold decompo-
sition similarly to the proof of Theorem 4 we show that convergence of sample
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moments to population moments and A1(iv) imply that for some constant C1

independently of Mκ

Pr

{
sup
Mκ

(
X ′MkX

N

)−1(
X ′X

N

) 1
2

> C1

}
→ 0.

Thus

Pr

{(
X ′MkX

N

)−1(
X ′X

N

) 1
2 K∑

ν=κ+1

ρ̂ν
λ̂ν√
N
θν < C1‖γ‖

K∑
ν=κ+1

|ρ̂ν |
λ̂ν√
N

}
→ 1.

(A5.2)

Consider a vector (|ρ̂1| λ̂1√
N
, ...., |ρ̂K | λ̂K√

N
)′; its norm is the same as that of

(ρ̂1
λ̂1√
N
, ...., ρ̂K

λ̂K√
N

)′. By convergence of sample moments and boundedness of the

matrix norm of the covariance matrix, for some constant C2 and any K

Pr


K∑

ν=1

(
ρ̂ν

λ̂ν√
N

)2

> C2

→ 0.

Consider now a set

Ξ = {x = (x1, ..., xK)′ ∈ RK : ‖x‖ = C;xν1 ≥ xν2 for ν1 < ν2}

and solve

max
x∈Ξ

K∑
ν=κ+1

|xν | .

It is easy to see that the solution is x with all components equal to C√
K

; thus

the maximized value is CK−κ√
K
. As K → ∞ the maximum goes to zero if κ =

K − o(
√
K).

Then for any ε if κ = K − o(
√
K)

Pr

{
K∑

ν=κ+1

|ρ̂ν |
λ̂ν√
N

> ε

}
→ 0

always, and combined with (A5.2) the result of Theorem 5 follows.
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