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Abstract
The binary-response maximum score (MS) estimator is a robust

estimator, which can accommodate heteroskedasticity of an unknown
form; J. Horowitz (1992) defined a smoothed maximum score esti-
mator (SMS) and demonstrated that this improves the convergence
rate for sufficiently smooth conditional error densities. In this paper
we relax Horowitz’s smoothness assumptions of the model and extend
his asymptotic results. We also derive a joint limiting distribution
of estimators with different bandwidths and smoothing kernels. We
construct an estimator that combines SMS estimators for different
bandwidths and kernels to overcome the uncertainty over choice of
bandwidth when the degree of smoothnes of error distribution is un-
known. A Monte Carlo study demonstrates the gains in efficiency and
robustness.
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1 Introduction

The maximum score (MS) estimator was introduced by Charles Manski
(1975, 1985) as a robust alternative to traditional discrete-response estima-
tors such as logit and probit. It allows for arbitrary dependence between
the regressors and error term and does not impose restrictive distributional
assumptions. The price of robustness is slow convergence rate (n−1/3) and
non-standard asymptotics (Kim and Pollard 1990).
J. Horowitz (1992) has proposed a smoothed version of the MS estima-

tor. The original objective step-function was modified so that it became
continuous and differentiable, and could be analyzed through the Taylor se-
ries approximation. The smoothed estimator has a rate of convergence that
can under assumptions of sufficiently smooth cumulative distribution func-
tions (CDF) be made arbitrarily close to n−1/2 and also a normal asymptotic
distribution; at the same time it preserves the robust qualities of the original
estimator. Horowitz’s results show that with smooth CDFs a higher-order
smoothing function leads to a reduction in the MSE. However, unless the
CDF smoothness assumptions hold, the rate improvement over the Man-
ski estimator may be only marginal. Some plug-in methods were proposed
by Horowitz to determine an optimal bandwidth, which minimizes the mean
squared error (MSE), and to correct asymptotic bias. The process is not fully
automatic and the MSEmay vary substantially, as was shown byMonte Carlo
experiments (Horowitz 1992). Most importantly, the estimates of the optimal
bandwidth and of the asymptotic bias rely heavily on the assumption that
the smoothness of CDFs is known. The incorrectly determined smoothness
of the model may lead to oversmoothing or undersmoothing. Oversmooth-
ing, which is caused by assuming the level of smoothness higher than the
actual one, makes the estimator concentrate around the wrong value. Un-
dersmoothing yields a consistent estimator but increases the mean squared
error. Thus, the estimator which was intended to be a robust alternative to
parametric techniques turns out to be sensitive to the smoothness properties
of the model1.

1Recently other binary-response estimators that allow for heteroskedasticity have been
introduced. Assuming that the error distribution is conditionally independent of one of the
regressors, Lewbel (2000) developed an asymptotically normal estimator which converges
at the parametric rate. Khan (2001) proposed a heteroskedastic probit with incorporated
sieve approximation; the estimator imposes stronger conditions on the smoothness of the
model than the maximum score estimator.
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Here, similarly to Horowitz, we consider a smoothed maximum score
(SMS) estimator. There are two extensions of the asymptotic results for
the SMS that we offer. First we extend the results of Horowitz to a wider
class of models where the derivatives of the conditional CDF of the error term
need not be smooth (we require only a uniform continuity condition); we also
correct some problems that the proof in Horowitz (1992) had and thus con-
firm the validity of his results2. Second, similarly to Zinde-Walsh’s (2002)
results for the least median of squares estimator, we derive the joint limit
process for SMS estimators with different bandwidths and kernel functions.
Additionally, here we propose a new estimation strategy that is robust

to the degree of model smoothness. We consider a set of SMS estimators
corresponding to different bandwidths (the set of bandwidths has to include
undersmoothing and a Horowitz-optimal bandwidth) and, possibly, different
functions (e.g. kernels of different order). We select a linear combination
that minimizes the estimated mean squared error; we name the resulting es-
timator the ”combined estimator”. If Horowitz’s smoothness conditions are
satisfied, the combined estimator in comparison with Horowitz-optimal may
lose some efficiency as a result of overparametrization, but since Horowitz-
optimal estimator will always be considered as a candidate for combined
estimator the loss cannot be too large. On the other hand, if the smooth-
ness conditions do not hold, Horowitz-optimal estimator will have a large
asymptotic bias caused by oversmoothing and thus will have a sub-optimal
rate, but the combined estimator which always includes undersmoothed esti-
mators among others could be asymptotically unbiased and achieve a better
convergence rate. The results of our Monte Carlo experiments support these
conclusions.
We find the loss of efficiency of the combined estimator relative to the

best individual estimator to be small, and the performance to be uniformly
good for combinations involving various sets of smoothing functions. In con-
trast, no individual Horowitz-optimal estimator delivers uniformly good per-
formance over models with CDFs of varying degrees of smoothness: each one
that has a low MSE in some case gives extremely bad results in some other
cases.
The paper is organized as follows. Section 2 provides the definitions

2The problems in Horowitz’s proofs were pointed out to us by D. Andrews and also by
R. De Jong; they both questioned whether Horowitz’s assumptions were sufficient for the
results; we discuss additional assumptions.
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and assumptions for the MS estimator and the SMS estimator; Horowitz’s
smoothness assumptions are discussed and generalized to require continuity
rather than smoothness. We introduce alternative additional assumptions
that permit us to fix the proof. Section 3 provides asymptotic results under
our assumptions for the SMS estimator, as well as for the joint limit process
for several SMS estimators. The new combined estimator is defined in Section
4, where we discuss how to construct it (selection of bandwidths, smoothing
kernels, estimation of the MSE of a linear combination) and evaluate its
performance in a Monte Carlo experiment.
Appendix A provides the proofs of the results in Section 3 and Appendix B

provides the polynomial smoothing kernels that were used in our estimation.

2 Definitions, notation, assumptions

2.1 The binary choice model and Manski maximum
score estimator

Consider the binary response model

yi = sgn(x
0
iβ + ui), i = 1, ..., n,

where sgn(z) =
½
1 if z ≥ 0
−1 otherwise

, xi ∈ Rk is a random vector of explana-

tory variables and ui is a scalar error term.
Assumption 1 (Median Regression). For almost every xi med(ui|xi) =

0.
Assumption 1 implies the same property for any scalar multiple of ui;

then β can be identified only up to scale. Consider β such that β0β = 1.
To estimate β from a sample of data (xi, yi) Manski (1975) proposed the

maximum score (MS) estimator that solves the problem

max
b

1

n

X
yi · sgn(x0ib) subject to normalization b0b = 1, (1)

where 1
n

P
yi · sgn(x0ib) is called a score function3. The estimator matches

up as many responses as possible. The formula (1) can be written in several
equivalent forms as in Manski (1985).

3We utilize the sign function here rather than the indicator function; the two forms are
equivalent.
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The identification (even up to scale) is almost certain to fail whenever
the support of X is finite or whenever one of the responses is a rare event.
The next assumption ensures identifiability of bb.
Let Fx be the k-variate marginal distribution of x.
Assumption 2.
(a) The support of Fx is not contained in any proper linear subspace of

Rk.
(b) 0 < Pr[y ≥ 0|x] < 1, for almost every x.
(c) The distribution of at least one of the regressors, xj, conditional on

(x1, ..., xj−1, xj+1, ..., xk) has everywhere positive Lebesgue density. The cor-
responding coefficient βj 6= 0 .
(d) β0 = β/ kβk is uniquely defined in the model with Assumption 1.
Assumption 3. (yi, xi), i = 1, ..., n, is a random sample of (y, x).
Under assumptions similar to these Manski (1975) demonstrated consis-

tency of the MS estimator. Kim and Pollard (1990) make additional assump-
tions which we summarize as follows:
Assumptions KP.
(a) xi has a continuous density fx(x);
(b) density fx(x) has compact support;
(c) fx(x) is continuously differentiable;
(d) The function P|x[(I(x0β + u ≥ 0) − I(x0β + u < 0)] is continuously

differentiable.
Under these assumptions, Kim and Pollard derived the limit process for

the MS estimator: the estimator converges at rate n−
1
3 to the maximizer of

a Gaussian process. The Assumptions KP can be partially relaxed.

2.2 Smoothed MS estimator

Horowitz (1992) considered a smoothed version of the problem (1):

bb = argmax 1
n

X
yi ·K(x

0
ib

σn
) subject to normalization b1 = 1, (2)

where K is a smoothing kernel (similar to a distribution function). The
normalization assumes that it is known which continuous variable appears
with a non-zero coefficient (β1) and requires the assumption of compactness
of the parameter space.
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Our smoothed version of (1) differs from (2) in a few minor details. First,
since the results in Horowitz utilize only derivatives of K, we introduce
smoothing via a function ψ such that K 0(x

0
ib

σn
) = ψ(

x0ib
σn
), where ψ is the usual

kernel function. Then
R
sgn(x0ib− σnw)ψ(w)dw = 2K(

x0ib
σn
)− 1.

Assumption 4.
(a) The smoothing function ψ is a continuously differentiable function

with support in [−1, 1];
(b)

R
ψ(w)dw = 1;

(c) ψ is a kernel function of order h:
R
wiψ(w)dw = 0 if 0 < i < h, h ≥ 2;

(d) The bandwidth parameter σn → 0 and σnn
1
3 →∞.

Second, we use Manski’s normalization b0b = 1. This normalization allows
a slightly less constrained model in not having to indicate which of the con-
tinuous components of x enters with a non-zero coefficient and automatically
provides a compact parameter space. Thus, we solve

bb = arg max
b0b=1

n−1
X

yi

Z
sgn(x0ib− σnw)ψ(w)dw. (3)

Denoting Horowitz’s estimator by bH with bH1 = 1, bH is in a compact space,

we have that our b =
bH
||bH || .

Third, we partition the vectors b and xi in a different way from Horowitz,
who projects x onto z = xβ and onto ex = (x2, ..., xk). Consider the projector
onto the space spanned by β, Pβ =

ββ0
β0β = ββ0 and orthogonal Mβ = I − Pβ;

denote x0iβ by zi; then xi = Pβxi +Mβxi = ββ0xi +Mβxi = βzi + Vi , where
Vi = Mβxi. Denote Mβb by g, β

0b by bβ. This provides b = ββ0b +Mβb =
bββ + g, b0b = b2β + g

0g, and x0ib = zibβ + V
0
i g
4.

Denote the density of zi conditional on Vi by f|V (z) and the cumulative
distribution of ui conditional on zi and Vi by F|z,V (u) ≡ F (u|z, V ). For
any integer i > 0 define F (i)|z,V (−z) =

∂i

∂zi
F|z,V (−z). Thus, F (1)|z,V (−z) =

− ∂

∂u
F (u|z, V )|u=−z + ∂

∂z
F (u|z, V )|u=−z. Its smoothness depends on the

4The limit processes for this case are very similar in form to Horowitz’s, and either
bootstrap or the same methods as in Horowitz will provide estimates for the limiting
moments. We thus do not focus on the differences and in referring to Horowitz’s assump-
tions and proofs consider them applied to our (Manski’s) normalization with appropriate
modifications.
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shape of the conditional density of u,
∂

∂u
F (u|z, V ), and the form of het-

eroskedasticity,
∂

∂z
F (u|z, V ).

We extend the results of Horowitz to cases of non-differentiable derivatives
of the CDF of the error. In order to represent such results we need to
distinguish between the degree of smoothness of the derivatives in the model
and the order of kernel, denoted h. Pollard (1993) denoted by s the degree of

smoothness of the conditional density
∂

∂u
F (u|z, V ) in some neighbourhood

of z = 0 for almost every V ; he extended some of the results to fractional s

including the range 1 < s < 1 + α, 0 < α < 1, where
∂

∂u
F (u|z, V ) satisfied

an α-order Lipschitz condition in the neighbourhood of zero (in Horowitz
(1992) integer s = h, h ≥ 2, so the smoothness of the derivatives is the same
as the order of the kernel). We focus here on situations where we do not
assume anything beyond continuity of F (1)|z,V (−z); we denote this degree of
smoothness by s ≥ 1+; this includes the cases considered by Pollard.
Assumption 5.
(a) For z in some neighbourhood of zero N(0) and almost all V , the

conditional density fz|V (z) exists, satisfies 0 < |fz|V (z)| < M < ∞ and
satisfies a Lipschitz condition at 0; also fz|V (z) exists and is bounded by M
a.e.
(b) For z in some neighbourhood of zero N(0), for the conditional dis-

tribution Fu|z,V (u) its derivative F
(1)
|z,V (−z) exists, satisfies 0 < |F (1)|z,V (−z)| <

M <∞ and is uniformly continuous at z = 0 a.e.;
(c) The components of V and of the matrices V V 0 and V V 0V V 0 have

finite first absolute moments.
If Assumption 8 of Horowitz is satisfied (or its analogue for this normaliza-

tion), our Assumption 5(a) follows; if Assumption 9 holds, our Assumption
5(b) follows; thus our Assumptions 5(a,b) relax those of Horowitz. Note
however that Kim and Pollard have more stringent Assumptions KP on the
regressors and that in the absence of those or similar assumptions the rate
and limit process for the Manski MS estimator have not been established.
We also find that we cannot correct the error in Horowitz’s proof without
some additional restriction5. Adding the KP assumptions would be sufficient.

5De Jong and Woutersen also provide additional to Horowitz’s assumptions in their
working paper ”Dynamic time series binary choice” (2003).
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Another alternative is provided in the following assumption.
Assumption 6.
(a) F (1)|z,V (−z) exists and is bounded by M a.e.; and
(b) fz|V (z) satisfies a Lipschitz condition |fz|V (z + α) − fz|V (z)| < Mα

a.e.
Define the scalar constants δψ ≡

R
ψ2(w)dw and αψ =

R
ψ(w)dw; they

determine the dependence of the asymptotic variance of the smoothed esti-
mator on the smoothing function.
As in Horowitz (1992), we introduce matricesD andQ, which will charac-

terize the asymptotic distribution (note that by Assumptions 5 the moments
exist):
D ≡ E £fz|V (0)V V 0¤ and
Q ≡ 2E[F (1)|z,V (0)fz|V (0)V V

0].
Recall that V = MβX thus for any vector α such that Mβα = 0 both

Qα = Dα = 0. Denote the subspace onto which Mβ projects by Rk−1(Mβ).
Assumption 7. The matrix Q has rank k − 1 and is negative definite

on the space Rk−1(Mβ).

3 Asymptotic results for the smoothed esti-
mator

Under Horowitz’s (1992) smoothness conditions on the derivatives of the
conditional distribution, which correspond to integer s and require continuous
differentiability of the derivatives in the neighbourhood of zero up to degree
h = s, using any hth order kernel K 0 produces an optimal rate of n−

h
2h+1

for the estimator of β. The resulting distribution has an asymptotic bias
that can be eliminated either by subtracting the estimate of the bias or
by undersmoothing, in which case the bandwidth sequence approaches zero
faster than at the optimal rate.
Here in subsection 3.1 we derive the limit process for the smoothed esti-

mator b̂ when the degree of smoothness is s ≥ 1+ (continuity). The resulting
distribution is similar to Horowitz’s but in non-smooth cases may have a slow
(marginally better than n−

1
3 ) convergence rate.

In Section 3.2 we provide the joint distribution of smoothedMS estimators
based on several bandwidths and smoothing functions; the joint distribution

9



implies that there may be efficiency gains from considering several estimators
jointly.

3.1 Asymptotic results for the smoothed estimator with
degree of smoothness s ≥ 1+ (continuity)

Without differentiability of the first derivative of the CDF the sharp condi-
tions on the rate of the estimator stated in Horowitz’s Theorem 2 do not
hold. To express the conditions under which we can state asymptotic results
we define

ξ(σnw, V ) =
£
1− 2Fu|z=σnw,V (−σnw)

¤ · fz|V (σnw)
+2σnwF

(1)
|z=0,V (0)fz|V (0) (4)

and define

A(σn) =
1

σn
E(V

Z
ξ(σnw, V )ψ(w)dw). (5)

Under assumptions 1-7 A(σn) converges to 0 (see Appendix A, Lemma
1). Under Horowitz’s assumptions a sharp rate for A(σn) can be determined.
Theorem 1. Under Assumptions 1 - 7, if σn is such that as n→∞
(a) n1/2σ3/2n A(σn)→ 0

then n1/2σ1/2(b− β)
d→ N(0, δQ−1DQ−1);

more specifically, n1/2σ1/2Mβ(b− β)
d→ N(0, δQ−1DQ−1)

and Pβ(b− β) = op(n
−1σ−1n );

(b) n1/2σ3/2n A(σn)→ A, where 0 < ||A|| <∞
then n1/2σ1/2(b− β)

d→ N(−Q−1A, δQ−1DQ−1)
and Pβ(b− β) = Op(n

−1σ−1);
(c) n1/2σ3/2n A(σn)→∞

then σ−1n ||A(σn)||−1(b− β) +Q−1||A(σn)||−1A(σn) p→ op(1).
Proof in Appendix A.
Thus for case (a) (undersmoothing) we obtain a limit normal distribution

and for (b) and (c) the estimator is asymptotically biased. Without know-
ing the specific s ≥ 1+ all that is known is that for some rate of σn → 0
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there is undersmoothing: no asymptotic bias and a limiting Gaussian distri-
bution, and for some slower convergence rate of σn there is oversmoothing:
the estimator is not consistent. Existence of an optimal rate depends on con-
vergence properties of A(σ) that cannot be asserted without strengthening
our assumptions6.

3.2 The joint limit process for smoothed MS estima-
tors

Assume that b(σn,ψ) represents the smoothed MS estimator when the func-
tion ψ and bandwidth σn are utilized, and consider a number of values of
σn : σn1 < σn2 < ... < σnm. Assume that σni for i ≤ m0 corresponds to under-
smoothing (part (a) of Theorem 1) while σni for i such thatm0 < m00 < i ≤ m
corresponds to oversmoothing (part (c) of Theorem 1). If m00 > m0 + 1 then
σni with m0 + 1 ≤ i ≤ m00 corresponds to the optimal rate O(n

h
2h+1 ) in

Horowitz if integer s = h.
We combine each σni with each smoothing function ψj from some set of

functions that satisfy Assumption 4, j = 1, ..., l. Denote by A(σi,ψj) the
function A(σ) from (5) for the function ψ = ψj, and similarly A(ψj) for the
A in part (b) of Theorem 1. Define

η(σi,ψj) =


n1/2σ

1/2
i (b(σi,ψj)− β) for i = 1, ...,m0

n1/2σ
1/2
i (b(σi,ψj)− β +Q−1A(ψi)) for i = m

0 + 1, ...,m00

||A(σi
bβ
,ψj)||−1

h
σ−1n (b(σi,ψj)− β) +Q−1A(σi

bβ
,ψj)

i
for i = m00 + 1, ...,m.

Let δ = ( δψ1
α2ψ1
, ...,

δψl
α2ψl
) and τψiψj ≡

R
ψi(w)ψj(w)dw

αψiαψj
. Note that δ and τψiψj are

invariant with respect to positive scale changes in the functions ψ therefore
we can assume that αψi = 1 for all i and then have δ = (δψ1, ...δψl) and
τψiψj =

R
ψi (w)ψj (w) dw.

Theorem 2. Suppose that Assumptions 1 - 7 hold for each bandwidth
σni, 1 ≤ i ≤ m, and for each ψj, 1 ≤ j ≤ l and that the functions {ψj}lj=1
form a linearly independent set.

6Note that if the s is unbounded (infinite differentiability) choosing a higher h is always
preferable asymptotically; therefore in this case as well one cannot find an optimal rate
and weighting function that will ensure the lowest MSE.
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(a) If each σ1, ...,σm0 (m0 ≤ m) satisfies condition (a) of Theorem 1 then
(η(σ1,ψ1)

0, ..., η(σ1,ψl)
0, ..., η(σm0 ,ψ1)

0, ..., η(σm0 ,ψl)
0)
0

d→ N(0,Ψ⊗Q−1DQ−1)
where the lm0 × lm0 matrix Ψ has elements

{Ψ}ij =


τψiψj if σi = σj,√
d
R
ψi (w)ψj (dw) dw if σi/σj = d <∞,

0 if σi/σj → 0 or σi/σj →∞;
(b) If each σm0+1, ...,σm00 (m0 ≤ m00 ≤ m) satisfies condition (b) of Theo-

rem 1 then

(η(σm0+1,ψ1)
0, ..., η(σm0+1,ψl)

0, ..., η(σm00 ,ψ1)
0, ..., η(σm00 ,ψl)

0)
0

d→ N(0,Ψ⊗Q−1DQ−1)
where the lm0× lm0 matrix Ψ has elements {Ψ}ij =

√
d
R
ψi (w)ψj (dw) dw,

with σi/σj = d <∞;
(c) If each σm00+1, ...,σm (m

00 ≤ m) satisfies condition (c) of Theorem 1
then

(η(σm00+1,ψ1)
0, ..., η(σm00+1,ψl)

0, ..., η(σm,ψ1)
0, ..., η(σm,ψl)

0)
0 p→ 0

(d) Cov(η(σi1 ,ψj1), η(σi2 ,ψj2))→ 0 for 1 ≤ i1 ≤ m00 and m00 + 1 ≤ i2 ≤
m, and any j1, j2.
Thus, if the bandwidths approach 0 at different rates or

R
ψi(w)ψj(w)dw =

0, the corresponding estimators b(σ,ψ) are asymptotically independent. This
is a consequence of the fact that only a small fraction of observations have
any effect on the estimator, therefore reweighting observations with different
kernel functions can produce estimators with independent limit processes.

4 The combined estimator

As the results in Section 3 show, an optimal rate for an SMS estimator
may be problematic. Here we use the results of Theorem 2 to construct
a new combined estimator that optimally combines several bandwidths and
smoothing functions in the sample instead of focussing on a single bandwidth.

12



Although efficiency may suffer in straightforward cases when an optimal rate
can be found, theMonte Carlo experiments show that the combined estimator
provides remarkably robust performance over a variety of cases. Section 4.1
defines the combined estimator. Section 4.2 addresses practical issues of
construction of the combined estimator. Section 4.3 discusses performance
in a Monte Carlo experiment.

4.1 Definition of the combined estimator.

Suppose that bandwidths σn1 < σn2 < ... < σnm represent sequences of
rates where σn1 corresponds to undersmoothing and σnm to oversmoothing;
some optimal rate may or may not exist. For a set of smoothing functions
ψ1, ...,ψl, Theorem 2 indicates the structure of the joint limit distribution of
b(σni,ψj).
Consider a linear combination b({aij}) =

P
aijb(σni,ψj),

P
aij = 1.

Assume that the biases, variances and covariances for all b(σni,ψj) are known.
Then one could find weights {aij} that minimize the mean squared error
MSE(b({aij})). Each individual b(σni,ψj) is included, thus the minimized
MSE cannot be above the MSE for individual (σni,ψj).
To determine the weights in practice we need to estimate the biases and

covariances of all b(σni,ψj).
Denote estimated biases and covariances by ”hats”.
Then \MSE(b({aij})) = tr

P
ai1j1ai2j2{dbias(b(σi1,ψj1))dbias(b(σi2 ,ψj2))

+dCov(b(σi1,ψj1), b(σi2,ψj2))},
and the combined estimator is

bbc = b({baij}), where {baij} = argmin\MSE(b({aij})). (6)

4.2 Construction of the combined estimator

4.2.1 Estimation of variances and biases

Consistent estimators for biases and covariances can be obtained by var-
ious procedures, e.g. by the bootstrap. Note that for i = 1 and j =
1, ..., l all b(σni,ψj) are ”undersmoothed” and thus asymptotically unbiased:
Eb(σn1,ψj) = β; we can write that
bias(b(σni,ψj)) = E(b(σni,ψj))−E(b(σn1,ψj)).
Then by bootstrap

13



dbias(b(σni,ψj)) = B−1 BP
s=1

bs(σni,ψj)− l−1B−1
lP

j=1

BP
s=1

bs(σn1,ψj),

where B is the number of bootstrap samples.
Similarly, an estimator of covariance, dCov(b(σi1 ,ψj1), b(σi2,ψj2))
= B−1

BP
s=1

(bs(σi1,ψj1)−B−1
P
bs(σi1,ψj1))

×(bs(σi2,ψj2)−B−1
P
bs(σi2,ψj2)).

In our Monte Carlo experiment we used less computationally intensive es-
timators. We estimate variances at the highest bandwidth using the Horowitz
formula (1992, Theorem 3) and then approximate variances for other band-
widths V ar(ψ,σj) =

σt
σj
V ar(ψ,σt) and covariances Cov(b(ψi,σj), b(ψs,σt))

by

r
djtV ar(ψi,σj)V ar(ψs,σt)

δiδs
·R ψi(w)ψs(djtw)dw, where djt = σj/σt. This

result follows from Theorem 27.
The estimators with the smallest bandwidth (undersmoothing) are asymp-

totically unbiased. To find individual biases, we can subtract the average of
estimators with the smallest bandwidth from actual estimators: Bias(ψ,σj) =
b(ψ,σj)− b(.,σ1).

4.2.2 Selection of functions and bandwidths

In our Monte Carlo experiment we use polynomial functions that satisfy
Assumption 4 for h ≥ 2. We also consider sets of functions that satisfy con-
ditions leading to opposite asymptotic biases in estimators and to asymptoti-
cally independent estimators. The functions and their anticipated properties
in the combined estimator are described in Appendix B.
The largest bandwidth in the set is the maximum of Horowitz-optimal

bandwidths for individual estimators. If it belongs to a truly optimal func-
tion/bandwidth combination then as sample size increases it should yield the
fastest convergence rate. Otherwise, it will correspond to oversmoothing.
The lowest bandwidth should represent undersmoothing. It is chosen on

the basis of the estimated empirical distribution of |xβ|. When the bandwidth
is equal to some low quantile of |xβ|, only a small fraction of observations is
in the smoothing area; it leads to an asymptotically unbiased estimator. In

7One can go even further and calculate the variance of just one estimator, V ar(ψs,σt).

Then other variances are related to the first one as V ar(ψi,σj) =
δiσt
δsσj

V ar(ψs,σt).
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our experiments we use the original Manski estimator bMS to estimate the
distribution of |xβ|. For the sample size of 2000, the lowest bandwidth is set
to be equal to the 25th percentile of that distribution. For other sample sizes
we shrink the lowest bandwidth at the rate n−1/3, that is, we determine it as
the 25th percentile times (size/2000)−1/3. The intermediate bandwidths are
spread evenly in terms of the quantiles of |xbMS|. Alternatively, we can find
for the largest Horowitz-optimal bandwidth a corresponding quantile α from
the distribution of |xbMS| and obtain other bandwidths as i

m
αth quantiles of

|xbMS|, i = 1, ...,m.

4.2.3 Estimation procedure for the combined estimator

The entire procedure for a combined estimator includes the following steps:
(i) for each smoothing function, find the SMS estimator using a fixed band-
width n−1/(2h+1), estimate the ”optimal” bandwidths, choose their maximum
as the highest bandwidth; (ii) find the original MS estimator, determine the
25th percentile of xbMS and the smallest bandwidth; (iii) find the SMS esti-
mators for all smoothing functions and bandwidths; (iv) estimate the biases
and the covariance matrix; and (v) find the optimal weights for the linear
combination and compute (6).

4.3 Performance of the combined estimator

If a Horowitz optimal function/bandwidth pair is included among the (σni,ψj)
and all the biases and variances are consistently estimated, the true MSE of
the combined estimator at its worst will be approaching the MSE of the
Horowitz-optimal estimator; it will eventually be smaller when the Horowitz
procedure actually selects an inappropriately large σ. Our Monte Carlo study
provides the finite sample confirmation of these relations.
All individual SMS estimators are evaluated at the bandwidths deter-

mined by the Horowitz’s procedure. The weights and bandwidths in linear
combinations of the estimators are chosen as described in 4.2.

4.3.1 DGP and estimation of the SMS and combined estimator

We consider four different data-generating processes. The first two mod-
els have infinitely differentiable derivatives of the conditional distributions;
thus, the SMS estimator evaluated at the ”optimal” bandwidth using some
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high-order smoothing function should be a good choice. The same estima-
tor, however, may be badly biased in two other models, in which the first
derivative of the CDF of the error term is continuous but not differentiable.
We also expect that the advantage from using a combination of estimators
will be obvious in these non-smooth cases.
Similarly to Horowitz (1992), we work with the model

y =

½
1 if β1x1 + β2x2 + u ≥ 0,
−1 otherwise.

The true value of β is ( 1√
2
, 1√

2
), x1 ∼ N(1, 1), and x2 ∼ N(0, 1). Four

conditional distributions of the error term u are considered.
Distribution S (smooth homoskedastic): u ∼ logistic with median 0 and

variance 1;
Distribution SH (smooth heteroskedastic): u = 0.25(1+2z2+z4)v, where

z = x1 + x2 and v ∼ S;
Distribution NS (non-smooth homoskedastic):

pdf(u) =


0.5 if u ∈ [0, 1],
0.5 + 5u if u ∈ [−0.1, 0),
− 1
38
− 10

38
u if u ∈ [−2;−0.1),

0 otherwise;
Distribution NSH (non-smooth heteroskedastic): u = 0.25(1+2z2+z4)v,

where z = x1 + x2 and v ∼ NS8.
The sample sizes used in the experiments are N = 2000, 4000, and 8000.

We deliberately have chosen relatively large samples in order to reduce some
known small-sample-size effects. These effects include considerable underes-
timation of a true variance while using the Horowitz’s formula (see Horowitz
1992) as well as sensitivity of the ”optimal” bandwidth to the choice of the
initial bandwidth. To achieve stable results, 1000 replications per experiment
have been performed.
The procedure and formulas for finding SMS estimators at the ”optimal”

bandwidth are given in Horowitz (1992). Here we will only report the values
of auxiliary parameters, which were not precisely determined there. The ini-
tial estimators are obtained using the bandwidth σn = n

− 1
2h+1 , where n is a

sample size and h is the kernel order of a smoothing function. When calcu-
lating an estimator of the bias, we switch to the bandwidth σ0.1n if σ < .637
and to the bandwidth 1.5σn otherwise. Having estimated the ”optimal”

8The smoothness of distributions NS and NSH corresponds to s = 2− (Lipschitz con-
dition).
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bandwidth, we redo our maximization of the objective function. The results
are then corrected using an estimator of the asymptotic bias. Similarly to
Horowitz, we perform a grid search instead of a global optimization pro-
cedures appropriate for multivariate cases. The search is performed over
2000÷ 4000 points on a unitary circle (since b0b = 1). The original MS esti-
mators are found using the algorithm from Manski and Thompson (1986).
The combined estimator is constructed as described in Section 3.2. The

functions are provided in Appendix F. For the combined estimator we use
(a) the 4th order kernel f4 (combined at four bandwidths) providing the
estimator comb4, (b) the set {f2, f4} of a 2d and 4th order kernels at four
bandwidths giving comb24, (c) the set {f3a, f3b} of two orthogonal 3d order
kernels at four bandwidths giving comb33, and (d) the set {g3a, g3b, g4} of
two 3d and one 4th order orthogonal kernels at four bandwidths yielding
comb334.

4.3.2 Summary of the results

The results are summarized in Tables I-IV. Each table corresponds to a
different data-generating process. We report the bias, the variance and the
MSE of each estimator.
Smooth homoskedastic model (S).
The smoothness of the model corresponds to s = ∞, that is why the

convergence rate of the estimators is determined by the kernel order of cor-
responding smoothing functions. The f4 estimator is the most accurate.
Another estimator with the same convergence rate, g4, has a twice larger
MSE which is explained by higher values of δ and

R
x4ψ(x)dx9. All com-

bined estimators and the f2 estimator are strictly worse than f4 but better
than g4. Simulation results confirm that the combined estimators behave well
even when individual estimators have extremely large MSE (e.g., asymmetric
third-order kernels g3a and g3b).
Smooth heteroskedastic model (SH).
Although the model is also infinitely smooth, heteroskedasticity of the

error term changes in a peculiar way the ranking of the estimators. The
f4 estimator is dominated by the lower-order kernel f2. Their combined
estimator comb24 is more precise than any of the individual estimators.

9If the model is smooth enough, the MSE at the ”optimal rate”, with the optimal
bandwidth, is increasing in the following characteristics of a smoothing function ψ of
order h: δ =

R
ψ2(x)dx and

R
xhψ(x)dx.
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Moreover, the g4 and f4 estimators have similar MSEs, although the for-
mer should have asymptotically an advantage. All individual estimators
with symmetric kernels as well as all combined estimators yield good results:
MSE < 2MSEcomb24, whereas the individual estimators with asymmetric
kernels are heavily biased with MSE > 4MSEcomb24. Note that in the
smooth homoskedastic model the large MSE of estimators with asymmetric
third-order functions was caused mainly by their large variance. Since we
correct individual estimators for asymptotic biases, the presence of substan-
tial finite-sample biases is another indicator that under heteroskedasticity
the finite-sample behaviour of the estimator may differ markedly from the
limiting process even at n = 8000.
Non-smooth homoskedastic model (NS).
The best estimator is f3b; note that its shape resembles the conditional

density function of the error term. At the same time, the estimator f3a
whose kernel is a mirror image of f3b has the MSE 4-5 times larger. The
performance of the g3b estimator is even worse because the kernel is more
erratic than f3a, yet in combinations these adverse effects all but disappear.
The combined estimators and the estimators with traditional symmetric ker-
nels f2 and f4 yield only slightly worse results than the most accurate f3b
estimator.
Non-smooth heteroskedastic model (NSH).
We observe that the bias of the f4 estimator does not diminish with the

sample size. The Horowitz bias-correction procedure is not helpful since the
real bias is of a lower order (<2) than the correction itself. Moreover, the
magnitude of the bias is not consistent with the optimal ratio of the variance
to the squared bias. In a sufficiently smooth one-dimensional model, this ratio
is 2h, where h is the order of the kernel10. Thus, at the optimal bandwidth
the variance should be more than two times larger than the squared bias,
whereas here the f4 estimator has squared bias 3-7 times larger than the
variance. The bias of the combined estimators also contributes more than a
half of the MSE but its fraction of the MSE diminishes with an increase in
the sample size while the bias of the f2 and f4 estimators becomes relatively
larger. The symmetric g4 estimator is the most accurate. Since the model

10From Horowitz’s (1992) Theorem 2c the MSE-minimizing λ = (δψD)/(2hα
2
ψA

2);

V ar = n−1σ−1δψD/Q2, and Bias2 = n−1σ−1λα2ψA
2/Q2. The ratio

V ar

Bias2
=

δψD

λα2ψA
2
=

2h.
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corresponds to s = 2−, this estimator evaluated at the Horowitz-optimal
rate should also be suboptimal. Possibly, its bias will start to dominate the
variance at much larger sample size.
We summarize the performance of the estimators in the following table:

MSE S SH NS NSH
best f4 comb24 f3b g4

good

f2, comb4,
comb24,
comb33,
comb334

f2, f4, g4,
comb4,
comb33,
comb334

f2, f4, comb4,
g4, comb24,
g3a, comb33,
comb334

comb4, f3b,
comb24,
comb33,
comb334

fair g4 g3a

bad
f3a, f3b,
g3a, g3b

f3a, f3b,
g3a, g3b

f3a, g3b
f2, f4,
f3a, g3b

The worst MSE in the ”good” category would be less than two times the
”best” MSE; in the ”bad” category the best would be more than 2 times the
MSE of the worst ”good” estimator (in the NSH model for sizes 2000 and
4000 the MSE are somewhat closer).
The performance of individual smoothed MS estimators depends on the

underlying data-generating process. The symmetric fourth-order kernel f4
and second-order kernel f2 are not appropriate for the heteroskedastic non-
smooth model; the asymmetric third-order kernels are highly sensitive to the
shape of the derivatives of the error term CDF: a match produces very good
results but a mismatch is disastrous. Any of the combined estimators, on
the contrary, yield stable results under all four specifications.

Appendix A. Proofs of the Theorems
Rewrite the smoothed score function from (3) using x0ib = zibβ + V

0
i g;

then

bb = arg max 1
n

X
yi

Z
sgn(bβzi + V

0
i g − σnw)ψ(w)dw

subject to b2β + g
0g − 1 = 0.

The Lagrangian for this problem is
L = n−1

P
yi
R
sgn(bβzi + V

0
i g − σnw)ψ(w)dw + λ(b2β + g

0g − 1).

A solution would have to satisfy the first-order conditions:
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∂L

∂bβ
= 2n−1σ−1n

X
yiψ(

bβzi + V
0
i g

σn
)zi + 2λbβ = 0, (7)

∂L

∂g
= 2n−1σ−1n

X
yiψ(

bβzi + V
0
i g

σn
)Vi + 2λg = 0, and (8)

∂L

∂λ
= b2β + g

0g − 1 = 0. (9)

We introduce the notation:

Ci(bβ, g) = yiψ(
bβzi + V

0
i g

σn
), so Ci(bβ, 0) = yiψ(

bβzi
σn
); (10)

Bi(bβ, g) = yiψ
0(
bβzi + V

0
i g

σn
).

Then (7) can be rewritten as

n−1σ−1n
X

Ci(bβ, g)zi + λbβ = 0; (11)

and (8) can be expanded as a function of g in some neighbourhood around
g = 0 and in notation (10) written as

n−1σ−1n
X

Ci(bβ, 0)Vi + [n
−1σ−2n

X
Bi(eg)ViV 0i + λI]g = 0, (12)

where eg = αg for some 0 ≤ α ≤ 1.

To prove Theorem 1 we provide limits for the terms of (12) in Lemma 1.

Lemma 1. Under the conditions of Theorem 1, for any sequence ε→ 0
as n→∞:

sup
|bβ−1|<ε;||g||<ε

||n−1σ−2n
X

Bi(bβ, g)ViV
0
i −Q|| p→ 0; (13)

sup
|bβ−1|<ε;||g||<ε

|n−1σ−1n
X

Ci(bβ, g)zi| p→ 0; (14)

and
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n−1/2
X
(σ−1/2Ci(bβ, 0)Vi − σ3/2

b2β
A(

σn
bβ
))

d→ N(0, δD) (15)

as n→∞, bβ − 1→ 0
Proof of (13).
First, consider the (l,m)th elements of the k × k matrices in (13) and

show that for any sequence ε such that ε→ 0 as n→∞

sup
|bβ−1|<ε;|g||<ε

|n−1σ−2n
X

Bi(bβ, g)VilVim −Qlm| p→ 0. (16)

Denote ζi = σ−2n Bi(bβ, g)VilVim, i = 1, ..., n. This is an i.i.d. sequence
for any g. We first show its uniform convergence to its mean: for any ν > 0,
a > 0, any b : |b− 1| < ε̃ < 1 and any g there is N such that for any n > N

Pr(sup
b,g
|n−1

X
ζi −Eζi| > a) ≤ ν (17)

Indeed by Chebyshev’s inequality

Pr(|n−1P ζi −Eζi| > a) ≤
E(ζ −Eζ)2

na2
=
Eζ2 − (Eζ)2

na2
≤ Eζ

2

na2
.

For Eζ2i using the transformation w =
bβzi+V

0
i g

σn
and applying Assumptions

4(a) (implies that max |ψ0(·)| is bounded) and 5(a,c) we obtain
Eζ2i = Eσ−4n B

2
i (bβ, g)(VilVim)

2 = σ−4n E(VilVim)
2E|VBi(bβ, g)2

= σ−4n E(VilVim)
2

Z
ψ0(
bβzi + V

0
i g

σn
)2fz|V (z)dz

=
1

σ3nbβ
E(VilVim)

2

Z
fz|V (

wσn
bβ
− V

0
i g

bβ
)ψ0(w)2dw

≤ 2

σ3nbβ
E(VilVim)

2M max |ψ0(·)|2,

and for |bβ − 1| < ε̃

Pr(sup
b,g
|n−1

X
ζi−Eζi| > a) ≤ n−1σ−3n

2

a2(1− ε̃)
max
l,m

E(VilVim)
2M max |ψ0(·)|2.

By Assumption 4(d) n−1σ−3n → 0 and thus there exists N such that for
n > N

n−1σ−3n <
νa2

2 max
l,m

E(VilVim)2M max |ψ0(·)|2
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which proves (17).
Now find Eζi = Eσ

−2
n BiVilVim.

Since the derivative F (1)|z,V (−z) exists a.e. under Assumption 6(a)11:

Eσ−2n BiVilVim = Eσ
−2
n VilVim

·
Z Z

sgn(zi + ui)ψ
0(
bβzi + V

0
i g

σn
)
∂

∂u
F (u|z, V )dufz|V (z)dz

= Eσ−2n VilVim

Z ·£
1− 2Fu|z,V (−z)

¤
ψ0(
bβzi + V

0
i g

σn
)fz|V (z)dz

¸
= E

1

σnbβ
VilVim

Z "
1− 2F

u

¯̄̄̄
z=wσn

bβ
−V 0

i
g

bβ
,V
(−σn
bβ
w +

V 0i g
bβ
)

#

·fz|V (wσn
bβ
− V

0
i g

bβ
)ψ0(w)dw

by using the substitution w =
bβzi+V

0
i g

σn
. By Assumption 6(a), this can be

written for some measurable function w̃ = w̃(w) with |w̃| < |w| as

E
1

σnbβ
VilVim

Z "
1− 2F

u

¯̄̄̄
z=−V 0

i
g

bβ
,V
(
V 0i g
bβ
)− 2F (1)|z,V (−

σn
bβ
ew + V 0i g

bβ
)
wσn
bβ

#

·
·
fz|V (−V

0
i g

bβ
) + ξz|V (−

V 0i g
bβ
,
wσn
bβ
)

¸
ψ0(w)dw

= E(I1 + I2 + I3 + I4),

where ξz|V (−V
0
i g

bβ
, wσn
bβ
) = fz|V (wσnbβ −

V 0i g
bβ
)− fz|V (−V

0
i g

bβ
) and

I1 =
1

σnbβ
VilVim(1− 2F

u

¯̄̄̄
z=−V 0

i
g

bβ
,V
(
V 0i g
bβ
))fz|V (−V

0
i g

bβ
)

Z
ψ0(w)dw,

11The role of Assumption 6(a) is to permit consideration of bounded derivative F (1)|z,V (−z)
a.e., which provides existence of suitable moments and permits truncation of ||V || in the
moments, to obtain V 0g

bβ
small enough (in N(0)) for appropriate ε, since ||g|| < ε. If

instead Assumtpions KP hold then ||V || is bounded and similarly V 0
i g
bβ

is in N(0). Then
local properties (Assumption 5) can be used directly.
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I2 =
1

σnbβ
VilVim

Z
(1− 2F

u

¯̄̄̄
z=−V 0

i
g

bβ
,V
(
V 0i g
bβ
))ξz|V (−

V 0i g
bβ
,
wσn
bβ
)ψ0(w)dw,

I3 = −2 1

σnbβ
VilVim

Z
fz|V (−V

0
i g

bβ
)F

(1)
|z,V

µ
−σn
bβ
ew + V 0i g

bβ

¶
wσn
bβ

ψ0(w)dw,

I4 = −2 1

σnbβ
VilVim

Z
F
(1)
|z,V

µ
−σn
bβ
ew + V 0i g

bβ

¶
·ξz|V (−

V 0i g
bβ
,
wσn
bβ
)
wσn
bβ

ψ0(w)dw.

Term EI1 = 0 because
R
ψ0(w)dw = 0 by Assumption 4(c).

By Assumption 6(b) |ξz|V (−V
0
i g

bβ
, wσn
bβ
)| <

¯̄̄
wσn
bβ

¯̄̄
M, by 5(c) momentsE |VilVim|

exist, by 4(a) support of ψ is [−1, 1] and |ψ0| is bounded, thus we can bound

|EI2| ≤ 1

b2β
E |VilVim|M

Z
|w| |ψ0(w)| dw ≤ 1

b2β
max
l,m

E |VilVim|M ·2max |ψ0(w)| ;

similarly

|EI3| ≤ 2

b2β
max
l,m

E |VilVim|M22max |ψ0(w)| ;

and
|EI4| ≤ 2

b2β
max
l,m

E |VilVim|M22max |ψ0(w)| .

From the existence of moments it follows that for any ε1 there is Γ(ε1) <
∞ such that |EIjI(||V || > Γ(ε1))| < ε1, j = 2, 3, 4.
Now consider for each EIj, j = 2, 3, 4, EIj = EIjI(||V || ≤ Γ(ε1)), then

max
l,m

|EIj −EIj| < ε1.

Next, consider |EI2 + EI3 + EI4 − Qlm| ≤ |EI2| + |EI3 − Qlm| + |EI4|.
We establish that each term on the right-hand side goes to zero.

For any γ > 0 define some ε(γ) that satisfies
ε(γ)Γ(ε1)

1− ε̃
< γ; then for

||g|| < ε(γ), |bβ − 1| < ε̃, ||V || ≤ Γ(ε1) we get
¯̄̄
V 0i g
bβ

¯̄̄
< γ.

For
¯̄
EI2

¯̄
select γ2 > 0 for which

γ2 <
ε1(1− ε̃)2

4M2Γ(ε1)2max |ψ0(w)| .
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For ||g|| < ε(γ2), |bβ − 1| < ε̃, ||V || ≤ Γ(ε1) we have
¯̄̄
V 0i g
bβ

¯̄̄
< γ2 then¯̄̄̄

¯1− 2Fu¯̄̄̄z=−V 0
i
g

bβ
,V
(
V 0i g
bβ
)

¯̄̄̄
¯ =

¯̄̄̄
¯2fu|z=−V 0

i
eg

bβ
,V

³
V 0i eg
bβ

´
V 0i g
bβ

¯̄̄̄
¯ ≤ 2M ¯̄̄

V 0i eg
bβ

¯̄̄
< 2Mγ2.

Then
|EI2| ≤ 2(1− ε̃)−2Γ(ε1)2M2γ2 · 2max |ψ0| < ε1.
Similarly by Assumption 4(d) we can find N1 such that for n > N1 we

get that

σn <
ε1(1− ε̃)3

4M2Γ(ε1)2max |ψ0(w)| .

Then |EI4| ≤ 2(1− ε̃)−3Γ(ε1)2M2σn · 2max |ψ0| < ε1.
Next consider |EI3 −Qlm|.
By Assumption 5(a,b) (uniform continuity in N(0)) there is some γ3 such

that all z : |z| < 2γ3 are in N(0) and

sup
|z|<γ3;|z̃|<2γ3

|fz|V (z)F (1)|z,V (−z̃)− F (1)|z,V (0)fz|V (0)| <
ε1(1− ε̃)2

4Γ(ε1)2max |ψ0|

For γ3 find ε(γ3) such that for ||g|| < ε(γ3) we have |V
0
i g

bβ
| ≤ Γ(ε1)ε(γ3)

1− ε̃
<

γ3 and find N2 such that for n > N2 we have
σn
1− ε̃

< γ3; then

sup
n>N ;||g||<ε(γ3)

¯̄̄̄
fz|V (−V

0
i g

bβ
)F

(1)
|z,V

µ
−σn
bβ
ew + V 0i g

bβ

¶
− F (1)|z,V (0) fz|V (0)

¯̄̄̄
<

ε1(1− ε̃)2

4Γ(ε1)2max |ψ0| .

Then |EI3− 1
b2β
Qlm| < ε1. If ε̃ = ε̃(ε1) is such that for |bβ − 1| < ε̃(ε1) we

have max
l,m

¯̄̄
1
b2β
Qlm −Qlm

¯̄̄
< ε1 then max

l,m
|EI3 −Qlm| < 2ε1.

Combining we get that for any ε1 we can find Γ(ε1) and then N(ε1) =
max{N1, N2} and ε(ε1) = min{ε(γ2), ε(γ3), ε̃(ε1)} so that

sup
|bβ−1|<ε(ε1);||g||<ε(ε1);n>N(ε1)

|Eσ−2n BiVilVim −Qlm| < 7ε1. (18)

Combining (17) with (18) we obtain (13).
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Proof of (14).
Using Chebyshev’s inequality for arbitrary g,

Pr

µ¯̄̄̄
n−1

X
Ci(bβ, g)

zi
σn

¯̄̄̄
> a

¶
≤ n

−1E(Ci(g) ziσn )
2

a2
.

Compute

E
³
Ci(bβ, g)

zi
σn

´2
= E

R
ψ2(

bβzi+V
0
i g

σn
)
³
zi
σn

´2
fz|V (z)dz;

by substituting w = bβzi
σn
this is

E σn
bβ

R
ψ2(w +

V 0i g
σn
)
³
w
bβ

´2
fz|V (σnbβ w)dw,

where for any g, and any bβ : |1− bβ| < ε̃ < 1¯̄̄̄
¯Eσn
bβ

Z
ψ2(w +

V 0i g
σn
)

µ
w

bβ

¶2
fz|V (

σn
bβ
w)dw

¯̄̄̄
¯ < σn

(1− ε̃)3
2maxψ2 ·M.

Since σn → 0 by Assumption 4(d) this provides (14).

Proof of (15).
Consider first A(σn) = 1

σn
E(V

R
ξ(σnw, V )ψ(w)dw)

= 1
σn
EV

R {£1− 2Fu|z=σnw,V (−σnw)¤ · fz|V (σnw)
+2σnwF

(1)
|z=0,V (0)fz|V (0)}ψ(w)dw.

Support of ψ(w) is |w| < 1, therefore |σnw| < σn and since σn → 0 we
have σnw ∈ N(0) for large enough n.
Next using
(i) Fu|z=0,V (0) = 1

2
:

1− 2Fu|z=wσn,V (−wσn) = −2F (1)|z=σn ew,V (−σn ew)σnw, 0 < ew < w;
(ii) Assumption 5 for F (1)|z,V (−z) and the Lipschitz condition for fz|V (z),

we have that σ−1ξ(σnw, V )→ 0 uniformly a.e., thus A(σn)→ 0.

Consider ηi = σ
−1/2
n Ci(bβ, 0)Vi − σ

3/2
n

b2β
A(σn

bβ
); since Mβηi = ηi we can

consider the vectors restricted to Rk−1(Mβ) .
Conditional expectation E|V (σ

−1/2
n Ci(bβ, 0)) can be easily shown by direct

computation to equal σ
1/2
n

bβ

R
ξ(σn

bβ
w, V )ψ(w)dw−2σ3/2n

b2β
F
(1)
|z,V (0)fz|V (0)

R
wψ(w)dw;

the second term is zero by Assumption 4(c); by definition of A(σn
bβ
) (see (5))

it follows that E(ηi) = 0.
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Variance of ηi can be computed as

Ω = 1
bβ
δD + 1

bβ
EV V 0

R
[fz|V (σwbβ )− fz|V (0)] · ψ(w)2dw −

σ3n
b4β

³
A(σn

bβ
)
´2
.

The second term by Lipschitz condition on fz|V (.) is of order O(σn), the
third o(σ3n).
For any ε1 consider N such that σn for n > N is small enough for any

b : |bβ − 1| < ε̃ that ||Ω− δD|| < ε1. Note that D is positive definite on the
subspace considered. Then by Lindeberg-Levy Theorem for the iid vectors
ηi: n

−1/2 (δD)−1/2
P

ηi
d→ N(0, I). Statement (15) follows. ¥

Proof of Theorem 1.

From (14) of Lemma 1 and (11) it follows that

λ = op(1) for any g and any 0 < 1− ε̃ < bβ. (19)

Note that the estimator in the Manski’s normalization used here (b : ||b|| = 1)
is related to Horowitz’s bH with bH1 = 1 by b =

bH
||bH || . Then by Horowitz

(1992) Theorem 1 bH
a.s.→ β; consequently, ||bH || a.s.→ ||β|| and then b a.s.→ β

(with ||β|| = 1) and (g, bβ)
a.s.→ (0, 1). This means that for any ε a large

enough N exists such that |bβ − 1| < ε a.s. and ||g|| < ε a.s. Select ε̃ > 0
such that the expansion (11) is valid and select an arbitrary sequence ε→ 0,
ε̃ > ε. Choose N(ε) such that |bβ − 1| < ε a.s.

Thus by (13) and (19)

√
nσg = −Q−1

"
n−1/2

XÃ
σ−1/2Ci(0)Vi − σ3/2

b2β
A(

σn
bβ
)

!#
(20)

−Q−1n1/2σ
3/2

b2β
A(

σn
bβ
) + op(1).

If (a) holds for σn then for bβ → 1 it also holds if σn is replaced by σn
bβ
.

So n1/2 σ
3/2

b2β
A(σn

bβ
) = o(1) as n→∞; then √nσg d→ N(0, δQ−1DQ−1). By (5)

|bβ − 1| = |
√
1− g0g − 1| = 1

2
g0g +Op(g0g)2 = Op(n−1σ−1).

If (b): n1/2σ3/2n A(σn
bβ
)→ A = const, then

√
nσg

d→ N(−Q−1A, δQ−1DQ−1).
If (c) holds: n1/2σ3/2n A(σn

bβ
)→∞, then
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σ−1n ||A(σnbβ )||−1g+Q−1||A(σnbβ )||−1A(σnbβ )
p→ op(1) and |bβ−1| = op(σ2nA(σn)2),

thus the conclusion of (c) holds.
It follows from condition (c) that for large enough n A(σn) 6= 0, thus

||A(σn)||−1A(σn) is a unit length vector and Q−1||A(σn)||−1A(σn) = Op(1)
and is bounded away from zero.

Proof of Theorem 2.
To prove Theorem 2 all that is required in addition to the results in The-

orem 1 is to consider covariances between η(σ,ψ). Denote by C(bβ, 0, (σ,ψ))
the Ci(bβ, 0) that corresponds to the pair (σ,ψ) (for observation i). By in-
dependence it still follows that the terms appearing in the covariances are
non-zero only for the same i. Here for entries in the covariance matrix

E(C(bβ, 0, (σi1,ψj1))C(bβ, 0, (σi2 ,ψj2))) = E

µ
ψj1(

bβz

σi1
)ψj2(

bβz

σi2
)V V 0

¶
=

Z µ
ψj1(

bβz

σi1
)ψj2(

bβz

σi2
)fz|V (z)dz

¶
V V 0dF (V )

=
σi1
bβ

Z µZ
ψj1(w)ψj2(w

σi1
σi2
)fz|V (

σi1
bβ
w)dw

¶
V V 0dF (V )

=
σi1
bβ

Z
ψj1(w)ψj2(

σi1
σi2
w)dw ·E £fz|V (0)V V 0¤+ o(σi1)

=


σi1
bβ
τ ijD + o(σi1) if σi1 = σi2,

σi1
bβ

R
ψj1 (w)ψj2 (dw) dw ·D + o(σi1) if σi1/σi2 = d <∞,

σi1
bβ
ψj2(0)D + o(σi1) if σi1/σi2 → 0

σi2
bβ
ψj1(0)D + o(σi2) if σi1/σi2 →∞

Then the covariance matrix of the limiting joint distribution includes

(σi1σi2)
−1/2E

³
ψj1(

z
σi1
)ψj2(

z
σi2
)V V 0

´

→


τ ijD if σi1 = σi2 ,√
d
R
ψj1 (w)ψj2 (dw) dw ·D if σi1/σi2 = d <∞,q

σi1
σi2

ψj2(0)D = o(1)D if σi1/σi2 → 0 ,q
σi2
σi1

ψj1(0)D = o(1)D if σi1/σi2 →∞.
So (a,b) follow; (c) follows from (c) of Theorem 1. For (d) the covariances

are zero because σi1/σi2 → 0.¥
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5 Appendix B. Smoothing functions and sub-

sets for use in combined estimators.

We provide seven smoothing functions and four different combinations of
estimators. The smoothing functions are selected to be polynomials that
satisfy Assumption 4 (a,b,c).

Consider an n-degree polynomial,
nP
i=0

aix
i.

1. Assumption 4(a) corresponds to the following restrictions, imposed on
the coefficients of the polynomial:

nP
i=0

ai(−1)i = 0;
nP
i=0

ai = 0;
nP
i=0

iai(−1)i−1 = 0;
nP
i=0

iai = 0.

2. Assumption 4(b) requires
nP
i=0

ai
i
(1− (−1)i+1) = 1.

3. Assumption 4(c)corresponds to
nP
i=0

ai
i+1
(1− (−1)i+2) = 0, etc.

A simple second-order kernel is
f2 = 15

16
(1− x2)2 .

A standard fourth-order kernel (used also by Horowitz 1992) is
f4 = 105

64
(1− 3x2) (1− x2)2.

From Theorem 2 it follows that there may be benefits from using orthog-
onal polynomials in a combined estimator since they lead to asymptotically
independent SMS estimators. The orthogonality condition for two such dis-
tinct polynomials ψi,ψj, i 6= j, is
4.
R
ψi(x)ψj(x)dx = 0.

The biases of SMS estimators based on a pair (ψi, ψj) may offset each
other for non-symmetric function if
5. ψi(x) = ψj(−x).
Finally, asymptotic variance of SMS is proportionate to

R
ψ2, thus when

combining estimators for different functions ψ1, ...,ψl one may wish to impose
6.
R
ψ2i (x)dx = const for i = 1, ..., l.

We construct two kernels of third order, f3a and f3, that satisfy condi-
tions 1-6.
f3a(x) = 105

64
(1− 3x2) ¡1 +√23x¢ (1− x2)2 and

f3b(x) = 105
64
(1− 3x2) ¡1−√23x¢ (1− x2)2 .

In fact these two polynomials are the smallest order (seven) that permits
solving the equations for the coefficients that are imposed by conditions 1-5;
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condition 6 is satisfied automatically here.
Three orthogonal polynomials of degree 8 (two 3rd-order kernels and one

4th order kernel) are constructed so that the conditions 1-4, 6 are satisfied;
condition 5 is satisfied for the two distinct 3rd order kernels and the 4th order
kernels is a symmetric function.

g3a(x) = −9(
√
17+6

√
2)

5632
(605
√
17x4 + (48

√
714− 576√21)x3 + (336√2

−386√17)x2 + (192√21− 16√714)x− 112√2 + 37√17) (1− x2)2;
g3b(x) = −9(

√
17+6

√
2)

5632
(605
√
17x4 − (48√714− 576√21)x3 + (336√2

−386√17)x2 − (192√21− 16√714)x− 112√2 + 37√17) (1− x2)2 ;
g4(x) =

45(−
√
17+12

√
2)

138752

¡
271x2 − 79 + 8√34¢ ¡11√17x2 − 3√17− 8√2¢

× (1− x2)2 .
The f4 estimator will serve as a benchmark when we evaluate the per-

formance of various combinations in the two smooth models. The Horowitz-
optimal bandwidths, however, should lead to oversmoothing in non-smooth
cases. Therefore, a weighted average of the SMS estimators with the same f4
smoothing function and different bandwidths, comb4, should improve upon
the individual f4 estimator for distributions NS and NSH.
When the model is infinitely smooth, the convergence rate of the f2 es-

timator should be slower than that of the first estimator. For that reason,
it is expected to be more reliable in non-smooth models. So, we evaluate
separately the f2 estimator at the ”optimal” rate and also the combination
comb24 of estimators with kernels f2 and f4. It is expected that the com-
bination will have a more robust behaviour in general than any individual
estimator.
The choice of smoothing functions may have important effects on the effi-

ciency of the estimator. Individually, kernels g3a, g3b and g4 are not as good
as kernels f3a, f3b and f4. They oscillate more, resulting in higher values for
the integral of squared functions, and consequently, in larger variances of cor-
responding estimators since the variance is proportional to δ. Indeed, while
δf4 = 1.4 and δf3a = δf3b = 2.8, the value of δ for functions g3a, g3b and
g4 is 3.8. Also, asymptotic biases in smooth models, which are proportional
to
R
x3ψ(x)dx with third-order kernels and to

R
x4ψ(x)dx with fourth-order

kernels, are larger for the last three functions. By comparing their combina-
tion, comb334, to other combined estimators we wish to evaluate robustness
of combined estimators against suboptimal (on its own) choice of smoothing
functions.
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Table I. Smooth homoskedastic model.
size estimator bias variance MSE
2000 f4 -0.001 0.0015 0.0015

comb4 -0.001 0.0018 0.0018
f2 -0.001 0.0016 0.0016
comb24 -0.003 0.0016 0.0016
f3a -0.003 0.0038 0.0038
f3b 0.005 0.0038 0.0039
comb33 -0.001 0.0020 0.0020
g3a -0.002 0.0059 0.0059
g3b -0.005 0.0056 0.0056
g4 0.004 0.0033 0.0033
comb334 -0.001 0.0019 0.0019

4000 f4 -0.001 0.0008 0.0008
comb4 -0.001 0.0012 0.0012
f2 -0.002 0.0013 0.0013
comb24 -0.002 0.0011 0.0011
f3a -0.003 0.0025 0.0025
f3b 0.005 0.0026 0.0026
comb33 0.000 0.0014 0.0014
g3a -0.003 0.0075 0.0075
g3b -0.004 0.0035 0.0036
g4 0.003 0.0018 0.0018
comb334 0.001 0.0013 0.0013

8000 f4 -0.0014 0.00041 0.00041
comb4 -0.0010 0.00068 0.00068
f2 -0.0014 0.00057 0.00057
comb24 -0.0014 0.00062 0.00062
f3a -0.0029 0.00138 0.00139
f3b 0.0044 0.00121 0.00123
comb33 -0.0005 0.00077 0.00077
g3a 0.0008 0.00143 0.00143
g3b -0.0042 0.00234 0.00235
g4 0.0017 0.00104 0.00104
comb334 0.0002 0.00074 0.00074
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Table II. Smooth heteroskedastic model.
size estimator bias variance MSE
2000 f4 -0.005 0.00024 0.00026

comb4 -0.003 0.00020 0.00021
f2 -0.004 0.00027 0.00028
comb24 -0.004 0.00019 0.00020
f3a -0.020 0.00038 0.00077
f3b 0.023 0.00040 0.00094
comb33 0.001 0.00023 0.00023
g3a 0.032 0.00093 0.00196
g3b -0.028 0.00076 0.00157
g4 0.002 0.00028 0.00029
comb334 -0.001 0.00023 0.00023

4000 f4 -0.005 0.00019 0.00022
comb4 -0.003 0.00012 0.00012
f2 -0.004 0.00010 0.00011
comb24 -0.003 0.00010 0.00011
f3a -0.017 0.00020 0.00048
f3b 0.020 0.00021 0.00061
comb33 0.001 0.00014 0.00014
g3a 0.027 0.00045 0.00118
g3b -0.023 0.00039 0.00093
g4 0.002 0.00016 0.00016
comb334 -0.000 0.00013 0.00013

8000 f4 -0.003 6.3e-5 7.4e-5
comb4 -0.002 6.0e-5 6.4e-5
f2 -0.003 4.9e-5 5.7e-5
comb24 -0.002 5.4e-5 5.7e-5
f3a -0.015 10.9e-5 32.3e-5
f3b 0.017 10.8e-5 38.9e-5
comb33 -0.000 7.7e-5 7.7e-5
g3a 0.024 18.8e-5 74.1e-5
g3b -0.019 20.1e-5 57.7e-5
g4 0.002 6.9e-5 7.2e-5
comb334 -0.000 7.3e-5 7.3e-5
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Table III. Non-smooth homoskedastic model.
size estimator bias variance MSE
2000 f4 0.048 0.0059 0.0082

comb4 0.043 0.0063 0.0082
f2 0.053 0.0057 0.0085
comb24 0.043 0.0055 0.0074
f3a 0.079 0.0168 0.0231
f3b 0.030 0.0056 0.0065
comb33 0.046 0.0063 0.0084
g3a 0.040 0.0089 0.0105
g3b 0.109 0.0177 0.0296
g4 0.033 0.0096 0.0107
comb334 0.045 0.0058 0.0078

4000 f4 0.037 0.0033 0.0046
comb4 0.034 0.0040 0.0052
f2 0.045 0.0030 0.0051
comb24 0.033 0.0036 0.0047
f3a 0.076 0.0128 0.0186
f3b 0.023 0.0031 0.0037
comb33 0.035 0.0038 0.0050
g3a 0.034 0.0033 0.0045
g3b 0.111 0.0126 0.0250
g4 0.020 0.0058 0.0062
comb334 0.034 0.0037 0.0048

8000 f4 0.030 0.0019 0.0028
comb4 0.024 0.0024 0.0030
f2 0.037 0.0018 0.0032
comb24 0.023 0.0022 0.0027
f3a 0.067 0.0097 0.0142
f3b 0.023 0.0022 0.0027
comb33 0.025 0.0023 0.0029
g3a 0.031 0.0037 0.0046
g3b 0.104 0.0098 0.0205
g4 0.012 0.0033 0.0035
comb334 0.025 0.0023 0.0029
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Table IV. Non-smooth heteroskedastic model.
size estimator bias variance MSE
2000 f4 0.034 0.00039 0.00156

comb4 0.028 0.00047 0.00127
f2 0.037 0.00045 0.00180
comb24 0.030 0.00040 0.00132
f3a 0.008 0.00216 0.00223
f3b 0.031 0.00058 0.00155
comb33 0.023 0.00075 0.00129
g3a 0.041 0.00065 0.00235
g3b 0.017 0.00339 0.00368
g4 0.019 0.00076 0.00110
comb334 0.027 0.00059 0.00131

4000 f4 0.033 0.00024 0.00130
comb4 0.024 0.00033 0.00090
f2 0.034 0.00024 0.00141
comb24 0.026 0.00025 0.00091
f3a 0.012 0.00133 0.00148
f3b 0.025 0.00026 0.00087
comb33 0.020 0.00048 0.00089
g3a 0.033 0.00026 0.00136
g3b 0.029 0.00177 0.00260
g4 0.016 0.00041 0.00068
comb334 0.023 0.00034 0.00088

8000 f4 0.030 0.00012 0.00103
comb4 0.018 0.00023 0.00054
f2 0.031 0.00013 0.00111
comb24 0.020 0.00016 0.00057
f3a 0.016 0.00086 0.00110
f3b 0.019 0.00014 0.00050
comb33 0.017 0.00031 0.00061
g3a 0.028 0.00012 0.00089
g3b 0.037 0.00097 0.00235
g4 0.012 0.00023 0.00037
comb334 0.019 0.00022 0.00057
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