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Abstract

We study the stability of cartels in a di¤erential game model of oligopoly with

sticky prices (Fershtman and Kamien 1987). We show that when �rms use closed-loop

strategies and the rate of increase of the marginal cost is �small enough�, the grand

coalition (i.e., when the cartel includes all �rms) is stable: it is unpro�table for a �rm

to exit the cartel. Moreover, a cartel of 3 �rms is stable for any positive rate of increase

of the marginal cost: it is not pro�table for an insider �rm to exit the coalition, nor

it is pro�table for an outsider �rm to join the coalition. When �rms use open-loop

strategies the grand coalition is never stable; moreover, we show that only a cartel of

size 2 can be stable and it is so only when the rate of increase of the marginal cost is

large enough.
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1 Introduction

Intuitively, in an oligopolistic market the formation of a cartel that acts as a multiplant

�rm and competes against the other �rms should be bene�cial for the cartel members. This

intuition can be wrong, however. When �rms compete a la Cournot it is well known from

the merger literature1 that the formation of a cartel by a subset of �rms may reduce its

members�pro�ts. Indeed, in a static Cournot oligopoly with linear demand and constant

marginal cost, a cartel (or merger) of a subset of �rms is pro�table only if they represent

a signi�cant share of the market prior to the formation of the cartel (see Salant, Switzer

and Reynolds, 1983, SSR henceforth). In particular, if there are three or more �rms in the

industry, a cartel formed by two �rms always decreases their total pro�ts. This remains

to be true when marginal cost is not constant as long as the cartel does not experience

�large�e¢ ciency gain, such is the case when the cost function takes the quadratic form of

cq + 1
2
q2 (where c is constant and q is the output). This result can be intuitively explained

by the following: The cartel has an incentive to reduce its members�output relative to their

production prior to the cartel. Then the outsiders react by increasing their production,

which reduces the pro�ts of the cartel members.

The above important result in static oligopoly theory does not generalize to dynamic

oligopolies. In a model of dynamic oligopoly with price dynamics (Fershtman and Kamien,

1987), linear demand and quadratic cost function of the form cq+ 1
2
q2; Dockner and Gauners-

dorfer (2001) conduct numerical simulations and obtain a very interesting result: all cartels

are pro�table2. This is in sharp contrast with the conclusions in the static framework.

Since all cartels are pro�table it is natural to ask which cartel size is more likely to

emerge. To address this question we consider a stability criterion. A cartel is stable if no

insider �rm has an incentive to exit the cartel and no outsider �rm would wish to join the

cartel. Such a stability notion was �rst introduced by D�Aspremont, Jacquemin, Gabsewicz,

and Weymark (1983) in a price leadership model in which the dominant cartel acts as the

leader and �rms in the competitive fringe take price as given. Although this stability notion

can be adapted to the context of static Cournot competition, it is easy to see that with three

or more �rms, no cartel is stable in the case of linear demand and constant marginal cost.

1The objective of a cartel is identical to the objective of a merged �rm, adopted in the merger literature

(Salant, Switzer and Reynolds 1983), when a subset of �rms merge. Throughout this paper, the term cartel

can be substituted by the term merger and vice versa.
2Benchekroun (2003) shows analytically that such a result generalizes to the case where the number of

�rms is arbitrarily large: a cartel of 2 �rms is pro�table even when the number of �rms tends to in�nity.
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We study the stability of cartels in the dynamic oligopoly model with sticky prices. We

consider a generalized version the framework of Fershtman and Kamien (1987) and Dockner

and Gaunersdorfer (2001). They focus on the case where the coe¢ cient of the quadratic

term is one (i.e., the rate of change of the marginal cost is one). We allow for a general

quadratic cost function and such a generalization turns out to have important implications

in determining the stability of cartels (although all cartels remain pro�table). In particular,

when the coe¢ cient of the quadratic term is su¢ ciently low, the grand coalition (i.e., cartel

of all �rms) is stable; that is, no �rm can bene�t from exiting the grand coalition. When

the rate of change of the marginal cost is one, only coalitions of three �rms are stable,

regardless of the total number �rms. In fact, size-three coalitions remain stable for any

general quadratic cost function.

The above results hold when �rms use close-loop strategies whereby a �rm�s strategy

speci�es a production rate at a given moment as a function of that moment and the level of

the price (the state variable) at that moment. For comparison, we also consider open-loop

strategies where a �rm�s strategy corresponds to a production path announced at time zero

and, de�ned over the whole in�nite time horizon. It is well known that the steady state of an

open-loop equilibrium �coincides with the Cournot equilibrium of the corresponding static

game�(Dockner 1992, see also Dockner et al. 2000). An open-loop Nash equilibrium is in

general not subgame perfect but a closed-loop Nash equilibrium is by construction subgame

perfect. As a benchmark, the open-loop case allows us to isolate the impact of feedback

strategies on the stability of cartels. We show that when �rms use open-loop strategies, the

grand coalition is never stable. We also show that only a cartel of two �rms can be stable

and it is so only when the cost function is su¢ ciently convex.

The rest of the paper is organized as follows. In section 2 we present the model and the

formal de�nition of the stability of a cartel. In section 3 we provide the open-loop and the

closed-loop Nash equilibrium after a cartel forms. In section 4 we examine the stability of

cartels.

2 The model

Consider an industry with N identical �rms producing an homogeneous product. The pro-

duction of �rm i at time t is denoted qi (t). The production cost of each �rm is given by

cqi (t) +



2
[qi (t)]

2
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where c � 0 and 
 > 0. Note that 
 = 1 in Fershtman and Kamien (1987) and Dockner and
Gaunersdorfer (2001).

Let p (t) denote the price of the output. Due to price stickiness, the adjustment process

of the price to a change in quantity is given

_p (t) = s

 
a�

X
i

qi (t)� p (t)
!
with p (0) = p0 � 0 (1)

where a > c and 0 < s � 1 is a parameter that captures the speed of the adjustment of the

price. (1) implies a linear inverse demand function.

The objective of �rm i is to maximize the discounted sum of pro�ts

Ji =

Z 1

0

�
p(t)� c� 


2
qi(t)

�
qi(t)e

�rtdt (2)

subject to (1) where r > 0 denotes the interest rate.

We consider two strategy spaces. The �rst set of strategies is the open-loop strategy set

where one �rm�s strategy de�nes this �rm�s production path for the whole time horizon. The

second set of strategies considered is the set of closed-loop strategies where the production

of �rm i at time t is allowed to depend on t and the price level at time t; p (t)3.

A closed-loop (open-loop) Nash equilibrium for the pre-cartel game, i.e. the game

without formation of a cartel, is de�ned by a vector of N closed-loop (open-loop) strate-

gies (��1; ::; �
�
N) such that each strategy �

�
i is a best closed-loop (open-loop) response to

���i �
�
��1; ::; �

�
i�1; �

�
i+1; ::; �

�
N

�
:

The Cartel

We then consider the possibility of a cartel ofM �rms,M � N . Without loss of generality
assume that in the case of a cartel of M �rms, the insider �rms (�rms that form the cartel)

are the �rst M �rms, i.e. �rm j = 1; ::;M . If M < N , the outsider �rms are �rms k ,

k =M + 1; ::; N .

The objective of a cartel of M �rms is to maximize the joint discounted sum of pro�ts

of the M �rms denoted JC

JC =

MX
j=1

Jj:

3For a formal de�nition of these strategy sets see for example Fershtman and Kamien (1987), De�nition

1 and De�nition 3, page 1154.
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The cartel takes the production strategies, �k with k =M +1; ::; N , of the outsider �rms as

given and chooses an M -tuple vector of production strategies (�1; ::; �M) that solves

max JC

subject to (1). The problem of an outsider �rm k, with M + 1 � k � N , is to maximize Jk
subject to (1) by choosing a strategy while taking the strategies of the cartel and N �M �1
other outsiders as given.

A closed-loop (open-loop) Nash equilibrium of the game when a cartel of M �rms forms

is thus an N -tuple vector of closed-loop (open-loop) production strategies
�
�M1 ; ::; �

M
N

�
such

that

JC
�
�M1 ; ::; �

M
N

�
� JC

�
�1; ::; �M ; �

M
M+1::; �

M
N

�
for all (�1; ::; �M)

and

Jk
�
�M1 ; ::; �

M
k ; ::; �

M
N

�
� Jk

�
�M1 ; ::; �k; ::; �

M
N

�
for all �k and all k =M + 1; ::; N:

A cartel of M �rms is said to be pro�table (for the constituent �rms) if

JC
�
�M1 ; ::; �

M
N

�
�

MX
j=1

Jj (�
�
1; ::; �

�
N)

where (��1; ::; �
�
N) is a closed-loop (open-loop) Nash equilibrium of the game without a cartel

(whenM = 1) and
�
�M1 ; ::; �

M
N

�
is a closed-loop (open-loop) Nash equilibrium whenM �rms

form a cartel. Since we assume that the �rms are symmetric we focus on the symmetric

equilibrium, i.e. an equilibrium with a cartel of M �rms such that

�j = �ins for all j = 1; ::;M

and

�k = �out for all k =M + 1; ::; N

where �ins and �out are strategies of insiders and outsiders respectively. Given that the

marginal cost of a �rm is increasing with the quantity produced and that �rms are symmetric,

the cartel equally splits the overall production and (hence) pro�ts among its members.

Note that by setting M = 1 we obtain the case of a symmetric oligopoly with N �rms4.

4The symmetric Cournot oligopoly can also be obtained as a special case of this game with 0 insiders and

N outsiders.
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Stability of a Cartel

When all cartel sizes are pro�table, a natural follow up question is: which of the pro�table

cartels are more likely to emerge? We use a stability criterion to answer this question.

The concept of stability used here is the one proposed by D�Aspremont et al. (1983). It

will be convenient to introduce the following notations for insiders�and outsiders�pro�ts at

the equilibrium of the game with a cartel of M �rms in an N -�rm oligopoly. Let

�ins (M;N) �
JC
�
�M1 ; ::; �

M
N

�
M

and

�out (M;N) � J j
�
�M1 ; ::; �

M
N

�
for any j =M + 1; ::; N:

A cartel of M �rms is internally stable if

�ins (M;N) � �out (M � 1; N) ; (3)

i.e., no insider of cartel has an incentive to unilaterally exit.

A cartel of M �rms is externally stable if

�out (M;N) � �ins (M + 1; N) ; (4)

i.e., no outsider �rm has an incentive to join the cartel of the M �rms.

A cartel of M �rms is stable if it is both internally and externally stable.

Remark 1 : If a cartel ofM �rms is strictly internally stable (i.e. �ins (M;N) > �out (M � 1; N))
then a cartel of M � 1 is, necessarily, externally unstable. Conversely, if a cartel of M �rms

is internally unstable then a cartel of size M � 1 is externally stable.
Remark 2 : In the case of the grand coalition, i.e. when M = N , only internal stability is

relevant.

Remark 3 : A cartel of two �rms is pro�table if and only if a cartel of size 2 is internally

stable.

The objective of this paper is to determine, among the pro�table cartels, the ones that

are stable. To this end we must characterize the equilibrium pro�ts of �rms (insiders and

outsiders) when a cartel forms.

3 The equilibrium with a cartel

In this section, we determine the equilibrium of the game when M �rms form a cartel. For

simplicity we set c = 0. This is innocuous but it simpli�es the expressions that characterize

the close-loop equilibrium we study.
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3.1 The case of open-loop strategies

Proposition 1 There exists an asymptotically stable steady-state open-loop Nash equilib-

rium of the post-cartel game. The equilibrium production rates and the price at the steady

state are given by

qOLins = � (
 +R) (5)

qOLout = � (
 +MR) (6)

and

pOL = a� (N �M) qOLout �MqOLins (7)

where R � s
r+s

and � � a

2+
N+
R+MR+MR
+MRN�M2R+MR2

> 0:

Proof. The proof is omitted. It is a straightforward extension of Proposition 1 in Benchekroun

(2003) to arbitrary 
 > 0.

The pro�ts of a merging �rm at the steady state are given by:

�OLins (M;N) �
�
pOL � 


2
qOLins

�
qOLins

that is

�OLins (M;N) =
1

2
�2
�
2MR
 + 
R + 2MR2 + 
2

�
(
 +R) (8)

It can be veri�ed that in the limit case where the adjustment speed is in�nite, i.e. when

price adjusts instantaneously, the steady-state equilibrium price, quantities and pro�ts cor-

respond exactly to the outcome of a one shot static Cournot game. This is in line with

Fershtman and Kamien (1987) and is similar to the result in Dockner (1992) where, for an

adjustment cost di¤erential game, it is shown that the steady state open-loop equilibrium

�coincides with the Cournot equilibrium of the corresponding static game�.

In this context a cartel is pro�table only if the pre-cartel market share of the member

�rms is large enough. In particular, when 
 tends to 0; the results of SSR emerge.

In the remainder of the paper, as in Fershtman and Kamien (1987) and Dockner and

Gaunersdorfer (2001), we shall focus on the limit case where s tends to 1. This facilitates
the tractability of the equilibria we study. It can be shown that5

�ins (M;N) =
1

2r
a2

(
 + 1) (2M
 + 
 + 2M + 
2)

(
2 + 
N + 
 + 2M +M
 +MN �M2)2
(9)

5If c > 0; a2 should be replaced with (a� c)2 in (9) and (10).
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and

�out (M;N) =
1

2r
a2

(
 +M) (2M
 + 
 + 2M + 
2)

(
2 + 
N + 
 + 2M +M
 +MN �M2)2
(10)

The results of this section will serve as a benchmark that will allow us to isolate and

identify the role played by closed-loop strategies.

3.2 The case of closed-loop strategies

We shall focus on the equilibrium production strategies when there is an interior solution.

Proposition 2 Let

��ins (p) =
(1�Kc) p+ Ec



and ��out (p) =

(1�Kk) p+ Ek



where (Kk; Kc) is a pair that solves the following system (SK)

(SK)

8<:
M


(1�Kc)� 1

2
M


(1�Kc)

2 +Kc

�
�M



(1�Kc)� 1



(N �M) (1�Kk)� 1

�
= 0

1


(1�Kk)� 1

2

(1�Kk)

2 +Kk

�
�M



(1�Kc)� 1



(N �M) (1�Kk)� 1

�
= 0

such that

MKc + (N �M)Kk � 1�N < 0: (11)

and (Ek; Ec) is the unique solution to the following linear system (SE)

(SE)

(
KkM

Ec


+ ((2 (N �M)� 1)Kk +MKc �N � 
) Ek
 = aKk

(MKc �N + (N �M)Kk � 
) Ec
 + (N �M)Kc
Ek


= aKc:

The strategies ��ins (:) ; �
�
out (:) constitute close-loop equilibrium strategies for the insider

and outsider �rms respectively.

Proof. The proof is omitted. It is a straightforward extension of Proposition 3 in Dockner

and Gaunersdorfer (2001) to the case of an arbitrary 
 > 0.

Remark 4 : Condition (11) ensures that the steady-state equilibrium price is asymptotically

stable.

To determine the steady-state pro�ts of an insider �rm, we need to determine the steady-

state production of each �rm (insider and outsider �rms) and the steady-state price as a

function of M and N . This requires us to determine solutions to the system (SK). However,

the system (SK) is nonlinear and an analytical solution of (Kc; Kk) as explicit functions of

N and M; when it exists, is in general impossible to obtain6. Dockner and Gaunersdorfer

6For example, substitution of Kc from the second equation of the system (SK) into the �rst equation

yields a polynomial of degree 4 in Kk for which the roots can be determined explicitly but are too complex

to o¤er any insight, see Dockner and Gaunersdorfer (2001).
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(2001) solve the system numerically for speci�c values of N and M while Benchekroun

(2003) shows the existence of a solution to this system.

The steady-state equilibrium price is the solution to

a�M�ins (p)� (N �M)�out (p)� p = 0

that is

pCL =
a
 �MEc +MEk �NEk

N + 
 �MKc +MKk �NKk

where Kc, Kk, Ec and Ek are respectively given by (SK) and (SE).

The pro�ts of an insider �rm at the steady state are thus given by

�CLins(M;N) =
�
pCL � 


2
�ins

�
pCL
��
�ins

�
pCL
�

�CLout(M;N) =
�
pCL � 


2
�out

�
pCL
��
�out

�
pCL
�

Dockner and Gaunersdorfer (2001), numerically establish that all cartels are pro�table in a

10 �rm industry and that a cartel of 2 �rms remains pro�table when the total number of

�rms varies between 2 and 10. Benchekroun (2003) shows analytically that this remains true

even when the total number of �rms in an industry is arbitrarily large.

It can be shown that the discounted sum of pro�ts of an insider �rm and an outsider �rm

can be respectively written as

�ins =
1

2

(MEc � 2a
 � 2MEk + 2NEk)Ec
M
r

(12)

and

�out =
1

2

(2MEc � Ek � 2a
 � 2MEk + 2NEk)Ek

r

: (13)

We now turn to the main question of the paper: Are these cartels stable?

4 Stability

4.1 The case of open-loop strategies

When �rms use open-loop strategies, pro�tability of a cartel depends on 
: With small 
;

for a cartel to be pro�table, it has to represent a signi�cant pre-cartel market share. For
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example, when 
 = 1, it can be shown that a minimum market share of 69% is necessary for

a cartel to be pro�table. However, only size-2 cartel can be stable and it is so only when 


is su¢ ciently large.

Proposition 3 If N �M � 3; then no cartel is stable.

Proof. See Appendix 1.

The proof of Proposition 3 detailed in Appendix 1 consists of showing that no cartel of

size 3 or larger is internally stable. An insider �rm always gains by leaving the cartel. Even

if a merger of M �rms (M � 3) may be pro�table it is even pro�table not to be a member
of the merged entity.

Proposition 4 A cartel of size 2 is not stable if 
 � ~
N � 3 (N � 2:6) and is stable if

 � 
̂N � 3 (N � 2:4).

Proof. See Appendix 2.

Propositions 3 and 4 also imply the following results.

Corollary 1 If N � 3; the grand coalition is never stable.

Corollary 2 If 
 � 1 and N � 3; then no cartel is stable.

From this analysis we conclude that the only possible size of a stable cartel is 2. Indeed,

from Proposition 3 a cartel of size 3 is not stable because it is internally unstable and therefore

a cartel of size 2 is always externally stable (see Remark 1). The proof of Proposition 4,

detailed in Appendix 2, consists of showing that a cartel of size 2 can be internally stable

(or pro�table, see Remark 3) when 
 is below some threshold. For a given total number of

�rms N , a cartel of two �rms can only be stable if the cost function is su¢ ciently convex

(
 � 
̂N). For example, when N = 5 and 
 � 7:8; a cartel of two �rms is stable. A large

rate of increase of �rms�marginal cost ensures that the increase in production of the outsider

�rms following a merger will be moderate, while the gain from a decrease in production of

the merged �rms is large. Therefore when the cost function is su¢ ciently convex a merger

of two �rms becomes pro�table and a size 2 cartel is stable. When the cost function is not

su¢ ciently convex no cartel is stable.
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4.2 The case of closed-loop strategies

In contrast to the open-loop case, simulations indicate that all cartels are pro�table regardless

of 
; when we consider close-loop equilibrium; moreover, stable cartels do exist in this case

for all non negative values of 
. One surprising result we obtain is that the grand coalition

(i.e., the cartel of all �rms) is stable when 
 (the rate of change in marginal cost) is low. In

addition, cartels of size 3 is stable regardless of 
.

4.2.1 Stability of the grand coalition

We show that the stability of the grand coalition depends on the value of the rate of change

in the marginal cost, 
.

Proposition 5 For any N � 2 there exists �
N > 0 such that for all 
 2 (0; �
N) the grand
coalition is stable.

Proof. To prove the above proposition, we �rst note that for any 0 < 
 < 1 a multiplant

monopoly earns strictly positive pro�ts per plant and moreover, the pro�ts per plant increases

as 
 decreases7. Next, we show that when 
 tends to zero, the pro�t function, as determined

by (13) in Section 3.2, for the �rm that exits the grand coalition (i.e., the outsider of a cartel

of size N � 1) tends to zero. Therefore when 
 is close enough to zero, the outsider�s pro�ts
become arbitrarily small. Consequently, no �rm would wish to exit the grand coalition. Thus

the proof consists of showing that when M = N � 1; the discounted sum of pro�ts of the

outsider tends to zero when 
 becomes arbitrarily small. This is done in Appendix 3.

We note that this result is in contrast with Corollary 1 derived for the open-loop case.

The di¤erence is solely due to the nature of the strategies used. Kamien and Fershtman

(1987) show that the outcome of a closed-loop game is closer to a competitive outcome

than the outcome of an open-loop game8. This remains true in the case of a �nite horizon

di¤erential game with sticky prices when the time horizon is long enough (see Kamien and

Fershtman (1990)).

As long as a cartel has at least one fringe �rm, the smaller the value of the positive cost

parameter 
 the closer is the closed-loop equilibrium outcome of the game to price-taking

behavior. When 
 tends to zero price tends to the marginal cost and pro�ts tend to zero.

That is, when 
 is small enough the pro�ts of all competing �rms and cartel in the closed-loop

7We can also obtain the closed form solution for the per plant pro�ts.
8Dockner (1988) generalizes this result to the case of an oligopoly.
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equilibrium become very small (see Table 1)9. If a �rm exits the grand-coalition, it would

face an exacerbated competition due to the feedback e¤ect and would get lower pro�ts than

if it had remained in the coalition.

We note however that as 
 becomes larger, the grand coalition is no longer stable. This

is illustrated10 in the table below for the case that N = 10 and a = 100:

Table 1


 0:001 0:19 0:2 1 10

�ins (M = N = 10) 250:0 247:65 247:52 238:10 166:67

�out (M = 9; N = 10) 1:927 240:68 248:47 415:97 197:45

From these simulations we get that the critical value of 
 beyond which the grand coalition

in a 10 �rms industry stops being stable is approximately equal to 0:20:

4.2.2 Another stable cartel size

It is interesting to note that the grand coalition may not be the unique stable cartel. Nu-

merical simulations indicate that for all 
 > 0 a cartel of size 3 is stable for all N � 4.
In the �rst set of simulations we set 
 = 0:1; N = 10 and a = 100. We obtain that 3 and

10 (the grand coalition are the two stable cartels:

Table 2

M 1 2 3 4 5 6 7 8 9 10

�ins 6:02 6:12 6:38 6:85 7:63 8:92 11:20 15:92 30:18 248:88

�out 6:02 6:32 6:97 8:13 10:17 13:97 22:01 44:07 152:60

9We actually obtain a rather interesting result. The pro�ts of �rms are inversely U shaped functions of

the cost parameter 
. When 
 is small enough, �rms are able to achieve larger pro�ts when 
 increases. A

similar result was obtained in a static framework by Seade (1985).
10This result was con�rmed by additional simulations that were carried out for other parameter values.

Numerical simulations were carried out with MuPad Pro 3.0.
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In the second set of simulations we set 
 = 1; N = 10 and a = 100. We obtain that 3 is

the only stable cartel:

Table 3

M 1 2 3 4 5 6 7 8 9 10

�ins 49:02 49:61 51:29 54:26 58:98 66:27 77:87 97:73 136:90 238:10

�out 49:02 50:97 55:17 62:45 74:48 94:85 132:00 209:60 416:00

In the third set of simulations we set 
 = 5; N = 10 and a = 100. We obtain that 3 is

the only stable cartel size:

Table 4

M 1 2 3 4 5 6 7 8 9 10

�ins 121:4 122:0 123:9 127:2 132:0 138:7 147:7 160:0 176:7 200:0

�out 121:4 123:7 128:6 136:5 148:2 164:8 188:6 223:1 275:0

Other simulations for di¤erent values of N and 
 con�rm that 3 is a stable cartel size

for all 
 > 0 This is also in contrast with the case where �rms use open-loop strategies,

where size 2 cartel is stable only for su¢ ciently convex production cost (
 � 
̂N). There are
comparable results in the literature on the stability of cartels in a static framework where it

is shown that only cartels of small sizes are stable.

Donsimoni et al. (1986) show that in D�Aspremont et al.�s price leadership model with

competitive fringe, results similar as ours emerge with linear demand function and quadratic

cost function without the linear term. Either there is a unique stable cartel M < N when

the �rms are not too cost e¢ cient relative to demand or there are two stable cartels N and

M < N otherwise. In particular, when cost function of each �rm is C(q) = 1
2
q2 and there are

at least four �rms, the only stable cartel size is three. Note, however, the demand function

used by Donsimoni et al. (1986) is D(p) = N(a� bp); which is a function of N: Nonetheless,
the similarity between their results and ours is intriguing.

Sha¤er (1995) considers the case where the cartel acts as a Stackelberg leader and the

outsider �rms constitute a Cournot fringe. She investigates how the size of the stable cartel

is related to the number of �rms in a setting with linear demand and constant marginal

cost. Konishi and Lin (1999) proves the existence of a stable cartel with general demand

and cost functions. In an example they show that with demand function D(p) = a � Q
and cost function C(q) = 1

2
q2, size of stable cartel increase with N: This is in contrast to

13



that in D�Aspremont et al.�s price leadership model with the same demand function and cost

function, the size of stable cartel is 3 for N > 5:

Diamantoudi (2005) shows that if �rms are endowed with foresight, larger cartels are

stable. The stability proposed in Diamantoudi (2005) captures the foresight of any �rm

that contemplates leaving (joining) a cartel. In particular, each �rm anticipates that after it

leaves the grand coalition, other �rms may also leave afterwards and consequently, its pro�ts

may decrease ultimately to a level below those of an insider of the grand coalition.

5 Concluding Remarks

We have shown that when �rms use open-loop strategies, the grand coalition is never stable.

We have also shown that only a cartel of size 2 can be stable and it is so only when the

cost function is su¢ ciently convex, i.e., when 
; the rate of increase of the marginal cost, is

su¢ ciently high. Furthermore, no cartel with 3 or more �rms is stable for all values of 
.

Note that a large cartel may be pro�table, but each �rm earns even larger pro�ts by exiting

the cartel. Like the static Cournot equilibrium, open-loop equilibrium in the dynamic model

we analyze cannot be used to explain the stability of the grand coalition.

We have shown that when �rms use closed-loop strategies, the grand coalition is stable

for small enough 
. The closed-loop e¤ect renders not only all cartels pro�table but also the

grand coalition stable. For larger values of 
 the grand coalition is no longer stable; however

the coalition size of 3 emerges as the only coalition size that is stable regardless of 
:

It could also be interesting to investigate the pro�tability and stability of cartels when

�rms play a non-linear equilibrium. It is known that the game studied in this paper, i.e.

a Cournot competition with sticky prices, admits a continuum of equilibria with non-linear

strategies (see Tsutsui and Mino (1990)).
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Appendix 1: Proof of proposition 3

We show that if N �M � 3; then no cartel is stable.
Internal stability of size-M cartel requires that �OLout (M � 1; N) � �OLins (M;N) � 0 or

A
B
� C

D
< 0 where

A = (
 + (M � 1))
�
2 (M � 1) 
 + 
 + 2 (M � 1) + 
2

�
B =

�

2 + 
N + 
 + 2 (M � 1) + (M � 1) 
 + (M � 1)N � (M � 1)2

�2
C = (
 + 1)

�
2M
 + 
 + 2M + 
2

�
D =

�

2 + 
N + 
 + 2M +M
 +MN �M2

�2
:

Since B > 0 and D > 0; A
B
� C

D
< 0 if and only if AD�BC < 0.AD�BC can be written

as

AD �BC = (
 + 1)
�
�5


5 + �4

4 + �3


3 + �2

2 + �1
 + �0

�
where

�5 = M � 2

�4 = 2MN � 4N � 10M + 4M2 + 3

�3 = 6N � 5M � 18MN � 8M2 + 3M3 � 2N2 +MN2 + 8M2N + 7

�2 = 38M + 4N + 6MN � 48M2 + 20M3 + 3N2 � 4M4 � 8MN2

�20M2N + 8M3N + 4M2N2 � 7

�1 = 14M � 6N + 26MN + 14M2 � 32M3 �N2 + 16M4 � 3M5

+8MN2 � 30M2N + 12M3N � 2M4N � 12M2N2 + 5M3N2 � 9

�0 = 56M2 � 12MN � 18M � 68M3 + 42M4 � 14M5 + 2M6 � 2MN2 + 36M2N

�40M3N + 20M4N � 4M5N + 6M2N2 � 6M3N2 + 2M4N2

To show that no cartel is stable when N �M � 3, it su¢ ces to show that size-M cartel

is internally unstable, i.e., AD � BC > 0: To this end, we shall show that �` > 0 for all

` = 0; 1; : : : ; 5 if N �M � 3:
Obviously, �5 > 0: We now proceed to show that �4 > 0: �4 is an increasing function

of N given N � 3: If N = M; we have �4 = 6M2 � 14M + 3 > 0: Thus, �4 > 0: Now,

consider �3: Observe �rst that if M = 3; �3 = 24N +N
2+1 > 0. It can be show that when

N �M � 3;
d�3
dM

= 16MN � 18N � 16M + 9M2 +N2 � 5 > 0:
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To show that �2 > 0; when N = M; �2 = 42:0M � 39:0M2 � 8:0M3 + 8:0M4 � 7:0 > 0
as M � 3: Also, we observe that

d�2
dN

= 6M + 6N � 16MN � 20M2 + 8M3 + 8M2N + 4

which is positive given that N �M � 3: Thus, �2 > 0:
Next, �1 can be written as

�1 = (M � 1)F

where

F = 6N � 5M � 20MN � 19M2 + 13M3 +N2 �

3M4 � 7MN2 + 10M2N � 2M3N + 5M2N2 + 9

To show that F > 0; we �rst examine

dF

dN
= 2N � 20M � 14MN + 10M2 � 2M3 + 10M2N + 6:

When N = M; F = M � 38M2 + 16M3 + 9 > 0 if M � 3: Thus, we need only to

show that dF
dN

� 0: When N = M � 3, dF
dN

= 8M3 � 4M2 � 18M + 6 > 0. Moreover,
d2F
dN2 = 10M

2 � 14M + 2 > 0 if M � 3: Thus, F > 0; which implies �1 > 0:
Lastly, a0 can be written as

�0 = 2M (M � 1)2
�
N2 (M � 1) +N

�
6M � 2M2 � 6

�
+ 10M � 5M2 +M3 � 9

�
:

This quadratic function of N in the last bracket is strictly increasing in N . Indeed,

2 (M � 1)N +
�
6M � 2M2 � 6

�
> 2 (M � 1)M +

�
6M � 2M2 � 6

�
= 4M � 6 > 0 for M � 2:

Since the quadratic function is strictly increasing in N for N �M � 2 we have

(M � 1)N2 +
�
6M � 2M2 � 6

�
N +M3 � 5M2 � 9 + 10M

> (M � 1)M2 +
�
6M � 2M2 � 6

�
M +M3 � 5M2 � 9 + 10M

= 4M � 9 > 0 for all M � 3

Therefore, �0 > 0
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Appendix 2: Proof of Proposition 4

We show that if N � 2:6 + 1
3

; cartel of size 2 is not stable.

If M = 2; we have

AD �BC =
�
7
 + 3
2 + 4

�
N2 +

�
2
3 � 10
 � 8

�
N � 27
2 � 11
3 � 
4 � 21
 � 4:

The larger root of the above quadratic equation is given by

�N =
1

3
 + 4

�

 � 
2 + 2 (
 + 1)

p
(
 + 2) (
 + 4) + 4

�
:

It is easy to see that

1

3
 + 4

�

 � 
2 + 2 (
 + 1) (
 + 2) + 4

�
< �N <

1

3
 + 4

�

 � 
2 + 2 (
 + 1)

p
(6
 + 
2 + 9) + 4

�
2:4 +

1

3

 <

1

3
 + 4

�
7
 + 
2 + 8

�
< �N <

1

3
 + 4

�
9
 + 
2 + 10

�
< 2:6 +

1

3



Thus, if N � 2:6+ 1
3

; then AD�BC > 0, implying that size-2 cartel is not internally stable

and if N � 2:4 + 1
3

 size-2 cartel is not internally stable

Appendix 3: Proof of Proposition 5

We show in this appendix that lim
!0Gout = 0 where Gout is given by (13). From

Proposition 2, the equations that determine the parameters are obtained by setting M =

N � 1, which yields:
for Kc and Kk;

1

2

N � 2NKc � 2
Kc + 2KcKk �K2
c +NK

2
c � 1



= 0 (14)

1

2

2NKcKk � 2
Kk � 2KcKk � 2NKk +K
2
k + 1



= 0 (15)

for Ec and Ek;

Kk (N � 1)
Ec


+ (Kk + (N � 1)Kc �N � 
)

Ek


= aKk (16)

((N � 1)Kc �N +Kk � 
)
Ec


+Kc

Ek


= aKc (17)

and for Gins and Gout;
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Gins =
1

2

(2Ek � Ec � 2a
 +NEc)Ec
(N � 1)
r (18)

Gout =
1

2

(Ek � 2Ec � 2a
 + 2NEc)Ek

r

(19)

To show that lim
!0Gins = 0 and lim
!0Gout = 0; it su¢ ces to show that lim
!0
Ec


< 1

and lim
!0
Ek


< 1 as these would imply that lim
!0Ec = 0 and lim
!0Ek = 0: To this

end, we �rst solve for Ec


and Ek



for equations (16) and (17) and then compute lim
!0

Ec



and lim
!0
Ec


:

lim

!0

Ec



= a
Kc ((N � 1)Kc �N)

D

lim

!0

Ek



= lim a
(Kk �N)Kk

D

where D � 2NKc � 2N2Kc + (N � 1)KcKk + (N �Kk)
2 + (N � 1)2K2

c : It can be shown

that the system for Kk and Kc admits only �nite solutions11. Then it su¢ ces to show that

D 6= 0:
Assume in negation that D = 0: Equations (14) and (15) imply that

N � 2NKc � 2
Kc + 2KcKk �K2
c +NK

2
c � 1 = 0

and

2NKcKk � 2
Kk � 2KcKk � 2NKk +K
2
k + 1 = 0:

When 
 tends to zero we have

N � 2NKc + 2KcKk �K2
c +NK

2
c � 1 = 0 (20)

and

2 (N � 1)KcKk � 2NKk +K
2
k + 1 = 0: (21)

From (20), we can obtain

2KcKk = 2NKc �N +K2
c �NK2

c + 1 (22)

11As noted in footnote 4 any solution (Kk;Kc) to the system (S) is such that Kk (or Kc) corresponds to a

root of a polynomial of degree 4 in Kk (or Kc). In�nity is not a root to a polynomial of non negative degree.
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and from (21),

(N �Kk)
2 = N2 � 1� 2 (N � 1)KcKk (23)

Substituting (20) and (21) into D = 0 gives

1

2
(N � 1)

�
3N � 6NKc � 3K2

c + 3NK
2
c + 1

�
= 0:

If N > 1; we have

3N � 6NKc � 3K2
c + 3NK

2
c + 1 = 0;

which implies that

Kc =
1

3N � 3

�
3N �

p
3
p
2N + 1

�
: (24)

Substituting the above into equation (20) gives

Kk =
1

3N + 1

�
2N +

2

3

p
6N + 3

�
: (25)

Substituting (24) into equation (21) gives

K2
k � 2NKk +Kk

�
2N � 2

3

p
6N + 3

�
+ 1 = 0:

The above equation has two roots

Kk =
1

3

p
3
p
2N + 1� 1

3

p
6
p
N � 1 and

Kk =
1

3

p
3
p
2N + 1 +

1

3

p
6
p
N � 1:

It is easy to verify that neither of these roots coincides with (25). This leads to the conclusion

that D 6= 0. Therefore lim
!0
Ec


<1 and lim
!0

Ek


<1
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