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Abstract

Ranking development programs using integrals of discounted utilities can yield dras-

tic consequences that offend our sense of justice. New alternative social welfare criteria

should be considered. A reaction to discounted utilitarianism is to moderate its ef-

fects by adding to the social welfare function a second term that takes seriously the

welfare of the generations that live in the far distant future. Chichilnisky proposes a

social welfare function that has two desirable properties: (i) non-dictatorship of the

present, and (ii) non-dictatorship of the future. However, in many economic models,

there exists no optimal path under the Chichilnisky criterion. We introduce a third

desideratum: “non-dictatorship of the least advantaged,” and propose a new welfare

criterion that is morally compelling. It is a weighted average of two terms: (a) the sum

of discounted utilities, and (b) the utility level of the least advantaged generation. We

derive necessary conditions to characterize growth paths that satisfy our criterion, and

show that in some models with familiar dynamic specifications, an optimal path exists

and displays appealing characteristics.
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1 Introduction

When performing evaluations of projects that involve future costs and benefits, economists

typically use a positive rate of discount. This procedure is rather non-controversial for

short-term projects, especially those of a marginal nature. However, for long-term projects

that have significant implications for future generations, discounting the future is a con-

troversial issue, both at the philosophical level, and at the level of practical implications.

Sidgwick (1907, p. 414) argued against discounting, on the philosophical ground that “the

time at which a man exists cannot affect the value of his happiness from a universal point of

view;...the interests of posterity must concern a Utilitarian as much as those of his contem-

poraries”1. Perhaps Ramsey (1928) was the first economist to have articulated this problem

in an infinite horizon framework. Like Sidgwick, Ramsey considered it unethical to discount

the utilities of future generations. Various utilitarian welfare criteria that avoid discounting

have been proposed. Among these are Ramsey’s “minimum distance from Bliss” criterion,

and the “overtaking criterion” suggested by von Weizsäcker (1965) and Gale (1967)2. As

pointed out by Chichilnisky (1996), these criteria fail to rank all possible welfare streams,

i.e., they fail the “completeness” test.

The practical implications of ranking time-paths of utilities on the sole basis of comparing the

values of the associated integrals of discounted utilities can be quite drastic. For example, in

the Solow-Dasgupta-Heal model3 with a man-made capital stock and an exhaustible resource,

1Sidgwick’s argument against discounting has led to the “equity principle à la Sidgwick”, which is embod-
ied in the form of the “anonymity” condition: a stream of utility s = {x, y, z, ...} should be judged as equal
to a permuted stream sp = {y, x, z, ...}. Diamond (1965) shows that if one requires a social welfare function
W (.) to satisfy the strict Paretian property, a weak form of anonymity and some kind of continuity, then
W (.) does not exist. Basu and Mitra (2003) confirm Diamond’s result even without requiring continuity.
Svensson (1980) however shows that if, instead of seeking a (real-valued) function, we merely look for the
ability to rank infinite streams of utilities, then existence of a social welfare relation, or ordering, is ensured.
Unfortunately, Svensson did not offer a constructive proof, so almost nothing is known about such ordering.

2Unaware of the contributions by economists, the philosopher Krister Segerberg (1976, p. 226) poses the
following problem in ethics, in his article titled “A Neglected Family of Aggregation Problems in Ethics”,
published in Noûs (1976):
“Pascal believes that eternity consists of infinitely many days [and] that when his body is dead his soul

will spend each following day in Heaven or Hell...Outcomes can be represented by infinite sequences x0 x1...
xn..., where each xn is either 1(Heaven) or 0 (Hell)....Problems arise when he wants to compare prospects
containing both 1’s and 0’s. Particularly difficult is it to deal with with prospects containing infinitely many
1’s and also infinitely many 0’s.”

3Solow (1974), Dasgupta and Heal (1979, pp. 288-300.)
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while it is feasible to maintain a constant positive level of consumption for ever, utilitarianism

with discounting would prescribe a path with vanishing consumption in the long run, no

matter how small the discount rate is. This consequence offends our sense of justice. It

seems, therefore, that some alternative social welfare criteria should be considered when we

make choices among alternative courses of actions that significantly affect future generations.

An extreme form of egalitarianism has been proposed by some philosophers and economists:

the maximin criterion, according to which one stream of utilities is better than another if

and only if the utility level of the least advantaged person in the former is higher than that

of the least advantaged person in the latter. The maximin criterion has also been called

the “Rawlsian criterion” even though Rawls (1971, 1999) had expressed strong reservations

about the use of maximin as a principle for intergenerational equity4. The fascination with

the maximin criterion has spawned a stream of theoretical literature that seeks to charac-

terize development paths that ensure a constant level of consumption, or constant utility,

for all generations. (See, for example, Solow (1974), Hartwick (1977), Dasgupta and Heal

(1979), Asheim (1988), Asheim, Buchholtz and Withagen (2003).) The insistence on con-

stant consumption, however, can yield consequences that are unpalatable. As Rawls (1999,

p.254) pointed out, the unmodified maximin principle would entail “either no saving at all

or not enough saving to improve social circumstances,” which is totally unacceptable to him,

especially for the case of very poor countries with a low stock of capital5.

Another type of reaction to discounted utilitarianism is to moderate the effects of discounting

by adding to the social welfare function a second term that takes seriously the welfare of

the generations that live in the far distant future. This second term does not contain a

discount rate. This approach was proposed by Chichilnisky (1996), who coined the term

“dictatorship of the present” to describe welfare criteria (such as comparing integrals of

discounted utility streams) that give practically a weight of zero to the utility levels of far-

away generations. She does not object to discounting per se, and does not insist that the

social welfare function must have the anynomity property. To her, as long as the interest

4See Long (2007) for a discussion of Rawls’s reservations, and a review of the related literature.
5See also Rawls (1971, p.291).
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of future generations are adequately protected, in the sense that the social welfare function

does not display “dictatorship of the present”6, some form of discounting is acceptable. She

proposes a social welfare function that has three desirable properties: (i) non-dictatorship of

the present, (ii) non-dictatorship of the future7, and (iii) strong Pareto. The Chichilnisky

social welfare function takes a simple and intuitively appealing form: social welfare is a

weighted sum of two terms, the first being the conventional sum of discounted utilities, and

the second term takes on a value which depends only on the limiting behavior8 of the utility

sequence under consideration. The weight given to each term must be strictly positive. It

is interesting to observe that a weighted average of two criteria, one displaying dictatorship

of the present, the other displaying dictatorship of the future, is a criterion that does not

display these undesirable properties.

While Chichilnisky’s social welfare function is well defined and can rank all utility sequences,

in many economic models of interest, there does not exist a utility stream that is optimal

under that criterion9. To illustrate, take the standard Solow neoclassical growth model, and

choose a time path of saving rate to maximize social welfare under the Chichilnisky criterion.

Any path that approaches the golden rule level of capital stock, kg, will maximize the second

term of the weighted sum. It pays therefore to delay the approach to kg as much as possible,

and stay near the modified golden rule level km as long as possible, because doing so would

increase the value of the first term, and would not affect the second term. It follows that

among all paths that approach kg asymptotically, any feasible path is inferior (according to

the Chichilnisky social welfare function) to some other feasible path.

In this paper, we complement Chichilnisky’s non-dictatorship of the present and non-dictatorship

6A social welfare function W (.) is said the display “dictatorship of the present” if for any two sequences
of utilities, say s = {ut} and s0 = {vt}, and W (.) ranks s higher than s0, there exists some time T > 0 such
that no modification of the tail-ends (beyond T ) of s and s0 could reverse the ranking. The conventional
utilitarian criterion with discounting implies dictatorship of the present.

7A social welfare function W (.) is said the display “dictatorship of the future” if whenever W (.) ranks
s higher than s0, all modifications of s and s0 that do not affect their limiting behavior would preserve the
original ranking.

8For example, with the utility sequence {ut}the second term could be limsupt→∞ut, or liminft→∞ut, or
some weighted average of these two limiting values.

9There exists a simple model of non-renewable resource where the Chichilnisky’s criterion does identify
an optimal path. See Chichilnisky (1997), and Figuiere and Tidball (2007).
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of the future by introducing a third desideratum: “non-dictatorship of the least advan-

taged”10, and propose a new welfare criterion which, as we argue below, is morally com-

pelling. Our criterion is a weighted average (with strictly positive weights) of two terms.

The first term is the conventional sum of discounted utilities, and the second term is the

utility level of the worse-off generation. We call this new criterion the Mixed Bentham-Rawls

criterion (MBR). We use the word “Bentham” because our criterion is utilitarian, in the sense

that it permits trade-offs of utilities of different individuals, and the word “Rawls” because

of its special (but not exclusive) emphasis on the wellbeing of the least advantaged11.

In the next section, we will present arguments that justify this criterion. In a later section, we

will develop a set of necessary conditions to characterize growth paths that satisfy the MBR

criterion, and show that in some models with familiar dynamic specifications, an optimal

path under MBR exists and displays appealing characteristics.

2 The mixed Bentham-Rawls criterion

Consider an economy with infinitely many generations. Since we wish to focus on the question

of distributive justice among generations, we make the simplifying assumption that within

each generation, all individuals receive the same income and have the same tastes. Thus, by

assumption, the question of equity within each generation does not arise. This framework

has been used in, for examples, Solow (1974), Hartwick (1977), Dasgupta and Heal (1979,

Chapters 9-10), Dixit et al. (1980), Mitra (1983), and Chichilnisky (1996).

Let ct denote the vector of consumption (of various goods and services) allocated to the

representative individual of generation t. Let ut ≡ u(ct) be the life-time utility of this

individual (ut is a real number, and u(.) is a real-valued function). We interpret “utility”

as “standard of living”of individuals, rather than some kind of happiness they get when

consuming and/or contemplating their childrens’ and grand-childrens’ life prospects. To fix

ideas, it is convenient to assume that each individual lives for just one period. Consider for

10Rawls’s argument, cited above, against the use of the unmodified maximum principle, may be considered
as a refusal to accept “dictatorship of the least advantaged”, though he did not use this term.
11In the context of intergenerational equity, Rawls’s emphasis on the least advantaged is not exclusive: if

the least fortunate generation is the first generation, he still wants savings to take place (1971, p. 291).
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the moment two alternative projects, denoted by 1 and 2. Project i (where i = 1, 2) yields

an infinite stream of utilities denoted by

©
uit
ª
t=1,2,...,

≡
©
ui1, u

i
2, ..., u

i
t, u

i
t+1, ...

ª
where uit stands for ut(c

i
t).

We assume that while an individual of generation t might care about the consumption vector

of his/her son or daughter, ct+1, and that of his/her12 grand-son or grand-daughter, ct+2,

these vectors have no impact on the “utility” level ut. Thus it might be preferable to refer

to ut as the “standard of living” rather than “utility” of generation t.

For simplicity of notation, we use the symbol ui to denote the utility stream {uit}t=1,2,...,.

Roughly speaking, a welfare criterion is a way of ranking all possible utility streams. Let S

be the set of all possible utility streams. A social welfare function, denoted by W (.), is a

function that maps elements of S to the real number line13.

To simplify matters, we assume that the function u(.) is bounded.

Assumption 1: (Boundedness) Utility is bounded

A ≤ u(c) ≤ B

Remark: The number B is the highest possible level of utility. We shall refer to B as the

“Bliss Utility Level”.

In what follows, we consider only welfare functionsW (.) that are non-decreasing in ut. That

is, if the utility level of one generation increases, the social welfare cannot decrease. This is

the well known Paretian property14.

12To avoid repetitive uses of his/her etc., in all that follows, when referring to hypothetical persons, we
use the masculin gender, on the understanding that it embraces the feminin gender.
13This definition of “social welfare function” is quite common, see, for example, Chichilnisky (1996, p.

240), Basu and Mitra (2003). This is to be distinguished from Arrow’s use of the term “social welfare
function” which is a mapping from the space of all possible individual preference orderings (of social states)
to the space of social orderings.
14The Paretian Property can be strengthened to the “Strict Paretian Property” by replacing the word

“non-decreasing” by “increasing”.
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Property P:(Paretian Property) Welfare is non-decreasing in ut.

Utilitarian social welfare functions permit comparing (and trading-off) an increment in the

utility level of an individual (or group of individuals) with a ‘decrement’ (negative change)

in the utility level of another individual (or group). A familiar example is the “utilitar-

ian criterion with discounting”. Non-utilitarian social welfare functions (such as maximin

and sufficientarianism15) admit interpersonal comparison of utility levels, but do not permit

trading off.

Under the “utilitarian criterion with discounting” (at a positive rate δt > 0), social welfare

is denoted by W d and is defined as follows:

W d(ui) =
ui1

(1 + δ1)
+

ui2
(1 + δ1)(1 + δ2)

+
ui3

(1 + δ1)(1 + δ2)(1 + δ3)
+ ...+ ...

According to this criterion, a utility stream uj is ranked higher than a utility stream ui if

and only if W d(uj) > W d(ui). Thus, a small decrease in the utility level of an individual

(no matter how disadvantaged he already is) can be justified by some increase in the utility

level of some other individuals.

The Maximin Criterion is denoted byWm. According to this criterion, a utility stream ui is

ranked higher than utility stream uj if and only if the utility level of the worst off generation

in stream ui is higher than the utility level of the worst off generation in stream uj, that is,

if and only if,

inf
©
uit
ª
t=1,2,...,

> inf
©
ujt
ª
t=1,2,...,

The utilitarian criterion with discounting has been attacked by many economists, from Ram-

sey (1928) to Chichilnisky (1996). To quote a forceful example from Chichilnisky (1996, page

235):

“...Discounting future utility is generally inconsistent with sustainable development. It can

produce outcomes which seem patently unjust to later generations. Indeed, under any posi-

tive discount rate, the long-run future is deemed irrelevant. For example, at a standard 5%

15For explanations and discussions of the sufficientarianism criterion, see Chichilnisky (1977), Frankfurt
(1988), Anderson (1999), Arneson (2002), and Roemer (2003).
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discount rate, the present value of the earth’s aggregate output discounted 200 years from

now, is a few hundred thousand dollars. A simple computation shows that if one tried to

decide how much it is worth investing in preventing the destruction of the earth 200 years

from now, the answer would be no more than one is willing to invest in an apartment.”

Chichilnisky (1996) argues that all utilitarian criteria with discounting place too much em-

phasis on the present. In fact these criteria display insensitivity to the utility of distant

generations. To formalize this idea, let us follow Chichilnisky and define (T si,aT ) to be a

utility sequence obtained from si by replacing all elements of si except the first T elements

by the tail of the utility sequence a, where

aT ≡ {aT+1, aT+2, ....}

T s
i ≡

©
si1, s

i
2, ..., s

i
T

ª
(T s

i,aT ) ≡
©
si1, s

i
2, ..., s

i
T , aT+1, aT+2, ....

ª
Consider the following definition:

Definition 1: (dictatorship of the present; Chichilnisky 1996)

A welfare criterion W (.) is said to display “dictatorship of the present” if the following

condition holds:

For every pair (si, sj),W (si) is greater than W (sj) if and only if, for all T sufficiently large16,

W (T s
i,aT ) > W (T s

j,bT ) for all pairs of utility sequences (a,b), where (T si,aT ) means that

all elements of si except the first T elements are replaced by the tail of the sequence a, and

(T s
j,bT ) means that all elements of sj except the first T elements are replaced by the tail of

the utility sequence b.

In other words, dictatorship of the present means that any modification of utility levels

of generations far away in the future would not be able to reverse the welfare ranking of

two utility streams. Given Assumption 1, the utilitarian criterion with positive discounting

16More precisely, for all T > bT for some bT that may depend on si and sj.
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displays dictatorship of the present.

A welfare function is said to display “non-dictatorship of the present” if for any pair (si, sj)

such that W (si) > W (sj), there exists some modifications to utilities of individuals in the

distant future that reverse the ranking.

Let us turn to the other extreme, and consider some welfare criteria that pay no attention

to the utility levels of generations that are living at the present or in the “near future”.

Given a utility sequence {ut}t=1,2,..., ≡ {u1, u2, ..., ut, ut+1, ..., ..., ...}, let us consider the tail

beginning at t, {ut, u t+1, ...}, and define the number zt and yt to be respectively the greatest

lower bound and least upper bound of this tail

zt ≡ inf
t
{ut, ut+1, ...}

yt ≡ sup
t
{ut, ut+1, ...}

The resulting sequence {zt, zt+1, ...} is by construction a non-decreasing sequence, and hence

must converge to a limit z:

lim
t→∞

zt = z

i.e.

lim inf
t→∞

{ut, ut+1, ...} = z

Similarly, the sequence {yt, yt+1, ...} is by construction a non-increasing sequence, and hence

must converge to a limit y:

lim
t→∞

yt = y

i.e.

lim sup
t→∞

{ut, ut+1, ...} = y

Clearly, lim inf and lim sup are both well defined social welfare functions. These functions

are entirely insensitive to the utility levels of the generations that are living at the present

or in the “near future”. Welfare comparisons using either of these criteria depend only on

the utility levels of generations born in the distant future. Chichilnisky (1996) pointed out
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that such criteria give a “dictatorial role” to the future. Formally, a welfare criterion W (.)

is said to display “dictatorship of the future” if it has the following property:

Definition 2: (dictatorship of the future; Chichilnisky 1996)

A welfare criterion W (.) is said to display “dictatorship of the future” if the following con-

dition holds:

For every pair (si, sj), W (si) is greater thanW (sj) if and only if, for all T sufficiently large,

W (Ta, s
i
T ) > W (Tb, s

j
T ) for all pairs of sequences (a,b), where (Ta, s

i
T ) means that the first

T elements of si are replaced by the vector Ta ≡ (a1, a2, ..., aT ), and (Tb, sjT ) means that

the first T elements of sj are replaced by the vector Tb ≡ (b1, b2, .., bT ).

Both the lim inf and the lim sup social welfare functions display dictatorship of the future.

A welfare function is said to display “non-dictatorship of the future” if for any pair (si, sj)

such that W (si) > W (sj) there exists some modifications to utilities of individuals in the

early generations that reverse the ranking.

Chichilnisky argued that both dictatorship of the present and dictatorship of the future are

undesirable. She proposed a criterion that rules out both forms of dictatorship.

The welfare function proposed by Chichilnisky17 is a weighted sum of two terms, the first

term being the usual discounted stream of utilities, while the second term is defined in a way

that its value depends only on the limiting behavior of the utility sequence. Formally,

WC(ui) = (1− θ)
∞X
t=1

λtu
i
t + θφ(ui)

where 0 < θ < 1, 0 < λt < 1,
P∞

t=1 λt <∞ and, by definition,

φ(ui) ≡ lim
t→∞

uit

Here, the limit can be defined to be lim sup, or lim inf, or some weighted average of the

two. The social welfare functionWC(.) clearly has the properties of “non-dictatorship of the

17This welfare function has the strict Paretian property, and satisfies the axioms of “non-dictatorship of
the present” and “non-dictatorship of the future.” If two more axioms are added, “continuity” and “inde-
pendence” (in the sense of linearity in ut), then this is the only form the welfare function can take.
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present” and “non-dictatorship of the future”.

It is interesting to observe that WC is a weighted average (a convex combination) of two

functions that are themselves based on rejected welfare criteria. The second function, φ(ui) =

limt→∞ uit, implies dictatorship of the future, while the first function,
P∞

t=1 λtu
i
t , implies

dictatorship of the present. A convex combination that gives strictly positive weights to two

“undesirable” welfare functions is free from their associated undesirable properties.

A major problem with the Chilchinisky welfare function WC(.) is that for many growth

models, including the familiar one-sector growth model, there does not exist an optimal

path under this objective function. The intuition behind this non-existence is as follows.

The function φ(ui) = limt→∞ uit would insist on reaching, in the long run, the golden rule

capital stock, but does not care how soon or how early. The second function,
P∞

t=1 λtu
i
t,

would insist on reaching, instead, the modified golden rule capital stock. Any path ui that

goes near the modified golden rule capital stock and eventually veers to the golden rule

capital stock at some time Ti will be beaten by another path uj that does a similar thing

but at a later date Tj > Ti. The latter path uj in turn will be beaten by another path uh

with Th > Tj and so on. So an optimal path does not exist.

We propose to modify the Chichilnisky criterion by discarding the second term, θφ(ui), and

replacing it with the maximin utility18. For this purpose, we define the following concept:

Definition 3: (dictatorship of the least advantaged)

A welfare criterion W (.) is said to display “dictatorship of the least advantaged” if the

following condition holds:

For any pair (si, sj), W (si) is greater than W (sj) if and only if

inf
©
si1, s

i
2, ..., s

i
n, ...

ª
> inf

©
sj1, s

j
2, ..., s

j
n, ...

ª
18The maximin utility is inf, not lim inf.

11



Now, for any number θ, where 0 < θ < 1, let us consider the following social welfare function

Wmbr(ui) = (1− θ)
∞X
t=1

λtu
i
t + θ inf

©
ui1, u

i
2, ..., u

i
n, ...

ª
(1)

This social welfare function is a weighted average of two functions, one displaying dictatorship

of the present, the other displaying dictatorship of the least advantaged, with a strictly

positive weight given to each19. As a result, it displays “non-dictatorship of the present”

and “non-dictatorship of the least advantaged”. The superscript mbr is an abreviation for

“Mixed Bentham-Rawls”. We use the word “Bentham” because our criterion is utilitarian, in

the sense that it permits trade-offs of utilities of different individuals, and the word “Rawls”

because of its special (but not exclusive) emphasis on the wellbeing of the least advantaged20.

Notice that the function Wmbr(.) also implies that the welfare of the present generation

matters, i.e., it displays non-dictatorship of the future. To see this, consider any pair (si, sj)

such that W (si) > W (sj). Then, we can destroy this strict ranking by replacing si1 with the

lowest possible utility; i.e., modifications of present utilities do modify the ranking of two

utility streams.

Let us offer a brief justification for our proposed social welfare function. Consider a Rawlsian

hypothetical original position, under the assumption that the contracting parties are family

lines21. A family line is at the same time “one” and “many”. Being “one”, it is like a

single individual. There are no valid reasons to object to an individual’s discounting of his

future consumption. But a family line is also “many.” The least advantaged individuals

have special claims like those accorded to the “contemporaneous individuals” of the simpler

atemporal Rawlsian model. It is therefore arguable that each contracting party would (i)

place a special weight on the utility level of the least advantaged generation of the family

line, and (ii) care about the sum of weighted utilities of all generations. It seems also sensible

19Unlike Chichilnisky’s social welfare function, our social welfare function is not linear in utilities, because
inf
¡
αui + βuj

¢
is not equal to α inf(ui) + β inf(uj). For example, consider ui = {0, 1, 01, 0, 1, ...} and

uj = {1, 0, 1, 0, 1, 0, ...}, with α = β = 1/2. Then inf
¡
αui + βuj

¢
= 1/2 while inf(ui) = 0 = inf(uj).

20See Rawls (1971, p. 287-291).
21In the context of intergenerational equity, Rawls postulated that the contracting parties represent “family

lines” (1971, p. 292).
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to allow a trade-off between (i) and (ii) above, because each party represents a family line.

Our proposed mixed Bentham-Rawls criterion is in sharp contrast to the standard utilitarian

tradition (e.g. see any graduate macro-economic textbook) which would treat a family line

as an infinitely-lived individual. Such a textbook position could result in requiring great

sacrifices of early generations who are typically poor. In contrast, our proposed approach

avoids imposing very high rates of savings at the earlier stages of accumulation.22

3 Finding the social optimum under the mixed Bentham-Rawls criterion

In this section we derive necessary conditions for an optimal path under the mixed Bentham-

Rawls criterion. It is more convenient to work with a continuous time model. Let x be a

vector of n state variables, and c a vector of m control variables. Denote the instantaneous

utility function by u(x(t), c(t), t).

The transition equations are ẋi(t) = gi(x(t), c(t), t), for i = 1, 2, ..., n. Given the values of

the state variables, the control variables at time t must belong to a feasibility set A(x(t), t)

which is characterized by a set of s inequality constraints:

hi(x(t), c(t), t) ≥ 0, i = 1, 2, ..., s.

Consider first the case of a finite horizon T . The initial stocks xi(0), i = 1, 2, ..., n, are given.

For a given time path bc(.) and the associated time path bx(.), let u be the greatest lower
bound of the resulting time path of utility:

u = inf
t
{u (bx(t),bc(t), t)}

This implies that

u (bx(t),bc(t), t) ≥ u

22Rawls also complained about the standard utilitarian approach, as it “may direct us to demand heavy
sacrifices of the poorer generations for the sake of greater advantages for the later ones that are far better
off” (1971, p. 287). He instead advocated that “when people are poor and savings are difficult, a lower rate
of savings should be required; whereas in a wealthier society greater savings may reasonably be expected
since the real burden is less.” (1971, p. 287).
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Assume a constant rate of discount ρ ≥ 0. The social welfare generated by the time path bc(.)
under the mixed Bentham-Rawls criterion is then the continuous time counterpart of (1):

Z T

0

(1− θ)e−ρtu (bx(t),bc(t), t) dt + θu (2)

To maximize social welfare given the vector of initial stocks x0 ≡ (x10, x20, ..., xn0), the

planner chooses the number u and the time path c(t) to maximize the above welfare function,

subject to

u(x(t), c(t), t) ≥ u (3)

h(x(t), c(t), t) ≥ 0 (4)

ẋ(t) = g(x(t), c(t), t) (5)

and

xi(T ) ≥ 0 (6)

Note that u must belong to a feasible set Z(x0), which is defined as follows:

Z(x0) ≡

⎧⎨⎩ y : ∃c(t) ∈ A(x(t), t), u(x(t), c(t), t) ≥ y,

ẋ(t) = g(x(t), c(t), t), x(T ) ≥ 0, x(0) = x0

⎫⎬⎭ (7)

We define

b = sup {y : y ∈ Z(x0)} (8)

Here b is the highest feasible minimum living standard that can be imposed as a constraint,

given the initial stock x0.

3.1 The necessary conditions

Since u is a constant to be chosen optimally, the optimization problem (2) is an optimal

control problem with u treated as a control parameter. The necessary conditions for such

14



problems can be derived from Hestenes’s Theorem23. They are as follows.

Let π(t) be the vector of costate variables, λ(t) be the vector of multipliers associated with

the inequality constraints (4) and ω(t) the multiplier associated with the constraint (3). The

Hamiltonian for this problem is

H(t, x(t), c(t), π(t)) ≡ (1− θ)e−ρtu(x(t), c(t), t) + π(t)g(x(t), c(t), t)

and the Lagrangian is

L(t, x(t), c(t), π(t), λ(t), ω(t), u) = H + λ(t)h(x(t), c(t), t))

+ω(t) [u(x(t), c(t), t)− u]

An optimal path must satisfy the following conditions:

(i) The maximum condition: The control variables maximize the Hamiltonian subject to the

inequality constraints (3) and (4),

(ii) The adjoint equations:

π̇ = −∂L
∂x

(iii) The transition equations:

ẋ =
∂L

∂π

(iv) The transversality condition with respect to the control parameter u is

θ +

Z T

0

∂L

∂u
dt ≥ 0 ( = 0 if u < b)

(where b is defined by (8)), and that with respect to the final stocks is

x(T ) ≥ 0, π(T ) ≥ 0, π(T )x(T ) = 0

23See Leonard and Long (1991, Theorem 7.11.1) for an exposition of Hestenes’ Theorem which deals with
optimal control problems involving control parameters and various constraints.
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(v) The Hamiltonian and the Lagrangian are continuous functions of time, and

d

dt
H(t, x(t), c(t), π(t)) =

d

dt
L(t, x(t), c(t), π(t), λ(t), ω(t), u) =

∂L

∂t

3.2 Implications for genuine savings

Since one of the fundamental questions concerning intergenerational equity is the “how much

a generation ought to save” given its current circumstances, let us derive the implications

of our mixed Bentham-Rawls criterion for saving rates. Following Hamilton and Hartwick

(2005) and Hamilton and Withagen (2006), let us define “present-value genuine savings” by

S(t) ≡ π(t)g(x(t), c(t), t)

and “current-value genuine savings” by

Sc(t) ≡ eρtπ(t)g(x(t), c(t), t)

Then, by definition of the Hamitonian H and of genuine savings S,

d

dt
H = −ρ(1− θ)e−ρtu(t) + (1− θ)e−ρtu̇+ Ṡ (9)

On the other hand,

∂L

∂t
= −ρ(1− θ)e−ρtu(t) + π(t)gt + λ(t)ht +

£
(1− θ)e−ρt + ω

¤
ut (10)

Using (v), it follows that along the optimal path, utility is rising at time t if and only if the

rate of change in present-value genuine savings, adjusted for technological progress impact

(the term inside the curly brackets in the equation below), is negative:

Ṡ −
©
πgt + λht +

£
(1− θ)e−ρt + ω

¤
ut
ª
= −(1− θ)e−ρtu̇ (11)
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i.e.

Ṡ + (1− θ)e−ρtu̇ =
©
πgt + λht +

£
(1− θ)e−ρt + ω

¤
ut
ª

(12)

Thus, the constancy of present-value genuine savings (Ṡ = 0) is consistent with growing

utility if technological progress impact is positive. In particular, suppose the technological

progress impact is zero. Then, as is clear from (11), if utility is constant over some time

interval [t1, t2] ,then the present-value genuine savings must be constant as well.

Now, by definition,

S(t) = e−ρtSc(t)

Hence
Ṡ

S
= −ρ+ Ṡc

Sc

Thus, under our objective function, along the time interval [t1, t2] when utility is constant,

the current-value genuine savings must be rising:

Ṡc

Sc
= ρ (13)

We will see that this result is confirmed in our numerical simulations below.

Remark: Our result, equation (12), is a generalization of the proposition of Hamilton and

Withagen (2006), and Hamilton and Hartwick (2005). Those papers were concerned only

with the standard utilitarian objective, and thus had no place for the multiplier ω.

3.3 Infinite horizon optimization under the mixed Rawls-Bentham criterion

Suppose the time horizon is infinite and the rate of discount ρ is a positive constant. Then the

social planner chooses u and c(.) to maximize the mixed Rawls-Bentham (MBR) objective

function:

θu+

Z ∞

0

(1− θ)u(x, c, t)e−ρtdt
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It will be convenient to re-write this objective function as an integral:

Z ∞

0

{θuρ+ (1− θ)u(x, c, t)} e−ρtdt (14)

Let ψ(t) = eρtπ(t), μ(t) = eρtλ(t) and w(t) = eρtω(t). The current value Hamiltonian of this

infinite horizon problem is

Hc = θuρ+ (1− θ)u(x, c, t) + ψg(x, c, t)

and the current-value Lagrangian is

Lc = Hc + μh(x, c, t) + w [u(x, c, t)− u]

Then we obtain the following conditions:

∂Lc

∂c
= (1− θ)uc + ψgc + μhc + wuc = 0

μ ≥ 0, g(x, c, t) ≥ 0, μg(x, c, t) = 0

w ≥ 0, u(x, c, t)− u ≥ 0, w [u(x, c, t)− u] = 0

ψ̇ = ρψ − ∂Lc

∂x

ẋ =
∂Lc

∂ψ

The optimality condition with respect to the control parameter is

Z ∞

0

e−ρt
∂Lc

∂u
dt ≥ 0 ( = 0 if u < uH)

where uH is the infinite-horizon counterpart of b in equation (8). Finally, the transversality

conditions with respect to the stocks are
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lim
t→∞

e−ρtψ(t) ≥ 0, and lim
t→∞

e−ρtψ(t)x(t) = 0.

4 An Example: Optimal Renewable Resource Use under the MBR Criterion

Let us illustrate the implications of the MBR criterion for a model of renewable resource

exploitation. The resource stock is a scalar x(t). Its growth function is

ẋ = G(x)− c

where G(x) is a strictly concave function which reaches a maximum at some xM > 0. We

call xM the “maximum sustainable yield” stock level. Assume G(0) = 0 and G0(0) > 0. The

variable c denotes the harvest rate.

The utility function is assumed to be dependent on both the stock (which provides amenity

services) and the consumption:

u = u(x, c)

We assume u to be homothetic, strictly quasi-concave and increasing, with ucx ≥ 0, uc(x, 0) =

∞ and ux(0, c) =∞. This means the indifference curves have the usual convex shape in the

space (x, c).

We define the “golden rule stock level”, denoted by xg, as the stock level that maximizes

long-run sustainable utility:

max
x

u(x,G(x))

This level is uniquely determined by the following equation, which equalizes the marginal

rate of substitution with the marginal rate of transformation:

ux(xg, G(xg))

uc(xg, G(xg))
= −G0(xg)

Clearly, xg > xM , because G0(xg) < 0 = G0(xM).

By the “modified golden rule stock level”, we mean the stock level xu which is defined by
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the equation
ux(xu, G(xu))

uc(xu, G(xu))
= −G0(xu) + ρ

Then, since G(x) is concave,

xu < xg

This is because as we move along the curve c = G(x) toward greater values of x, the ratio

G(x)/x falls, so the marginal rate of substitution ux(x,G(x))/uc(x,G(x)) falls, and thus

[ux(x,G(x))/uc(x,G(x))] +G0(x) falls, i.e. [ux(x,G(x))/uc(x,G(x))] +G0(x) is a decreasing

function of x. In particular, for any ex that lies between xu and xg,

ρ =
ux(xu, G(xu))

uc(xu, G(xu))
+G0(xu) >

ux(ex,G(ex))
uc(ex,G(ex)) +G0(ex) > ux(xg, G(xg))

uc(xg, G(xg))
+G0(xg) = 0 (15)

Now consider the optimal growth program under the mixed Bentham-Rawls objective func-

tion.

max θu + (1− θ)

Z ∞

0

e−ρtu(x, c)dt

subject to

ẋ = G(x)− c

u(x, c) ≥ u

where x(0) = x0 > 0.

An interesting question is: under the MBR criterion, does the optimal path approach a

steady state that is somewhere between the modified golden rule stock level, xu, and the

golden rule stock level, xg? Proposition 1 below gives the answer.

Proposition 1: Under the MBR criterion, the steady state depends on whether the initial

stock, x0, is smaller or greater than xρ.

(i) If x0 > xu, the optimal path consists of two phases. Phase I begins at t = 0 and ends at

some finite T > 0. During Phase I, the utility level and the resource stock are both falling.

Genuine saving is negative and rises toward zero. At time T , the pair (x, c) reaches a mixed
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Bentham-Rawls steady-state pair (xmbr, cmbr) where

xu < xmbr < xg

During Phase II, the system stays at the mixed Bentham-Rawls steady state (xmbr, cmbr).

Genuine saving is constant and equal to zero.

(ii) If x0 < xu, the optimal path consists of two phases. Phase I begins at t = 0 and ends

at some finite T > 0. During Phase I, utility is constant, which implies a time path of

falling harvest rate, and rising stock. Genuine saving in this phase is positive. In Phase II,

the economy follows the standard utilitarian path approaching asymptotically the utilitarian

steady state given by modified golden rule stock level, xu. Genuine saving is positive and falls

steadily toward zero.

Proof: Please see the Appendix.

5 Sensitivity Analysis of Optimal Paths under the MBR criterion

5.1 A Renewable Resource Model with Amenity Values

We assume logarithmic preferences, u (c, x) = ln c+ lnx, and a logistic specification for the

reproduction function of the resource:

ẋ = rx
³
1− x

K

´
− c

where K is the carrying capacity and r the intrinsic regeneration rate. We follow Brander

and Taylor (1998), setting r = 0.04 and k = 12, 000. We set the rate of time preference,

ρ = 0.05, and we assign equal weights to the rawlsian and utilitarian components in our

objective function, so θ = 0.5. Let us use subscripts u, r and mbr to denote the solutions

under the discounted utilitarian, maximin and mixed Bentham-Rawls criteria respectively

and denote steady states by upper-bar variables.

As already pointed out, the dynamic adjustment and the steady state of our economy depend
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crucially on whether the initial resource stock, x0, is below or above the modified golden rule

stock of resources, x̄u. We shall examine both cases in detail.

Figure 1 illustrates the transitional dynamics of an economy that begins with a stock of

resources equal to four times the modified golden rule stock. The Rawlsian steady state is

given by the golden rule stock of resource, and since the initial stock exceeds this level by

1.5 times we set a time path for Rawlsian consumption, cr (t) = c̄r, that coincides with the

long-run level of consumption under this criteria. With an initial stock of resource equal

to the carrying capacity, the rate of consumption cr (t) at c̄r leads to a negative saving

rate and a falling stock of resource that, in finite time, reaches the golden rule stock of

resource24. In steady state, rawlsian consumption exceeds the modified golden rule one by

18.5% guaranteeing that each future generation exactly inherits the golden rule stock of

resources On the other hand the utilitarian dynamics are driven by the trade-off between the

marginal rate of growth of the resource and the rate of time preference. Since with the stock

close to the carrying capacity its rate of reproduction is negligible this trade-off is dominated

by impatience and the initial generation enjoys a level of consumption that exceeds by almost

4.5 times the modified golden rule one. At this level, consumption is substantially larger

than the capacity of regeneration of the resource and therefore the resource stock begins

to fall. The rest of the transition is characterized by subsequent decreases in consumption

and the stock of resource, with genuine savings increasing monotonically towards zero as the

growth rate of the stock increases.

The mixed Bentham-Rawls criterion, which is a compromise between the previous two, leads

to an optimal path with two clearly distinctive phases. During Phase I, that begins at t = 0

and ends at some finite time, tθ > 0, this path follows the unstable dynamics of the utilitarian

solution. The initial level of consumption lies between the rawlsian choice and the utilitarian

one, exceeding the modified golden rule level of consumption by more than 3.5 times. As

in the utilitarian case, this high level of consumption leads to an initial phase characterized

24Notice that in our model with amenity values, the golden rule stock of resource, which is the stock that
maximizes long-run sustainable utility, exceeds the stock of resource that maximizes long-run sustainable
consumption, i.e. the "maximum sustainable yield."
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by decreases in the resource stock and consumption, with the saving rate monotonically

increasing towards zero. This process of stock depletion continues for 120 generations25,

tθ = 120.3. At this point in time the mixed Bentham-Rawls solution reaches its steady state

characterized by a stock of resource that exceeds the modified golden rule stock by 80%

representing around 68% of the Rawlsian steady state stock of resource. Panel (e) reproduces

the evolution of welfare under our three criteria. Since the stock of resource is initially high,

the utilitarian solution yields an initial level of welfare that exceeds the modified golden rule

level of welfare by 23%. As a result of the high rate of utilitarian consumption the first 100

generations are better off under the utilitarian solution than under any of the other two. On

the other hand the Rawlsian solution yields a path of welfare that falls mildly as the stock

of resources converges to the golden rule stock from above. In the long run Rawlsian welfare

exceeds by 9% that of the utilitarian steady state. The mixed Bentham-Rawls solution takes

advantage of the initial abundance of resources to provide early generations with a level of

welfare that exceeds the rawlsian one by more than 12%, but at the same time uses this

abundance to guarantee all future generations a level of welfare that exceeds the utilitarian

steady state one by 7.5%.

The last panel of Figure 1 and the first three columns of Table 1 explore the sensitivity of

the optimal adjustment path under the mixed Bentham-Rawls criteria to θ. As the weight

placed in the Rawlsian component of our objective function, θ, increases the mixed Bentham-

Rawls steady-state stock of resource increases towards the Rawlsian one. This reduces the

level of consumption during the initial generations and shortens the length of the transition.

As the initial stock of resources increases, the mixed Bentham-Rawls steady-state stock of

resource increases relative the utilitarian and Rawlsian ones, which still reach the modified

golden rule and the golden rule stock of resource respectively. The length of the initial

phase of the transition also increases. In a sense the higher initial stock is fairly distributed

across generations, on one hand increasing the number of generations in Phase I and on the

other hand increasing the steady-state levels of consumption and stock to allow all future

25Notice that under our benchmark calibration the speed of convergence exhibited by our model is very
low, with the half-life of a deviation close to 50 generations.
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generations to enjoy higher levels of welfare.

Figure 2 and Table 2 summarize our results when the initial stock of resources is below

the modified golden rule stock, specifically in our benchmark calibration we consider the

case when x0 = 0.5 ∗ x̄u. The maximin solution chooses a level of consumption below 60%

of the modified golden rule level of consumption, consistent with a stock of resource that

stays constant and equal to its initial level. The utilitarian solution with its emphasis on

intertemporal trade-offs chooses a level of consumption for the initial generation that is only

43% of the modified golden rule level. This low level of initial consumption is associated with

substantial increases in the stock of resources. The utilitarian transition is characterized by

a monotonic increase in consumption and the stock of resources and a monotonic decrease in

genuine saving. Our proposed criterion leads to an initial level of consumption close to 50%

of the modified golden rule level, that allows for a rate of saving above 14%. During Phase I

of the mixed Bentham-Rawls transition consumption falls as the other source of utility, the

stock of resource, accumulates. With consumption falling and the stock of resource increasing

the saving rate increases during this first phase of the transition. After 18 generations,

tθ = 17.71, the saving rate peaks and Phase II of the transition begins with consumption

growing at a rate that still allows for positive saving and therefore increases in the stock of

resources that monotonically converges to the modified golden rule stock. As we increase

the weight placed on the rawlsian component of our objective function, θ, the initial level of

consumption, cθ, and the length of Phase I of the transition, tθ, increase. Decreases in the

initial stock of resources lead to simultaneous decreases in the initial level of consumption

and in the length of Phase I of the transition under our proposed criterion.

5.2 A Capital Accumulation Model

We now consider a simple model of economic growth. Assume an economy with a single

capital stock, k (t). The production function, F (k (t)), exhibits positive and diminishing

marginal product in its only argument. Let δ > 0 be the rate of depreciation and c (t) the

level of consumption. The path of the capital stock is given by,
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k̇ = F (k)− c− δk

The utility function is

u = u(c)

which is strictly concave and increasing u0(0) =∞.

Now consider the optimal growth program under the Mixed Bentham-Rawls objective func-

tion. Assume 0 < θ < 1.

max θu + (1− θ)

Z ∞

0

e−ρtu(c)dt

subject to

k̇ = F (k)− c− δk (16)

u(c) ≥ u

where k(0) = k0 > 0.

We assume logarithmic preferences, ln (c) , and a standard Cobb-Douglas production speci-

fication, F (k) = Akα, with an elasticity of output to capital, α = 0.3, and a constant level

of technology, A = 1.5. In our bechmark calibration we set the rate of time preference,

ρ = 0.05, and the depreciation rate, δ = 0.1. As before we assign equal weights to the rawl-

sian and utilitarian components in our objective function, θ = 0.5, and continue with our

notational convention.

Figure 3 illustrates the transitional dynamics of an economy that begins with 50% of the

modified golden rule level of capital. The phase diagram in panel (a) highligths the main

differences between the three criteria considered. The maximin solution chooses levels of con-

sumption and saving that guarantee that each future generation exactly inherits the intial

capital stock. The utilitarian solution, with its disregard for intergenerational equity, places

all the burden of accumulation on the initial generations leading to a transition character-

ized by increasing capital, consumption and therefore welfare. The mixed Bentham-Rawls

25



criterion, which is a compromise between the previous two, leads to an optimal path with

two clearly distinctive phases. Phase I, that reflects rawlsian considerations, begins at t0

and ends at some finite time, tθ > 0. The level of consumption during this phase, cθ, is

constant at some level that lies between the initial utilitarian level of consumption and the

maximin level of consumption, c̄r. In Phase II, that reflects utilitarian considerations, the

economy increases capital and consumption, approaching asymptotically the modified golden

rule level of capital, k̄u.

Panels (b), (c) and (d) reproduce the time paths of consumption, saving and capital under

our benchmark calibration. The maximin solution chooses an initial level of consumption

close to 90% of the modified golden rule level. Given the low capital stock, this high level of

consumption is associated with a saving rate of 12% just enough to replace the depreciated

capital. This condemns all future generations to the same initial level of consumption. The

utilitarian adjustment path is driven by the difference between the marginal product of capi-

tal, the return to saving, and the rate of time preference, the cost of giving up and saving an

additional unit of consumption. With low levels of capital the return to investment exceeds

its cost in terms of utility and therefore the first generation enjoys a level of consumption

that is barely 70% of the steady state level of consumption. This low level of consump-

tion is associated with an initial investment rate close to 30% which leads to a transition

characterized by increasing levels of capital. As capital accumulates the incentives to defer

consumption fall and as a result the saving rate monotonically decreases as consumption

increases. The mixed Bentham-Rawls criteria chooses an initial level of consumption that

exceeds its utilitarian counterpart by almost 17%. This level of consumption, although high

by utilitarian standards, allows for a saving rate that exceeds its rawlsian counterpart by

more than 50% and therefore capital begins to accumulate. With consumption constant at

cθ and output growing, the saving rate increases at this early stage of the transition. At the

beginning of the the sixth generation, tθ = 5.1, the capital stock has increased to around

75% of its steady state level and Phase II of the mixed Bentham-Rawls path begins. At this

point consumption begins to grow and the saving rate reaches its maximum. The dynamics

of this phase are purely driven by utilitarian concerns and therefore as capital accumulates
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consumption grows, and saving falls, converging monotonically to the steady states that

coincides with the utilitarian steady state.

Finally the path of welfare mimics the path of consumption. The utilitarian solution requires

large sacrifices on early generations, the initial welfare is barely 50% of the modified golden

rule level of welfare, achieving the constant Rawlsian level of welfare only after 5 generations.

Thereafter utilitarian welfare overtakes its rawlsian counterpart. Our compromise criteria

guarantees a minimum level of welfare for the initial generations and as a result the economy

must wait around 8 generations to reach the Rawlsian level of welfare, overtaking it after

this point. On average the first three generations enjoy around 22% more welfare under the

mixed Bentham-Rawls criteria than under the utilitarian solution.

The last panel of Figure 3 compares the level of consumption, cθ, and the number of

generations, tθ, that the mixed Bentham-Rawls solution remains in Phase I for different

values of θ. As we increase θ the mixed Bentham-Rawls solution converges to the maximin

solution and therefore cθ converges to c̄r and Phase I lasts forever. Table 3 explores the

effects of changes in the rate of time preference and the initial stock of capital on the optimal

path of our proposed welfare criteria. Our results are not very sensitive to the rate of time

preference but as the initial stock of capital increases towards the modified golden rule level

the three welfare criteria converge to the same optimal path and as a result the mixed

Bentham-Rawls criteria chooses initial levels of consumption closer to the rawlsian criteria

lengthening the initial phase of the transition.

Now we turn to the case when the initial capital stock is above the modified golden rule

stock, especifically k0 = 1.5∗k̄u. Figure 4 reproduces the phase diagram and the transitional

path of the relevant economic indicators for our three welfare criteria. Since k0 is below the

golden rule capital stock, the maximin solution chooses a level of consumption, and therefore

a saving rate, consistent with mantaining the capital stock permanently at its initial level.

As a result of the diminishing returns to capital the utilitarian solution initially chooses very

high levels of consumption, exceeding by as much as 29% its steady state level. This high

consumption can only be maintained at the expense of the capital stock, and with a saving

rate below 10% capital begins to fall. As capital falls, so does consumption and output, that

27



monotonically converge to the modified golden rule levels while the saving rate increases

as the marginal product of capital net of depreciation increases towards the rate of time

preference, ρ.

The mixed Bentham-Rawls optimal path consists again of two phases. During Phase I

this solution follows the unstable dynamics of the utilitarian solution. The initial level

of consumption lies between the utilitarian choice and the Rawlsian one, exceeding the

modified golden rule level of consumption by 28%. As in the utilitarian case, this high level

of consumption leads to an initial phase characterized by decreases in capital, output and

consumption with associated increases in the saving rate. The economy remains in this phase

for almost sixteen generations, tθ = 15.9. At this point the mixed Bentham-Rawls solution

reaches its steady state, Phase II, characterized by levels of capital and consumption that

exceed by 5% and 0.5% respectively the modified golden rule levels asymptotically achieved

by the utilitarian solution. Table 4 explores the effects of changes in θ and k0 in our solutions.

Under the mixed Rawls-Bentham criteria increases in the weigth of the rawlsian component

of the objective function, θ, reduce the initial level of consumption towards the maximin

level, shortening the initial phase of the transition and increasing its steady state level, c̄mbr.

Similarly increases in the initial capital stock allow for the Rawls-Bentham criteria to reach

permanently higher steady state stocks, that in the case of k0 = 2 ∗ k̄u, exceed by almost 7%

the utilitarian steady state. Notice that when the initial capital stock is above the golden

rule level of capital the Rawlsian criteria converges to this point.

6 Concluding Remarks

In this paper, we proposed a new welfare criterion, called the Mixed Bentham-Rawls Crite-

rion, that we believe does justice to the rawlsian notion of intergenerational equity. We have

restricted attention to the problem of intergenerational equity, and to facilitate the analysis,

we have abstracted from intra-generational equity.

We showed that optimal growth paths under the Mixed Bentham-Rawls criterion can be

characterized using standard techniques. These paths seem intuitively plausible, and reflect
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both the Rawlsian concerns for the least advantaged, and the utilitarian principle. We also

obtained a characterization of the relationship between the growth rate of genuine savings

and the growth rate of utility.
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APPENDIX

Proof of Proposition 1

Define the current-value Hamiltonian and Lagrangian:

Hc = θuρ+ (1− θ)u(x, c) + ψ [G(x)− c]

Lc = Hc + w [U(x, c)− u]

The optimality conditions are

∂Lc

∂c
= (1− θ + w)uc − ψ = 0 (17)

ψ̇ = ψ [ρ−G0(x)]− (1− θ + w)ux = (1− θ + w)uc

½
ρ−G0(x)− ux

uc

¾
(18)

Let us define the “effective shadow price” p by

p ≡ ψ

1− θ + w
(19)

Then equation (17) yields the optimal control c as a function of p and x:

uc(x, c) = p

At any time, if the stock level x and the effectice shadow price p are known, we can determine

the optimal harvesting rate

c = c(x, p)

where

ucc
∂c

∂p
= 1

ucx + ucc
∂c

∂x
= 0

cp(x, p) = −
1

ucc
> 0
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cx(x, p) = −
ucx
ucc
≥ 0

Note that ψ̇ = 0 if and only if
Ux

Uc
= ρ−G0(x)

We ask the following questions, which are particularly relevant in our mixed Bentham-Rawls

optimization problem. First, is it optimal to approach the utilitarian modified golden rule

stock level, xu, and the associated modified golden rule consumption, cu ≡ G(xu) ? Second,

can ψ̇ > 0 and yet (c, x) stay constant at a steady state which is different from the standard

utilitarian pair (cu, xu)? We will show that if x0 > xu we should approach a steady state

xmbr > xu, at which point we have a stationary effective shadow price, i.e., ṗ = 0 and yet

ψ̇ > 0 because of (15) and (18). In what follows, we construct a path that satisfies all the

necessary conditions, and then apply the sufficiency theorem to show that it is the optimal

path.

From the definition of p

ṗ =
ψ̇

1− θ + w
− p

µ
ẇ

1− θ + w

¶
(20)

Thus

ṗ = uc

½
ρ−G0(x)− ux

uc

¾
− p

µ
ẇ

1− θ + w

¶
Now we prove part (i) of the Proposition:

Suppose x0 > xu. It is feasible to approach the modified golden rule stock, xu, along

a path with monotone non-increasing consumption, and this would yield the utility level

u(xu, G(xu)) for the least advantage generations. But under the mixed Bentham-Rawls

criterion, it is not optimal to do so, because the least advantaged generations can be made

better off if the planner chooses to approach some stock level xmbr such that xu < xmbr < xg.

Their indifference curve would be to the right of the curve u(x, c) = u(xu, G(xu)).

To see this formally, we note that if we approach xu along the standard utilitarian saddle-

point path, then it follows that w(t) = 0 for all finite t, which implies a violation of the

transversality condition that

θ =

Z ∞

0

e−ρtw(t)dt

31



So the optimal path must reach, in finite time, a steady state stock level xmbr where

xu < xmbr < xg

At xmbr,

ux(xmbr, G(xmbr))

uc(xmbr, G(xmbr))
+G0(xmbr) <

ux(xu, G(xu))

uc(xu, G(xu))
+G0(xu) = ρ

but ṗ = 0 as long as ẇ satifies the condition

ẇ

1− θ + w
=

uc
p∗

½
ρ−G0(xmbr)−

ux(xmbr, G(xmbr))

uc(xmbr, G(xmbr))

¾
> 0

where

p∗ = uc(xmbr, G(xmbr))

At the steady state x̄mbr

ψ̇

ψ
= ρ−G0(xmbr)−

ux(xmbr, G(xmbr))

uc(xmbr, G(xmbr))
> 0

The transversality condition

lim
t→∞

e−ρtψ(t)x(t) = 0

is satisfied because

lim
t→∞

e−ρtψ(t) = lim
t→∞

e−ρtA exp

½∙
ρ−G0(xmbr)−

ux(xmbr, G(xmbr))

uc(xmbr, G(xmbr))

¸
t

¾
= 0

since, for xmbr < xg, it holds that

−G0(xmbr) <
ux(xmbr, G(xmbr))

uc(xmbr, G(xmbr))

It is not possible to find a closed form expression for xmbr because xmbr depends on the initial

stock x0. But we can state the conditions that must be satisfied.
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Starting from x0 > xu, there are two phases.

In Phase I, utility is strictly falling, and u > u , so that w(t) = 0. During this phase, the

harvest rate satisfies the condition

(1− θ)uc − ψ = 0

hence

c = c(x, ψ/(1− θ))

The evolution of ψ in Phase I is described by

ψ̇ = (1− θ + w)uc(x, c(x, ψ/(1− θ)))

½
ρ−G0(x)− Ux(x, c(x, ψ/(1− θ)))

Uc(x, c(x, ψ/(1− θ)))

¾

In Phase II, c is a constant, ψ̇ > 0 but ṗ = 0. During this phase

ẇ

1− θ + w
= ρ−G0(xmbr)−

Ux(xmbr, cmbr)

Uc(xmbr, cmbr)
≡ q(xmbr) < ρ since xmbr < xg (21)

where

cmbr ≡ G(xmbr)

and

q0(xmbr) > 0, lim
xmbr→xρ

q(xmbr) = 0, lim
xmbr→xg

q(xmbr) = ρ

Let T denote the transition time from Phase I to Phase II. The following transversality

condition must be met

θ =

Z ∞

T

e−ρtw(t)dt (22)

where w(T ) = 0. Thus, from (21), and w(T ) = 0, we get, for t ≥ T

w(t) = (1− θ)eq(t−T ) − (1− θ)

33



Substituting into (22)

θ = (1− θ)e−qT
Z ∞

T

e−(ρ−q)tdt− (1− θ)

Z ∞

T

e−ρtdt

Thus

eρT =

µ
1− θ

θ

¶
q

ρ(ρ− q)

This equation requires T to be an increasing function of q and hence an increasing function

of xmbr :

T = eT (xmbr) (23)

Now consider Phase I. During this phase, w(t) = 0. We have two differential equations

ẋ = G(x)− c(x, p)

ṗ = Uc

½
ρ−G0(x)− ux

uc

¾
with boundary conditions, x (0) = x0, x(T ) = xmbr and p(T ) = uc(xmbr, G(xmbr)). These

equations yield

T = bT (x0, xmbr) (24)

where ∂T
∂x0

< 0 and ∂T
∂xmbr

> 0.

The two equations (23) and (24) yield

eT (xθ)− bT (x0, xθ) = 0
from which we obtain

eT 0(xmbr)dxmbr −
∂ bT

∂xmbr
dxmbr −

∂ bT
∂x0

dx0 = 0

thus
dxmbr

dx0
=

∂T
∂x0h eT 0(xmbr)− ∂T

∂xmbr

i (25)
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Then

xmbr = X(x0).

It remains to show that X(.) is an increasing function for all x0 > xρ (i.e., that the denomi-

nator of (25) is negative), and

lim
x0→xu

X(x0) = xu.

Part (ii) of the Proposition can be proved in a similar way.
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Figure 1. Optimal extraction path when 0 4* ux x=  and sensitivity of the mixed Bentham-Rawls transition to changes in θ . 
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Figure 2. Optimal extraction path when 0 0.5*= ux x  
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Figure 3. Optimal growth paths when 0 0.5* uk k=  and sensitivity of the initial phase to different values of θ . 
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Figure 4. Optimal growth path when 0 1.5* uk k=  
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 0.25=θ  0.5θ = 0.75=θ  0 3* ux x=  0 5* ux x=  

ux  - 3000 - - - 

uc  - 90 - - - 

( )0u uc c  - 4.405 - 3.270 5.541 

r ux x  - 2.667 - - - 

r uc c  - 1.185 - - - 

mbr ux x  1.629 1.800 2.015 1.691 1.875 

mbr uc c  1.287 1.320 1.333 1.301 1.328 

( )0mbr uc c  3.972 3.856 3.670 3.100 5.023 

tθ  140 120.3 98.6 109.22 121.73 
Table 1. Sensitivity analysis optimal renewable resource extraction.  
Benchmark: 0.5=θ , 0.05ρ = , 0.04r = , 12,000K = , 0 4 * ux x= . 
 
 
 0.25=θ  0.5θ = 0.75=θ 0 0.25*= ux x 0 0.75*= ux x  

ux  - 3000 - - - 

uc  - 90 - - - 

( )0u uc c  - 0.43 - 0.152 0.719 

r ux x  - 0.500 - 0.250 0.750 

r uc c  - 0.582 - 0.316 0.813 

mbr ux x  - 1.000 - 1.000 1.000 

mbr uc c  - 1.000 - 1.000 1.000 

( )0mbr uc c  0.482 0.499 0.533 0.223 0.601 

tθ  10.37 17.71 29.84 17.33 20.90 
Table 2. Sensitivity analysis optimal renewable resource extraction.  
Benchmark: 0.5=θ , 0.05ρ = , 0.04r = , 12,000K = , 0 0.5*= ux x . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 0.25=θ  0.5θ =  0.75=θ  0.01ρ = 0.1ρ =
0 .25* uk k=  0 .75* uk k=

uk  - 4.803 - 7.482 3.185 - - 

uc  - 1.921 - 1.999 1.805 - - 

us  - 0.200 - 0.273 0.150 - - 

( )0u uc c  - 0.711 - 0.722 0.703 0.566 0.855 

r uk k  - 0.500 - 0.500 0.500 0.250 0.750 

r uc c  - 0.890 - 0.929 0.867 0.762 0.959 

rs  - 0.123 - 0.172 0.089 0.075 0.163 

uc cθ  0.792 0.826 0.862 0.836 0.823 0.666 0.937 
tθ  2.96 5.14 8.67 6.05 4.43 2.825 9.823 
Table 3. Sensitivity analysis optimal growth path. Benchmark: 0.5=θ , 0.05ρ = , 0.3α = , 0 0.5* uk k= . 

 
 
 0.25=θ  0.5θ = 0.75=θ  

0 1.25* uk k= 0 2* uk k=  

uk  - 4.803 - - - 

uc  - 1.921 - - - 

us  - 0.200 - - - 

( )0u uc c  - 1.289 - 1.145 1.579 

r uk k  - 1.500 - 1.250 1.784 

r uc c  - 1.037 - 1.024 1.041 

rs  - 0.266 - 0.234 0.300 

mbr uk k  1.022 1.050 1.111 1.043 1.057 

mbr uc c  1.003 1.006 1.012 1.005 1.007 

mbrs  0.203 0.207 0.215 0.206 0.208 

( )0mbr uc c  1.285 1.280 1.270 1.140 1.558 

tθ  20.52 15.98 11.71 13.12 18.85 
Table 4. Sensitivity analysis optimal growth path.  
Benchmark: 0.5=θ , 0.05ρ = , 0.3α = , 0 1.5* uk k= . 
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