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1 Introduction

The process of financial globalization has led to an unprecedented increase in the size and

complexity of gross financial positions and gross financial flows among countries. Lane

and Milesi-Ferretti (2005) argue that this increase in cross-border asset holdings may have

significant implications for understanding the international transmission mechanism, the

resolution of external imbalances, and the effects of macroeconomic policy.1 Until very

recently however, most open economy macroeconomic models have ignored the analysis

of the composition of gross country portfolios and gross capital flows, focusing instead on

net foreign assets as a measure of a country’s external position and the current account

as a measure of financial flows. Probably the main reason for this neglect has been the

technical difficulties faced in deriving optimal portfolio positions for general equilibrium

models with incomplete markets, while at the same time retaining enough tractability to

explore the responses to macroeconomic shocks and the effects of economic policy.2

This paper presents a general approximation method for characterizing time-varying

equilibrium portfolios in a two-country dynamic general equilibrium model. The method

can be easily adapted to most dynamic general equilibrium models, it applies to environ-

ments in which markets are complete or incomplete, and it can be used for models of any

dimension. Moreover, the approximation provides simple, easily interpretable closed form

solutions for the dynamics of equilibrium portfolios.

The approach presented in this paper follows the fundamental contribution of Samuel-

son (1970) in recognizing that successively higher-order aspects of portfolio behaviour may

be captured by a higher degree of approximation of an investors objective function. We

modify and adapt this approach to a dynamic stochastic general equilibrium (DSGE) en-

vironment, and derive simple formulae for equilibrium asset holdings which can be applied

to any DSGE model that can be solved by standard approximation methods. Building

on Devereux and Sutherland (2006), which shows how to obtain the zero-order (or steady

state) portfolio holdings, we obtain expressions which fully characterize the way in which

1See also Lane and Milesi-Ferretti (2001) and the subsequent work of Ghironi et al. (2005), Gourinchas

and Rey (2005), and Tille (2003, 2004).
2Engel and Matsumoto (2005) and Kollmann (2006) show how portfolio allocation problems can be

analysed in open economy models with complete international financial markets. While this provides a

valuable starting point for analysis, it is not a fully satisfactory approach, given the extensive evidence

of incompleteness in international financial markets
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portfolio holdings evolve over time at the first order. For simple models, optimal portfo-

lios may be derived analytically. For more complex models, the paper provides a simple,

one step, computationally efficient approach to generating numerical results.3

The approach to characterizing portfolio dynamics here is based on Taylor-series ap-

proximation of a model’s equilibrium conditions. The standard log-linear approximation

procedures used in macroeconomics can not be directly applied to portfolio problems.

This is for two reasons. Firstly, the equilibrium portfolio is indeterminate in a first-order

approximation of the model. And secondly, the equilibrium portfolio is indeterminate in

the non-stochastic steady state - a fact which appears to rule out the most natural choice

of approximation point.4 The first problem can be overcome by considering higher-order

approximations of the portfolio problem. The second problem can be overcome by treat-

ing the value of portfolio holdings at the approximation point as an unknown, to be

determined endogenously as part of the solution. The procedure described in Devereux

and Sutherland (2006) solves for portfolio holdings at the approximation point by look-

ing at the first-order optimality conditions of the portfolio problem in the (stochastic)

neighbourhood of the non-stochastic steady state.5

In general, a second-order approximation of the portfolio problem is sufficient to cap-

ture the different risk characteristics of assets. It is therefore sufficient to tie down a

3In the existing literature, a number of alternative approaches have been developed for analysing

incomplete-markets models. Judd et al (2002) and Evans and Hnatkovska (2005) present numerical algo-

rithms for solving dynamic portfolio problems in general equilibrium. These methods are, however, very

complex compared to our approach and represent a significant departure from standard DSGE solution

methods. Devereux and Saito (2005) use a continuous time framework which allows some analytical

solutions to be derived in a restricted class of models.
4It is important to understand that these are two distinct problems. The first problem arises in the

approximated form of the model with stochastic shocks, while the second arises in the non-approximated

form of the model without stochastic shocks. In both cases the portfolio is indeterminate because all

assets are identical. This arises in a first-order approximation because certainty equivalence holds. And

it arises in the non-stochastic steady state because of the absence of stochastic shocks.
5Judd (1998) and Judd and Guu (2001) show how the problem of portfolio indeterminacy in the non-

stochastic steady state can be overcome by using a Bifurcation theorem in conjunction with the Implicit

Function Theorem. The solution approach presented here relies on first and second-order approximations

of the model, rather than the Implicit Function and Bifurcation Theorems, but the steady-state gross

portfolio holdings derived using our technique correspond to the approximation point derived by the Judd

and Guu method.
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solution for steady-state portfolio holdings. However, in order to solve for the dynamic

behaviour of asset holdings around the steady state portfolio, it is necessary to know how

variations in state variables affect the risk characteristics of assets. This, in turn, requires

consideration of a third-order approximation of the portfolio problem. A third-order ap-

proximation captures the first-order effect of state variables on second moments and thus

makes it possible to understand how portfolios should be adjusted as state variables evolve.

We show that a third-order approximation of the portfolio optimality conditions (used

in combination with first and second-order approximations of the non-portfolio parts of

the model) can be solved to yield an analytical formula which captures the dynamics of

optimal country portfolios. We show that, even in its general form, this formula provides

valuable insights into the fundamental factors that determine portfolio dynamics.

The general principles underlying the derivation of approximate solutions to portfo-

lio problems were first stated by Samuelson (1970). Using a static model of a portfolio

problem for a single agent and exogenous returns, he showed that, in general, to derive

the solution for portfolio holdings up to nth order accuracy, one has to approximate the

portfolio problem up to order n+ 2. It is easy to see that our solution procedure follows

this general principle. Our solution for the steady-state (or zero-order accurate) portfolio

is derived using a second-order approximation of the portfolio optimality conditions, and

our solution for the first-order accurate portfolio is derived using a third-order approxi-

mation of the portfolio optimality conditions. An important innovation of our procedure,

relative to the principle established by Samuelson, is that, to derive nth-order accurate

solutions for portfolios, only the portfolio optimality conditions need be approximated up

to order n + 2. The other optimality and equilibrium conditions of the model need only

be approximated up to order n + 1. This leads to a considerable simplification of the

solution procedure.

In a recent paper, Tille and van Wincoop (2006) use this same general set of principles

to solve for the steady-state and first-order behaviour of country portfolios in an open

economy model. The Tille and van Wincoop approach is identical to ours to the extent

that, for any given model, the methods are based on solving the same set of equations.

However, rather than focusing on an analytical approach, Tille and van Wincoop (2006)

describe an iterative numerical algorithm which can be used to solve for the coefficients

of the Taylor-series approximation for portfolio behaviour. It is straightforward to show
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that, for any given model, the steady-state and dynamic portfolio behaviour generated

using the Tille and van Wincoop approach is identical to the analytical solution supplied

by our approach.

An advantage of the analytical approach is that it provides a formula which can be

applied to a wide range of models. In many cases this formula may yield closed-form ana-

lytical solutions for equilibrium portfolios. Such solutions can provide important insights

and intuitions which are not available from numerical solutions. In addition, the formula

can be used to generate numerical results for more complex models without the need for

iterative algorithms. Finally, by employing the formula for portfolio holdings derived be-

low, the user does not actually have to undertake higher order approximations. That is,

the solution for the zero order portfolio solution requires only a first order approximation

of the model, and the first order solution requires only a second order approximation of

the model.

The paper proceeds as follows. Section 2 describes the structure of a basic two-country

two-asset model. Section 3 briefly reviews the Devereux and Sutherland (2006) derivation

of the steady-state portfolio for this model. Section 4 describes the solution for the first-

order dynamic behaviour of portfolio holdings around this steady state. Section 5 applies

the method to a simple endowment economy with trade in nominal bonds. Section 6

concludes the paper.

2 A Two-Asset Open-Economy Model

The solution procedure is developed in the context of a simple two-country dynamic

general equilibrium model. To make the steps as transparent as possible, the model here

is restricted to a case where only two assets are internationally traded. In addition, we

assume that agents in each country consume an identical composite consumption good, so

that purchasing power parity holds. Generalising the analysis to the case of many assets

and non-PPP cases is straightforward.6 In order to develop the solution procedure, it

is not necessary to set out the details of the whole model. Only the features necessary

for portfolio choice need to be directly included. Other aspects of the model, such as

6Devereux and Sutherland (2006) develop the procedure for solving for the steady state portfolio in a

much more general environment.
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the production structure and labour supply, can be neglected since they are not directly

relevant for deriving the expressions for steady-state or first-order properties of portfolios.

It is assumed that the world consists of two countries, which will be referred to as the

home country and the foreign country. The home country is assumed to produce a good

(or a bundle of goods) with aggregate quantity denoted YH (which can be endogenous)

and aggregate price PH . Similarly the foreign country produces quantity YF of a foreign

good (or bundle of goods) at price P ∗F . In what follows foreign currency prices are denoted

with an asterisk.

Agents in the home country have a utility function of the form

Ut = Et

∞X
τ=t

βτ−t [u(Cτ) + v(.)] (1)

where C is a bundle of the home and foreign goods and u(Cτ) = (C1−ρ
τ )/(1 − ρ). The

function v(.) captures those parts of the preference function which are not relevant for

the portfolio problem.7 The consumer price index for home agents is denoted P .

It is assumed that there are two assets and a vector of two gross returns (for holdings

of assets from period t− 1 to t) given by

r0t =
h
r1,t r2,t

i
Asset payoffs and asset prices are measured in terms of the aggregate consumption good

(i.e. in units of C). Returns are defined to be the sum of the payoff of the asset and

capital gains divided by the asset price. It is assumed that the vector of available assets

is exogenous and predefined.

The budget constraint for home agents is given by

Wt = α1,t−1r1,t + α2,t−1r2,t + Yt − Ct (2)

where α1,t−1 and α2,t−1 are the real holdings of the two assets purchased at the end of

period t− 1 for holding into period t. It follows that

α1,t−1 + α2,t−1 =Wt−1 (3)

7For convenience we adopt the CRRA functional form for u(C) and assume that utility is addi-

tively separable in u(C) and v(.). Generalising our approach to deal with alternative functional forms is

straightforward.
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where Wt−1 is net wealth at the end of period t − 1.8 In (2) Y is the total disposable

income of home agents expressed in terms of the consumption good. Thus, Y may be

given by YHPH/P + T where T is a fiscal transfer (or tax if negative).

The budget constraint can be re-written as

Wt = α1,t−1rx,t + r2,tWt−1 + Yt − Ct (4)

where

rx,t = r1,t − r2,t

Here asset 2 is used as a numeraire and rx,t measures the "excess return" on asset 1.

At the end of each period agents select a portfolio of assets to hold into the following

period. Thus, for instance, at the end of period t home agents select α1,t to hold into

period t+1. The first-order condition for the choice of α1,t can be written in the following

form

Et [u
0(Ct+1)r1,t+1] = Et [u

0(Ct+1)r2,t+1] (5)

Foreign agents face a similar portfolio allocation problem with a budget constraint

given by

W ∗
t = α∗1,t−1rx,t + r2,tW

∗
t−1 + Y ∗t − C∗t (6)

Foreign agents are assumed to have preferences similar to (1) so the first-order condition

for foreign-country agents’ choice of α∗1,t is

Et

£
u0(C∗t+1)r1,t+1

¤
= Et

£
u0(C∗t+1)r2,t+1

¤
(7)

To simplify notation, in what follows we will drop the subscript from α1,t and simply

refer to αt. It should be understood, therefore, that α1,t = αt and α2,t = Wt − αt.

In any given general equilibrium model, there will be a set of first-order conditions

relating to intertemporal choice of consumption and labour supply for the home and

8We interpretWt as the home country’s net wealth, which represents its total net claims on the foreign

country. Assets in this set-up are defined to be in zero net supply. Hence any income on durable assets,

such as the income on (home) capital, is included as part of income, Yt. Claims to capital may be

traded indirectly however, since the asset menu can include a security with the identical rate of return

to the home capital stock. Our method for deriving portfolio dynamics works equally in the alternative

approach, where wealth is defined in gross terms and some assets are in positive net supply. The present

approach makes our derivations easier however.
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foreign consumers and a set of first-order conditions for profit maximisation and factor

demands for home and foreign producers. Taken as a whole, and combined with an

appropriate set of equilibrium conditions for goods and factor markets, this full set of

equations will define the general equilibrium of the model. As already explained, the

details of these non-portfolio parts of the model are not necessary for the exposition of

the solution method, so they are not shown explicitly at this stage. In what follows

these omitted equations are simply referred to as the "non-portfolio equations" or the

"non-portfolio equilibrium conditions" of the model.

The non-portfolio equations of the model will normally include some exogenous forcing

variables. In the typical macroeconomic model these take the form of AR(1) processes

which are driven by zero-mean innovations. In what follows, the matrix of secondmoments

of the innovations is denoted Σ. As is the usual practice in the macroeconomic literature,

the innovations are assumed to be i.i.d. Therefore, Σ is assumed to be non-time-varying.

We further assume (although this is not necessary for our solution method to work) that

all third moments of the vector of innovations are zero.

It is convenient, for the purposes of taking approximations, to assume that the innova-

tions are symmetrically distributed in the interval [−�, �]. This ensures that any residual
in an equation approximated up to order n can be captured by a term denoted O (�n+1).

The solution procedure is based on a Taylor-series approximation of the model. The

approximation is based around a point where the vector of non-portfolio variables is

given by X̄ and portfolio holdings are given by ᾱ. In what follows a bar over a variable

indicates its value at the approximation point and a hat indicates the log-deviation from

the approximation point (except in the case of α̂, Ŵ and r̂x, which are defined below).

3 Steady-State Portfolios

This section briefly reviews our approach to solving for the steady-state portfolio, ᾱ.9 As

already explained, a second-order approximation of the portfolio problem is sufficient to

capture the different risk characteristics of assets and is therefore sufficient to tie down a

solution for ᾱ. The solution for ᾱ is defined to be the one which ensures that the second-

order approximations of the first-order portfolio optimality conditions are satisfied within

9A more comprehensive coverage is contained in Devereux and Sutherland (2006).
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a neighbourhood of X̄ and ᾱ. We use the symmetric non-stochastic steady state of the

model as the approximation point for non-portfolio variables. Thus W̄ = 0, Ȳ = C̄

and r̄1 = r̄2 = 1/β. Note that this implies r̄x = 0. Since W̄ = 0, it also follows that

ᾱ2 = −ᾱ1 = −ᾱ.
Taking a second-order approximation of the home-country portfolio first-order condi-

tions yields

Et

∙
r̂x,t+1 +

1

2
(r̂21,t+1 − r̂22,t+1)− ρĈt+1r̂x,t+1

¸
= O

¡
�3
¢

(8)

where r̂x,t+1 = r̂1,t+1 − r̂2,t+1. Applying a similar procedure to the foreign first-order

conditions yields

Et

∙
r̂x,t+1 +

1

2
(r̂21,t+1 − r̂22,t+1)− ρĈ∗t+1r̂x,t+1

¸
= O

¡
�3
¢

(9)

The home and foreign optimality conditions, (8) and (9), can be combined to show

that, in equilibrium, the following equations must hold

Et

h
(Ĉt+1 − Ĉ∗t+1)r̂x,t+1

i
= 0 +O

¡
�3
¢

(10)

and

E [r̂x,t+1] = −1
2
E
£
r̂21,t+1 − r̂22,t+1

¤
+ ρ

1

2
Et

h
(Ĉt+1 + Ĉ∗t+1)r̂x,t+1

i
+O

¡
�3
¢

(11)

These two equations express the portfolio optimality conditions in a form which is partic-

ularly convenient for deriving equilibrium portfolio holdings and excess returns. Equation

(10) provides a set of equations which must be satisfied by equilibrium portfolio holdings.

And equation (11) shows the corresponding set of equilibrium expected excess returns.

In order to evaluate the left hand side of equation (10) it is sufficient to derive ex-

pressions for the first-order behaviour of consumption and excess returns. This requires a

first-order accurate solution for the non-portfolio parts of the model. Portfolio decisions

affect the first-order solution of the non-portfolio parts of the model in a particularly sim-

ple way. This is for three reasons. First, portfolio decisions only enter the non-portfolio

parts of the model via budget constraints.10 Second, the only aspect of the portfolio

10In fact, this property is not critical for the implementation of our solution method. It is straightfor-

ward to generalise our method to handle cases where portfolio decisions affect equations other than the

budget constraint.
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decision that enters a first-order approximation of the budget constraints is ᾱ, the steady-

state portfolio. And third, to a first-order approximation, the portfolio excess return is a

zero mean i.i.d. random variable.

The fact that only the steady-state portfolio enters the first-order model can be illus-

trated by considering a first-order approximation of the home budget constraint.11 For

period t+ 1 this is given by

Ŵt+1 =
1

β
Ŵt + Ŷt+1 − Ĉt+1 +

ᾱ

βȲ
r̂x,t+1 +O

¡
�2
¢

(12)

where Ŵt = (Wt− W̄ )/C̄. Notice that the deviation of α from its steady-state value does

not enter this equation because excess returns are zero in the steady state, i.e. r̄x = 0.

The fact that the portfolio excess return, ᾱr̂x,t+1, is a zero-mean i.i.d. random vari-

able follows from equation (11). This shows that the equilibrium expected excess return

contains only second-order terms. So, up to a first order approximation, E [r̂x,t+1] is zero.

These properties can now be used to derive a solution for ᾱ. In what follows, it proves

convenient to define α̃ ≡ ᾱ/(βȲ ) and to describe the solution procedure in terms of the

solution for α̃. The corresponding solution for ᾱ is simply given by ᾱ = α̃βȲ .

To derive a solution for α̃ it is useful initially to treat the realised excess return on the

portfolio as an exogenous independent mean-zero i.i.d. random variable denoted ξt. Thus,

in (12), replace ᾱ
βȲ

r̂x,t+1 by ξt. We can then incorporate (12) with
ᾱ
βȲ

r̂x,t+1 replaced by

ξt, into the linear approximation to the rest of the non-portfolio equations of the model.

As in any standard dynamic rational expectations model, we may summarise the entire

first-order approximation (of the non-portfolio equations) as follows

A1

"
st+1

Et [ct+1]

#
= A2

"
st

ct

#
+A3xt +Bξt +O

¡
�2
¢

(13)

xt = Nxt−1 + εt

where s is a vector of predetermined variables (including Ŵ ), c is a vector of jump variables

(including Ĉ, Ĉ∗, and r̂x), x is a vector of exogenous forcing processes, ε is a vector of i.i.d.

shocks, and B is a column vector with unity in the row corresponding to the equation for

11From Walras’s law it follows that it is only necessary to consider one budget constraint.
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the evolution of net wealth (12) and zero in all other rows.12 The state-space solution to

(13) can be derived using any standard solution method for linear rational expectations

models and can be written as follows

st+1 = F1xt + F2st + F3ξt +O (�2)

ct = P1xt + P2st + P3ξt +O (�2)
(14)

This form of the solution shows explicitly, via the F3 and P3 matrices, how the first-order

accurate behaviour of all the model’s variables depend on exogenous i.i.d. innovations to

net wealth.

By extracting the appropriate rows from (14) it is possible to write the following

expression for the first-order accurate relationship between excess returns, r̂x,t+1, and εt+1

and ξt+1

r̂x,t+1 = [R1]ξt+1 + [R2]i[εt+1]
i +O

¡
�2
¢

(15)

where the matrices R1 and R2 are formed from the appropriate rows of (14).13 Similarly

extracting the appropriate rows from (14) yields the following expression for the first-order

behaviour of
³
Ĉt+1 − Ĉ∗t+1

´
³
Ĉt+1 − Ĉ∗t+1

´
= [D1]ξt+1 + [D2]i[εt+1]

i + [D3]k[zt+1]
k +O

¡
�2
¢

(16)

where z0t+1 = [ xt st+1 ] is a vector formed from the exogenous driving processes and the

endogenous state variables. Expressions (15) and (16) are written using tensor notation

(in the form described, for instance, by Juilliard (2003)).14 This notation will prove

particularly useful in the next section, where higher-order approximations are considered.

Now recognise that the term ξt+1 represents the home country’s return on its portfolio,

which depends on asset holdings and excess returns, i.e.

ξt+1 = α̃r̂x,t+1

12When writing a model in the form of (13) we are following the convention that st contains the value

of the s variables prior to the realisation of εt, while ct and xt contain the values of the c and x variables

after the realisation of εt.
13Note that, because r̂x,t+1 is a zero-mean i.i.d. variable up to first-order accuracy, (15) does not

depend on the vector of state variables.
14For instance, a subscript or superscript i refers to the ith element of vector. When a letter appears

in a term, first as a subscript on one vector, and then as a superscript on another vector, it denotes the

sum of the products of the respective terms in the two vectors. Thus [A]i[B]
i denotes the inner product

of vectors A and B.
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Substituting into (15) and (16), we get

r̂x,t+1 = [R̃2]i[εt+1]
i +O

¡
�2
¢

(17)³
Ĉt+1 − Ĉ∗t+1

´
= [D̃2]i[εt+1]

i + [D3]k[zt+1]
k +O

¡
�2
¢

(18)

where

[R̃2]i =
1

1− [R1]α̃ [R2]i (19)

[D̃2]i =

µ
[D1]α̃

1− [R1]α̃ [R2]i + [D2]i

¶
(20)

Equations (17) and (18) now show how, for any given value of α̃, consumption and excess

returns depend on the vector of exogenous innovations, ε. Therefore, these expressions

can be used to evaluate the left-hand side of (10) and thus to derive an expression for α̃.

Note that, as shown in Devereux and Sutherland (2006), the second-order approxima-

tion of the portfolio problem is time invariant. Thus the time subscripts can be dropped

in (10). Substituting (17) and (18) into (10) implies15

[D̃2]i[R̃2]j [Σ]
i,j = 0 (21)

Finally substituting for [D̃2]i and [R̃2]j using (19) and (20) and solving for α̃ yields

α̃ =
[D2]i[R2]j [Σ]

i,j

([R1][D2]i[R2]j − [D1][R2]i[R2]j) [Σ]
i,j +O (�) (22)

This is the tensor-notation equivalent of the expression for α̃ derived in Devereux and

Sutherland (2006).

4 First-Order Time-Variation in Portfolios

The portfolio solution given in (22) is non time-varying. This is because time variation

in the true portfolio, αt, has no affect on the properties of consumption, excess returns,

or any other variable in the vector [s,c], when evaluated up to first-order accuracy. But

because we are modelling a dynamic environment where the portfolio choice decision is

not identical in every period, the true portfolio will in general vary across periods. Thus,

15Here the tensor notation [D̃2]i[R̃2]j [Σ]
i,j
denotes the sum across all i and j of the product of the ith

element of D̃2, the jth element of R̃2 and the (i, j)th element of Σ.
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αt will in general vary around ᾱ. In order to solve for the behaviour of asset holdings

around ᾱ it is necessary to know how the risk characteristics of assets are affected by

the predictable evolution of state variables such as wealth, or persistent movements in

output. To capture these effects, it is necessary to determine how these state variables

affect the second moments that govern the optimal portfolio choice. This in turn requires

consideration of a third-order approximation of the portfolio problem. A third-order

approximation of the portfolio problem captures the effect of state variables on second

moments and thus makes it possible to understand how portfolios should be adjusted as

state variables evolve.

Taking a third-order approximation of the home and foreign country portfolio first-

order conditions yields

Et

"
r̂x,t+1 +

1
2
(r̂21,t+1 − r̂22,t+1) +

1
6
(r̂31,t+1 − r̂32,t+1)

−ρĈt+1r̂x,t+1 +
ρ2

2
Ĉ2
t+1r̂x,t+1 − ρ

2
Ĉt+1(r̂

2
1,t+1 − r̂22,t+1)

#
= 0 +O

¡
�4
¢

(23)

Et

"
r̂x,t+1 +

1
2
(r̂21,t+1 − r̂22,t+1) +

1
6
(r̂31,t+1 − r̂32,t+1)

−ρĈ∗t+1r̂x,t+1 + ρ2

2
Ĉ∗2t+1r̂x,t+1 − ρ

2
Ĉ∗t+1(r̂

2
1,t+1 − r̂22,t+1)

#
= 0 +O

¡
�4
¢

(24)

Combining these two conditions implies that portfolio holdings must ensure that the

following holds

Et

"
−ρ(Ĉt+1 − Ĉ∗t+1)r̂x,t+1 +

ρ2

2
(Ĉ2t+1 − Ĉ∗2t+1)r̂x,t+1

−ρ
2
(Ĉt+1 − Ĉ∗t+1)(r̂

2
1,t+1 − r̂22,t+1)

#
= 0 +O

¡
�4
¢

(25)

while expected returns are given by

Et [r̂x,t+1] = Et

⎡⎢⎢⎣
−1
2
(r̂21,t+1 − r̂22,t+1)− 1

6
(r̂31,t+1 − r̂32,t+1)

+ρ(Ĉt+1 + Ĉ∗t+1)r̂x,t+1 − ρ2

2
(Ĉ2

t+1 + Ĉ∗2t+1)r̂x,t+1
+ρ
2
(Ĉt+1 + Ĉ∗t+1)(r̂

2
1,t+1 − r̂22,t+1)

⎤⎥⎥⎦+O
¡
�4
¢

(26)

These are the third-order equivalents of (10) and (11).

Notice that (25) contains only second and third-order terms. Thus it is possible to

evaluate the left-hand side of (25) using first and second-order accurate solutions for

consumption and excess returns from the rest of the model. Second-order accurate solu-

tions for the behaviour of consumption and excess returns can be obtained by solving a

second-order approximation of the non-portfolio parts of the model.

12



As in the first-order case, it is possible to show that portfolio decisions affect the

second-order solution of the non-portfolio parts of the model in a particularly simple way.

In particular, as before, portfolio decisions only enter the non-portfolio parts of the model

via budget constraints.16 Furthermore, the portfolio excess return (as it relates to the

time varying element of the portfolio) is a zero mean i.i.d. random variable.

To see this, first take a second-order approximation of the home budget constraint as

follows 17

Ŵt+1 =
1

β
Ŵt + Ŷt+1 − Ĉt+1 + α̃r̂x,t+1 +

1

2
Ŷ 2
t+1

−1
2
Ĉ2
t+1 +

1

2
α̃(r̂21,t+1 − r̂22,t+1) + α̂tr̂x,t+1 +

1

β
Ŵtr̂2,t+1 +O

¡
�3
¢

(27)

where

α̂t =
1

βȲ
(αt − ᾱ) =

αt

βȲ
− α̃

Here α̂t represents the (level) deviation in the portfolio holding from its steady state

value (adjusted by 1
βȲ
). Note that the value of α̃ in this equation is given by (22) (i.e. the

steady-state portfolio calculated in the previous section), so it is not necessary to solve

again for α̃. Recall that, α1,t = αt and that α1,t + α2,t = Wt so

α̂1,t = α̂t α̂2,t = (1/β)Ŵt − α̂t (28)

The objective in this section is to solve for the behaviour of α̂t.Movements in the opti-

mal portfolio are determined by time-variation in the economic environment. It therefore

follows that, up to a first-order approximation, movements in α̂t will be a linear function

of the state variables of the model. We thus postulate that α̂t has the following functional

form

α̂t = γ0zt+1 = [γ]k[zt+1]k (29)

where z0t+1 = [xt st+1].
18 Our objective is to solve for the vector of coefficients in this

expression, i.e. γ.

16Again, this particular property is not crucial for our procedure to work. It is simple to generalise our

method to handle cases where portfolio decisions enter other equations of the model.
17As before, Walras’s law implies that we need only consider one budget constraint.
18Given that α̂t represents portfolio decisions made at the end of period t for holdings of assets into

period t+ 1, it follows that α̂t will depend on the value of state variables observable at time t. In terms

of the notational convention we follow, the relevant vector is therefore [xt st+1], i.e. the values of x and

s prior to the realisation of εt+1.

13



This postulated functional form for the determination of α̂t implies that, from the

point of view of period t, the value of zt+1 is known and thus α̂t is known. In turn, this

implies that (as in the derivation of the steady-state portfolio) the realised excess return

on (the time-varying element of) the portfolio, α̂tr̂x,t+1, in period t+1 is a zero-mean i.i.d.

random variable (up to second-order accuracy).19 Bearing this in mind, the solution for

γ can now be derived using a procedure which is very similar to the solution procedure

for the steady-state portfolio.

As in the previous section, initially assume that the realised excess return on the time-

varying part of the portfolio is an exogenous independent mean-zero i.i.d. random variable

denoted ξt. The second-order approximation of the home country budget constraint in

period t can therefore be written in the form

Ŵt =
1

β
Ŵt−1 + Ŷt − Ĉt + α̃r̂x,t +

1

2
Ŷ 2
t

−1
2
Ĉ2
t +

1

2
α̃(r̂21,t − r̂22) + ξt +

1

β
Ŵt−1r̂2,t +O

¡
�3
¢

(30)

where, again, the value of α̃ in this equation is given by (22).20 Now assume that the

entire second-order approximation of the non-portfolio equations of the model can be

summarised in a matrix system of the form

Ã1

"
st+1

Et [ct+1]

#
= Ã2

"
st

ct

#
+ Ã3xt + Ã4Λt + Ã5Et[Λt+1] +Bξt +O

¡
�3
¢

(31)

xt = Nxt−1 + εt (32)

Λt = vech

⎛⎜⎜⎝
⎡⎢⎢⎣

xt

st

ct

⎤⎥⎥⎦ h xt st ct

i⎞⎟⎟⎠ (33)

where B is a column vector with unity in the row corresponding to the equation for the

evolution of net wealth (30) and zero in all other rows.21 This is the second-order analogue

of (13), which was used in the derivation of the solution for the steady-state portfolio.

19To see why this is the case, note that we are approximating α̂tr̂x,t+1 in (27) only up to second-order

accuracy. Because α̂t is a first-order variable, r̂x,t+1 is also measured up to first order. We have already

shown that up to a first order, r̂x,t+1 is a mean zero i.i.d. variable.
20To clarify, equation (30) is formed by replacing α̂t−1r̂x,t with ξt.
21Note that Λt is a vectorised form of the matrix of cross products. The matrix of cross products

is symmetric, so (33) uses the vech(·) operator, which converts a matrix into a vector by stacking the

14



However, note that in this case the coefficient matrices on the first-order terms differ from

(13) because (31) incorporates the effects of the steady-state portfolio. This is indicated

by the tildes over the matrices A1, A2, A3, A4 and A5.

The state-space solution to this set of equations can be derived using any second-

order solution method (see for instance Lombardo and Sutherland, 2005). By extracting

the appropriate rows and columns from the state-space solution it is possible to write

expressions for the second-order behaviour of (Ĉ − Ĉ∗) and r̂x in the following form
22

(Ĉ − Ĉ∗) = [D̃0] + [D̃1]ξ + [D̃2]i[ε]
i + [D̃3]k([z

f ]k + [zs]k)

+[D̃4]i,j [ε]
i[ε]j + [D̃5]k,i[ε]

i[zf ]k + [D̃6]i,j[z
f ]i[zf ]j +O

¡
�3
¢

(34)

r̂x = [R̃0] + [R̃1]ξ + [R̃2]i[ε]
i + [R̃3]k([z

f ]k + [zs]k)

+[R̃4]i,j [ε]
i[ε]j + [R̃5]k,i[ε]

i[zf ]k + [R̃6]i,j [z
f ]i[zf ]j +O

¡
�3
¢

(35)

where time subscripts have been omitted to simplify notation and zf and zs are, respec-

tively, the first and second-order parts of the solution for z. These expressions are the

second-order analogues of (15) and (16) (but note again that they incorporate the effects

of the steady-state portfolio).23 These expressions show how the second-order behaviour

of (Ĉ− Ĉ∗) and r̂x depend on the excess returns on the time-varying element of portfolios

(represented by ξ) and the state variables and exogenous i.i.d. innovations.

As we noted above, up to first-order accuracy, the expected excess return is zero and,

up to second-order accuracy, it is a constant with a value given by (11). This implies

that [R̃3]k[z
f ]k = 0 and that the terms [R̃3]k[z

s]k and [R̃6]i,j[z
f ]i[zf ]j are constants. It also

follows that

[R̃0] = E [r̂x]− [R̃3]k[zs]k − [R̃4]i,j [Σ]i,j − [R̃6]i,j[zf ]i[zf ]j

columns of its upper triangle. Note also that the form of equation (31) may not be general enough to

encompass all dynamic general equilibrium models. For instance, some models may contain terms in

the lagged value of Λt. Such terms can easily be incorporated into (31) without affecting our solution

approach.
22The appendix discusses the steps necessary to derive these equations from a state-space solution

based on Lombardo and Sutherland (2005).
23Note that the matrices R̃2 and D̃2 in (34) and (35) will, in fact, be identical to the matrices defined

by equations (19) and (20) (which were derived in the process of solving for the steady state portfolio).
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so

r̂x = E [r̂x]− [R̃4]i,j[Σ]i,j + [R̃1]ξ + [R̃2]i[ε]i

+[R̃4]i,j [ε]
i[ε]j + [R̃5]k,i[ε]

i[zf ]k +O
¡
�3
¢

(36)

Now recognise that ξ is endogenous and given by

ξ = α̂r̂x = [γ]k[z
f ]kr̂x

This is a second-order term, so r̂x can be replaced by the first-order parts of (36), that is,

by the term [R̃2]i[ε]
i. This implies that

ξ = [γ]k[z
f ]kr̂x = [R̃2]i[γ]k[ε]

i[zf ]k

so (34) and (36) can be rewritten as follows

(Ĉ − Ĉ∗) = [D̃0] + [D̃2]i[ε]
i + [D̃3]k([z

f ]k + [zs]k) + [D̃4]i,j[ε]
i[ε]j

+
³
[D̃5]k,i + [D̃1][R̃2]i[γ]k

´
[ε]i[zf ]k + [D̃6]i,j [z

f ]i[zf ]j +O
¡
�3
¢

(37)

r̂x = E [r̂x]− [R̃4]i,j[Σ]i,j + [R̃2]i[ε]i + [R̃4]i,j [ε]i[ε]j

+
³
[R̃5]k,i + [R̃1][R̃2]i[γ]k

´
[ε]i[zf ]k +O

¡
�3
¢

(38)

These two expressions provide some of the components necessary to evaluate the left hand

side of (25). The following expressions for the first-order behaviour of home and foreign

consumption and the two asset returns are also required

Ĉ = [C̃H
2 ]i[ε]

i + [C̃H
3 ]k[z

f ]k +O
¡
�2
¢
, Ĉ∗ = [C̃F

2 ]i[ε]
i + [C̃F

3 ]k[z
f ]k +O

¡
�2
¢

(39)

r̂1 = [R̃
1
2]i[ε]

i + [R̃13]k[z
f ]k +O

¡
�2
¢
, r̂2 = [R̃

2
2]i[ε]

i + [R̃23]k[z
f ]k +O

¡
�2
¢

(40)

where it should be noted that [R̃13]k = [R̃
2
3]k. The coefficient matrices for these expression

can be formed by extracting the appropriate elements from the first-order parts of the

solution to (31).

Substituting (37), (38), (39) and (40) into (25) and deleting terms of order higher than

three yields

[D̃2]i[R̃2]j[Σ]
i,j +

³
E [r̂x]− [R̃4]i,j [Σ]i,j

´
[D̃3]k[z

f ]k + [R̃4]i,j[D̃3]k[Σ]
i,j[zf ]k

+[R̃2]i
³
[D̃5]k,j + [D̃1][R̃2]j [γ]k

´
[Σ]i,j[zf ]k + [D̃2]i

³
[R̃5]k,j + [R̃1][R̃2]j[γ]k

´
[Σ]i,j[zf ]k

−ρ[R̃2]i([C̃H
2 ]j[C̃

H
3 ]k − [C̃F

2 ]j[C̃
F
3 ]k)[Σ]

i,j [zf ]k (41)

+
1

2
([R̃12]i[R̃

1
2]j − [R̃22]i[R̃22]j)[D̃3]k[Σ]

i,j [zf ]k + [D̃2]i[R̃2]j [R̃
1
3]k[Σ]

i,j[zf ]k = 0 +O
¡
�4
¢
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where use has been made of the fact that [D̃0] is a second-order term and that all third

moments of ε are assumed to be zero.24

The fact that solutions (34) and (35) are based on an approximation where the steady-

state portfolio is given by (22) by definition implies that

[D̃2]i[R̃2]j[Σ]
i,j = 0 (42)

This implies that (41) is homogeneous in [zf ]. Thus, the following equation must be

satisfied for all k ³
E [r̂x]− [R̃4]i,j [Σ]i,j

´
[D̃3]k + [R̃4]i,j[D̃3]k[Σ]

i,j

+[R̃2]i

³
[D̃5]k,j + [D̃1][R̃2]j [γ]k

´
[Σ]i,j + [D̃2]i

³
[R̃5]k,j + [R̃1][R̃2]j[γ]k

´
[Σ]i,j

−ρ[R̃2]i([C̃H
2 ]j[C̃

H
3 ]k − [C̃F

2 ]j[C̃
F
3 ]k)[Σ]

i,j (43)

+
1

2
([R̃12]i[R̃

1
2]j − [R̃22]i[R̃22]j)[D̃3]k[Σ]

i,j + [D̃2]i[R̃2]j [R̃
1
3]k[Σ]

i,j

= 0 +O
¡
�3
¢

Using (39) and (40) it is possible to write the following expression for expected excess

returns

E [r̂x] =
1

2

³
[R̃22]i[R̃

2
2]j − [R̃12]i[R̃12]j + ρ[C̃H

2 ]i[R̃2]j + ρ[C̃F
2 ]i[R̃2]j

´
[Σ]i,j +O

¡
�3
¢

(44)

Substituting this into (43), using the fact that from (37) and (39), it must be that [D̃2] =

[C̃H
2 ]− [C̃F

2 ], [D̃3] = [C̃
H
3 ]− [C̃F

3 ], and simplifying yields

−ρ
2
[D̃2]i[R̃2]j

³
[C̃H
3 ]k + [C̃

F
3 ]k

´
[Σ]i,j

+[R̃2]i
³
[D̃5]k,j + [D̃1][R̃2]j [γ]k

´
[Σ]i,j + [D̃2]i

³
[R̃5]k,j + [R̃1][R̃2]j [γ]k

´
[Σ]i,j (45)

+[D̃2]i[R̃2]j [R̃
1
3]k[Σ]

i,j = 0 +O
¡
�3
¢

which, by applying (42), simplifies to

[R̃2]i

³
[D̃5]k,j + [D̃1][R̃2]j[γ]k

´
[Σ]i,j + [D̃2]i[R̃5]k,j [Σ]

i,j = 0 +O
¡
�3
¢

(46)

24The generalisation of the solution procedure to handle non-zero third moments is simply a matter of

allowing for a constant term in the expression for α̂.
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which implies, for all k, that

γk = −
([R̃2]i[D̃5]k,j[Σ]

i,j + [D̃2]i[R̃5]k,j [Σ]
i,j)

[D̃1][R̃2]i[R̃2]j[Σ]i,j
+O (�) (47)

which is our solution for γ.25 Equation (47) expresses the solution for γ in terms of tensor

notation. It can equivalently be stated in the form of a matrix expression, as follows

γ
0
= −(D̃1R̃2ΣR̃

0
2)
−1(R̃2ΣD̃

0
5 + D̃2ΣR̃

0
5) +O (�) (48)

It should be emphasized that implementing this solution procedure requires only that

the user apply (47), which needs only information from the second-order approximation of

the model in order to construct the D and R matrices. So long as the model satisfies the

general properties described in section 2, the other details of the model, such as produc-

tion, labour supply, and price setting can be varied without affecting the implementation.

The derivations used to obtain (47) do not need to be repeated. In summary, the solution

for equilibrium γ has three steps:

1. Solve the non-portfolio equations of the model in the form of (31) to yield a state-space

solution.

2. Extract the appropriate rows from this solution to form D̃1, R̃2, D̃2, R̃5 and D̃5.

3. Calculate γ using (47) or (48).

What is the intuition behind expression (47)? The key insight is to recognize that,

when we evaluate the portfolio selection equation up to a third order, we can no longer

describe the optimal portfolio choice as being determined by a constant covariance be-

tween (Ĉ − Ĉ∗) and r̂x. Second-order effects of predictable movements in state variables

will lead to time-variation in this covariance, and this requires changes in the optimal

portfolio composition Take for instance the first term in the numerator of (47), given by

([R̃2]i[D̃5]k,j [Σ]
i,j. Looking at (34), we see that [D̃5] captures the way in which movements

in state variables affect the response of the consumption difference to stochastic shocks.

25The error term in (47) is of orderO (�) . Thus the solution for γ is of the same order of approximation as

the solution for α̃ (the steady state portfolio). Note, however, that the solution for α̂ will, nevertheless, be

of first-order accuracy because α̂ depends on the (inner) product of γ and z, where the latter is evaluated

up to first order accuracy.
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Since this leads to a predictable change in the covariance between the (Ĉ − Ĉ∗) and r̂x so

long as [R̃2] is non-zero, a compensating adjustment of the optimal portfolio is required.

The other term in the numerator has a similar interpretation; predictable movements in

the state variables affect the response of r̂x to stochastic shocks at the second order, and

so long as [D̃2] is non-zero, this changes the covariance between (Ĉ − Ĉ∗) and r̂x, and

requires a change in the optimal portfolio.

5 Example

The solution procedure is illustrated using a simple dynamic endowment model. This is

a one-good, two-country economy where the utility of home households is given by

Ut = Et

∞X
τ=t

βτ−t
C
1−ρ
t

1− ρ
(49)

where C is consumption of the single good. There is a similar utility function for foreign

households. The home and foreign endowments of the single good are auto-regressive

processes of the form

log Yt = ζY log Yt−1 + εY,t, log Y ∗t = ζY log Y
∗
t−1 + εY ∗,t (50)

where 0 ≤ ζY ≤ 1 and εY and εY ∗ are i.i.d. shocks symmetrically distributed over the

interval [−�, �] with V ar[εY ] = V ar[εY ∗] = σ2Y . Asset trade is restricted to home and

foreign nominal bonds. The budget constraint of home agents is given by

Wt = αB,t−1rB,t + αB∗,t−1rB∗,t + Yt − Ct (51)

where W is net wealth, αB and αB∗ are holdings of home and foreign bonds and rB,t

and rB∗,t are the real returns on bonds. Net wealth is the sum of bond holdings, i.e.

Wt = αB,t + αB∗,t. Real returns on bonds are given by

rB,t = RB,t
Pt−1
Pt

rB∗,t = RB∗,t
P ∗t−1
P ∗t

(52)

where P and P ∗ are home and foreign currency prices for the single tradeable good andRB

and RB∗ are the nominal returns on bonds. The law of one price holds so P = SP ∗ where

S is the nominal exchange rate (defined as the home currency price of foreign currency).
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Consumer prices are assumed to be determined by simple quantity theory relations of

the following form

Mt = PtYt, M∗
t = P ∗t Y

∗
t (53)

where home and foreign money supplies, M and M∗, are assumed to be exogenous auto-

regressive processes of the following form

logMt = logMt−1 + εM,t, logM∗
t = logM

∗
t−1 + εM∗,t (54)

where εM and εM∗ are i.i.d. shocks symmetrically distributed over the interval [−�, �] with
V ar[εM ] = V ar[εM∗] = σ2M .

The first-order conditions for home and foreign consumption and bond holdings are

C
−ρ
t = βEt

£
C
−ρ
t+1rB∗,t+1

¤
, C

∗−ρ
t = βEt

£
C
∗−ρ
t+1 rB∗,t+1

¤
(55)

Et

£
C
−ρ
t+1rB,t+1

¤
= Et

£
C
−ρ
t+1rB∗,t+1

¤
, Et

£
C
∗−ρ
t+1 rB,t+1

¤
= Et

£
C
∗−ρ
t+1 rB∗,t+1

¤
(56)

Finally, equilibrium consumption plans must satisfy the resource constraint

Ct + C∗t = Yt + Y ∗t (57)

To make the example easy, the shock processes are assumed to be independent from

each other. There are four sources of shocks in this model and only two independent

assets. Hence, assets markets are incomplete.

5.1 Solution for steady-state bond holdings

Devereux and Sutherland (2006) show how the model can be written in a linearised form

suitable for derivation of the solution for the steady-state portfolio. Applying (22) yields

the following expression for bond holdings

α̃B = −α̃B∗ = − σ2Y
2(σ2M + σ2Y )(1− βζY )

Home residents hold a gross negative position in home-currency bonds, because their

real return (inversely related to the home price level) is positively correlated with home

consumption.
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5.2 Solution for first-order time-variation in bond holdings

Solving the model up to the second order, and applying the procedures described in

Section 3 above, we obtain the following expressions:

D̃1 = [2(1− β)]

R̃2 =
h
1 −1 −1 1

i
, D̃2 =

h
∆
2
−∆
2

∆
2
−∆
2

i

R̃5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, D̃5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆ −∆ −∆ ∆

∆ −∆ −∆ ∆

0 0 0 0

0 0 0 0

−(1− β)/β (1− β)/β 0 −2(1− β)/β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where ∆ = (β − 1)α̃B and, for simplicity, we set ρ = 1. The vectors zt and εt are defined

as follows

zt =
h
Ŷt−1 Ŷ ∗t−1 M̂t−1 M̂∗

t−1 Ŵt−1
i0

εt =
h
εY,t εY ∗,t εM,t εM∗,t

i0
The solution for α̂B,t is

α̂B,t = γ1Ŷt + γ2Ŷ
∗
t + γ3M̂t + γ4M̂

∗
t + γ5Ŵt/β (58)

where

γ1 = γ2 =
1

2
α̃B, γ3 = γ4 = 0, γ5 =

1

2

Note that, from (28), it follows that the solution for α̂B∗,t is

α̂B∗,t = −γ1Ŷt − γ2Ŷ
∗
t − γ3M̂t − γ4M̂

∗
t + (1− γ5)Ŵt/β (59)

The intuition behind the time variation in portfolios in this example follows the logic

of the previous section. Predictable movements in home income make the consumption

difference (Ĉ − Ĉ∗) more sensitive to stochastic shocks to home or foreign income, when

evaluated up to a second order. This means that consumers in each country must increase

the degree to which nominal bonds hedge consumption risk. So, for instance, in response

to a predictable rise in home income, home consumption becomes more sensitive to home
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output shocks, at the second order. As a result home consumers increase their short

position in home currency bonds. For the same reason, they increase their long position

in foreign bonds. A predictable rise in foreign income has the same effect.

In this example, movements in net wealth are distributed equally among home and

foreign currency bonds. Hence, as the home country’s wealth increases, beginning in the

symmetric steady state, it increases its holdings of both bonds, becoming less short in

home currency bonds, and more long in foreign currency bonds. Of course the foreign

country experiences exactly the opposite movement.

The expressions for α̂B,t and α̂B∗,t given in (58) and (59) can be used to study the

dynamic response of bond holdings to shocks. Figure 1 shows the response of home-

country gross and net asset holdings to a persistent fall in home income .26 Figure 1

shows that the short-run impact of a persistent fall in Y is a large one-time increase

in home-country net wealth. This comes from an (unanticipated) capital gain on the

home portfolio, caused by a jump in P , given that home currency bonds are a liability

for the home country.27 But since the home endowment is persistently lower, net wealth

subsequently falls and converges to a new (lower) steady state. The extent of the initial

rise and subsequent fall in net wealth depends on the scale of the initial portfolio positions

α̃B and α̃B∗. As σ
2
M falls relative to σ2Y , steady state gross asset and liability positions

are higher. With greater leverage, the initial rise in net wealth then becomes larger, and

the subsequent decline smaller, so that the response to a shock tends towards that under

complete markets.

The movement in gross asset and liability positions are illustrated by the other plots

in Figure 1, which show how the time path for net wealth is divided between holdings of

home and foreign bonds. The short run effect of the fall in Y is to cause a rise in the

holdings of the home bond which is roughly equal in magnitude to the fall in net wealth.

This can be understood by considering equation (58) which shows that the fall in Y and

the rise in Ŵ both imply that it is optimal for home agents to increase their holdings of

home bonds. On the other hand, the shock to income has a much smaller short-run effect

on home country holdings of the foreign bond because the fall in Y and the rise in W

26The figure is based on the following parameter values: β = 0.98, ρ = 1.0, ζY = 0.9, and σ2Y = σ2M

Bond holdings are measured in terms of the deviation from steady-state value expressed as a percentage

of steady-state income.
27An equivalent interpretation is that the home country gains from an exchange rate depreciation.
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have offsetting effects on α̂B∗ , as can be seen from (59). After the initial shock, as net

wealth gradually falls, the holdings of home bonds and foreign bonds both decline to new

lower levels.

6 Conclusion

This paper develops a simple analytical method for characterizing optimal equilibrium

portfolios up to a first order in stochastic dynamic general equilibrium models. In addition

to obtaining time-varying optimal portfolio holdings, the approach also gives a solution

for time varying excess returns (or risk-premiums). There are a number of advantages

of our approach relative to previous models of portfolio choice. First, the method is not

restricted to situations of low dimensionality - we can use (48) to characterize portfolio

holdings in any dynamic economic model in which it is practical to employ second-order

solution methods. Second, as we have shown, the method applies equally to contexts

where financial markets are either complete or incomplete. Thirdly, the application of

the formula does not actually require the user to go beyond a second-order solution to

the underlying model. While, as we have shown, capturing first order aspects of portfolio

behaviour requires a third-order approximation of the portfolio selection equations, all

implications of that approximation are already contained in the derived expressions for

the response of portfolio holdings to predictable state variables. The ingredients on the

right hand side of (48) can all be obtained from a second-order approximation of the

non-portfolio parts of the model.

More generally, an advantage of our general formula is that it can provide simple and

clear insights into the factors which determine the dynamic evolution of portfolios and

returns in general equilibrium. These insights may not always be easy to obtain using a

purely numerical solution procedure.
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Appendix

A number of alternative solution algorithms are now available for obtaining second-order

accurate solutions to DSGE models. See, for instance, Judd (1998), Jin and Judd (2002),

Sims (2000), Kim et al (2003), Schmitt-Grohé and Uribe (2004) and Lombardo and Suther-

land (2005). For the purposes of implementing our solution procedure for portfolio dy-

namics, any of the methods described in this literature can be used to derive second-order

accurate solutions to the non-portfolio parts of a model. Care must be taken, however,

to ensure that the solution thus obtained is transformed into the correct format. As an

example of the steps required to accomplish this, in this appendix we show how the Lom-

bard and Sutherland (2005) solution can be transformed into the required format. Similar

steps can be used to transform the second-order solutions obtained by other methods.

It is assumed that the entire second-order approximation of the non-portfolio equations

of the model can be summarised in a matrix system of the form

Ã1

"
st+1

Et [ct+1]

#
= Ã2

"
st

ct

#
+ Ã3xt + Ã4Λt + Ã5Et[Λt+1] +Bξt +O

¡
�3
¢

(60)

xt = Nxt−1 + εt (61)

Λt = vech

⎛⎜⎜⎝
⎡⎢⎢⎣

xt

st

ct

⎤⎥⎥⎦ h xt st ct

i⎞⎟⎟⎠ (62)

Lombardo and Sutherland (2005) show that the solution to a system of this form can be

written as follows

st+1 = F̃1xt + F̃2st + F̃3ξt + F̃4Vt + F̃5vech(Σ) +O
¡
�3
¢

(63)

ct = P̃1xt + P̃2st + P̃3ξt + P̃4Vt + P̃5vech(Σ) +O
¡
�3
¢

(64)

where

Σ = Etεt+1 ε
0
t+1 (65)

Vt ≡ vech
Ã"

xt

s
f
t

# h
xt s

f
t

i!
(66)

s
f
t+1 = F̃1xt + F̃2s

f
t +O

¡
�2
¢

(67)

where the superscript f indicates the first-order part of the solution.
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When written in this form, the solutions for st+1 and ct depend on xt, st and the

cross product of the vector [xt s
f
t ]
0. And thus the solution for ct+1 depends on xt+1, st+1

and the cross product of the vector [xt+1 s
f
t+1]

0. Notice, however, that the solutions for

Ĉt+1 − Ĉ∗t+1 and r̂x,t+1, given in equations (34) and (35), are expressed in terms of zt+1

and εt+1 (where z
0
t+1 = [xt st+1]) and cross products of z

f
t+1 and εt+1. We show here how

the solutions given in (63) and (64) can be re-written in the appropriate form.

First note that [xt s
f
t ]
0 and z

f
t are related via the following equation"

xt

s
f
t

#
= U1z

f
t + U2εt

where

U1 =

"
N 0

0 I

#
, U2 =

"
I

0

#
It is thus possible to derive the following expression for Vt (where Vt is defined in (66))

Vt = X1vech (εtε
0
t) +X2vec

³
z
f
t ε
0
t

´
+X3vech

³
z
f
t z

f 0
t

´
(68)

where

X1 = LcU2 ⊗ U2L
h

X2 = Lc
h
U2 ⊗ U1 + U1 ⊗ U2P

0
i

X3 = LcU1 ⊗ U1L
h

Where the matrices Lc and Lh are conversion matrices such that

vech(·) = Lc vec(·)
Lhvech(·) = vec(·)

and P is a ‘permutation matrix’ such that, for any matrix Z,28

vec(Z) = Pvec(Z 0)

28Here the vec(·) operator converts a matrix into a vector by stacking its columns. See the Appendix
to Lombardo and Sutherland (2005) for further discussion of the construction of these matrices.
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Equations (61) and (68) can now be used to write (63) and (64) in the following form

st+1 = F̃1εt + [F̃1N, F̃2]zt + F̃3ξt+

F̃4X1vech (εtε
0
t) + F̃4X2vec

³
z
f
t ε
0
t

´
+

F̃4X3vech
³
z
f
t z

f 0
t

´
+ F̃5vech(Σ) +O

¡
�3
¢

(69)

ct = P̃1εt + [P̃1N, P̃2]zt + P̃3ξt+

P̃4X1vech (εtε
0
t) + P̃4X2vec

³
z
f
t ε
0
t

´
+

P̃4X3vech
³
z
f
t z

f 0
t

´
+ P̃5vech(Σ) +O

¡
�3
¢

(70)

and thus

ct+1 = P̃1εt+1 + [P̃1N, P̃2]zt+1 + P̃3ξt+1+

P̃4X1vech
¡
εt+1ε

0
t+1

¢
+ P̃4X2vec

³
z
f
t+1ε

0
t+1

´
+

P̃4X3vech
³
z
f
t+1z

f 0
t+1

´
+ P̃5vech(Σ) +O

¡
�3
¢

(71)

These expressions now express the solution to the non-portfolio parts of the model in a

form which is appropriate for constructing equations (34) and (35). So, for instance, if

Ĉ and Ĉ∗ are respectively the ith and jth elements of the vector c, then D̃2 is formed

from the difference between ith and jth rows of P̃1, while D̃5 is formed from the difference

between ith and jth rows of P̃4X2. In the latter case, the row vector is transformed into

the matrix D̃5 using the vec
−1(·) operator.
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