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1 Introduction

This paper shows how algorithms devised for the solution of linear rational

expectation models can be effectively employed to solve non-linear rational

expectation models that are approximated to the second order of accuracy.

Currently, researchers can choose from a number of algorithms for the so-

lution of linear rational expectation models, i.e. models approximated to

the first order of accuracy. An incomplete list would include direct methods

like Blanchard and Kahn (1980), Sims (2000a) and Klein (2000) and meth-

ods based on the undetermined coefficients technique like Uhlig (1999) and

Christiano (1998). At the same time a growing macroeconomic literature is

addressing issues that can be studied only by taking into account (at least)

the second-order terms of the rational expectation models. The welfare-based

monetary policy analysis in Woodford (2003) is emblematic of this new fo-

cus. A number of papers describe how to derive the second-order expansion

of rational expectation models and how to solve the approximated system.

A non-exhaustive list should include Schmitt-Grohé and Uribe (2004), Jin

and Judd (2002), Sims (2000b), Kim and Kim (2003), Kim et al (2003), Be-

nigno and Woodford (2004a, 2004b) and Sutherland (2002). Most of these

papers are associated with computer algorithms devised to solve the second-

order-approximated models.1 Yet, these algorithms (with the exception of

Sutherland (2002)) are different from those used to solve linear rational ex-

pectation models.

In this paper we show that second-order accurate state-space solutions

can be obtained simply by use of algorithms devised for linear rational ex-

pectations models. The basic structure of the solution technique employed in

this paper follows the method suggested by Sutherland (2002). Nevertheless,

our paper makes two important extensions to the results shown in Suther-

land (2002). Firstly, we are able to derive second-order accurate solutions

in state-space form. Secondly, we derive second-order accurate solutions for

the realized values of the variables (as opposed to their conditional forecast).

Thus, contrary to what is stated in Sutherland (2002), the two-step solution

method described here is as general as any other second-order accurate solu-

tion method currently available in the literature (including those described

1Benigno and Woodford (2004a, 2004b) represent an exception since their aim is to

give an analytical solution to the model. Their approach is nevertheless very similar to

that followed by Sutherland (2002). The general method proposed by Sutherland (2002)

was developed independently but is similar to the procedure adopted by Canton (1996) in

the context of a specific model.
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by Schmitt-Grohé and Uribe (2004) and Sims (2000b)).

In a similar way to perturbation-based approaches (e.g. Schmitt-Grohé

and Uribe (2004)), our technique relies on the basic principle that “... all the

higher-order terms of the Taylor series expansion ... are solutions to linear

problems once one computes the first-order terms" (Jinn and Judd (2002,

p. 3)). The main difference between our technique and the perturbation

approach concerns the way in which the second-order terms are computed.

The typical perturbation algorithm requires postulating a solution to the non-

linear model. This solution takes the form of a second-order state-space rep-

resentation with unknown coefficients. The coefficients of the second-order

Taylor expansion of the postulated solution are then obtained by imposing

consistency with the second order expansion of the original model. These

steps are clearly reminiscent of the method of undetermined coefficients used

in the literature for the solution of linear rational expectation models.

Our technique, on the contrary, follows a direct solution approach (cf.

Klein (2000)), which does not involve postulating explicitly a solution to

the non-linear problem. We first solve a first-order approximation of the
model in order to generate an auto-recursive representation of the second-

order terms. We then take this auto-recursive structure as an additional

forcing process for the linear dynamic system. Solving for the second-order

coefficient matrix is then no different from finding the coefficient matrix that

multiplies the exogenous forcing process in a linear state-space problem. Our

method therefore amounts to a two-step process where each step involves the

solution of a standard linear dynamic problem.2 A further interesting aspect

of the method we propose is that it can be described using standard linear

algebra notation, of the same type that would be used in linear rational

expectations models (as described, for instance, in Ljungqvist and Sargent

(2000)).3

This paper is organized as follows. In Section 2 we outline the basic

structure of the two-step solution procedure. In Section 3 the state-space

form of the solutions to each step are described in more detail. Section 4

applies the solution method to the simple neoclassical growth model. This

is a convenient benchmark which is used by both Sutherland (2002) and

Schmitt-Grohé and Uribe (2004). Section 5 concludes.

2It is important to note, however, that our technique does not require solving the

generalized eigenvalue problem more than once.
3See Juillard (2003) for a “concise” formulation of the perturbation method that relies

more heavily on matrix algebra.
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2 A Two-Step Solution Method

It is assumed that the second-order approximation of the equations of a model

can be written in the following matrix form4

A1

∙
st+1

Et [ct+1]

¸
= A2

∙
st
ct

¸
+A3xt +A4Λt +A5Et [Λt+1] +O

¡
3
¢

(1)

xt = Nxt−1 + εt (2)

Λt = vech

⎛⎝⎡⎣ xt
st
ct

⎤⎦ £ xt st ct
¤⎞⎠ (3)

where s is a vector of predetermined variables (i.e. Et [st+1] = st+1), c is a

vector of jump variables, x is a vector of exogenous forcing processes, ε is a

vector of i.i.d. shocks. Λt is a vector of all the squares and cross-products

of the variables of the model.5 A1.. A5 are matrices of coefficients, Et is

the expectations operator conditional on information at time t and O ( 3)
contains all terms which are of order three or higher in deviations from the

point of approximation.6

The objective is to use (1) to derive second-order accurate time paths of s

and c. The solution method described in this paper is based on the following

two observations: (i) second-order accurate solutions to (1) can be obtained

using purely linear methods if a second-order accurate solution for the time-

path of Λ is known; and (ii) a second-order accurate solution for the time

path of Λ can itself be obtained using purely linear solution methods.

4The second-order approximation of a model is generated by replacing each side of

each equation with a second-order Taylor series expansion around an appropriate point

of approximation. It is usually convenient to approximate around a non-stochastic steady

state. It is also usually convenient to measure variables as log-deviations from this non-

stochastic steady state.

It is important to note that, in taking second-order approximations, expectations oper-

ators should be preserved in the positions they arise in the non-approximated model. This

is because (unlike the case of first-order approximation) certainty equivalence can not be

assumed in the second-order approximated model.
5The cross-products could involve variables with different time subscripts. By using

the state-space solution discussed below, these cross-products can be easily reduced to

products between contemporaneous realizations of the variables, i.e. Λt. See the Appendix
for an explanation of the vech notation.

6It is assumed the distribution and dynamics of the exogenous driving processes in the

model are such that no x variable can ever deviate from its deterministic steady state by

more than .
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The first observation is self-evidently true. If the time path of Λ is known
then (1) can be regarded as a linear rational expectations system with ex-

ogenous forcing processes Λ and x. Such a system can be solved using any

standard linear solution method.

The second observation is less obvious. To understand (ii) notice that

terms of order two and above in the behaviour of x, s and c become terms

of order three and above in the squares and cross products of x, s and c. It

must therefore follow that the second-order accurate behaviour of Λ depends
only on the first-order accurate behaviour of x, s and c. Thus it is possible

to generate second-order accurate solutions for Λ by considering first-order
accurate solutions for x, s and c. First-order accurate solutions for x, s and

c can easily be obtained by solving the linear system

A1

∙
st+1

Et [ct+1]

¸
= A2

∙
st
ct

¸
+A3xt +O

¡
2
¢

(4)

which is derived from the first-order terms in (1). Here O ( 2) contains all
terms of order two and above in deviations from the non-stochastic steady

state of the model.

It is now simple to state the two-step solution process.

Step 1: Use the first-order dynamic system (4) to derive a second-

order accurate solution for Λ.

Step 2: Use the solution for Λ derived in step 1 and the second-order
dynamic system (1) to drive second-order accurate solutions for s and

c.

An important difference between the current paper and Sutherland (2002)

is that in Step 1 we are able to derive a linear state-space representation

of the realised behaviour of Λ. The combination of this linear state-space
representation of the dynamics of Λ and (1) yields an augmented system

where the dynamics of Λ are treated as an additional set of linear exogenous
forcing processes. Thus the non-linear system (1) is recast as a purely linear

system with linear forcing processes. The solution to Step 2 can therefore

also be written in a simple state-space form which can be used to generate

second-order accurate impulse responses or second-order accurate values for

conditional first and second moments at any horizon.

4



3 State-Space Solutions to Steps 1 and 2

In this section we describe the state-space solutions to Steps 1 and 2 in more

detail and show explicitly how the second-order (i.e. non-linear) problem can

be solved using purely linear solution methods. In this section we stress that

what matters is the state-space representation of the solutions, not the par-

ticular algorithm used to derive the solutions. In the Appendix we describe

in more detail how the QZ decomposition (as described in Klein (2000)) can

be used to derive state-space solutions to each step. Matlab codes which

implement the solution algorithm described in the Appendix are available

from the authors.

3.1 Step 1

The first-order representation of our system (4) can be solved using any stan-

dard linear rational expectations method to yield a state-space representation

of the following form

s
f
t = F1xt−1 + F2s

f
t−1 (5)

c
f
t = P1xt + P2s

f
t (6)

where the superscript ‘f ’ indicates that these are first-order accurate solu-

tions.7 It is convenient to rewrite this solution in a more compact form as⎡⎣ xt
s
f
t

c
f
t

⎤⎦ = Ω

∙
xt
s
f
t

¸
(7)

∙
xt

s
f
t

¸
= Φ

∙
xt−1
s
f
t−1

¸
+ Γ εt (8)

where

Ω =

⎡⎢⎢⎢⎣
I

(nx×nx)
0

(nx×ns)
0

(ns×nx)
I

(ns×ns)
P1

(nc×nx)
P2

(nc×ns)

⎤⎥⎥⎥⎦ , Φ =

⎡⎣ N
(nx×nx)

0
(nx×ns)

F1
(ns×nx)

F2
(ns×ns)

⎤⎦ , Γ =

⎡⎣ I
(nx×nε)
0

(ns×nε)

⎤⎦
(9)

7Henceforth to simplify notation the term representing the approximation residual is

omitted from all equations.
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where ni denotes the number of elements in vector i. We also define nU1 and

nU2 as the number of rows and the number of columns of any given matrix

U , respectively.8

Using the matrices Lc and Lh such that9

vech(·) = Lc vec(·)
Lhvech(·) = vec(·)

it is easy to see that

Λt = RVt (10)

Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (11)

where

R = Lc

(nΛ1×n2Ω1)
(Ω⊗ Ω) Lh

(n2Ω2×nV 1)

Φ̃ = Lc

(nV 1×n2Φ1)
(Φ⊗ Φ) Lh

(n2Φ2×nV 1)

Γ̃ = Lc

(nV 1×n2Γ1)
(Γ⊗ Γ) Lh

(n2Γ2×n2ε)

ε̃t = vech(εt ε
0
t)

Vt = vech(

∙
xt
s
f
t

¸ £
xt s

f
t

¤
),

Ψ̃ = Lc

(nV 1×nΦ1nΓ1)
[(Φ⊗ Γ) + (Γ⊗ Φ)P 0]

ξ̃t = vec

µ∙
xt−1
s
f
t−1

¸
ε0t

¶
(See the Appendix for a definition of the ⊗ operator and also a discussion of
the derivation of the ‘permutation’ matrix P .) Thus a second-order accurate

representation of the dynamics of Λ can be written as a self-contained system
in state-space form.

8In general, we don’t specify the size of the matrices if it can be easily inferred from

the context.
9Note that Lh Lc = I. See Hamilton (1996, p 300-302). Note also that the use of

these matrices is not necessary in order to solve the model. Indeed one could simply

vectorize the variance covariance dynamic system (use vec instead of vech). The suggested
representation is clearly dictated by efficiency reasons.
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3.2 Step 2

We can now use equation (10) to substitute out Λt and Λt+1 in equation (1).

This gives a new augmented form for the second-order accurate representa-

tion of the model as follows

A1

∙
st+1

Et [ct+1]

¸
= A2

∙
st
ct

¸
+A3xt +GVt +HΣ (12)

Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (13)

xt = N xt−1 + εt (14)

s
f
t = F1xt−1 + F2s

f
t−1 (15)

where10

G =
³
A4R +A5RΦ̃

´
, H = A5RΓ̃, Σ = Etε̃t+1 (16)

The important point to notice is that this new representation of the second-

order approximation of the model can now be solved in state-space form

using any linear rational expectations solution method.11

It is useful to note that, in solving the augmented system (12) to (16), it

is not necessary to solve the (generalized) eigenvalue problem a second time,

because the matrices A1 and A2 are the same as those that appear in the

linear system (4) which was solved in Step 1. For the sake of computational

efficiency one could store the solution matrices of the eigenvalue problem

(e.g. the QZ decomposition of A1 and A2) and use this decomposition in the

solution of (12) to (16).12

A state-space representation of the solution to our dynamic system is the

following

st = F1xt−1 + F2st−1 + F3Vt−1 + F4Σ (17)

ct = P1xt + P2st + P3Vt + P4Σ (18)

Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (19)

xt = N xt−1 + εt (20)

s
f
t = F1xt−1 + F2s

f
t−1 (21)

10Note that Et[ξ̃t+1] = 0.
11This is despite the presence of the cross-product term ξ̃t. The cross-product term

is zero in expectation and therefore does not affect the forward-looking dynamics of the

model. The forward-looking dynamics of the model are therefore entirely linear.
12Nevertheless, for relatively small models, solving the eigenvalue problem twice would

take only an extra fraction of a second on a typical PC.
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For any given initial conditions for s, V and x, this state-space system can

be used to generate second-order accurate impulse responses to the exogenous

shocks.13 It can also be used to generate second-order accurate stochastic

simulations for computer generated random realisations of the innovations.

Furthermore, the state-space representation provides a convenient way

to calculate second-order accurate solutions for conditional first and second

moments for the time-paths of the variables of the model. By simply applying

the conditional expectation operator through all the equations in (17) to (21)

we can compute first and second conditional moments at all horizons.14

The solution given by (17) to (21) is also in a form which allows filtering

techniques to be applied to second-order accurate simulated data. For exam-

ple, one could apply any linear filter (e.g. FFT as described in Uhlig (1999))

to the state-space solution and compare second-order-accurate simulated fil-

tered moments with analogous moments computed with real data.

4 An Example: The Neoclassical GrowthModel

As an example of the use of the above algorithm consider the simple neoclas-

sical growth model consisting of three equations: an Euler consumption (c)

equation, a capital (k) accumulation equation and an i.i.d. process for the

13Notice that, in this case, the cross product term ξ̃t is zero in all periods because
xt−1 and sft−1 are zero in the first period of the impulse response simulation and εt is zero
in all periods other than the first period of the impulse response simulation. Equation

(21) is therefore not relevant for generating an impulse response solution.
14An increasing number of macroeconomic papers make use of second-order approxima-

tion methods in order to analyze the welfare effects of fiscal and monetary policies as well

as in order to derive optimal policies. This requires solutions for first and second moments

rather than solutions for realised values. This is in fact the main focus of Sutherland

(2002) and Benigno and Woodford (2004a, 2004b). Notice that the cross-product term,

ξ̃t, is irrelevant for generating expected paths because it is zero in expectation. Equation
(21) is therefore also irrelevant in this case.
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(log) of the productivity shock (a).15 That is

c
−γ
t = αβEt

£
at+1k

α−1
t+1 c

−γ
t+1

¤
(22)

kt+1 = atk
α
t − ct (23)

ât ≡ log at = εt (24)

The equation-by-equation second-order Taylor expansion of this simple

model is as follows (where hats indicate log-deviations from a non-stochastic

steady state).

−γĉt + (1/2)γĉ2t = −γEtĉt+1 + (α− 1)k̂t+1+
(1/2)Et

∙³
ât+1 − γĉt+1 + (α− 1)k̂t+1

´2¸
(25)

θk̂t+1 + (1/2)θk̂
2
t+1 = ât + αk̂t − φĉt − (1/2)φĉ2t+

(1/2)α2k̂2t + (1/2)â
2
t + αâtk̂t (26)

ât = εt (27)

where φ = css
css+kss

, θ = kss
css+kss

. The approximation-error term is not shown

for simplicity.16 Equations (22), (23) and (24) are obtained by replacing

each side of equations (25), (26) and (27) with a second-order (logarithmic)

Taylor series expansion around the non-stochastic steady state. Notice that

the conditional expectations operator which appears in (22) is preserved in

equation (25).17

Next, we cast the model in matrix notation as follows

A1

∙
k̂t+1

Et [ĉt+1]

¸
= A2

∙
k̂t
ĉt

¸
+A3at +A4Λt +A5Et [Λt+1] (28)

where

Λ́t =
£
â2t âtk̂t k̂2t âtĉt k̂tĉt ĉ2t

¤
15This model corresponds to one of the examples used by Schmitt-Grohé and Uribe

(2004). The assumption of zero persistence in the productivity shock and no depreciation

in the capital stock are also made in Schmitt-Grohé and Uribe (2004). These assump-

tions are made for simplicity only and are not required for the application of the solution

algorithm.
16Nevertheless, it is useful to recall that this is a local approximation and hence the

error term might be large for large departures from the approximation point (the steady

state in our case) (see Jin and Judd (2002) for a discussion of the importance of the local

perspective in this kind of exercises).
17Note that, by definition, Et[kt+1] = kt+1 and Et[at+1] = 0.
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A1 =

∙
θ 0

1− α γ

¸
A2 =

∙
α −φ
0 γ

¸
A3 =

∙
1
0

¸
A4 =

∙
1/2 α α2/2 0 0 −φ/2
0 0 0 0 0 −γ/2

¸
A5 =

∙
0 0 −θ/2 0 0 0
1/2 α− 1 (α− 1)2/2 −γ −γ(α− 1) γ2/2

¸
The following parameter values are used: γ = 2, α = 0.3, β = 0.95,

θ = 0.285, φ = 0.715.
We are now ready to use the two-step algorithm outlined above. Step 1 of

the algorithm yields the following state-space representation for the evolution

of Λt (i.e. equations (10) and (11)):
18⎡⎢⎢⎢⎢⎢⎢⎢⎣

â2t
âtk̂

f
t

(k̂ft )
2

âtĉ
f
t

k̂
f
t ĉ

f
t

(ĉft )
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

0.84174 0.25252 0
0 0.84174 0.25252

0.70853 0.42512 0.063768

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ â2t

âtk̂
f
t

(k̂ft )
2

⎤⎦ (29)

⎡⎣ â2t
âtk̂

f
t

(k̂ft )
2

⎤⎦ =
⎡⎣ 0 0 0

0 0 0
1.9517 1.171 0.17565

⎤⎦⎡⎣ â2t−1
ât−1k̂

f
t−1

(k̂ft−1)
2

⎤⎦+
⎡⎣ 10
0

⎤⎦ £ε2t ¤

+

⎡⎣ 0 0
1.397 0.41911
0 0

⎤⎦∙ ât−1
k̂
f
t−1

¸
εt (30)

∙
ât

k̂
f
t

¸
=

∙
0 0

1.397 0.41911

¸ ∙
ât−1
k̂
f
t−1

¸
+

∙
1
0

¸
[εt] (31)

Step 2 of the algorithm yields the following state-space representation of

18In what follows k̂f and ĉf denote first-order accurate solutions for capital and con-
sumption while k̂ and ĉ denote second-order accurate solutions for capital and consump-
tion.
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the second-order accurate solution of the model:∙
k̂t+1
ĉt

¸
=

∙
1.397 0.41911
0.84174 0.25252

¸ ∙
ât

k̂t

¸

+
1

2

∙−0.077802 −0.046681 −0.0070022
−0.056866 −0.034120 −0.005118

¸⎡⎣ â2t
ât k̂

f
t

(k̂ft )
2

⎤⎦ (32)

+
1

2

∙
0.4820
−0.1921

¸
σ2

These numbers are identical to those reported in Schmitt-Grohé and Uribe

(2004) for the same model.

Schmitt-Grohé and Uribe (2004) report results relating to two other mod-

els. We have applied our algorithm to both these other examples and have

confirmed that it generates identical results to those reported by Schmitt-

Grohé and Uribe (2004).

5 Conclusion

In this paper we have shown how a non-linear rational expectation model,

approximated to the second order of accuracy, can be recast as a linear struc-

ture which can be solved in state-space form by means of standard algorithms

developed for the solution of linear rational expectation models. This state-

space form can be used to produce second-order accurate impulse responses

as well as conditional and unconditional forecasts. We suggest that our al-

gorithm is a convenient alternative to other second-order accurate solution

methods proposed in recent literature. Compared to other methods, our al-

gorithm seem to require a much more modest departure from the existing

techniques used in dynamic-rational-expectations macroeconomics.

Appendix

Glossary of Matrix Algebra Notation and Rules

1. vec(X): Vectorization. All columns of the m×n matrix X are stacked

one under the other (starting with the first column).
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2. vech(X): As above except that only the upper triangular part of X

is considered. Note that it is possible to construct a matrix L such that

L vech = vec. Then, (L0 L)−1 L0 vec(X) = vech(X).

3. ⊗: Kronecker product. E.g. Z = X ⊗ Y . The elements of Z are the

product of each element of X with the matrix Y .

4. Vectorization of a product of matrices: vec(X Y Z) = (Z 0 ⊗
X)vec(Y )

5. The vec-permutation matrix P Here we show how to construct the

permutation matrix P such that vec(Z) = P vec(Z 0). We start by noticing
that the element zi,j of the generic matrix Z of dimension m×n will coincide

with the element zvi+m(j−1) in the vector z
v = vec (Z), while it will coincide

with the element z̄vj+n(i−1) in the vector z̄
v = vec (Z 0). This information

can be used to generate the matrix P . Generate an m × n matrix S such

that S = vec−1 ([1, 2 . . . (m · n)]0), and an identity matrix I of dimension

mn×mn. Finally, the permutation matrix P is given by P = I (:, vec (S0)).

State-Space Solution to the First-Order System

Consider the first-order system

A1 Et

∙
st+1
ct+1

¸
= A2

∙
st
ct

¸
+A3xt (33)

xt = Nxt−1 + εt (34)

By applying the QZ decomposition (Generalized Schur Decomposition) we

can factorize the matrices A1 and A2 into

qA1z =

∙
a11 a12
0 a22

¸
, qA2z =

∙
b11 b12
0 b22

¸
where matrix z has the property zz0 = I. Hence∙

a11 a12
0 a22

¸
Et

∙
y1,t+1
y2,t+1

¸
=

∙
b11 b12
0 b22

¸ ∙
y1,t
y2,t

¸
+

∙
C1
C2

¸
xt (35)

where ∙
y1,t
y2,t

¸
=

∙
z011 z021
z012 z022

¸ ∙
st
ct

¸
12



and ∙
C1
C2

¸
= qA3

Without loss of generality we can assume that the system (35) has been

ordered so that b−122 a22 has roots inside the unit circle. Then the lower part
of system (35) can be isolated and solved forward to get (absent bubbles)

ŷ2,t = −
£
b−122 C2 + Tb−122 C2N + T 2b−122 C2N

2 + ...
¤
xt (36)

where

T = b−122 a22

As long as the series converges we can solve for the endogenous variables as

y2,t = −Mxt

where

vec (M) = [I − (N 0 ⊗ T )]
−1

vec
¡
b−122 C2

¢
See the Glossary at the start of this Appendix for a general statement of the

rule used to derive this expression.19

Finally we have

ŷ2,t ≡ z012st + z022ct = −Mxt

so that

ct = P1xt + P2st (37)

where

P1 = −z0−122 M, P2 = − z0−122 z012

As for the state variables, solving for the upper part of (35) yields

(a11z
0
21 + a12z

0
22)P1| {z }

R1

Etxt+1 + [(a11z
0
11 + a12z

0
12) + (a11z

0
21 + a12z

0
22)P2]| {z }

R2

Etst+1 =

[(b11z
0
21 + b12z

0
22)P1 + C1]| {z }

D1

xt + [(b11z
0
11 + b12z

0
12) + (b11z

0
21 + b12z

0
22)P2]| {z }

D2

st

Thus

Et [R1xt+1 +R2st+1] = D1xt +D2st

19Klein (referring to King andWatson (2002)) describes a computationally more efficient

method to compute M .
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or

st+1 =
¡
R−12 D1 −R−12 R1N

¢| {z }
F1

xt +R−12 D2| {z }
F2

st

where we have made use of the fact that Et st+1 = st+1 (because s is a vector

of predetermined variables).

To sum up, the solution to the dynamic system (33) is

st = F1xt−1 + F2st−1 (38)

ct = P1xt + P2st (39)

xt = N xt−1 + εt (40)

This is the solution given in (5) and (6) in the main text.

State-Space Solution to the Second-Order System

Consider now the augmented second-order system

A1

∙
st+1

Et [ct+1]

¸
= A2

∙
st
ct

¸
+A3xt +GVt +HΣ (41)

Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (42)

xt = N xt−1 + εt (43)

s
f
t = F1xt−1 + F2s

f
t−1 (44)

Define V̄ = (I − Φ̃)−1Γ̃ then

Et[Vt+n] = V̄Σ+ Φ̃n(Vt − V̄ Σ)

Applying the QZ decomposition yields∙
a11 a12
0 a22

¸
Et

∙
y1,t+1
y2,t+1

¸
=

∙
b11 b12
0 b22

¸ ∙
ŷ1,t
ŷ2,t

¸
+

∙
C1
C2

¸
xt

+

∙
Ĝ1

Ĝ2

¸
Vt +

∙
Ĥ1

Ĥ2

¸
Σ

(45)

where the matrices a, b, q and z are all identical to those defined in the

previous section and ∙
Ĝ1

Ĝ2

¸
= qG,

∙
Ĥ1

Ĥ2

¸
= qH

14



Again the lower part of system (45) can be isolated and solved forward to

yield

y2,t =−
£
b−122 C2 + Tb−122 C2N + T 2b−122 C2N

2 + ...
¤
xt

−
h
b−122 Ĝ2 + Tb−122 Ĝ2Φ̃+ T 2b−122 Ĝ2Φ̃

2 + ...
i
(Vt − V̄ Σ)

− £I + T + T 2 + ...
¤
b−122 (Ĝ2V̄ + Ĥ2)Σ (46)

where

T = b−122 a22

As long as the series converges we can solve for the endogenous variables as

y2,t = −M1xt −M2(Vt − V̄ Σ)−M3Σ

where

vec (M1) = [I − (N 0 ⊗ T )]
−1

vec
¡
b−122 C2

¢
vec (M2) =

h
I −

³
Φ̃0 ⊗ T

´i−1
vec

³
b−122 Ĝ2

´
M3 = [I − T ]−1 b−122 (Ĝ2V̄ + Ĥ2)

Finally we have

y2,t ≡ z012st + z022ct = −M1xt −M2(Vt − V̄ Σ)−M3Σ

so that

ct = P1xt + P2st + P3Vt + P4Σ (47)

where

P1 = −z0−122 M1

P2 = − z0−122 z012
P3 = −z0−122 M2

P4 = −z0−122 [M3 −M2V̄ ]

The solution for the state variables can be obtained by solving for the

15



upper part of (45). This yields

(a11z
0
21 + a12z

0
22)P1| {z }

R1

Etxt+1 + [(a11z
0
11 + a12z

0
12) + (a11z

0
21 + a12z

0
22)P2]| {z }

R2

Etst+1

+ (a11z
0
21 + a12z

0
22)P3| {z }

R3

EtVt+1 + (a11z
0
21 + a12z

0
22)P4| {z }

R4

Σ =

[(b11z
0
21 + b12z

0
22)P1 + C1]| {z }

D1

xt + [(b11z
0
11 + b12z

0
12) + (b11z

0
21 + b12z

0
22)P2]| {z }

D2

st

+
h
(b11z

0
21 + b12z

0
22)P3 + Ĝ1

i
| {z }

D3

Vt +
h
(b11z

0
21 + b12z

0
22)P4 + Ĥ1

i
| {z }

D4

Σ

Thus

R1Nxt−1+R2st+R3(Φ̃Vt−1+ Γ̃Σ)+R4Σ = D1xt−1+D2st−1+D3Vt−1+D4Σ

or

st = R−12 (D1 −R1N)| {z }
F1

xt−1 +R−12 D2| {z }
F2

st−1

+R−12 (D3 −R3)| {z }
F3

Vt−1 +R−12 (D4 −R4 −R3Γ̃)| {z }
F4

Σ

To sum up, the solution to the second-order system (41) is

st = F1xt−1 + F2st−1 + F3Vt−1 + F4Σ (48)

ct = P1xt + P2st + P3Vt + P4Σ (49)

xt = N xt−1 + εt (50)

Vt = Φ̃Vt−1 + Γ̃ ε̃t + Ψ̃ξ̃t (51)

s
f
t = F1xt−1 + F2s

f
t−1 (52)

This is the state-space form of the second-order solution given in equations

(17) to (22) in the main text.

Notice that the QZ decomposition only needs to be applied once in the

two-step procedure. The matrices a, b, q and z are the same in both steps, as

are the solutions for F1, F2, P1 and P2.
20

20Only in cases where the realised and expected dynamics differ would it be necessary

to compute the QZ decomposition twice.
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