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1. Introduction 

As is well known, optimal, welfare-based monetary policy, even in a flex-price, 

efficiently functioning economy, is subject to a time consistency problem if the government 

does not have lump-sum taxes or transfers at its disposal. This is because ‘surprise’ inflation 

may be a substitute source of non-distorting revenue, alleviating the problem of being unable 

to reach the first-best, ‘Friedman Rule’ outcome of a zero nominal interest rate. In this world, 

monetary policy must be implemented by open-market swaps of money and government 

debt, and the optimal second-best policy is to use debt to smooth intertemporally the 

distortions caused by inflation. Surprise inflation can help reduce these distortions. 

Although this problem is familiar, significant puzzles about it remain. First is that the 

optimal monetary policy is likely to be degenerate, in that the best surprise rate of inflation to 

pick is infinity, because this maximises the lump sum of revenue appropriated by the 

government. Attention was drawn to this feature by Lucas and Stokey (1983). However, a 

well-defined optimum can be obtained if money enters the economy in such a way that there 

is a welfare cost of current inflation, since this cost must then be balanced against the 

benefits. This feature was introduced in an interesting contribution by Nicolini (1998). The 

presence of the cost, on the other hand, leads to a second puzzle: it may now be the case that 

the time consistency problem takes the form of an incentive to create surprise deflation (i.e. 

inflation lower than expected). This inverts all our usual ideas about time inconsistency in 

monetary policy. A third puzzle arises if we assume policy is conducted under discretion, 

rather than (as implicit in the discussion so far) under commitment. In this case lack of trust 

in the government’s projected policy might be conjectured to lead to higher expected and 

actual inflation; but in fact it has been argued that discretion will lead in the long run to lower 

inflation – in particular to convergence to the Friedman Rule where inflation is negative. 

Such an argument is presented in two papers by Obstfeld (1991, 1997).1 

                                                 
1 Here we refer to the case of Obstfeld’s analysis where the authorities’ objective function is as close as possible 
to private utility functions. 
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In this paper we reconsider this optimal monetary policy problem. We do so using 

Nicolini’s model of a simple cash-in-advance economy, thereby avoiding the first of the 

above-mentioned puzzles. We extend his analysis of the case of commitment a little, but our 

main contribution is to the case of discretion, which he did not study. The model enables us 

to conduct a pure welfare-based analysis of optimal policy under discretion, avoiding 

Obstfeld’s need to postulate an ad hoc objective function for the policymaker. Our analysis 

shows that the second and third of the above-mentioned puzzles are related. Specifically, we 

find that under discretion it is not necessarily true that in the long run the economy will 

converge on the Friedman Rule. Depending on consumer preferences, it may converge on a 

different steady state where inflation is above the Friedman-Rule level, and quite possibly 

positive. We call this the ‘time-consistent steady state’. The force which makes such a steady 

state possible turns out to be the incentive which exists towards surprise deflation under 

commitment. This latter counteracts the more familiar incentive towards surprise inflation, 

and makes it possible that, under commitment, a critical level of inherited government debt 

exists such that the two incentives exactly cancel out, leading to no temptation to behave in a 

time-inconsistent manner. It transpires that this critical debt level is the same as the one 

associated with the ‘time consistent steady state’ to which the economy may converge under 

discretion. 

The paper is organised as follows. Section 2 describes the structure of the economy. We 

examine optimal monetary policy under commitment in Section 3. In Section 4 we study 

optimal monetary policy under discretion, providing both analytical results and numerical 

computations. Section 5 concludes. 

 

2. The Structure of the Economy 

The economy consists of many identical households who consume the single type of 

output good, supply a single type of labour, and hold money - motivated by a cash-in-

advance constraint - and bonds. Markets are perfectly competitive and all prices are flexible. 

The government issues money and bonds. Bonds are taken to be ‘real’, or indexed, as in the 
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papers already cited.2 A key constraint on the government is that it does not have access to 

lump-sum taxes and transfers: the money supply must be changed through open market 

operations, i.e. purchases or sales of bonds in exchange for money. Since our focus is purely 

on monetary policy, we shall ignore conventional distorting taxes, and treat government 

spending on goods and services as exogenous. 

Technology takes the form yt = nt, where yt is output and nt is labour input. Hence 

competitive firms will set a price equal to the wage, and make zero profits. For the 

representative household, the optimisation problem is: 

maximise [ ]0 ( )t
t t tU c nβ α∞
=Σ −  (U′ > 0, U′′ < 0) 

s.t. t t tp c M≤ , 

 1 1 1(1 )t t t t t t t t t t tM b p R p n p c M b p+ + ++ + + = + + ,    for t = 0,...,∞, 

 with M0, b0 given. (1) 

Mt,bt are, respectively, the quantities of money and real bonds held at the start of period t; Rt 

is the nominal interest rate between t-1 and t; ct is consumption; nt is labour supply; and pt is 

the price level. The key feature of this problem is that M0 and b0 are given. In this way the 

model incorporates a ‘welfare cost of current inflation’: a rise in p0 (and equal proportional 

rise in all pt, t > 0) depresses the real value of the household’s initial cash holdings, so that 

(provided the cash-in-advance constraint is binding) current consumption is squeezed. This 

liquidity squeeze occurs because the household is assumed to be unable to visit the asset 

market at the start of the period: in any period, goods markets open before asset markets. 

Such a timing assumption was introduced by Svensson (1985), and is the reverse of the more 

common timing assumption in cash-in-advance models associated with Lucas (e.g. Lucas 

                                                 
2 Although it would be more ‘realistic’ to assume nominal bonds, this would obviously make it easier to 
generate a ‘surprise inflation’ result, so to assume real bonds cannot be said to facilitate our main conclusion. 
An interesting related analysis which does assume nominal bonds is by Diaz-Gimenez et al. (2002). 
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(1982)). Its value in the present context is that it captures the idea that current inflation has a 

cost because agents cannot instantaneously adjust their portfolios.3 

From the first-order conditions for the household’s problem we can readily derive: 

 '( ) [1 ]t tU c Rα= + , t = 1,...,∞, (2) 

 1
1

1[1 ] t
t

t

pR
p β+

+

+ = , t = 0,...,∞, (3) 

(in which it has been assumed that Rt > 0, so that the cash-in-advance constraint binds). (3) 

indicates that the real interest rate is a constant equal to the inverse subjective discount rate. 

The nominal interest rate thus moves one-to-one with the expected inflation rate. (2) indicates 

that consumption is uniquely and negatively related (since U′′ < 0) to the nominal interest 

rate, or equivalently to the expected inflation rate. This reflects the distorting effect of the 

inflation tax: the earnings from an increase in current labour supply cannot be spent 

immediately, owing to the cash-in-advance constraint, and their future value is hence eroded 

by expected inflation, which therefore provides a disincentive to labour supply and so to 

consumption. Writing mt ≡ Mt/pt, we note that mt = ct provided that the cash-in-advance 

constraint binds, which reminds us that expected inflation equivalently reduces the demand 

for real balances. 

Equilibrium in the private sector of the economy may now be determined. At this point, 

suppose an arbitrary monetary policy defined by a sequence of monetary growth rates, 

0{ }tµ ∞ (where µt ≡ [Mt+1-Mt]/Mt). Then equilibrium consumption must satisfy: 

 1 1
1 ( )

1t t t
t

c U c cβ
α µ + +′=

+
, (4) 

which has been obtained from (2), (3) and pt+1/pt = (1+µt)ct/ct+1 (the latter being implied by mt 

= ct). Under perfect foresight (4) determines ct in a pure forward-looking manner, as a 

                                                 
3 As Nicolini (1998) shows, it can be interpreted as a more compact version of the ‘limited participation’ model 
of Grossman and Weiss (1983) and Rotemberg (1984). There, agents are divided into two groups who are only 
allowed to visit the bank in alternate periods. 
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function of current and future monetary growth rates 0{ }t s sµ ∞
+ = . With consumption tied down 

by (4), output is determined via the goods market clearing condition: 

 t ty c g= +  (5) 

where g is the level of government spending. 

A key role is played in what follows by the government’s budget constraint. The single-

period constraint may be written: 

 1 1 1(1 )t t t t t t t tb p R p g M M b p+ + ++ + = − + . (6) 

Note the absence of lump-sum taxes or transfers. Under our timing assumptions, (bt,Mt) are 

predetermined in period t, and the only policy action open to the government (since we treat g 

as exogenous) is an open-market sale or purchase of bonds, which raises or lowers bt+1, 

lowering or raising Mt+1, respectively. We may integrate (6) forwards, incorporating (3) (and 

appealing to a ‘No Ponzi Game’ condition), to obtain: 

 0 0 0
1(1 )

1
t

t t tb R m gβ µ
β

∞
=+ = Σ −

−
. (7) 

This is the government’s intertemporal budget constraint expressed in terms of ‘cash-flow 

seigniorage’, i.e. µtmt. We may also re-write it as: 

 0 0 0 1
1(1 )

1
t

t t tb R m R m gβ
β

∞
=+ = − + Σ −

−
. (8) 

(8) gives the same constraint in terms of ‘opportunity-cost seigniorage’, i.e. Rtmt.4 Notice that 

m0 enters (8) differently from m1,m2, etc. Algebraically speaking, this is the source of time 

inconsistency, as we discuss further below. 

 

                                                 
4 See Herrendorf (1997) for a useful discussion of these two definitions. To obtain (8) from (7), note that [Mt+1-
Mt]/pt can be re-written as mt+1β[1+Rt+1] - mt. 
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3. Optimal Monetary Policy Under Commitment 

In this section we assume that there is some commitment mechanism which obliges the 

government to adhere to the monetary policy which it chooses in period 0, 0{ }tµ ∞ . Its 

optimisation problem is then: 

maximise w.r.t. 0{ }tµ ∞  0 [ ( ) ]t
t t tU c c gβ α α∞
=Σ − −  

s.t. 0 0 0 1
1 1(1 ) ( ) 1

1
t

t t tR b g c U c cβ
β α

∞
=

⎡ ⎤′+ + = − + Σ −⎢ ⎥− ⎣ ⎦
, 

 1 1
1 ( )

1t t t
t

c U c cβ
α µ + +′=

+
    for t = 0,...,∞, 

 with (1+R0)b0, g given. (9) 

We have substituted out Rt using (2), mt using mt = ct, and nt using the production function 

and (5). It is clear that, rather than treat the µt’s as the control variables, we can equivalently 

treat the ct’s as the control variables, leaving the µt’s to be determined residually by the 

difference equation constraints. This reduces the problem to: 

maximise w.r.t. 0{ }tc ∞  0 [ ( ) ]t
t t tU c c gβ α α∞
=Σ − −  

s.t. 0 0 0 1
1 1(1 ) ( ) 1

1
t

t t tR b g c U c cβ
β α

∞
=

⎡ ⎤′− + − = − Σ −⎢ ⎥− ⎣ ⎦
. (10) 

We easily see that this problem has an unconstrained maximum where: 

 ( )tU c α′ =       for all t. (11) 

This is the first-best, ‘Friedman Rule’ solution, where Rt = 0. The government’s intertemporal 

budget constraint in general prevents the attainment of this outcome unless initial government 

debt is sufficiently negative. Thus, in a second-best situation, ct will be less than its 

Friedman-Rule level, and an optimal policy must trade off the deviation of ct from this with 

the deviation of any other cs. 
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It is straightforward to derive the following set of first-order conditions for the problem 

(10): 

 0
( )( )

1 [ ( ) 1] ( ) /
t

t t

U cU c
c U c

αα
σ α

′ −′ − =
′+ −

    for t = 1,...,∞. (12) 

Here, σ(ct) is the ‘relative risk aversion’ measure of curvature of U(ct), i.e. ( ) / ( )t t tcU c U c′′ ′− . 

It is immediate from this that ct is the same for all t = 1,...,∞. It is further apparent that this 

common ct (≡ c, say) is in general different from c0. Hence an optimal time path of ct 

typically takes the form of either a ‘step up’ or a ‘step down’ (see Figure 1). Inspection of 

(12) further shows that if σ < 1 then we obtain c0 < c (a ‘step up’), and if σ > 1 then we obtain 

c0> c (a ‘step down’). In the special case where σ = 1, the optimal time path is ‘flat’.5 

The above results are as in Nicolini (1998). Nicolini however restricts attention to 

utility functions of the ‘constant relative risk aversion’ (CRRA) class, so that σ is an 

exogenous parameter. Here we will explore the consequences of more general utility 

functions. A visual aid to doing so is provided by Figure 2. The diagram exploits the fact that, 

under an optimal policy, ct = c for t = 1,...,∞, in order to represent the problem in reduced 

form. The indifference curves over (c0,c) are given by the lifetime utility function written as 
1

0 0( ) [1 ] [ ( ) ]U c c g U c c gα α β β α α−− − + − − − , and the government’s intertemporal budget 

constraint contracts to: 

 0 0 0
1 1( ) (1 )

1 1
c U c c c R b gβ

β α β
⎡ ⎤′= − − + −⎢ ⎥− −⎣ ⎦

. (13) 

Figure 1 depicts this as a backward-bending curve. This reflects the ‘seigniorage Laffer 

curve’: as future inflation rates (and thus nominal interest rates) are raised, c falls, but 

nevertheless future seigniorage revenue at first rises, permitting less revenue to be raised 

through current seigniorage, and thus permitting higher c0. However (depending on the shape 

of U(c)) the Laffer curve may have a peak, such that revenue starts to fall as future inflation 

continues to be increased and c continues to be reduced. Initial government debt, (1+R0)b0, 

                                                 
5 Corresponding to these time paths of consumption, it is easy to show that the time paths of debt are a ‘step 
down’, a ‘step up’, and ‘flat’, respectively. 
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acts as a parameter which fixes the position of the budget constraint: higher initial debt shifts 

it to the left. By varying initial debt we thus trace out a locus of points of tangency with the 

indifference curves - the ‘expansion path’. The equation of the expansion path is just the first-

order condition (12), with ‘ct’ substituted by c. 

Consider now the shape of the expansion path. First, it clearly passes through the point 

( c , c ), where c  is the Friedman Rule consumption level given by (11). Second, from the 

results presented earlier, the expansion path must lie above (below) the 45o line at levels of c 

such that σ(c) < 1 (>1). It follows that if U(c) is such that there exists a value cc at which σ(c) 

= 1, then the expansion path must cross the 45o line at this critical value of c. (For this to be 

of interest, we obviously need cc < c ). Third, we would intuitively expect the expansion path 

to be upward-sloping (i.e. under an optimal policy lower initial government debt would be 

used to raise both c0 and c)6. Hence, fourth, if cc exists then the question arises as to whether 

the intersection with the 45o line occurs ‘from above’ or ‘from below’. Differentiating (12) 

and evaluating where c0 = c = cc, we obtain: 

 
0 [ ]

c

dc
dc c Uc

α
α σ α

=
′ ′+ −

. (14) 

This is clearly less than or greater than one as σ′(cc) is (respectively) positive or negative. 

That is, the expansion path cuts the 45o line from above if the relative risk aversion parameter 

is increasing in consumption at the intersection point, and from below if it is decreasing.7  

Figure 2 illustrates the case where an intersection of the expansion path and the 45o line 

exists, and where it occurs from above. In this case there must also exist a critical value of 

(1+R0)b0 such that, if initial debt happened to take this value, the optimal policy would be to 

choose c0 = c = cc. The associated budget constraint is the one which passes through the point 

C. If initial debt were slightly higher than this level, the budget constraint would lie slightly 

farther to the left, and the optimum would be at a point like A, where c0 < c. Conversely if 

                                                 
6 The condition for this is that the RHS of (12) be decreasing in c. It turns out that the same condition is 
necessary for the optimisation problem’s second-order conditions to be satisfied, so we need this condition to 
hold. It holds provided that σ(c) is increasing, constant, or not too strongly decreasing, in c. 
7 (14) is not the correct expression for the slope at the Friedman-Rule point. The slope there is instead given 
simply by σ, and so is greater or less than one as σ is greater or less than one. 
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initial debt were slightly lower, the optimum would be at a point like B, where c0 > c. In the 

case in Figure 2, then, the shape of the optimal time path of consumption depends on the 

initial level of debt: ‘high’ debt gives rise to a ‘step up’ shape, and low debt to a ‘step down’ 

shape. With the CRRA utility function used by Nicolini (1998), on the other hand, the 

expansion path lies either always above, or always below, the 45o line, and the magnitude of 

initial government debt is therefore irrelevant, qualitatively speaking, to the shape of the 

optimum time path of consumption. 

In order to assess whether there is a potential time consistency problem with the optimal 

policy, it must be compared with the optimal policy if the government were permitted to re-

optimise in period 1. This re-optimisation is only hypothetical, since we have assumed that 

there is a commitment mechanism to prevent the government from actually deviating from its 

period-0 plan. Let us denote the optimal choice of ct from the perspective of period s (s ≤ t) as 

|t sc . We are particularly interested in whether 1|1c  is smaller or greater than 1|0c . Since c1 = 

M1/p1 and M1 is predetermined, 1|1c  < 1|0c  indicates that the government in period 1 would 

wish to set p1 higher than was planned in period 0, i.e. that there is an incentive to ‘surprise 
inflation’. Conversely, if 1|1c  > 1|0c , the incentive is to ‘surprise deflation’. Following 

Nicolini’s method we may readily show that, if the period-0 optimal time path takes the form 

of a ‘step up’, then in period 1 there is an incentive to surprise inflation; while if it takes the 

form of a ‘step down’, then in period 1 there is an incentive to surprise deflation. A summary 

sketch of the two possible relationships between the period-0 and period-1 optimal time paths 

for consumption is thus as in Figure 1. 

Together with the earlier results, this then implies that if there exists a critical 

consumption level (strictly less than the Friedman Rule level) at which the coefficient of 

‘relative risk aversion’ in consumption equals one, then associated with this is a critical level 

of government debt such that, if initial debt happens to take this value, there is no time 

inconsistency. Moreover, if relative risk aversion is increasing (decreasing) in consumption at 

the critical level, then initial debt above the critical debt level will be associated with a 

temptation to create surprise inflation (deflation); and initial debt below, with a temptation to 

create surprise deflation (inflation). This is an extension of Nicolini’s (1998) main finding. It 
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says that if relative risk aversion is not a constant, then the direction of time inconsistency 

may depend on the level of initial government debt. An intuitively plausible outcome, we 

would argue, arises in the case of increasing relative risk aversion. Here, while the rather 

unorthodox incentive to create surprise deflation dominates for low levels of debt, the more 

conventional incentive to create surprise inflation dominates for high levels. This outcome 

occurs if the expansion path has the shape shown in Figure 2.8 

A natural follow-up question concerns how likely it is to find a utility function 

possessing the properties just highlighted. Although the CRRA function is a common utility 

function with some convenient features, there is of course no shortage of alternatives. 

Consider, for example, quadratic utility, ˆ( ) [ / 2]U c c c c= − . (With this, ĉ  ≥ α is needed to 

ensure a non-negative Friedman-Rule consumption level.) σ(c) = ˆ/[ ]c c c−  for this function, 

so a value of c such that σ = 1 clearly exists, namely at c = ĉ /2. Moreover, σ is clearly 

everywhere increasing in c. The associated expansion path then looks exactly like that in 

Figure 2, provided that ĉ  > 2α.9 Another common functional form, the ‘constant absolute 

risk aversion’ (CARA) function, can similarly yield an expansion path like that in Figure 2. 

We hence conclude that the preferences required in order for the above result to apply are not 

especially unusual. It is true that CRRA preferences are widely used in macroeconomics, 

partly because they have the convenient property of being consistent with balanced growth. 

However, quadratic preferences are also widely used in consequence of some other 

convenient properties: for example, in the presence of uncertainty they generate the exact 

consumption-as-a-random-walk result, and they underpin mean-variance portfolio analysis. 

In the present paper our aim is to explore the implications of some familiar utility functions 

as a theoretical exercise, rather than to claim any one function fits the facts well. Clearly 

                                                 
8 A referee points out that, in an extension to his main analysis, Nicolini (1998) also notes that there may be a 
critical level of initial debt such that there is no temptation to time inconsistency. This is where σ > 1 and debt is 
nominal. Nominal debt generates an incentive towards surprise inflation which could exactly offset the incentive 
towards surprise deflation. However Nicolini does not develop the analysis of this case. 
9 This condition ensures that ĉ /2 is less than the Friedman-Rule consumption level, ĉ -α. If it is violated, the 
expansion path lies everywhere above the 45o line. Even though quadratic utility by itself does not therefore 
guarantee an expansion path like that in Figure 2, we can still say that, with quadratic utility, if an incentive to 
surprise deflation is ever to exist (i.e. if part of the expansion path is ever to lie below the 45o line), then a 
critical consumption level as defined in the main text must also exist. 
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much more elaboration of our bare-bones model would be needed before it could be 

confronted with the data. 

A further natural question concerns why the direction of time inconsistency should 

depend on the size of σ. As noted, in a CIA model with Lucas’s timing assumption, the 

temptation to ‘cheat’ in monetary policy is always towards surprise inflation. In the present 

framework, the incentive to raise all current and future prices equiproportionally in order to 

appropriate revenue in a ‘non-distorting’ way is counterbalanced by the incentive not to 

generate a large welfare cost of current inflation through the liquidity-squeeze mechanism 

explained earlier. The direction of the temptation to cheat depends on how these incentives 

change, relative to the incentives for the setting of subsequent periods’ inflation, as time 

advances. First, observe that a temptation to reduce current inflation relative to what was 

planned would arise if an increase in current inflation (increase in p0/p-1, from the perspective 

of period 0) were to provide a smaller gain in the PV of seigniorage and a larger loss of 

lifetime utility10 than a projected increase in future inflation (increase in p1/p0, from the 

perspective of period 0). This is because, when the future ‘arrives’, the seigniorage benefit 

would be smaller than it was from the vantage point of the period before and the utility cost 

would be larger, so the government would perceive an incentive to deviate downwards from 

what it had planned. Such changes in incentive occur when σ > 1 because future consumption 

demand is then inelastic with respect to future inflation (or, equivalently, 1+Rt), as can be 

seen from (2); while current consumption demand is always unit-elastic with respect to 

current inflation, as follows from the cash-in-advance constraint. Hence a 1-unit increase in 

p0/p-1 causes a larger loss of lifetime utility than a (1/β)-unit increase in p1/p0. It also causes a 

smaller gain in the PV of seigniorage, because the inelastic future consumption demand 

means a weaker dampening effect on revenue of the shrinkage in the tax base as the inflation 

rate is raised, so that seigniorage increases more strongly with future than with current 

inflation. 

 

 
                                                 
10 Through its ‘direct’ effect on utility, ignoring the indirect effect via its budgetary impact 
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4. Optimal Monetary Policy Under Discretion 

If the government is unable to commit to a given policy plan made in period t, 

| 0{ }t s t sµ ∞
+ = , then it is not rational for households’ forecasts of future µt+s’s, as of time t (denote 

these by |
e
t s tµ + ), to equal those in the plan. Instead, forecasts should be based only on 

variables observable at time t. The government’s inherited stock of debt is one obvious 

‘observable’ on which to condition forecasts, since it is clear from the previous section that 

initial debt is a key determinant of the government’s optimal policy choices. Other 

observables could also be used, such as current and past values of µt. However, this would 

introduce an element of ‘reputation-building’ behaviour into policy. Since we wish to focus 

on purely ‘discretionary’ behaviour, we use only debt as the basis for private forecasts. 

Formally, the concept of equilibrium employed will be that of Markov-perfect equilibrium.11 

First, it is useful, as Obstfeld does, to define the concept of government ‘commitments’ 

 0(1 ) s
t t t s t sk b R gβ∞

= +≡ + + Σ . (15) 

‘Commitments’ is just the spending, in present-value terms, over which the government does 

not have discretion. Formally, we will use kt rather than debt as the state variable in what 

follows, although, given our assumption that g is time-invariant, kt is simply debt plus the 

constant, g/(1-β). Note that the government’s budget constraint in terms of kt is (cf. (6)): 

 1t t t tk m kµ β += + . (16) 

We now suppose that, in period t, households forecast (µt+1,kt+2) using the rules: 

 1| 1
ˆ( )e

t t tkµ φ+ += , (17) 

 2| 1ˆ ( )e
t t tk kψ+ += . (18) 

                                                 
11 This is the same basic idea as in Obstfeld (1991, 1997). His 1991 paper studies a small open economy version 
of the optimal inflation tax smoothing problem, while his 1997 paper does the same for a closed economy. The 
key difference from the present analysis, as noted in the Introduction, is that Obstfeld’s model does not include a 
‘welfare cost of current inflation’. This obliges him to use a government objective function which differs from 
the private utility function, being obtained by adding on an ad hoc ‘cost of current inflation’ term to the latter. 
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(Note that kt+1 is observable by households in period t - since they can observe µtmt and thus 

use (16) - so that it is appropriate to base their forecasts upon it.) ˆ(.)φ  and ˆ (.)ψ  are for the 

moment treated as arbitrary functions, but they will later be determined by imposing a 

rationality requirement as part of the conditions of Markov-perfect equilibrium. To generate 

an s-period ahead forecast, (18) may be used repeatedly in (17): 

 1
| 1

ˆ ˆ( ( ))e s
t s t tkµ φ ψ −
+ += , (19) 

where ˆ ˆ ˆ ˆ(.) ( (... (.)...))nψ ψ ψ ψ≡  denotes the nth iterate of the function ˆ (.)ψ . 

These forecasting rules can next be used to determine equilibrium consumption in 

period t. Recall that the equilibrium value of ct is given by the private-sector law of motion, 

(4), solved in a forward-looking manner. The relevant µt’s to use in this equation are now the 

expected values as given by (19), rather than the values from the government’s policy plan, 

since what counts for determining the actual ct are households’ expectations. It is helpful to 

consider the determination of ct in two stages. First, given kt+1 and thus a sequence of 
expected values | 1{ }e

t s t sµ ∞
+ =  generated by (19), we use (4) for periods t+1 onwards to solve for 

ct+1. This yields households’ forecast, as of period t, of the equilibrium value of ct+1. Since it 
is contingent on the observed kt+1, we may write it as 1| 1

ˆ( )e
t t tc kθ+ += . Second, using 1

ˆ( )tkθ +  in 

(4) for period t, we obtain the equilibrium value of current ct: 

 1 1
1 ˆ ˆ( ( )) ( )

1t t t
t

c U k kβ θ θ
α µ + +′=

+
 

 1( )
1

t

t

e k
µ
+≡

+
. (20) 

Current ct thus depends on two variables: the currently observed µt, and the currently 

observed kt+1, whose effect operates via influencing expectations about future µt+s’s. The 

function e(.) captures this expectations effect. The form of e(.) derives from the form of ˆ(.)θ , 

which is in turn derived from the forms of ˆ(.)φ  and ˆ (.)ψ . 

The government now treats (20) as part of the economy’s structure, and thus as a given. 

Its optimisation problem under discretion is therefore to choose 0{ }tµ ∞  to maximise lifetime 
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utility of the typical agent subject to (20) and (16) for t = 0,...,∞, and to given k0. By 

substituting (20) into (16) and into the maximand, we can express this as: 

maximise w.r.t. 0{ }tµ ∞  1 1
0

( ) ( )
1 1

t t t
t

t t

e k e kU gβ α α
µ µ

∞ + +
=

⎡ ⎤⎛ ⎞
Σ − −⎢ ⎥⎜ ⎟+ +⎝ ⎠⎣ ⎦

 

s.t. 1
1

( )
1

t
t t t

t

e kk kµ β
µ
+

+= +
+

,    for t = 0,...,∞, 

 with k0 given. (21) 

(21) reveals that the government’s dynamic optimisation problem under discretion - unlike 

that under commitment - has a standard recursive form. That is, every period, the new value 

of the state (kt+1) depends only on the current value of the state (kt) and on the current value of 

the control (µt), while the flow maximand also depends only on these same two variables 

(although it is kt+1 which appears in the flow maximand, kt+1 is an implicit function of (kt,µt) 

via the constraint). This structure means that the problem can in principle be solved by 

dynamic programming. In turn, dynamic programming ensures that the solution is time 

consistent.12 

The dynamic programming perspective also makes clear that the solution to our 

problem can be expressed as a pair of feedback rules on the state; for example 

 ( )t tkµ φ= , (22) 

 1 ( )t tk kψ+ = . (23) 

(22)-(23) define the government’s optimal monetary policy having taken as our starting point 

the public’s arbitrary forecasting rules, (17)-(18). We notice that (22)-(23) relate the same 

variables as (17)-(18); hence, for (17)-(18) to provide ‘rational’ forecasts by the public, we 

need the functions ˆ(.)φ  and (.)φ , and also ˆ (.)ψ  and (.)ψ , to be the same. In this case 

households will forecast correctly no matter what the value of kt. The discretionary, or 

                                                 
12 Given that the function e(.) has as yet unknown properties, there is a question as to whether the optimisation 
problem (21) is well defined. Here we proceed as if this is the case, but we return to the question below. 
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Markov-perfect, equilibrium is thus a pair of forecasting rules which have the property that 

they reproduce themselves in the guise of optimal government policy rules. 

It is convenient, as earlier, to rewrite the optimisation problem in order to treat the ct’s 

rather than µt’s as the controls. To do this we use (20) to substitute out the µt’s from (21), so 

that the problem is transformed to: 

maximise w.r.t. 0{ }tc ∞  0 [ ( ) ]t
t t tU c c gβ α α∞
= ′Σ − −  

s.t. 1 1( )t t t tk e k c kβ+ += − + ,    for t = 0,...,∞, 

 with k0 given. (24) 

The first-order conditions for this are then easily derived: 

 1 1
1( ) [ ( ) ][1 ( )]t t tU c U c e kα α
β+ +′ ′ ′− = − +     for t = 0,...,∞. (25) 

Repeating here the constraint from the problem (24), 

 1 1( )t t t tk e k c kβ+ += − + , (26) 

we see that (25)-(26) constitute a first-order dynamical system in (kt,ct), which determines the 

evolution of the economy under the optimal discretionary policy. Given that kt is a 

predetermined variable whereas ct is not, c0 will generally be tied down in relation to k0 by 

the transversality condition. This hence determines a particular solution of the system (25)-

(26) which constitutes the solution of the optimisation problem. We denote this solution as: 

 ( )t tc kθ= . (27) 

Equivalently, (27) is the optimal feedback rule of the control upon the state variable. If the 

optimum is such that the economy converges on a steady state, then (27) is also the 

‘saddlepath’ solution of (25)-(26). 

Although (.)θ , like e(.), is still at present an unknown function, once it has been 

determined we can substitute it back into (26) to get: 
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 1 1( ) ( )t t t te k k k kβ θ+ ++ = + . (28) 

This implicitly determines the optimal feedback rule for kt+1, (23). The optimal feedback rule 

for µt, (22), is similarly recoverable by substituting (27) and (23) into (20). The functions e(.) 

and (.)θ  thus play a central role in the Markov-perfect equilibrium, since, if they can be 

determined, the other unknown functions φ(.) and ψ(.) follow. It is also worth noting that in 

equilibrium the function (.)θ must turn out to be the same as the function ˆ(.)θ . This is 

because if households’ forecasting rules are always to yield correct predictions, their forecast 

of ct+1 contingent on kt+1 must coincide with the government’s optimal, and thus actual, 

choice of ct+1 contingent on kt+1. 

We now aim to study the properties of the discretionary equilibrium. We start with the 

steady states. Inspection of (25) suggests two ways in which a stationary solution of the 

dynamical system (25)-(26) may occur. First, (25) is clearly satisfied at the Friedman Rule, 

where U′ - α = 0 for all t. We shall refer to this as the ‘Friedman Rule steady state’ (FRSS), It 

is intuitively clear that if initial government debt is sufficiently negative that the underlying 

‘second-best’ problem is absent, then time inconsistency is removed, and a government 

which started in this fortunate position would have no incentive to move away from it. 

Obstfeld (1991, 1997) similarly identifies the Friedman Rule allocation as a steady state of 

the discretionary equilibrium in his analysis. However, whereas for Obstfeld the Friedman 

Rule allocation is the only steady state, this is not necessarily true here. A second way in 

which a stationary solution of (25) could occur is if there exists a kt+1 at which e′(kt+1) = 0. 

More specifically, we might conjecture that this would be true at the value of kt+1 

corresponding to the ‘critical’ debt level as we defined it for monetary policy under 

commitment. The motivation for such a conjecture is that we know from Section 3 that there 

is no time inconsistency if initial debt happens to equal the critical value, and that, under 

commitment, if the government started with this amount of debt it would choose to stay there. 

Thus it might be hypothesised that, with this critical amount of initial debt, the optimal policy 

under discretion would be the same as under commitment. This second type of steady state 

we shall refer to as the ‘time consistent steady state’ (TCSS). 
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To prove that a TCSS exists under discretion if, in the problem under commitment, 

there exist critical consumption and debt levels as defined in Section 3, consider again the 

definition of the function e(.) (given in (20)). Differentiating this function with respect to k, 

we obtain: 

 ( ) [1 ( )] ( ) ( )e k c U c kβ σ θ
α

′ ′ ′= −   (29) 

(in which we have equated ˆ(.)θ  with (.)θ , for the reason explained). Although ( )kθ ′  is 

unknown, we do know from Section 3 that σ(c) = 1 at the critical consumption level cc. This 

is therefore sufficient to prove that e′ = 0 at the corresponding critical commitments level 

(call this kc). Hence a stationary solution of (25) does indeed arise at kc. 

The level of inflation at the TCSS is higher than the negative inflation rate (β-1) which 

prevails at the Friedman Rule. Its value depends on the utility function: from (2) and (3), the 

general expression for the inflation rate is (β/α)U′(c) - 1, and at cc this could be positive or 

negative. Hence, if we can show that there are conditions under which the discretionary 

equilibrium converges on the TCSS (for the general case in which the initial k0 ≠ kc) then it 

follows that the long-run destination of the economy under discretion is not necessarily a 

situation of deflation. We may also note that the level of debt at the TCSS is higher than the 

negative level required to sustain the Friedman Rule, and the same is true of the level of 

commitments. Whether they are negative or positive in the absolute again depends on the 

utility function, and also on g.13 

The evolution of the economy under discretion is governed by (23), which we saw to 

take its form implicitly from (28). Differentiating (28), and evaluating at a generic steady 

state k, we have: 

 1 1 ( )( )
( )

t

t

dk kk
dk e k

θψ
β

+ ′+′= =
′+

. (30) 

Local convergence to either the FRSS or the TCSS clearly requires that -1 < ψ′ < 1. Hence 

we shall proceed by attempting to solve for ( )kθ ′  and e′(k) at each type of steady state, in 

                                                 
13 Specifically, setting c0 = c = cc in (13), we have kc  = (1−β)[(β/α)U′(cc)-1]cc, and bc(1+Rc) = kc - g/(1-β). 
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order to determine whether this condition can be satisfied. An expression for e′ has already 

been obtained in (29). Differentiating (29) for a second time yields the following expression 

for e′′, which will be useful below: 

 2 2( / )[ ( ) (1 ) ( ) (1 ) ]e U U Uβ α σ θ σ θ σ θ θ′′ ′ ′ ′ ′′ ′ ′ ′′ ′= − + − + − . (31) 

In order to find an expression for θ ′ , recall that ( )tkθ  is the saddlepath solution of the 

dynamical system (25)-(26). By taking a linear approximation to this system about a steady 

state, we may find an expression for θ ′ . Such a calculation yields: 

 1 θ ′+  

 
2

2 2 21 ( ) ( ) 4 ( )
2

U Ue e e e e
U U

α αβ β β β β β
β

⎧ ⎫′ ′− −⎪ ⎪⎧ ⎡ ⎤′′ ′ ′′ ′ ′= + + + ± + + + − +⎨⎨ ⎬⎢ ⎥′′ ′′⎩ ⎣ ⎦⎪ ⎪⎩ ⎭
. (32) 

We now observe that (29), (31) and (32) constitute a system of three simultaneous equations 

in the four unknowns ( , , , )e e θ θ′ ′′ ′ ′′ . Although we cannot solve it as it stands, if we proceed to 

evaluate it at either the FRSS or TCSS, it turns out that we obtain additional restrictions 

which are sufficient to make solution possible. 

Consider first the local dynamics of the FRSS. Setting U′ = α, notice that e′′ drops out 

of (32). (29) and (32) then constitute a system of two equations in just two unknowns, e′ and 

θ′, from which we may hope to solve for e′ and θ′. Appendix A presents the relevant 

calculations. We show that the system can be reduced to a quadratic equation in θ′ as the 

single unknown. Once θ′ has been determined, e′ follows from (29) and ψ′ from (30). Since 

the quadratic implies two possible solutions for θ′, there are also two possible solutions for e′ 

and ψ′. The point of particular interest is whether either of the solutions for ψ′ have absolute 

value less than one. The key result demonstrated in Appendix A is that if σ < 1, there is 

exactly one solution for ψ′ with absolute value less than one; but if σ > 1 there are no 

solutions with absolute value less than one. Combining this with our earlier finding, we thus 

conclude that: 
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Proposition 1 The Friedman-Rule consumption level and associated negative debt level 

constitute a steady state of the discretionary equilibrium. Moreover, if the coefficient of 

‘relative risk aversion’ in consumption is less (greater) than one at this steady state, then, 

within a neighbourhood of it, a discretionary equilibrium which converges on it exists (does 

not exist). 

In the case σ < 1 we also find, more specifically, that ψ′ lies in (0,1) (ensuring that 

convergence is monotonic), and that θ′ and e′ are negative. Thus, as the Friedman Rule is 

approached, debt steadily falls (or equivalently - once debt becomes negative - government 

assets steadily rise) and consumption steadily rises. Inflation also steadily falls (becomes 

more negative). This is the outcome obtained by Obstfeld (1991, 1997). Such an outcome 

differs from what happens under commitment, where, if σ < 1, consumption also rises along 

an optimal time path, but only between periods 0 and l. Debt correspondingly falls between 

periods 0 and 1, but remains permanently above its Friedman Rule level. The clue as to why a 

government acting under discretion goes farther in reducing its debt over time than a 

government acting under commitment, lies in the negative e′, as Obstfeld pointed out. e′ < 0 

means that lower debt (lower kt+1) induces higher current consumption through affecting 

private agents’ expectations (recall (20)). From the government’s perspective, e′ < 0 thus 

increases the ‘return’ to a marginal reduction in the debt: not only does lower debt next 

period mean the future inflation-tax revenue needed is lower, but also, by lowering private 

expectations of future inflation14, it raises current consumption. By contrast, under 

commitment, private agents do not use the level of government debt as the basis for their 

forecasts - instead, they trust the government to carry out today’s optimal plan. Hence a 

change in the debt level per se does not have this added ‘Obstfeld effect’.15 

A numerical illustration of a set of discretionary equilibria (one for each initial value of 

kt) converging on the FRSS is given in Figure 3. This is calculated for the CRRA utility 

                                                 
14 To see this, note that since θ′ is negative, and recalling that θ′ = θ̂ ′ , a reduction in kt+1 raises private agents’ 
forecasts of ct+1. ct+1 is negatively related to expected inflation pt+1/pt by (2)-(3). 
15 Although, under this outcome, utility is higher in the long run under discretion than under commitment, 
lifetime utility from the perspective of period 0 is lower, because consumption in the short run can be shown to 
be lower. This is as it should be, because inability to commit acts as a constraint on the optimal policy. 
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function with σ = 0.5, α = 5 and β = 0.95. (We have also set gt = 0 for all t.) A description of 

the algorithm used for the computations is provided in Appendix C. The Friedman-Rule 

consumption level in this example is c = 0.04, and the corresponding level of ‘commitments’ 

needed to sustain this is k = -0.04. Panel (a) shows the e(kt) function for this example. This 

confirms the negative effect of the stock of debt (to which ‘commitments’ are here 

equivalent), operating via private-sector expectations, on ct-1. Panel (b) shows the θ(kt) 

function (the line labelled ‘ct’), indicating the negative total effect of the stock of debt on the 

government’s optimal choice of ct. Note that the range of ct values considered extends from 

the maximum, Friedman-Rule, value down to approximately one quarter of that value, so that 

the picture is not just concerned with a small neighbourhood of the FRSS. The function is 

clearly quite close to being linear. Panel (c) plots the ψ(kt) function and also, for reference, 

the 45o line. As Proposition 1 predicts, the slope is less than one - in fact, it is about 0.9 - 

which confirms that the economy does indeed converge monotonically on the FRSS for any 

initial level of debt above -0.04. For comparison, panel (b) also plots the two consumption 

levels which result from the problem under commitment. The line ‘c0’ gives consumption in 

the first period of an optimal plan as a function of the initial debt k0; while the line ‘c’ gives 

consumption in the second and all later periods, again as a function of k0. We thus see that for 

the same inherited level of debt, in this example consumption in the short run is chosen to be 

lower under discretion than under commitment and, correspondingly, inflation is chosen to be 

higher. 

When σ > 1, however, Proposition 1 indicates that it is not possible for the outcome 

obtained by Obstfeld to occur in our model. The force driving the economy away from the 

Friedman-Rule outcome in such a case is discussed below in the context of Proposition 2. 

This suggests that in this case the destination may instead be the time-consistent steady state, 

where the latter exists. 

We now turn to the local dynamics of the TCSS. At the TCSS itself, σ = 1 and e′ = 0, as 

shown previously. Hence θ′′ drops out of (31), and the simultaneous system of (29), (31) and 

(32) can be reduced to the system of just (31) and (32), in the unknowns θ′ and e′′. From this 

we may hope to solve for θ′ and e′′. Appendix B presents the relevant calculations. We show 
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that the system can be reduced to a quadratic equation in θ′ as the single unknown, analogous 

to, but different from, the quadratic applying at the FRSS. Once θ′ has been determined, ψ′ 

follows from (30). Since the quadratic implies two possible solutions for θ′, there are also 

two possible solutions for ψ′. The point of particular interest is whether either of the solutions 

for ψ′ have absolute value less than one. The key result demonstrated in Appendix D is that if 

σ′ > 0, there is exactly one solution for ψ′ with absolute value less than one; but if σ′ < 0 

there are no solutions with absolute value less than one. Combining this with our earlier 

findings, we thus conclude that: 

Proposition 2 If the critical consumption and debt levels as defined for the problem 

under commitment exist, then a steady state of the discretionary equilibrium also exists at 

these consumption and debt levels. Inflation could be positive or negative at this steady state. 

Moreover if, under commitment, initial debt above the critical level was associated with a 

temptation to create surprise inflation (deflation), and below, with a temptation to create 

surprise deflation (inflation), then, under discretion, within a neighbourhood of the steady 

state, an equilibrium which converges on it exists (does not exist). 

As Proposition 2 emphasises, in the neighbourhood of the critical consumption level 

there is a close relationship between the optimal policy under commitment and that under 

discretion. Moreover, in the case where under commitment a temptation to surprise inflation 

is associated with debt above the critical level and vice versa (i.e. in the case where σ′ > 0), 

we can show that 0 < ψ′ < 1, thus ensuring that convergence under discretion is monotonic; 

and we can also show that θ′ and e′′ are negative. If k0 > kc, consumption then steadily rises 

over time until it reaches the critical level. Along this path, inflation and debt are falling. If, 

on the other hand, k0 < kc, then consumption steadily falls over time, with accompanying rises 

in debt and inflation. By comparison, under commitment, paths with the same k0 would 

involve a rise or a fall in consumption (respectively) between periods 0 and 1, and a 

corresponding fall or rise in debt during period 0, but they would not continue all the way to 

(cc,kc). The reason why the evolution is carried further under discretion is that e′ < 0 at k0 > kc 

and e′ > 0 at k0 < kc, as follows from the fact that e′′ < 0 at the TCSS. e′ < 0 means that there 
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is an ‘Obstfeld effect’, as described above, so that the government perceives additional 

benefits of debt decumulation when unable to commit. e′ > 0, by contrast, implies that there is 

a ‘reverse Obstfeld effect’: now a marginal increase in end-of-period debt raises current 

consumption through the effect on agents’ expectations, giving the government an incentive 

to accumulate debt relative to the case in which it can commit. Intuitively, e′ > 0 here because 

this is the region of k0 in which, under commitment, the temptation is to create surprise 

deflation. In this region, for a government following the optimal committed policy, after one 

period the higher debt which it faces would create an incentive for it to choose consumption 

to be greater than in the plan: under discretion, this incentive is reflected in the way debt 

influences consumption through expectations.16 

Figure 4 provides a numerical example of a set of discretionary equilibria (one for each 

initial value of kt) converging on a TCSS. This is calculated for the quadratic utility function 

with ĉ  = 0.08, α = 0.03619 and β = 0.95. (Again, gt = 0 for all t.) The algorithm used is again 

that described in Appendix C. The implied ‘critical’ value cc, i.e. where σ(c) = 1, is 0.04, and 

correspondingly kc = 0.04. The e(kt) function for this example is depicted in panel (a). As 

predicted by the theory, it shows that the gradient is zero at kc and the shape is concave: i.e. 

small increases in debt here affect consumption via the public’s expectations in opposite 

ways, depending on whether debt is high or low. Panel (b) plots the total effect of debt on the 

government’s optimal choice of ct. The dynamics of debt are illustrated in panel (c). To make 

the picture clearer, we plot kt+1-kt on the vertical axis, since kt+1 as a function of kt turns out to 

be very close to the 45o line. It can be seen that the TCSS at kc is indeed stable, even if 

convergence is very slow. Panel (c) also shows the FRSS (at k = -0.0438) and so reveals how 

it is unstable. For comparison, in panel (b) we also plot the two consumption levels which 

result from the problem under commitment (cf. Figure 3). We see that while, for debt above 

                                                 
16 Having established that e′ = 0, e′′ < 0 in the neighbourhood of the TCSS, it is straightforward to check and 
confirm that the second-order conditions for the government’s optimisation problem are satisfied when e(.) has 
these properties. In the neighbourhood of the FRSS we cannot determine e′′ analytically. However our 
numerical experiment confirms that a maximum exists for the chosen parameter values, and also suggests that 
under CRRA utility e′′ = 0 more generally may not be a bad approximation. It is again straightforward to check 
and confirm that the second-order conditions are satisfied when e(.) is linear. 
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kc, consumption in the short run is lower under discretion than commitment, for debt below kc 

the opposite is true. 

Our results demonstrate the main claim made in the Introduction, which is that it is not 

inevitable that under discretion the optimal policy will converge on the Friedman Rule. As 

we have just argued, the force which may prevent the attainment of the Friedman Rule, or 

even drive the economy away from it, is the fact that under commitment there can be an 

incentive to surprise deflation rather than surprise inflation. 

It may be remarked that, although the conditions for local convergence to the FRSS and 

TCSS are not the same, it turns out they appear similar when viewed in terms of the 

‘expansion path’ diagram. For local convergence to be possible, at either steady state the 

expansion path must cut, or meet, the 45o line from above. This is because the stability 

conditions in Propositions 1 and 2 are the same as those governing the slopes of the 

expansion path at the relevant points, as is clear from the results in Section 3. Thus, if the 

expansion path has the shape illustrated in Figure 2, then, under discretionary policy, local 

convergence to the FRSS is not possible, but local convergence to the TCSS is. If instead the 

expansion path lies everywhere above the 45o line - except at the Friedman Rule point where 

it must meet it - then the FRSS is the only steady state under discretion, and local 

convergence to it is possible.17  

 

5. Conclusions 

Our main findings having been summarised in the Introduction, we here comment on 

their generality. First, it is not essential to the results that we have used a cash-in-advance 

framework. A common alternative is the money-in-the-utility function approach. If this is 

adopted, then, in order to capture a welfare cost of current inflation, an analogous modelling 

device to the use of ‘Svensson’s timing’ in cash-in-advance is to use beginning-of-period 

nominal balances deflated by the current price as the real balances variable in the utility 

function (as is done, in a different application, by Neiss (1999)). In early work we employed 

                                                 
17 These are the only two possible shapes for the expansion path under quadratic or CARA utility. 
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such an approach and obtained results which exactly parallel those presented here. In fact, it 

can be shown that the two approaches are mathematically equivalent. However the 

interpretation required of the functions is different: what matters in the money-in-the-utility 

function approach is the shape of the utility-of-real-balances function, rather than the shape of 

the utility-of-consumption function. 

Second, the precise conditions which we have obtained in this paper for a time-

consistent steady state of the discretionary equilibrium to exist, and for convergence to it to 

be possible, are ones which we would not expect to be robust to other ways of modelling the 

welfare cost of current inflation. The way the latter is represented here is simple and 

convenient but there are more sophisticated ways in which it could be captured, such as in the 

‘limited participation’ models referred to earlier. Nevertheless we would still expect that a 

‘time-consistent steady state’, as we have defined it, could occur in such models, albeit with 

modifications to the exact conditions for its existence. Hence we anticipate that our 

conclusion that optimal monetary policy under discretion does not necessarily converge on 

the Friedman Rule would still apply in more general models. 
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Figure 1 Optimum time paths of consumption under commitment 
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Figure 2 The government’s optimisation problem under commitment in reduced form 
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FIGURE 3 Discretionary equilibrium with CRRA utility 
σ = 0.5, α = 5, β = 0.95; FRSS value of kt = -0.04 
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FIGURE 4 Discretionary equilibrium with quadratic utility 
ĉ =0.08, α = 0.03619, β = 0.95; TCSS value of kt = 0.04; FRSS value of kt = -0.0438 
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Appendices 

A. Dynamics in the neighbourhood of the Friedman-Rule steady state 

As noted in the main text, setting U′ = α causes e′′ to drop out of (32). The square root 

on the right-hand side of (32) can then be evaluated exactly, so that (32) reduces to: 

 211 ( ) or 1eθ β
β

′ ′+ = + . (A1) 

The solution 1+θ′ = 1 we discard, since it is inconsistent with local convergence. To see this, 

note that in combination with (29) it implies e′ = 0, and hence (30) implies ψ′ = 1/β, which 

has absolute value greater than one. We focus, then, on the other solution in (A1). 

Substituting out e′ using (29) and re-arranging, we arrive at the following quadratic equation 

in θ′ as the single unknown, as referred to in the main text: 

 2 2[1 ] ( ) [2(1 ) 1/ ] [1 1/ ] 0σ θ σ β θ β′ ′− + − − + − = . (A2) 

Rather than study the implications of this for θ′, it is of greater interest to study its 

implications for ψ′. Using the solution from (A1) in (30), we have: 

 ( ) /eψ β β′ ′= +  

 1 (1 )σ θ′= + − , (A3) 

where the second line again employs (29). We may now use (A3) to re-express (A2) as a 

quadratic equation in ψ′: 

 2 1( ) 0
1 1

σβ ψ ψ
σ σ

′ ′− + =
− −

. (A4) 

Denoting this equation schematically as 2( ) 0a b cψ ψ′ ′+ + = , we proceed to some 

standard tests to determine its implications for ψ′. First, the roots are real if b2-4ac > 0, which 

we may easily verify always to be satisfied. Second, their sum is -b/a = 1/β(1-σ) and their 

product is c/a = σ/β(1-σ), whence σ < 1 implies two positive roots and σ > 1 implies one 
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positive and one negative. Third, consider the two test parameters (a+b+c)/(a-b+c) and       

(c-a)/(a-b+c). If the first test parameter is negative, there is exactly one root with absolute 

value less than one; if it is positive, then there are either 0 or 2 roots with absolute value less 

than one as, respectively, the second test parameter is positive or negative. We have: 

 1
( 1) /( 1)

a b c
a b c

β
β σ σ

+ + −
=

− + − + −
, 

 /(1 )
( 1) /( 1)

c a
a b c

σ σ β
β σ σ

− − −
=

− + − + −
. 

If σ < 1, the first test parameter is negative, so there is exactly one root with absolute value 

less than one. (From the foregoing, we can moreover say that this root must be positive.) If σ 

> 1, the first test parameter is positive, and the second is also positive, so there are no roots 

with absolute value less than one. These are the results asserted in the main text. 

Having seen that when σ < 1 there exists a ψ′ ∈ (0,1), it follows from (A3) that the 

associated θ′ and e′ are negative, as also asserted in the main text. 

B. Dynamics in the neighbourhood of the time-consistent steady state 

As noted in the main text, setting σ = 1 and e′ = 0 causes θ′′ to drop out of (31), so that 

(31) and (32) then constitute a system of two equations in the two unknowns e′′ and θ′. Using 

(31) to substitute e′′ out of (32) and re-arranging, we obtain a cubic equation in θ′. However, 

θ′ = 0 turns out to be one root of this equation. We discard this root, since it is inconsistent 

with local convergence. (To see this, note that θ′ = 0 together with e′ = 0 imply, from (30), 

that ψ′ = 1/β, which has absolute value greater than one.) The remaining equation in θ′ is 

then the quadratic: 

 2[ / 1] (1 ) [( / 1) 1](1 ) 0U c U cα σ θ α σ θ β′ ′ ′ ′ ′ ′− + − − + + + = , (B1) 

as referred to in the main text. 

Rather than study the implications of this for θ′, it is of greater interest to study its 

implications for ψ′. Using e′ = 0 in (30) we have ψ′ = (1+θ′)/β. This enables us to re-express 

(B1) as a quadratic equation in ψ′: 
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 2[ / 1] ( ) [( / 1) 1] 1 0U c U cα σ β ψ α σ ψ′ ′ ′ ′ ′ ′− − − + + = . (B2) 

Next, notice that the term (U′/α - 1)cσ′ + 1 in this equation is equal to the inverse slope of the 

expansion path at the critical consumption level cc, as can be seen from (14). Hence, denoting 

the slope in (14) as s, we can further re-write (B2) as: 

 2 1( ) 0
1 1

s
s s

β ψ ψ′ ′− + =
− −

. (B3) 

Our concern is now with the implications of (B3) for ψ′, and especially with whether 

any of the roots of (B3) have absolute value less than one. At this point it may be observed 

that (B3) is identical in form to the equation (A4) analysed above, but with ‘s’ in (B3) 

replacing ‘σ’ in (A4). Therefore the conclusions reached above also apply here. That is, if s < 

1, there is exactly one root with absolute value less than one (and we can moreover say that 

this root must be positive). If s > 1, there are no roots with absolute value less than one. 

Given that s is < 1 or > 1 as σ′ > 0 or < 0, respectively, then, translated into statements about 

σ′, the conclusions are that if σ′ > 0, there is exactly one root with absolute value less than 

one; and if σ′ < 0, there are no roots with absolute value less than one. These are the results 

asserted in the main text. 

Having seen that when σ′ > 0 there exists a ψ′ ∈ (0,1), it follows from ψ′ = (1+θ′)/β 

that the associated θ′ is negative, and from (31) that e′′ is negative, as also asserted in the 

main text. 

C. The algorithm used for numerical computations 

The value function for the policy problem (24) - call it V(kt) - must satisfy the Bellman 

equation: 

 [ ]1 1 1( ) ( ) ( ) s.t. ( )maxt t t t t t t t
t

V k U c c g V k k e k k c
c

α α β β+ + += − − + = + − . 

θ(kt) - (27) in the main text - is the associated policy function. If e(kt+1) were a known, 

exogenous function we could compute V(kt) by the standard method of iterating on the value 

function. According to this method we begin by making a guess at the value function: V0(kt), 
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say. This function is approximated numerically on a grid, and the maximisation operation 

described on the RHS of the Bellman equation is carried out by a grid search routine. In this 

way a new value function, V1(kt), is generated. The process is then repeated N times until the 

function has converged, as judged by an appropriate criterion of convergence. 

In our case, however, e(kt+1) is an unknown, endogenous function. It must satisfy (20) in 

the main text. This, then, suggests a ‘double iteration’ procedure. We first make a guess at 

e(kt+1): call it e0(kt+1). Using this in the policy problem (24), we then employ the above value 

function iteration method to compute the corresponding value function - V0(kt), say. 

Associated with this is a policy function, which we may denote θ0(kt). In the next stage, we 

generate a new version of e(kt+1) by using (20): 

 1 0 0
1 1 1( ) [ / ] ( ( )) ( )t t te k U k kβ α θ θ+ + +′=  

e1(kt+1) is then used to generate a new version of the policy problem, and the process loops 

round again. This higher-level iteration continues until successive versions of the function 

e(.) are judged to have converged. Helpful guesses for the initial function e0(kt+1) can be 

obtained from Propositions 1 and 2. In particular we can directly calculate a linear 

approximation to e(kt+1) which is satisfied at either the FRSS or the TCSS, and which has the 

correct slope. 

The above algorithm, implemented in Gauss, was used to generate the numbers 

underlying Figures 3 and 4. 
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