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Abstract

We have examined the elbow angles for 365 different Fab fragments, and observe that 

Fabs with lambda light chains have adopted a wider range of elbow angles than their 

kappa-chain counterparts, and that the lambda light chain Fabs are frequently found 

with very large (>195°) elbow angles.  This apparent hyperflexibility of lambda-chain 

Fabs may be due to an insertion in their switch region, which is one residue longer than 

in kappa chains, with glycine occurring most frequently at the insertion position.  A new, 

web-based computer program that was used to calculate the Fab elbow angles is also 

described.

Introduction

Antibodies are composed of two light (L; MW~25,000) and two heavy (H; MW~50,000) 

polypeptide chains that combine to form one Fc and two Fab modules that can be 

isolated as functional fragments by proteolytic cleavage of the intact immunoglobulin.  

Within each Fab fragment are two types of distinct structural domains termed variable 

(VL,VH) and constant (CL,CH1), with the amino acids linking VL to CL and VH to CH1 

called ‘switch’ residues.  Since the early 1970’s, when Fab and light-chain dimer 

structures first became available, it was noted that these fragments displayed a 

variability in the angle between their variable and constant domains1, referred to as the 

‘elbow bend’ or ‘elbow angle’ and defined as the angle between the pseudo 2-fold axes 

relating VL to VH, and CL to CH1 (Fig. 1).  While these early antibody structures sparked 

speculation that the elbow angle might change in response to ligand binding2, no 
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convincing data have since been found to support this theory.  Rather, it appears that 

the elbow angle may simply serve to increase Fab flexibility, thus enhancing the ability 

of an antibody to bind bivalently to ligands arranged on a pathogen surface, such as a 

virus or bacteria.

The Fab elbow angle (Fig. 1) is a useful descriptor of the overall topology of the Fab 

fragment, serving as a measure for the relative disposition of the variable versus the 

constant domains.  The elbow angle is almost always cited in Fab structure reports that 

include comparison of liganded versus unliganded Fab structures, and assessment of 

Fab switch region flexibility.  In order to simplify the elbow angle calculation, we have 

developed a web-based program to more readily calculate the elbow angle for PDB-

formatted Fab coordinates.  We have tested this method by calculating elbow angles for 

536 Fab fragments from the PDB (of which 365 are non-redundant).  The elbow angle 

calculations are consistent with previous compilations but now clearly demonstrate that 

the propensity for lambda (λ) light chains to assume elbow angles above 180° and 

beyond 195° is significant compared to kappa (κ) light chains. 

Materials and methods

Calculation of elbow angles

The elbow angle of a Fab antibody fragment is defined as the angle between the two 

not necessarily intersecting pseudo-dyad axes (PDAs) relating the light (VL) and heavy 

(VH) chain variable domains, and the light (CL) and heavy (CH) chain constant domains.  

Small deviations in the exact locations of the PDAs arise depending on which residues 

are used for their calculation; however, the resultant deviations for the values of the 
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elbow angles are limited usually to only a few degrees.  It is standard practice to use 

only structurally-conserved residues from the antibody framework region for this 

calculation to eliminate errors due to differences in conformations of the 

complementarity determining regions (CDR).  If the Fab coordinates used for the 

calculation have been numbered in a consistent way (such as the Kabat and Wu 

convention3), these structurally-equivalent residues are easily defined.   The calculation 

is then easy; however, most of the Fab structures deposited in the RCSB Protein 

Databank 4 are not numbered or labeled consistently, making such comparisons more 

difficult.  However, the program we use for the VL-VH and CL-CH1 superposition (LGA5) 

also refines the sequence alignment between the domains, and, thus the superposition 

geometry does not critically depend on the numbering system used for the Fab.

However, there are additional fine points in the elbow angle calculation that need to be 

addressed.  The elbow angle is calculated as the dot product of the VL-VH and CL-CH1 

pseudo-dyad angle, and always computes between 0 and 180°.  Although one could 

readily determine the absolute value in mathematical terms through the sign of the 

determinant of the basis matrix formed by the two pseudo-dyad vectors and their cross 

product vector, this approach does not overcome the problem.  Due to the reduction of 

the information to a single scalar angle value, the relative orientation of the axes is lost, 

and the solutions become degenerate (imaginable as located on a cone) between 90° to 

180°.   To regain the domain orientation on an absolute scale and to solve the 

complement ambiguity, one needs to compare each Fab to a ‘standard’ Fab with a 

defined elbow angle.  In this case, we use unliganded Fab 8F5 (PDB code = 1bbd) as 
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the standard, with an elbow angle of 127°. The Fab to be tested is first superimposed

via its variable domain (VL-VH) onto the variable domain of the standard Fab. From this 

V-aligned orientation, the constant domain (CL-CH1) of the test Fab is aligned with the 

constant domain of the standard Fab, yielding the rotation relative to 1bbd. The sum of 

the standard Fab’s elbow angle (127°) plus the θ3 domain rotation angle is then used to 

resolve the degeneracy and to determine whether the elbow angle calculated by the 

dyad dot product is direct or complementary (> 180°). This method has been 

extensively used in previous reviews and compilations6.

Limitations and accuracy

The underlying assumption of the definition of the elbow angle is that the superposition 

of VL onto VH, as well as CL onto CH1, is predominantly a two-fold rotation. In this case, 

the directional cosine matrix resembles a pure two-fold rotation with relatively small non-

diagonal components and the Euler axis is dominated by a correspondingly large 

principal component. In more than 95% of the Fabs that we examined, the assumption 

of near-twofold superposition operations is justified, and the elbow angle concept fully 

applicable.

If additional rotational components become significant in the domain superpositions, the 

Euler axes can deviate from the 2-fold to a point where the two axes become non-

opposing and the calculated elbow angle is less than 90°.  Even in these cases, a 

complement (180 - α) can be interpreted as the elbow angle, but such Fabs need to be 

individually examined to decide whether the elbow angle definition is still meaningful.            



6

Although elbow angles tend to be reported to a precision of one decimal point, the 

choice of domain limits and superposition procedure places limitations on the absolute 

accuracy of the elbow angles. The superposition results can vary depending how the 

domain limits are defined, and depend on the alignment procedure used.  With default 

domain limits (VL ≤ L107 < CL and VH ≤ H113 < CH1, residues in Kabat numbering), we 

compared the elbow angles obtained using Kabat-renumbered Fab coordinates, and a 

fixed set of structurally-conserved residues for the superposition (using the program 

OVRLAP7) with those computed using our web application based on automated LGA 

alignments 5 and original numbering from the PDB. The angles computed using the 

different methods (n=167) agreed with a difference in their mean of -0.12° and a 

standard deviation of no more than 1.1o. It is interesting to note that molecular dynamics 

simulations of Fab domain movement in solution show periodic hinge bending 

fluctuations, with a 2-3o root mean square deviation (r.m.s.d.) in elbow angle8.  The 

presence of such dynamic fluctuations indicates that the reported precision to a tenth of 

a degree in the elbow angles is, indeed, overly optimistic, whereas the differences in 

calculated elbow angles based on different domain superposition techniques are well 

within the range of the dynamic elbow flexibility. It would, therefore, seem reasonable 

that any difference in elbow angles below 2-3º should not be considered significant.

In addition, the extent to which crystal packing additionally affects or limits the observed 

elbow angles is uncertain. Several examples exist where two Fabs in the same 

crystallographic asymmetric unit display significantly different elbow angles, for example 
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1jnh (27° difference), 1s78 (22°) and 1ots (21°).  However, even within the limits of 

accuracy discussed above, the elbow angles are still useful as measures of hinge 

flexibility and for classification purposes.

Analysis of elbow angles 

Elbow angles for a total of 536 Fab fragments in 416 PDB entries have been calculated 

using the automated procedure described above.  A non-redundant data set was 

created by omitting repetitions (such as one antibody in complex with many similar 

haptens), similar to a procedure used previously9.  Fabs crystallizing in the same space 

group with cell constants within 1% and their elbow angles within +/-3° were considered 

equivalent, resulting in a non-redundant set containing 365 unique Fab structures 

(Table S1, supplemental material).  The distributions of elbow angles (Fig. 2) are 

distinctly different depending on the Fab light chain type.  Most of the elbow angles 

larger than 190° belong to the group of 33 unique λ chains in the test set (Table 1, Fig. 

2). No correlation is apparent with heavy chain type (Table 1).  The most frequent space 

groups for Fab crystal structures follow the general distribution analyzed previously for 

proteins 9; 10 with P212121 (32%), P21 (29%), P1 (24%) and C2 (13%) the dominant 

space groups.

Implementation

The program RBOW is implemented on a Linux platform (Apache web server) using a 

combination of Perl scripts and standard Fortran90 code.  The alignment program used 

is the local-global alignment program LGA5, which assures minimal dependence of the 
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results on the Fab numbering convention used.  The program allows upload of PDB 

format coordinate files, selection of heavy and light chain identifiers, and input of 

domain boundaries, for which reasonable default values are provided.  During the 

calculation as described above, the program checks for format errors and issues 

warnings at several levels for unexpected or borderline behavior.  Warnings include 

large coordinate r.m.s.d.’s on superposition (>3.5Å), significant deviations from pseudo-

twofold rotation axes, occurrence of parallel superposition axes, and swapped 

annotation of L and H chains. The superposition files are available for upload and visual 

inspection, if desired.  Coordinates may be downloaded to 

http://as2ts.llnl.gov/AS2TS/RBOW/ for the elbow angle calculation.

Discussion

The majority of Fab fragment structures in the RCSB Protein Database (PDB)4 have 

kappa (κ) light chains, with only 37 lambda (λ)-chain Fab PDB depositions (as of May 

2005), half of which have been submitted since the year 2000.  This paucity of λ chain 

Fab structures reflects their lower abundance, particularly in mice where the antibody 

light chain repertoire is about 5% λ and 95% κ11, whereas in humans about 40% of the 

repertoire is λ.  Also, the number of mouse structures far outweighs their human 

counterparts (of 416 PDB entries, 305 were murine and 51 human, with the rest 

chimeric or humanized, rat(4) or hamster(1).  Our results show that of the 12 unique 

human and 21 unique murine or hamster Fab structures with λ light chains, about 60% 

have elbow angles greater than 180°, with 11 instances of elbow angles greater than 

195° (Table 1).   The largest elbow angle found was 227°.   In contrast, the vast majority 
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of the κ light chains have elbow angles less than 180°, with a maximum elbow angle in 

this group of 196° (Table 1).  Note that while a large percentage of λ chain Fab 

structures have elbow angles greater than 180º, λ chain Fabs can also display elbow 

angles as small as 117°, the smallest elbow angle found in this study. Thus, λ chain 

Fabs are not restricted to elbow angles >180°, but rather they are more able to assume 

larger (>195º) elbow angles compared to κ chain Fab fragments (Table 1, S1).  A 2-way 

Analysis of Variance (ANOVA) of light chain type and heavy chain class reveals only the 

previously described significant correlation of elbow angle preference with light chain 

type, and no correlation with heavy chain class.  There are insufficient data to allow a 

discrimination by species, as this distribution is predominantly represented by mouse 

Fabs.

Fab elbow angles were also examined to see if differences existed between the elbow 

angles of liganded and unliganded Fabs (Table S2).  There are 61 Fabs in the dataset 

with structures for both their liganded and unliganded forms, many of these determined 

with multiple haptens, or in multiple crystal forms.  Of these 61 Fabs, 38 show 

differences of less than 5° in elbow angle between the liganded and unliganded forms, 

with another 15 Fabs showing differences of between 5-20°.  The largest elbow angle 

deviation was seen for the germline 48G7 (1AJ7 and 2RCS) with a 66° difference 

between the liganded and unliganded Fab.  Since not all Fabs have different elbow 

angles for their free and bound forms, it seems likely that such changes are due to the 

inherent flexibility of the Fab, or to different crystal packing environments, as liganded 

and unliganded Fabs frequently crystallize as different crystal forms.
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Amino acid sequence differences arise in the ‘switch’ regions of λ versus κ light chains, 

including an inserted residue (L106a; Kabat numbering) in the sequence of λ light 

chains (Fig. 3, Table 2).  However, comparison of switch region structures from λ and κ 

light chains shows that residues L106a(λ) and L107(κ) are in fact structurally equivalent, 

as are L108(λ ) and L108(κ), with residue L107(λ) corresponding to the insertion in the 

λ chain (Fig. 3, Table 2), as defined by structural analysis.  In λ chains, residue L107 is 

usually a Glycine (78.9% Gly, 13.4% Ser, 4.5% Arg from 960 λ sequences; 34 Gly, 1 

Ser, 2 Arg in the 37 λ PDB entries).  Switch regions are usually well ordered in Fab 

crystal structures, with only a few exceptions in the Fabs analyzed here, including the 

Fab with the smallest elbow angle (1jnh) which has no visible electron density for the 

switch region in any of the four Fabs in its asymmetric unit.  The distributions of main-

chain torsion angles for residues L105-L109 in the switch region are displayed in Fig. 4 

for all (λ and κ) Fab structures studied.  Torsion angles are clustered fairly tightly for 

residues L105, L106, and L109, with more spread for L106a, L107, and L108, indicating 

that most of the elbow variation can be attributed to these residues.  Comparison of κ 

and λ chain switch regions from Fabs with extreme elbow angle values (Fig. 5) shows 

that large elbow angle differences in κ chains are manifested through consecutive small, 

sequential torsion angle changes around residues L105-L107, while λ chain Fabs 

exhibit a more abrupt torsion angle change centered around residues L106a, L107 and 

L108.  In this particular example, the largest difference between the two λ structures is 

at residue L107.
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Early pioneering studies by Lesk and Chothia 12 based on the available Fab crystal 

structures (only five at that time) had led to a proposal that Fab fragments could not 

achieve elbow angles greater than 180°.  In these five Fab crystal structures (New, 

McPC603, KOL, J539, and HyHEL5)13-17, five conserved residues in the heavy chain 

were involved in key contacts between the VH and CH1 domains.  These residues 

formed what was termed a flexible ‘ball-and-socket’ joint, with PheH148 and ProH149

(Kabat numbering) serving as the ‘ball’ that inserted into a socket formed by residues 

Leu/ValH11, ThrH110, and SerH112 (Fig. 6).  No such conserved contacts or interactions 

were found between the VL and CL domains of these structures.  Despite different elbow 

angles in the Fabs, the five ball-and-socket residues always maintained physical 

contact, although they changed position slightly with respect to one another.  Lesk and 

Chothia proposed that Fabs could not attain elbow angles of greater than 180° because 

the ball-and socket contacts would be lost in these extreme conformations12.  However, 

in 1993, two crystal structures of an anti-chelate Fab (1ind, 1ine) 18 unexpectedly 

revealed that Fab fragments could indeed adopt elbow angles greater than 180°, which 

in this case were ~194° for the two different ligand complexes.  Examination of the ball-

and-socket region from structures of Fabs with vary large elbow angles shows that, as 

predicted, the ball-and-socket residues are not in contact (Fig. 6d), although they 

remain fairly close in space.  Thus, maintenance of the  ‘ball-and-socket’ contacts are 

not required, at least for large elbow angle Fabs.

Conclusions
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We have developed an easy to use, web-based service to calculate the elbow angle of 

a Fab fragment in a PDB format, and demonstrated its utility by rapidly calculating 

elbow angles for 536 Fab fragments in the PDB.  The results show excellent agreement 

with previous compilations of Fab elbow angles6.  The distribution of elbow angles is 

bimodal (Fig. 2), with the largest elbow angles (>195°) only found in Fabs with λ light 

chains (the largest elbow angle seen for a κ light chain is 196°).  These structural 

differences may be due to an additional residue (L107) in the λ chain switch region that 

perhaps allows for more flexibility.  The L107 insertion is usually a glycine, which also 

can provide more conformational freedom.  It is not clear whether Fabs with λ light 

chains bend or flex around their elbow angle in solution more than other Fabs.   Indeed, 

it is not certain how much elbow angle flexibility any particular Fab exhibits in solution.  

Molecular dynamics studies would indicate that elbow angle fluctuations of several 

degrees are common at least for κ-chain Fabs in solution8.  The availability of additional 

λ-chain Fab structures in the future will likely allow for further refinement of our analysis.  

From a practical standpoint, the knowledge that λ chain Fabs tend towards large elbow 

angles may be useful to consider for the crystallographer carrying out molecular 

replacement structure determinations of these Fabs.   
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Table 1. Descriptive statistics* of non-redundant elbow angle distributions in kappa and 
lambda chain type Fabs. 

antibody light 
chain type

N < 180º > 180º > 195º mean median skew

κ 332 290 ( 87%) 42 ( 13%) 1 (0%) 156º 150º +0.4
λ 33 14 ( 42%) 19 ( 58%) 11 (33%) 178º 185º - 0.4
antibody 
heavy chain 
class
IgG1 239 203 (85%) 36 (15%) 8 (4%) 156º 150º +0.7
IgG2a 79 63 (79%) 16 (21%) 0 158º 154º +0.1
IgG2b 22 19 (86%) 3 (14% 0 158º 151º +0.8

* in addition to the moment-based statistics listed above, F-tests, 2-factor ANOVA (light 
chain type, heavy chain class) and non-parametric Spearman rank tests confirm that no 
significant correlations in the data exist beyond the preference of λ  type light chains to 
adopt large elbow angles.  
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Table 2.  Amino acid preferences in elbow regions of kappa and lambda light chains. 
Lambda chains bulge out at residue L107, so that kappa L107 and lambda L106a are 
structurally-equivalent positions.

kappa lambda
Leu/Val L104 Leu/Val L104
Glu/Asp L105 Thr L105
Ile/Leu/Val L106 Val L106
Lys L107 Leu L106a

Gly L107
Arg L108 Gln L108
Ala/Thr L109 Pro L109



15

Figure legends
Figure 1.  Superposition of a variety of Fabs with different elbow angles.  Fabs from 

PDB files 1bbd (red), 7fab (yellow), 1dba (green), 1plg (cyan), and 1nl0 (blue) have 

been superimposed on their variable light chain regions.  The range of elbow angles is 

shown from small (1bbd, 127°; 7fab, 132°;) to around 180° (1dba, 183°) to large (1plg, 

190°;  1nl0, 220°).

Figure 2.  Distribution of elbow angles for κ and λ chain type Fabs.  The distinct 

preference of λ chains to adopt large elbow angles is clearly displayed.  Bin numbers 

indicate the highest value of the corresponding bin.  

Figure 3.  Switch regions from λ and κ light chains.  The switch residues from λ (1ggc, 

light blue) and κ (1nj9, pink) light chains with similar elbow angles have been 

superimposed.  λ chains have an extra residue in the region (L106a by Kabat 

numbering); however, residue L107 (λ) is in fact the structural insertion, with residues 

L107(κ) and L106a(λ), and L108(κ) and L108(λ) being structurally equivalent.

Figure 4.  Ramachandran plots for residues in the light chain switch regions.   Plots for 

residues L105 (a), L106 (b), lambda L106a/kappa L107 (c), lambda L107 (d), L108 (e), 

and L109 (f).  These plots combine both λ (pink) and κ (blue) chains, except for (d), 

where L107 is a structural insertion found only found in λ chains.
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Figure 5.  Comparison of extreme elbow angles from κ and λ chains.  (a) The switch 

region residues from κ light chain Fabs 1bbd (127°, light blue) and 1plg (190°, blue) 

have been superimposed.  This 63° difference is achieved by small movements around 

residues L105, L106, and L107. (b) Switch region residues from λ light chain Fabs 7fab 

(130°, light pink) and 1nl0 (220°, pink).  This 90° difference is characterized by 

differences around residues L106a, L107 and L108, with the largest difference at 

residue L107.  1bbd and 1plg (mouse, IgG2a), and 7fab and 1nl0 (human, IgG1) have 

the same light and heavy chain constant region types.

Figure 6.  Ball-and-socket joint.  The entire Fab fragment and a close-up of the residues 

that contribute to the heavy chain ball-and socket joint are shown for Fabs with extreme 

elbow angles from both the κ and λ light chain class.  (a) 1bbd; 127° elbow angle, 

murine IgG2a, κ (b) 1plg; 190° elbow angle, murine IgG2a, κ (c) 7fab; 130° elbow angle, 

human IgG1, λ (d) 1nl0; 220° elbow angle, human IgG1, λ.
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Figure 1
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Figure 3
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Figure 5
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Figure 6
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