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1. Introduction

Kydland and Prescott (1977) brought into sharp focus the issue of time

inconsistency of optimal policy in macroeconomic models with forward-looking

behavior and rational expectations. In so doing, they transformed the debate on

how �good�dynamic policy ought to be formulated and conducted. Many insights,

and literatures, grew out of the Kydland and Prescott paper; a key insight, of

course, was the desirability of rules in the conduct of policy. The question is:

How should one form these rules? In this paper we take up a theme from Taylor

(1979) and pursued in Whiteman (1986). They proposed searching for policies,

under rational expectations, which maximize the unconditional expectation of

the government�s objective function. More recently, however, an alternative

perspective has been adopted in theoretical research on time-consistent monetary

policy. Woodford (2003), concerned with the formulation of credible policies,

proposes a dynamic optimization-based method for solving for optimal policy,

which he has labelled a "timeless perspective for optimal policy" (TP-policy).

However, the debate continues as to the appropriate criterion for policymakers.

For example, see the contributions of Soderlind (1999), Blake (2001), Jensen and

McCallum (2002, 2006) and Walsh (2005); Currie and Levine (1993) is an early

recognition and analysis of many of the issues that have arisen in the subsequent

literature.

First, in section 2, we exposit di¤erent ways of addressing the time

inconsistency issue. We �rst look at TP-policy strategies as this usefully sets

out the key issues in forward-looking models. We also look brie�y at some of the

concerns with the TP approach. However, our main focus is to show how one

can derive analytically policies that minimize the unconditional expectation of

losses, what we refer to as unconditionally optimal policy or optimal unconditional
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continuation policy (UO-policy). This is the �rst contribution of this paper. To

accomplish this, as we shall see, involves taking expectations over all feasible initial

conditions in constructing the optimal policy program. We derive these optimal

continuation policies in a general linear-quadratic set-up. For concreteness, we

then specialize these results to recover the policies advocated by Blake (2001)

and Jensen and McCallum (2002) and proved to be optimal by Whiteman (1986).

Whiteman�s proof of optimality is somewhat algebraically involved whilst our

approach is straightforward, intuitive and easy to implement and generalize. We

also explain the sense in which consumers�discount rates do not matter when we

construct UO-policy, an observation going back to Taylor�s (1979) contribution

but which has not been formally set out.

In section 3 we pursue further the potential rationale for adopting UO-policies.

In formulating optimal policies it may seem natural to adopt as the criterion

of policy the conditional expected discounted value of losses. However, as is

well known, when there are forward-looking structural relationships the issue

of time consistency is present. One approach is to minimize conditional losses

subject to policy rules that have constant coe¢ cients. However, as we show,

such rules are what we call �conditionally inconsistent� (i.e., the parameters of

the optimal (simple) rule are dependent on initial conditions). This is a form of

time-inconsistency but it is useful to give it a separate label to distinguish it from

the case where the form of the optimal rule (e.g., the nature of the �rst-order

conditions for a policy optimum) are di¤erent in some start-up period(s)1.

One response to this di¢ culty is simply to �ignore� the part of discounted

expected losses that re�ects these initial conditions; the timeless perspective o¤ers

1Some further examples may be useful. In a forward-looking model, the optimal policy is
time-inconsistent but conditionally consistent, whilst the rule that minimizes the conditional
discounted loss function is time consistent but conditionally inconsistent. So, conditional
inconsistency is a form of time inconsistency.
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a justi�cation for this approach and, as a result, adopts as the criterion of policy

the conditional variance of the arguments in the loss function. However, that is

not the only response to this di¢ culty, and it may not be the most natural. If one

adopts the unconditional value of losses as the criterion of policy, one recovers rules

for policy that are time consistent, conditionally consistent and optimal within

the class of policies under investigation.

In the case when the equations describing the economy are purely backward-

looking it may seem that the UO-perspective has little to o¤er. In that case

optimal policy, calculated using the discounted conditional loss function, is time-

consistent (and conditionally consistent). However, even in this situation it may

be possible to argue that minimizing unconditional losses is still desirable. We

show that there is a trade-o¤ between the best policy given the initial conditions

and the �most desirable�distribution from which the initial conditions are drawn.

In addition, we show that the UO-policy converges to the one which maximizes

the conditional loss function when the time discount rate tends to unity. In

general, it is an interesting, and important, philosophical question whether we

should discount the welfare of future generations, and how we should de�ne the

aggregate discount rate. Such issues were famously noted by Ramsey (1928) and

more recently by Somers (1971) and Barro (1999).

Finally, in section 4 we brie�y recap our key arguments and conclude.

2. Di¤erent ways to cope with time inconsistency

Most macroeconomic models that are useful for policy analysis seem to face the

issue of time inconsistency. Hence, monetary policy analysis has for a long time

recognized that one needs to address the incentives/criterion facing policymakers.

Early suggestions included appointing a conservative central banker, proposed by

Kenneth Rogo¤, or the contracting approach urged by Carl Walsh. Woodford
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(2003) proposes that policymakers should adopt the timelessly optimal policy;

that is, the policy that would have been decided upon for the current period

had such a binding decision been taken in�nitely far in the past. The timelessly

optimal rule emphasizes both commitment and �exibility; policymakers ought to

implement policies to which it would have been optimal to commit, had a binding

decision been made far in the past. However, that does not require policymakers

to apply rules regardless of what other changes may occur in the economy. If there

are structural changes, for instance, then policy ought to be employed as if that

change had been known about in�nitely far in the past. It is important to note

that this perspective on optimal policy, like those employed below, remains time

inconsistent in the sense of Kydland and Prescott (1977). However, they are time

consistent in a more limited sense; the policy is sustainable, since it may perform

better than discretionary policy, which the government will implement should it

deviate from commitment. McCallum and Jensen (2006) emphasized this point

and we take it up below.

2.1. The model

We turn now to formalize the timeless perspective in a general linear-quadratic

framework. Consider a discounted quadratic loss function of the form

Lt =
1

2
Et

1X
j=0

�j
�
xt+j � x�t+j

�0
Q
�
xt+j � x�t+j

�
: (2.1)

Et is the expectations operator conditional on information up through date t, � is

the time discount factor, xt is a vector of target variables, x� is a vector of target

values which could depend on disturbance terms, and Q is a symmetric, positive

de�nite matrix.
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We de�ne

xt =

24 Ztzt
it

35 :
Here zt is a vector of non-predetermined endogenous variables, the value of which

may depend upon both policy actions and exogenous disturbances at date t, Zt is

a vector of predetermined endogenous variables (lags of variables that are included

in zt and it) and it is a vector of policy instruments, the value of which is chosen

in period t:

We further assume that the evolution of the endogenous variables zt and Zt is

determined by a system of simultaneous equations

bI � Zt+1
Etzt+1

�
= A

�
Zt
zt

�
+Bit + Cst; (2.2)

where B =
�
0
B

�
; C =

�
0
C

�
and st is a vector of exogenous disturbances.

The policy maker minimizes the loss function (2.1) subject to constraint (2.2)

and given initial conditions (xt; st). He searches for a policy rule of the general

form

�0iit + �
0
zzt + �

0
ZZt + �

0
sst = �: (2.3)

It will generally be the case that the vector � =
�
�0i; �

0
z; �

0
Z ; �

0
s; �
�
will depend

on time and/or initial conditions.

2.2. Timeless-perspective policy

One way to construct a policy which does not depend on time or initial conditions

has been proposed in Woodford (2003). The following algorithm, which is well-

known, will recover the optimal policy from a timeless perspective:
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� Step 1: Write the conditionally expected discounted Lagrangian:

Jt = Et

1X
j=0

�j
�
1

2

�
xt+j � x�t+j

�0
Q
�
xt+j � x�t+j

�
+ �0t+j

� eAxt+j � eIxt+j+1�� ;
(2.4)

where eA :=
�
A B

�
; eI := h bI 0

i
; and �t+j is a vector of Lagrange

multipliers associated with the constraints (2.2).

� Step 2: Write the �rst-order conditions with respect to the endogenous
variables, xt+j�

xt+j � x�t+j
�0
Q+ �0t+j eA� ��1�0t+j�1eI = 0; for j > 0; (2.5)

(xt � x�t )
0Q+ �0t eA = 0; for j = 0: (2.6)

� Step 3: Ensure commitment to the policy program by �ignoring�the �rst-

order conditions for period zero (2.6) and replace them with (2.7):

(xt � x�t )
0Q+ �0t

eA� ��1�0t�1eI = 0: (2.7)

The following example demonstrates this algorithm in practice.

Example 2.1. Following Clarida, Gali and Gertler (1999) consider the loss

function

Lt = Et

1X
j=0

�j
�
�2t+j + �y

2
t+j

	
; (2.8)

and a forward-looking Phillips curve given by

�t = �Et�t+1 + �yt + et; (2.9)

where �t is in�ation at time t, yt is the output gap, and et is a stationary identically
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distributed shock process with �nite2 variance, �2: The Lagrangian for the policy

problem may be written as

Jt =
1X
j=0

�jEt
��
�2t+j + �y

2
t+j

�
+ �t+j [�t+j � �Et�t+1+j � �yt+j � et+j]

	
: (2.10)

The commitment solution, or timelessly optimal solution is, in e¤ect, to ignore

the �rst-order conditions for j = 0. So, in any time period, we have the following

pair of optimality conditions

�t = �
1

2
�t +

1

2
�t�1; (2.11)

yt =
�

2�
�t:

Hence,

�t = �
�

�
(yt � yt�1): (2.12)

(2.12) relates the path of in�ation and output to one another in a manner that is

commonly characterized as the timelessly optimal program.

TP-policy has an interesting property, it minimizes the conditional loss

function in the case when the economy starts from steady state, (xt; st) = �(0; 0),

for in this case �t�1 = 0 and (2.6) would be identical to (2.7). In this case, since the

targeted variables can be represented as a linear combination of initial variables

and future shocks, their expected value would be zero, Etxt+j = 0: Therefore,

the conditional expectation of the loss function in this case would coincide with

its conditional variance, as pointed out in Woodford (2003). Consequently, TP

2In wider sense we assume that et can be represented as a linear combination of white noise

processes, such that et =
1X
j=0

Ajut�j ; where futg are i.i.d. with zero mean and unit variance,

such that �2 :=
1X
j=0

A2j is �nite.
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policy would be optimal if the government were minimising conditional variance

of the loss function ignoring its mean.

TP policy may be thought of as the �opposite�of discretionary policy in the

following sense. While discretionary policy gives the largest weight to utility in

period zero, e¤ectively ignoring the consequences for the future, the TP policy

minimizes the discounted value of all future losses ignoring the value of initial

conditions, the distribution of which depends on the policy adopted. In the

following section we will discuss the policy which, from our perspective (see

also Jensen and McCallum (2002, 2006)), represents a mixture of those two

approaches as it minimizes the loss function "on average" or across all possible

initial conditions. More precisely, it minimizes the integral of the loss function

(2.1) over the distribution of initial values which is itself generated by the chosen

policy.

2.3. Unconditionally optimal policy

Soderlind (1999) analyzes �optimal simple rules� in a rational expectations

model and argues that the optimal policy parameters depend on initial values.

For instance, in the example just considered, Woodford�s timeless perspective

methodology always dominates when yt�1 = 0, for, in this case, the timeless

perspective policy is the same as the optimal (�time inconsistent�) policy. Jensen

and McCallum (2002) and Blake and Kirsanova (2004), using the methodology

described in Soderlind (1999), provide examples where, for particular initial

conditions, there is a time consistent linear policy which results in smaller losses

than TP-policy "on average". We shall return to this point in more detail below.

Since we cannot �nd, in general, time-consistent policy which is dominant for

all initial conditions, it is natural to search for a class of policies which do well,

in some sense, "on average", in e¤ect treating initial conditions as a new random
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variable. The policy which we now seek to justify is one which minimizes the

unconditional expectation of the loss function; this is equal to the expectation

over all possible initial states of the economy (Taylor, 1979). More formally, then,

the optimal policy from a timeless perspective that we are looking for can be

de�ned as a policy rule �0 =(�0i; �
0
z; �

0
Z ; �

0
s; �;) which minimizes the unconditional

expectation ( eE) of the loss function (2.1), subject to constraint (2.2):
�0� = argmin eELt(�0): (2.13)

We shall call such a policy "Unconditionally Optimal" and denote it UO-policy.

This basic approach to policy evaluation, focussing on the asymptotic variance

of the arguments in a loss function, has been adopted many times recently

(Rotemberg and Woodford (1997, 1998), Woodford (1999), Clarida, Gali and

Getler (1999), Erceg, Henderson and Levin (2000) and Kollman (2002)). However,

there is now much evidence to suggest that UO-policy and TP-policy are di¤erent.

First, in a little cited contribution, Whiteman (1986) has shown that, for

precisely the economy considered in Example 2.1, the policy which minimizes the

unconditional loss function is given by (2.14)

�t = �
�

�
(yt � �yt�1); (2.14)

rather than by (2.12) which corresponds to the TP-policy. Using a numerical

algorithm Blake (2001) shows that policy (2.14) satis�es the �rst-order and second-

order conditions for an unconditional optimum. Jensen and McCallum (2002)

also make this point by computing the exact losses numerically for the case just

analyzed.

Second, the Lagrangian constructed in Woodford�s timeless perspective

methodology depends on the consumers�discount factor, but the optimal policy

which minimizes unconditional losses does not. The formal statement of that
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result is provided in Proposition (2.2) which we ascribe to John Taylor as he

is the �rst explicit reference (within the context of linear rational expectations

models) to the issue of unconditionality emphasized above of which we are aware.

Proposition 2.2. (Taylor, 1979) The time preference parameter in loss function

(2.1) is not important for the UO policymaker. That is, the best UO policy

minimizes losses (2.15) for all discount factors 
 2 (0; 1)

eELt (
) = eEEt 1X
j=0


jlt+j: (2.15)

Here, lt denotes the period loss function.

Proof. It follows immediately that,

argmin
�0

eELt (
) = argmin
�0

1

1� 

eElt = argmin

�0

eElt:
Hence, we have proved that the same policy is unconditionally optimal for Lt (
)

for any 
 2 (0; 1)
Proposition (2.2) is additionally interesting as it demonstrates that the same

policy is unconditionally optimal for all households, regardless of their individual

time discount factors. For example, we may consider an overlapping generations

economy populated with individuals whose life-time utility function has the form

Ut = �
nX
j=0

�(j)lt+j;

where �(j) represents the time discount factor for j years ahead. If we assume that

the time discount rate does not depend on current welfare, the unconditionally

optimal policy would not depend on the time-discounting function

argmax
�0

eEUt (�(:)) = argmin eElt
�0

"
nX
j=0

�(j)

#
= argmin

�0

eElt:
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The �best-on-average�criterion avoids the need for one to take a stand on what is

the appropriate social discount rate; see the interesting discussions of these issues

in Barro (1999) and Somers (1971).

Blake (2001), following the earlier approach of Taylor (1979), emphasizes that

the unconditionally optimal time-consistent policy should coincide with a TP

policy as the policymaker�s discount factor approaches unity. However a formal

proof of that assertion has not been provided so far3. We will provide one in the

next section.

2.3.1. Formulating unconditionally optimal policies

In this section we shall show that a policymaker aiming to minimize unconditional

losses should formulate an unconditional criterion to begin with and then calculate

the �rst-order necessary conditions. In other words one should not try �rst to

�nd the optimality conditions for a time inconsistent or conditional policy and

then make the rule time-invariant by ignoring �rst period constraints. It would

be as if one were trying to �nd an optimum of a composite function, that is

argmin f(g(x)), by writing the �rst-order conditions for g(x) only. From an

unconditional perspective, the correct approach is to apply the unconditional

expectations operator in formulating the policy Lagrangian and then derive the

optimality conditions.

Hence, we propose the following methodology:

� Step 1: Write the conditional Lagrangian (2.4).

� Step 2: Re-formulate this as an unconditional Lagrangian:

J = eEJt;
3That is, with the exception of Whiteman (1986), who provided a formal proof for the model

economy considered in example 2.1 with stationary and identically distributed shocks.
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using the property of unconditional expectation: eExt = eExt+j, we can write
J =

1

1� �
eE �1

2
(xt � x�t )

0Q (xt � x�t ) + �0t eAxt � �0t�1eIxt� ;
which corresponds to the Hamiltonian

H =
1

1� �

�
1

2
(xt � x�t )

0Q (xt � x�t ) + �0t eAxt � �0t�1eIxt�
� Step 3: Write the �rst-order conditions for the optimal timeless policy with
respect to all endogenous variables;

@H

@xt
=

1

1� �

�
(xt � x�t )

0Q+ �0t
eAt � �0t�1eI� = 0: (2.16)

Condition (2.16) implies the following dynamics for the Lagrange multipliers

(xt � x�t )
0Q+ �0t

eAt � �0t�1eI = 0: (2.17)

The general conclusion can be formulated in the following proposition.

Proposition 2.3. The �rst order conditions (2.17) are the necessary conditions

for problem 2.13, subject to 2.2.

Proof. The proof follows immediately by applying Pontryagin�s Maximum

Principle.

We contrast equations (2.17) with (2.7) above. It is easy to see that TP-policy

tends to UO-policy when discount rate tends to unity, � �! 1:

As we shall see, Proposition 2.3 is exactly the justi�cation required to

demonstrate that the Blake-Jensen-McCallum result is the policy to minimize

unconditional losses.
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2.3.2. Example with forward looking Phillips Curve

Example 2.4. We search for an unconditionally optimal policy which minimizes

the loss function

Lt = Et

1X
j=0

�j
�
�2t+j + �y

2
t+j

	
; (2.18)

subject to the constraint

�t = �Et�t+1 + �yt + et: (2.19)

We formulate the time-dependent Lagrangian

Jt = Et

1X
j=0

�j
��
�2t+j + �y

2
t+j

�
+ �t+j (�t+j � �Et�t+j+1 � �yt+j � et+j)

�
:

Since we search for the unconditionally optimal policy, we need to minimize the

"unconditional" Lagrangian, which means we must formulate the problem using

the unconditional expectation of the Lagrangian, Jt :

J = eEJt = eE Et 1X
j=0

�j
��
�2t+j + �y

2
t+j

�
+ �t+j (�t+j � �Et�t+j+1 � �yt+j � et+j)

�!
:

(2.20)

The unconditional expectations operator has the following property 8t; j;eExt = eExt+j which implies that eEEt�t+j�t+j+1 = eE�t�t�1: The unconditional
Lagrangian may then be rewritten as

J =
1

1� �
eE h��2t + �y2t �+ �t (�t � �yt � et)� eE��t�t�1i :

The corresponding Hamiltonian is

Ht =
1

1� �
��
�2t + �y

2
t

�
+ �t (�t � �yt � et)� ��t�t�1

�
:

The �rst order conditions follow:

(1� �)@Ht
@�t

=
�
2�t + �t � ��t�1

�
= 0;
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(1� �)@Ht
@yt

= (2�yt � ��t) = 0:

These relations can be written as

�t = �
�

�
yt + �

�

�
yt�1: (2.21)

This is the optimal program proposed by Blake-Jensen-McCallum, and proved to

be optimal by Whiteman (1986).

Let us consider further the origins of equations such as (2.21) in a slightly more

general setting. Consider the problem of minimizing the unconditional expectation

of a variable, z, which depends on an endogenous policy variable, p; and exogenous

realisation of the fundamental i.i.d. shocks history ut� = fut�kg1k=0, where shocks
et can be expressed as et =

1P
j=0

Ajut�j: The unconditional expectations operator

can be represented in Lebesgue integral form as follows

eEzt = Z z(p; ut�)d�;

where d� is the Cartesian product of (dut�k)
1
k=0 ; and where the ut are the basic

i.i.d. shocks with zero mean and unit second moment.

We emphasize that d� is given exogenously and does not change with policy.

To maximize the integral we need to maximize the corresponding Hamiltonian,

which is the expression under the integral, z(p). Intuitively this is plausible as

the policy which minimizes the objective in every state of nature (the components

of the sum), will also minimize the expectation (i.e., the sum or integral). Hence,

we employ the �rst order conditions for the Hamiltonian, @z(p)
@p

= 0:

For instance, if we assume that the et = ut , where shocks ut are (serially)

uncorrelated in example 2.4, the information space at time t will be described by

the pair (yt�1; et): It follows that the dynamic relation for the output gap is given

by

yt = �yt�1 + 
et; (2.22)
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where 
 and � are endogenously chosen policy parameters. Equation (2.22) in

turn implies the following relation between the output gap and shocks

yt =
1X
i=0


�iut�i (2.23)

Therefore, the loss function can be explicitly expressed in terms of the policy

parameters and the realization of shocks, Lt(
; �; ut�): The unconditional

expectation then will be represented as

Lu(
; �) =

Z
Lt(
; �; ut�)d�: (2.24)

Instead of calculating the explicit expression (2.24) for unconditional losses in

terms of policy parameters and shocks, we may employ the Lagrange method and

write the unconditional Lagrangian in the form of (2.25)

J =

Z
Et

1X
j=0

�j
�
�2t+j + �y

2
t+j

�
+ �t+j (�t+j � ��t+j+1 � �yt+j � et+j)

+�t+j (�yt+j + �yt+j�1 + 
et+j) d�: (2.25)

The �rst order conditions with respect to policy parameters, � and 
; will reveal

that the Lagrange multiplier in period t + 1, �t+1 is uncorrelated with the

information set at time t , (Et�t+1et = 0, Et�t+1yt = 0); and hence it is expected

to be zero, Et�t+j = 0: Therefore, expression (2.22) is not binding and expression

(2.25) can be simpli�ed as in (2.20).

Finally, we note that in general measure d� has the following property: If xt

and yt can be represented as linear combinations of shocks, xt =
1P
i=0

Aiut�i and

yt =
1P
i=0

Biut�i; then eExtyt = 1P
i=0

AiBi�
2; which always exists when

1P
i=0

A2i and
1P
i=0

B2i

are bounded. For further details see Hamilton (1999).
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3. Some Arguments in Favour of Unconditional Expectation

In this section we will argue that a credible policy should satisfy certain key

properties. If one aims to construct a policy program which is the result of

maximization of government objectives, then that policy should have the following

properties: First, it should be time consistent; second, the same rules should be

de�ned for all initial conditions; and �nally, it should maximize the government

objective function on the class of policies under consideration. Formally, the

optimal policy should satisfy the following:

De�nition 3.1. Policy � is "time consistent" i¤ 8j > 0, �(t) = �(t+ j):

De�nition 3.2. Policy � is "conditionally consistent" i¤ it does not depend on

initial condition, 8xt; st; �(xt; st) = �(0; 0):

De�nition 3.3. Policy � is sustainable with respect to loss function L in the

class �; � 2 �; i¤ it is the best one in this class, 8�0 2 �; L(�) � L(�0):

In other words, one requires that the policy which maximizes a given objective

function should depend neither on time (this property is, of course, simply time

consistency) nor on initial conditions (we call this "conditional consistency"). If

"conditional consistency" is violated, the government has an incentive to revise

the policy rule as initial conditions change and this imposes a credibility problem

similar to the one created by the violation of time consistency.

To illustrate the de�nitions, we can say that in a pure (linear) backward-

looking model (a model lacking non-predetermined endogenous variables, zt) the

optimal policy is both time consistent and conditionally consistent. Kydland and

Prescott (1977) have shown that in models with forward looking variables policy

which minimizes the conditional loss function is time inconsistent. In view of
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our analysis, we may add that it is "conditionally consistent" and sustainable

with respect to the conditional loss function on the class of linear policies. TP-

policy is both time and conditionally consistent by construction, however it does

not minimize the conditional loss function for almost all initial conditions and

therefore it is not sustainable with respect to the conditional loss function.

3.1. The principle di¤erence between forward-looking or mixed and
pure backward-looking constraints

We now underline an important principal di¤erence between forward looking and

backward looking models. It is well known that the optimal policy in an economy

with only backward looking constraints is time consistent in contrast to models

which contain some forward-looking components. In this section we will show

that while the best conditional policy for a pure backward-looking economy is the

same for all initial conditions, this is not the case for time consistent policies in

forward-looking economies.

In particular, the policy parameters of the time consistent policy which

minimize the conditional discounted losses depend on initial conditions. This was

noted in Soderlind (1999) and demonstrated numerically in Blake and Kirsanova

(2004), where Woodford�s timeless perspective policy is shown to be conditionally

optimal when the economy starts from steady state, (yt�1 = 0): However, clearly

that is a special case. Therefore, conditionally optimal time consistent policy

is subject to the same time inconsistency problem as the best time inconsistent

policy itself; as conditions change, the policymaker has an incentive to revise the

policy-rules and the credibility issue is not eradicated.
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3.2. Example with pure Backward Looking Phillips Curve

In the following example, the Phillips curve is purely backward-looking. In this

example, the optimal conditional policy is time and conditionally consistent and

sustainable with respect to the conditional loss function, which makes this policy

credible.

Example 3.4. The problem, then, is described by the loss function (3.1) and the

simple backward-looking Phillips relation (3.2)4:

Lt = (1� �)Et
1X
j=0

�t+j
1

2

�
y2t+j + �

2
t+j

�
; (3.1)

yt = �t � �t�1 + et: (3.2)

The unconditional Lagrangian may be formulated following the approach outlined

earlier,

eELt = eE �1
2

�
y2t + �

2
t

�
+ �t (yt � �t + �t�1 � et)

�
;

= eE �1
2

�
y2t + �

2
t

�
+ �t (yt � �t � et) + Et�t+1�t

�
:

The expression under the integral is thus

z(yt; �t) =
1

2

�
y2t + �

2
t

�
+ �t (yt � �t � et) + Et�t+1�t; (3.3)

and so we write the �rst order conditions

@z

@yt
= yt + �t = 0;

@z

@�t
= �t � �t + Et�t+1:

We now compare two policies: The �rst which is conditionally the best

pc : �t = �yt + �Etyt+1; (3.4)

4To simplify we assume � = 1:
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and the second, which is unconditionally the best

pu : �t = �yt + Etyt+1: (3.5)

For simplicity we consider the case when the et shocks are i.i.d. with zero mean

and �nite second moment, �2: The calculations are relatively straightforward and

we relegate them to the appendix. As we show there, the best conditional and

the best unconditional outturns for in�ation and output may be represented as

follows:

�t = d (�t�1 � et) ;

yt =
d� 1
d
�t;

where d = du = 3�
p
5

2
, for the best unconditional policy, and d = dc =

2+��
p
�2+4

2�

for the best conditional policy. The distribution of initial in�ation can then be

shown to be given by

�t � N
�
0;

d2

1� d2�
2

�
:

It follows that in�ation has lower dispersion when the government implements the

unconditionally optimal policy.

That is, the unconditional loss function is given by

eELt =  1 + �d� 1
d

�2!
d2

1� d2�
2 (3.6)

and this attains a minimum when d = du.

Similarly, the conditional loss function can be shown to be

EtLt =
d2 + (1� d)2

1� �d2
�
�2 + (1� �)�2t�1

�
which attains its minimumwhen d = dc and it does not depend on initial condition,

�t�1: When � �! 1; it is easy to see that EtLt �! eELt:
20



In this example the asymptotic variance of output and in�ation is lower under

the unconditionally optimal plan, as compared with the plan that minimizes the

conditional discounted loss function. This is clear from equation (3.6). So, even in

this simple example, where optimal policy is time consistent, depending on one�s

perspective on the appropriate criterion of government (and the appropriateness

of discounting) one could still o¤er a justi�cation for unconditionally optimal

programs.

Policy (3.4), denoted pc, minimizes Lt(�t�1) for any given initial in�ation,

�t�1 = �t�1(p; et�); which depends on the policy adopted and the history

of realized shocks, (et�) ; while policy (3.5), denoted pu, minimizes Lu =R
Lt(�t�1)dF (�t�1), where dF (�t�1) is a measure of initial in�ation rates; in other

words, it minimizes the loss function "on average". The conventional wisdom

is that Lt(�t�1; et�; pc) < Lt(�t�1; et�; p);8p; �t�1; et�. What we have argued

above is that Lu(pu) < Lu(p);8p: The di¤erence is explained by considering what
may be thought of as �externalities�; that is, policy will in�uence in�ation and

output in a certain way so that the policymaker determines the distribution

of initial conditions, F (�t�1). So, if past policymakers had implemented the

best conditional policy rule, the current generation would face a less favorable

distribution of initial conditions, F (�t�1; et�); than if the government had

implemented the best unconditional policy. Thus, there is a trade-o¤ between the

best policy and the most desirable distribution from which the initial conditions

are drawn. On average the economy is better o¤when the government implements

the unconditionally optimal policy.

Conditionally optimal policy pc is credible if government minimizes the

conditional loss function, EtLt; as is unconditionally optimal policy, pu; if

government minimizes the unconditional loss function, eELt: Which policy the
government should adopt is a rather philosophical question as is the value of the
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social discount factor (see for example Somers (1971) and Barro (1999)). However,

although in this example both policies are credible and sustainable, that is not so

when forward looking structural equations are present. We now turn to that case.

3.3. Example with Forward-looking Phillips curve

We consider an optimal policy for problem (2.18), (2.19) and policy in the form

of (3.7)5

�t = �yt + cyt�1; (3.7)

which nests the timeless perspective policy when c = 1; and the unconditionally

optimal policy when c = �: For simplicity, let et be i.i.d. with zero mean and

�nite dispersion, �2:

At any time period t the information is described by the pair (yt�1; et); and

without loss of generality the output gap, yt; may be written as

yt = dyt�1 + 
et; (3.8)

which in combination with (3.7) results in a dynamic relation for in�ation as

follows:

�t = (c� d) yt�1 � 
et; (3.9)

Et�t+1 = (c� d) yt:

The Phillips curve (2.19) implies yt = �t � � (c� d) yt + et; which together with
(3.9) yields

yt =
(c� d)

(1 + �c� �d)yt�1 +
�

1� 

1 + �c� �d

�
et: (3.10)

We may now solve for coe¢ cients d and 
 combining (3.8) with (3.10)

5We consider this class of policy for simplicity. The general policy would have the form
�t = �myt + cyt�1: However, to prove that a particular policy is not the optimal one, it is
enough to show that there is a dominant policy from class (3.7).
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d =
(c� d)

(1 + �c� �d) =

d =
2 + �c�

q
4 + (�c)2

2�
> 0;


 =
1� 


1 + �c� �d =
d

c
:

Following Blake (2001) we can calculate the unconditional expectation of the

loss function

Ey2t+k = 
2�2
1

1� d2

ELt = E�2t + Ety
2
t+k = 


2�2

"
(d� c)2 + 2� d2

1� d2

#
; (3.11)

which achieves its minimum when c = �:

Now we will calculate the conditional expected discounted value of losses.

Integrating forward on our expression for output we get that

yt+k = d
k+1yt�1 + 


kX
i=0

diet+k�i; (3.12)

which allows us to compute the conditional second moments of the output gap

terms

Ety
2
t+k = d

2(k+1)x2t�1 + 

2�2
1� d2(k+1)
1� d2 : (3.13)

It follows then that:

Lt =

�
d

c

�2 
1 +

� (c� d)2 + 1
1� �d2

!�
e2t +

�

1� ��
2

�
+

�
(c� d)2 + a2

�
� (c� d)2 + 1

� 1

1� ��2

�
x2t�1 (3.14)

+2
a

c

�
(c� d) + a

�
� (c� d)2 + 1

� 1

1� ��2

�
xt�1et:
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If xt�1 = 0;the conditional expectation (3.14) reduces to (3.15)

Lt =

�
d

c

�2 
1 +

� (c� d)2 + 1
1� �d2

!�
e2t +

�

1� ��
2

�
(3.15)

which achieves its minimumwhen c = 1; which corresponds toWoodford�s timeless

perspective policy.

However, in general the best policy, c, depends on the three variables

(et; xt�1; �) and is not invariant to initial conditions. Below we provide the

numerical calculation for optimal c:
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Figure 3.1 shows the policy parameter, c, for the best policy in class (3.7 ). It

is easy to see that the optimal policy parameter, c, is di¤erent from one, c 6= 1;
which corresponds to the timeless perspective policy. Figure 3.2 presents the value

of the corresponding conditional loss function. Figures 3.1 and 3.2 demonstrate

again that the conditionally optimal policy is not conditionally consistent. At the

same time, the timeless perspective policy is not sustainable with respect to the

conditional loss function. Therefore, one cannot use the conditional criteria for

choosing time-consistent optimal policy.

4. Discussion and conclusion

In this paper we develop a simple and intuitive procedure for uncovering the

unconditionally optimal policy that is applicable to a wide variety of examples

currently of interest in the literature. UO-policy is time-consistent, conditionally

consistent and optimal on the class of rules under consideration. We argued

that this perspective on optimal policy formulation is attractive and in this we

seem to be going back to a perspective urged by Taylor (1979) and Whiteman

(1986) in seminal analyses of policy formulation in linear, rational expectations

macroeconomic models. In a particular monetary policy example we showed that

UO-policies result, on the average, in higher welfare when one uses the asymptotic

loss function as the criterion of policy. However, we also demonstrated that even

when time-consistency is not a problem (when the economy, unrealistically, is

characterized purely by backward-looking dynamic relations) one may still o¤er

a justi�cation for the UO perspective on policy formulation. In the example

in section 3 the key di¤erence between the two classes of policies (conditionally

optimal versus unconditionally optimal) showed up in the distribution of initial

in�ation.
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5. Appendix

5.1. An Example With Backward Looking Phillips Curve

This appendix spells out the analysis of the model economy discussed in Section

3.2 of the paper. We recall that the et shocks are i.i.d. and distributed as N(0; �2):

Consequent on the recursive structure of the model, we note that at any point in

time, t, the state of the economy may be described by the pair (�t�1; et).

Therefore, government policy may be written as (5.1)

�t = d�t�1 + 
et: (5.1)

Then, combining (5.1) with (3.2) we receive

yt = (d� 1)�t�1 + (
 + 1) et; (5.2)

Etyt+1 = (d� 1)�t: (5.3)

5.1.1. Best unconditional policy

Let us now consider the best unconditional policy (3.5). Combining this with

(5.3) we receive

(2� d)�t = �yt: (5.4)

Plugging (5.1) and (5.2) into (5.4) we receive (5.5)

(2� d) (d�t�1 + 
et) = � (d� 1)�t�1 � (
 + 1) et; (5.5)

which implies the following restrictions for coe¢ cients � and 


(2� d) d = � (d� 1) ; (5.6)

(2� d) 
 + 
 = �1: (5.7)
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>From these relations we receive that:

d = du =
3�

p
5

2
;


 = 
u = �1= (3� d) = �
2

3 +
p
5
= �3�

p
5

2
= �du;

�t = du (�t�1 � et) ; (5.8)

yt = �
�
du � 1
du

�
�t: (5.9)

5.1.2. Best conditional policy

We now consider the best conditional policy, (3.4). Combining this with (5.3) we

receive (5.10)

�t = �yt + � (d� 1)�t: (5.10)

Then, combining (5.1) with (3.2) and (5.10) we receive (5.11)

(1� � (d� 1)) (d�t�1 + 
et) = � (d� 1)�t�1 � (
 + 1) et: (5.11)

Just as before, this relations delivers useful information on parameters � and 


(1� � (d� 1)) = �(d� 1)
d

;


 (2� � (d� 1)) = �1:

We can solve these as follows

d = dc =
2 + � �

p
�2 + 4

2�
;


c = �dc:
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And so, the optimal policy then will result in the following dynamic paths:

�t = dc (�t�1 � et) ; (5.12)

yt = �
�
dc � 1
dc

�
�t: (5.13)

5.1.3. Unconditional expectation

We use (5.9), (5.13) to express unconditional expectations in term of in�ation

ELt =
1

1� �

 
1 +

�
d� 1
d

�2!
E�2t : (5.14)

We can �nd E�2t by applying the unconditional operator to the square of (5.8) or

(5.12).

E�2t = d
2E�2t + d

2�2;

which results in (5.15)

E�2t =
d2

1� d2�
2: (5.15)

>From (5.12) we may easily conclude that the dispersion of �t is smaller when d

is smaller, and that therefore it is smaller when the government employs the

unconditionally optimally policy as compared with the conditionally optimal

policy.

Plugging (5.15) into (5.14) we receive the �nal expression for unconditional

expectation of the loss criterion:

ELt =
1

1� �

 
1 +

�
d� 1
d

�2!
d2

1� d2�
2:

It is then easy to show that

@ELt
@d

=
�2

1� �
(4d� 2) (1� d2) + 2d (2d2 � 2d+ 1)

(1� d2)2
;

= � 2�2

1� �
d2 � 3d+ 1
(1� d2)2

;
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which is zero when d = du

5.1.4. Conditional expectation

Now we can calculate the conditional expectation of the loss function, which can

be simpli�ed as (5.16)

EtLt =

 
1 +

�
d� 1
d

�2! 1X
j=0

�jEt�
2
t+j; (5.16)

where

�t = d (�t�1 � et) : (5.17)

Integrating (5.17) forward we receive

�t+k = d
k+1�t�1 +

X
j=o;k

(�d)j+1 et+k�j;

which implies

Et�
2
t+k = d

2(k+1)�2t�1 +
X
j=o;k

d2j�2:

We may simplify this last expression usefully in the following way:

Et�
2
t+k = d

2(k+1)�2t�1 + d
2�2
1� d2(k+1)
1� d2 :

Finally, the unconditional expectation can be calculated as follows:

EtLt =

 
1 +

�
d� 1
d

�2!X
�kEt�

2
t+k;

= �2d2
1

1� d2

�
1

1� � �
d2

1� �d2

�
+

d2

1� �d2�
2
t�1:

And �nally, it can then be shown that this can be simpli�ed as

EtLt =
2d2 � 2d+ 1
1� �d2

�
�2

1

(1� �) + �
2
t�1

�
:

It is easy then to show that for any exogenously given �t�1; it achieves its minimum

at d = dc:
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