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Rational Expectations setting, and show that there are conflicting E-stability results. 
We show that this conflict also extends to Minimum State Variable (MSV) 
representations. One of these methods of learning lends itself to the examination of 
E-stability for the generic forward-looking rational expectations model. This leads to 
a completely general relationship between saddlepath stability and E-stability, and a 
generalization of MSV results. 
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1 Introduction

Despite the vast quantity of research on E-stability, notably by Evans and Honkapohja

(2000), there is little that touches on the general canonical form for rational expecta-

tions (RE) models. The latter is described by Blanchard and Kahn (1980), and it differs

from most of the work on E-stability because it allows for the possibility of expectations

effectively predicated on a variety of differently dated information sets.

Once this information set heterogeneity has been included, it becomes apparent that

there is more than one way in which to engage in least-squares learning about the pa-

rameter values. The immediate effect of this is that each method of learning results in

potentially differing conditions for E-stability. Thus the constraints on parameter values

are potentially more demanding than the generic cases usually considered in the E-stability

literature.

However a more general rational expectations model, which may involve numerous

variables can only be tested for E-stability using one of the methods described above.

It turns out that this method allows for a very simple relationship between saddlepath

stability and E-stability in the general case.

Section 2 reminds readers of the general form of RE models, and compares these to

the models usually addressed by the E-stability literature. We then proceed to examine a

model with a particularly simple AR(1) reduced form, and examine two different proposed

ways of least-squares learning. We derive the conditions in each case for E-stability and

examine whether they are equivalent. We also briefly address the impact on the minimum

state variable solution. Section 3 shows how these two methods are directly linked to

making different learning assumptions in a semi-reduced form of an RE model. Section

4 poses the question of whether the two methods of learning should be jointly addressed.

Section 5 extends one of the methods to the general case, and derives the main results of

the paper. Section 6 concludes.

2 The Generic Rational Expectations Model

Following Blanchard and Kahn (1980) we can write the generic model with forward-looking

rational expectations (henceforth RE) in the following form1:
[

zt

Etxt+1

]
=

[
α β

γ δ

] [
zt−1

xt

]
+

[
εt

0

]
(1)

1Blanchard and Kahn (1980) actually use zt on the left, and zt−1 on the right-hand side of this equation,

but this is merely a labelling issue, and is only of significance in the case of partial information.
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where Et denotes expectations formed using information available at time t, zt is a vector

of predetermined variables, and xt is a vector of non-predetermined variables, and εt is a

vector of random noise terms. We omit any noise terms in the second set of equations for

ease of exposition only. α, β, γ, δ are appropriately dimensioned matrices, conforming to

the dimensions of zt, xt.

One of the implications of writing RE systems in this way is that it encompasses

expectations made at differing time periods. For a particularly compelling example in

macroeconomics, see Svensson (2000).

In order to address the issues in as simple a manner as possible, from now on in this

section we treat all the above vectors and matrices as scalars. In particular this means

that we can write (1) in terms of xt only, in the following form:

Etxt+1 − αEt−1xt = γ(βxt−1 + εt−1) + δ(xt − αxt−1) (2)

This contrasts with the most commonly used models of Evans and Honkapohja (2000),

which are in one of the following forms:

xt = aEtxt+1 + cxt−1 + εt (3)

xt = aEt−1xt+1 + cxt−1 + dEt−1xt + εt (4)

Conditions for determinacy and E-stability for learning have been studied for the latter

in great detail, and are not repeated here. Instead we focus on two alternatives for learning

about the reduced form parameters of (1). Before embarking on this, we recall that the

condition for determinacy of the system (1) is that there is one stable root, λS , and one

unstable root, λU , of the quadratic:

λ2 − (α + δ)λ + αδ − βγ = 0 (5)

2.1 Learning about the relationship between xt and zt

We make the assumption that there is a perceived relationship between xt and zt of the

form

xt + nkzt−1 = 0 (6)

Advancing this by one period and taking expectations of the first equation of (1) yields

the relationship

(γ + nkα)zt−1 + (δ + nkβ)xt = 0 (7)

From now on, we avoid all the mathematical rigour of linear least-squares learning and

stochastic approximation, and merely provide an intuitive explanation of the updating
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relationships. However there is no essential departure from the methodology of Evans and

Honkapohja (2000). From (7) it follows that a natural way of updating nk is

nk+1 = (1− η)nk + η
γ + nkα

δ + nkβ
(8)

Evans and Honkapohja (2000) show that this can be naturally expressed in continuous

form as
dn

dk
=

γ + nα

δ + nβ
− n (9)

where the value of η is immaterial, as the E-stability of this system is independent of it. E-

stability holds if (9) converges to the equilibrium from a neighbourhood of the equilibrium.

To check this, all we need to do is to ascertain that the derivative of the right-hand-side

(RHS) of (9) is negative at the equilibrium. Using the Blanchard and Kahn (1980) result

that the relationship between n and λ is given by

[
n 1

] [
α β

γ δ

]
= λU

[
n 1

]
(10)

we have in particular λU = δ + nβ. Using this and (5) it follows that the derivative of the

RHS of (9) is equal to

αδ − βγ

(δ + nβ)2
− 1 =

(α + δ)λU − λ2
U

λ2
U

− 1 =
α + δ − λU

λU
− 1 (11)

It is clear from (5) that λU > (α + δ)/2, so it follows that (11) is negative. Hence we

have

Result 1: The updating equation for n is E-stable.

Remark: Note that the updating equation for n associated with the stable root λS

would not be E-stable, because the latter satisfies λS < (α + δ)/2. This has a useful

implication when both values of λ < 1, because it means that the minimum state variable

(MSV) solution is E-stable, and that indeterminacy is not an issue. To rephrase this,

although in principle there may appear to be two candidate dynamic solutions to the

system, only one of them is learnable.

2.2 Learning about the Perceived Law of Motion

Suppose we now assume that we can write xt as an AR(1) process:

xt = λxt−1 + φεt (12)

Advancing this by one period and taking expectations yields λxt = γzt−1 + δxt. Substi-

tuting for zt−1 in terms of xt and writing the first equation of (1) in terms of xt yields

xt+1 = (α +
βγ

λ− δ
)xt +

γ

λ− δ
εt+1 (13)
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It follows that the continuous updating equation for λ takes the form

dλ

dk
= α +

βγ

λ− δ
− λ (14)

The E-stability requirement is once again for the derivative of the RHS of this expression

to be negative at the equilibrium. The latter is given by − βγ
(λ−δ)2

− 1, so that

Result 2: If βγ > 0, then the updating equation for λ is E-stable.

Remark: If both roots λ < 1, the implication is that there is no unique MSV solution.

This is because learning about each root is an E-stable process.

Consider now the case when βγ < 0; it is easy to see that the two values of λ must

lie between α and δ. From our earlier discussion we know that 2λS < α + δ < 2λU , from

which it follows that λS − δ < α− λS and λU − δ > α− λU . Noting that

− βγ

(λ− δ)2
− 1 =

α− λ

λ− δ
− 1 (15)

we can deduce the following

Result 3: If βγ < 0 and α > δ then the learning process for λS is not E-stable.

Remark: On the other hand, it is easy to see that if λU is also a stable root, then its

learning process is E-stable.

Result 4: If βγ < 0 and α < δ then the learning process for λS is E-stable.

Remark: If λU is also a stable root, then its learning process is not E-stable.

3 Comparability with the Standard Setup

Suppose that we focus on the semi-reduced form (2) of the model, and on learning about

the law of motion expressed by (12). There are then two potential methods of using this

for learning. The first is to use the substitutions Etxt+1 = λxt, Et−1xt = xt − φεt, while

the second is Etxt+1 = λxt, Et−1xt = λxt−1.

Method 1: Etxt+1 = λxt, Et−1xt = xt − φεt. This yields the relationship

λxt = α(xt − φεt) + δxt + (βγ − αδ)xt−1 + γεt (16)

so that the continuous form of the updating equation is given by

dλ

dk
=

βγ − αδ

λ− α− δ
− λ (17)

Note that in equilibrium, the law of motion for zt in (1) is given by zt+1 = (α−βn)zt+εt+1,

so that λ = α− βn. Substituting this into (17) yields a continuous updating equation for

n which is exactly (9).

Result 5: Method 1 is equivalent to learning about n.
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Method 2: Etxt+1 = λxt, Et−1xt = λxt−1. This yields the relationship

λxt = αλxt−1 + δxt + (βγ − αδ)xt−1 + γεt (18)

which leads to a continuous updating equation which is the same as (14).

Result 6: Method 2 is equivalent to the earlier method of learning about λ.

4 Simultaneous Learning about λ and n

Does the conflict between the two forms of learning arise because they are not two alter-

natives, but because they should be considered as part of a joint learning process? This

possibility can be very easily addressed.

Suppose we substitute xt = −nzt−1 in the zt equation, which yields λk+1 = α − βnk,

and xt+1 = λxt + φεt in the Etxt+1 equation, which yields nk+1 = γ/(δ − λk). Hence the

continuous updating equations are given by
dλ

dk
= α− βn− λ

dn

dk
=

γ

δ − λ
− n (19)

Stability is then analysed by assessing whether perturbations (∆λ,∆n) from the steady

state are stable. Thus we need the eigenvalues of the matrix below to be stable.

d

dk

[
∆λ

∆n

]
=

[
−1 −β
γ

(λ−δ)2
−1

][
∆λ

∆n

]
(20)

It is easy to see that the eigenvalues µ of this are given by (µ + 1)2 + βγ/(λ− δ)2. Thus if

βγ > 0, then the real parts of these eigenvalues are negative, so the system is stable. But

if both values of λ lie between -1 and 1, then there is no MSV solution.

On the other hand, suppose that βγ < 0, then (20) is unstable if one of the roots

µ = −1±√(−βγ)/(λ− δ) is greater than 0. This is the case when − βγ
(λ−δ)2

− 1 > 0. Both

of these possibilities replicate what we have seen before:

Result 7: The conditions for E-stability and for an MSV solution to exist are exactly

the same as for the case of learning about the perceived law of motion only.

It seems then that criticism about learning about the relationship between xt and zt

may possibly be justified. If we wish to have consistency in our approach to learning, then

learning about the relationship embodied by n may be questionable. However in order

fully to assess this issue, it is useful to address the general RE case.

5 A More General Result

So far, so puzzling. We have seen that that the E-stability and MSV results have various

exceptions when one is learning about the law of motion, although there was no such
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problem when it came to learning about the linear relationship between forward and

backward-looking variables. Here we extend this result to the more general case, and now

use capital letters to denote matrices. Thus we rewrite (1) and (6) as
[

zt

Etxt+1

]
=

[
A B

C D

][
zt−1

xt

]
+

[
εt

0

]
xt + Nkzt−1 = 0 (21)

The reason for focusing learning on N in (21) is very simple. Firstly, it means that we

can directly impose a relationship describing future expectations of the forward-looking

variable: Etxt+1 = −Nkzt. Secondly, suppose as an alternative we wish to learn about

the perceived law of motion only; the only way to implement this feasibly is when the zt

and xt are of the same dimension. For only in this case can we translate the approach of

Section 2 to the higher dimensional case. However the method that learns about N is not

so restrictive, and indeed translates itself very simply into learning about the perceived

law of motion, as we shall see at the end of this section .

Using the standard approach of Section 2, the equation satisfied by the matrix N as

learning progresses, and its relationship to the unstable eigenvalues of the system matrix,

are given analogously to (9) and (10) by

dN

dk
= (D + NB)−1(C + NA)−N

[
N I

] [
A B

C D

]
= ΛU

[
N I

]
(22)

where typically the matrix ΛU will have only unstable eigenvalues, and the matrix (A −
BN), which represents the reduced-form dynamics, will have only stable eigenvalues.

Thus the approach we use is to learn about the relationship between xt and zt−1 as in

(21). E-stability is then ascertained by examining deviations ∆vec(N) about the steady

state of N:

d

dk
∆vec(N) =

(
(D+NB)−1⊗AT−(D+NB)−1⊗(C+NA)T (D+NB)−T BT−I⊗I

)
∆vec(N)

(23)

But from (22) we deduce that (D + NB)−1(C + NA) = N , (D + NB)−1 = Λ−1
U , so that

we can rewrite (23) as

d

dk
∆vec(N) =

(
Λ−1

U ⊗ (A−BN)T − I ⊗ I

)
∆vec(N) (24)

Proposition 1 Suppose that the number of stable eigenvalues of the matrix in (21)

is equal to the dimension of zt. Then the learning process for N is E-stable.
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Proof: The eigenvalues of Λ−1
U ⊗ (A − BN)T − I ⊗ I are of the form λSi/λUj − 1

where λSi represents a (stable) eigenvalue of A − BN and λUj represents an (unstable)

eigenvalue of of ΛU . But Re(λSi/λUj) ≤ |λSi/λUj | < 1, so that the process for N has

eigenvalues with negative real part.

Corollary If all eigenvalues of ΛU are unstable and real, and all eigenvalues of A − BN

are stable and real, then there is no other N that is E-stable.

Proof: Any other N would be associated with a switch of stable and unstable eigen-

values between ΛU and A − BN , in which case some values of λSi/λUj would be greater

than 1.

Note that this argument does not necessarily hold for the real part of λSi/λUj if eigen-

values are complex.

Proposition 2 If the number of stable eigenvalues of the matrix in (21) is greater than

the the dimension of zt (i.e. there is a potential for indeterminacy), and all its eigenvalues

are real, then there exists an E-stable MSV representation of the system.

The proof is similar to that of the corollary.

Both the corollary and Proposition 2 are potentially even more powerful than they ap-

pear. The issue of real eigenvalues arose because of the switch from discrete to continuous

time. Suppose we allow ourselves to blur the distinction between least squares learning

and the updated path for N , and regard the update as occurring in (discrete) real time,

with η in (8) tending to 1. Then we can rewrite the path for Nt and its deviation ∆vec(Nt)

as

Nt+1 = (D + NtB)−1(C + NtA) ∆vec(Nt+1) =
(

Λ−1
U ⊗ (A−BN)T

)
∆vec(Nt) (25)

In this case it is easy to see that the results of the Corollary and Proposition 2 hold for

complex eigenvalues as well.

Finally, suppose that we wish to learn about the perceived law of motion, which we

write in the form zt = Fzt−1 + Gεt. It is easy to see by substituting xt = −Nkzt−1 into

the dynamic equation for zt that we end up with a learning relationship for F given by

dF

dk
= A−BN − F (26)

It follows that for each element fij of F , its learning equation is given by dfij

dk = (A −
BN)ij − fij . It is clear from this expression that if N tends to a limit, then F must tend

to the limit A−BN .
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6 Discussion and Conclusion

The most remarkable result that emerges from this analysis is the amount of conflict

that there is between different ways of learning about the parameters. For even the

simplest generic form of RE models there is no consistency on E-stability for the two

methods of learning discussed over the whole range of parameters. When there is no

potential indeterminacy in the system there is a wide range of parameters for which there

is consistency, although for βγ < 0, α > δ this is not the case.

Perhaps even more intriguing is the issue of the MSV solution. McCallum (2003), along

with various of his papers e.g. McCallum (2006), makes a strong case for the existence of

MSV solutions where the root that is picked out is the minimum one. He does this in the

context of models of the form (3) and (4), with an emphasis on well-formulated models.

In this paper we have shown that there are cases of potential indeterminacy when only the

smaller root is E-stable under learning, which conforms to McCallum’s results. However

we have found cases where both roots can be E-stable under learning, and also where only

the larger root is E-stable.

The most important results of all emerge from the general RE model. In this case

there is only one obvious way in which to engage in E-learning, and we have shown

that saddlepath stability automatically guarantees E-stability. In addition we have fully

justified the MSV approach of McCallum.

The next stage in the approach of this paper will address the case of partial information,

and in particular will focus on one of the results of Evans and Honkapohja (2006) which

shows that there circumstances in which optimal policy is not E-learnable.
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