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1. Introduction

In this paper we take up a theme from Taylor (1979), who proposes adopting

a monetary policy, under rational expectations, which is optimal "on average".

That is, given a model of the economy, including knowledge of the time series

properties of the underlying shocks, and assuming rational expectations, Taylor

proposes that optimal monetary policy optimize the unconditional expectation

of the policymaker�s objective function. That approach to policy evaluation has

been adopted many times since; for example, Rotemberg and Woodford (1998),

Woodford (1999), Clarida, Gali and Getler (1999), Erceg, Henderson and Levin

(2000), Kollman (2002) and Schmitt-Grohe and Uribe (2007), to name but a few.

More recently, Blake (2001) and Jensen and McCallum (2002, 2006) also suggest

a procedure for determining optimal, time-invariant monetary policy based on

optimization of the unconditional value of the criterion function. However, these

analyses employ numerical approaches to recover the unconditionally optimal

monetary policy. An exception to that is Whiteman (1986). In a simple linear,

rational expectations model with endogenous variables which are partly a function

of their own expected future values, he derives a closed-form solution for optimal

policy. However, Whiteman�s proof of optimality is algebraically intensive.

In this paper we devise a straightforward, intuitive and easy-to-implement

approach to deriving policies that are unconditionally optimal in a general setting

which we lay out in Section 2. The key technical challenge involves constructing

an optimal policy program taking expectations over all feasible initial conditions.

In Section 2.1 we derive these optimal continuation policies, to use Jensen and

McCallum�s terminology, in a way that is applicable to both linear-quadratic (LQ)

and non-linear models. In Section 2.2 we demonstrate the approach in the simplest

LQ New Keynesian monetary policy model (whilst a general LQ problem is set
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out in the appendix). In Section 3 we then apply the approach to the underlying

non-linear New Keynesian model. We show that linear approximation is possible

around the "unconditionally optimal" deterministic steady state, analogous to

the approach adopted by Khan, King and Wolman (2003) in the context of

(conditionally) optimal monetary policy under commitment. We linearize the

optimality conditions of the non-linear model and indicate how one can obtain a

LQ framework and the same optimal policy as the simple LQ set-up of Section

2.2.

In Section 4, we discuss brie�y the two de�ning characteristics of

unconditionally optimal policies. The �rst issue is the treatment of initial

conditions. The second is the sense in which consumers�discount rates do not

matter for unconditionally optimal policies, an observation going back to Taylor�s

(1979) contribution. We conclude in Section 5.

2. The framework

Consider a discounted loss function of the form

Lt = (1� �)Et
1X
j=0

�jl(xt+j; �t+j); (2.1)

where Et is the expectations operator conditional on information up through date

t, � is the time discount factor, l(xt+j; �t+j) is the period loss function and xt is

a vector of target variables. Speci�cally, we de�ne

xt =

24 Ztzt
it

35 :
Zt is a vector of predetermined endogenous variables (lags of variables that are

included in zt and it), zt is a vector of non-predetermined endogenous variables, the

value of which may depend upon both policy actions and exogenous disturbances
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at date t, and it is a vector of policy instruments, the value of which is chosen in

period t. �t denotes a vector of exogenous disturbances. We will assume that �t
is a function of primary i.i.d. shocks, (ei)

t
�1 :

We further assume that the evolution of the endogenous variables zt and Zt is

determined by a system of simultaneous equations

F (Etxt+1;xt; �t) = 0: (2.2)

We assume that the policy maker minimizes the unconditional expectation of the

loss function (2.1) subject to constraint (2.2). That is he searches for a policy rule

' (Zt+1; Etzt+1;Zt; zt; it; �t) = 0 (2.3)

such that

' = argminELt('); (2.4)

where E denotes the unconditional expectations operator. We call such a policy

"Unconditionally Optimal" and denote it �UO-policy�.

2.1. Solution

Formally, the unconditional expectation of any function u(x) can be represented

in Lebesgue integral form as

Eut(xt(')) =

Z
ut(xt('; e))de;

where de is the Cartesian product probability measure of i.i.d. primary shocks

with history, (det�k)
1
k=0 :We emphasize that de is given exogenously and does not

change with policy. To optimize the integral we need to optimize the corresponding

Hamiltonian, which is the expression under the integral, ut(xt('; e)). Intuitively

this is plausible as the policy which minimizes a loss function in every state of

nature (the components of the sum), will also minimize the expectation (i.e., the
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sum or integral). With these observations in mind, we employ standard methods

of stochastic Lagrange multipliers to solve for unconditionally optimal policy:

� Step 1: Write the Lagrangian function1:

J = E

"
(1� �)Et

1X
j=0

�j
�
l
�
xt+j; �t+j

�
+ �t+jF

�
Et+jxt+1+j;xt+j; �t+j

��#
:

� Step 2: Using the property of unconditional expectations, such that Eyt =
Eyt+j; re-formulate this as

J = E [l (xt; �t) + �tF (Etxt+1;xt; �t)] ;

which corresponds to the Hamiltonian

H = l (xt; �t) + �tF (Etxt+1;xt; �t) :

� Step 3: Write the necessary �rst-order conditions for the unconditionally
optimal policy with respect to all endogenous variables;

@H

@xt
=
@l (xt; �t)

@xt
+ �t

@F (Etxt+1;xt; �t)

@xt
+ �t�1

@F
�
xt;xt�1; �t�1

�
@Etxt+1

= 0: (2.5)

The necessary conditions for the optimality of policy ' is that it implies this

path for the endogenous variables, xt; and that there exists Lagrange multipliers,

�t; that together satisfy the �rst order conditions (2.5) and constraints (2.2).
2

1In order to reduce notation when we write �F we refer to the tensor product,
Pn

i=1 �iFi:
2Step 3 may require further explanation. To obtain it we introduce a new set of variables

yt = Etxt+1: Then the Lagrangian can be written as

J1 = E [l (xt; �t) + �tF (yt; xt; �t) + �t(yt � Etxt+1)] ;
= E

�
l (xt; �t) + �tF (yt; xt; �t) + �tyt � �t�1xt

�
:

The corresponding Hamiltonian will be

H1 = l (xt; �t) + �tF (yt; xt; �t) + �tyt � �t�1xt:
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We now provide an example of this approach in a very simple LQ New

Keynesian model. This is a useful example, however, because the simplicity of

the model notwithstanding, analytical derivations of UO policy have not been

presented so far.

2.2. Linear-Quadratic Example3

We search for an unconditionally optimal policy given the loss function,

Lt = (1� �)Et
1X
j=0

�j
1

2

�
�2t+j + �y

2
t+j

	
; (2.6)

and the Phillips Curve

�t = �Et�t+1 + 
yt + �t: (2.7)

Here �t denotes in�ation, yt is a measure of the output gap and �t is a cost-push

shock. Following the above steps, we formulate the unconditional Lagrangian:

J = E (1� �)Et
1X
j=0

�j

 
�2t+j + �y

2
t+j

2
+ �t+j

�
�t+j � �Et�t+j+1 � 
yt+j � �t+j

�!
;

= E

�
�2t + �y

2
t

2
+ �t (�t � 
yt � �t)� ��t�t�1

�
:

The corresponding Hamiltonian is

Ht =

�
�2t + �y

2
t

2

�
+ �t (�t � 
yt � �t)� ��t�t�1:

The �rst order conditions are

@H1
@xt

=
@l (xt; �t)

@xt
+ �tF

0 (yt; xt; �t)� �t�1 = 0; (F1.1)

@H1
@yt

= �tF
0 (yt; xt; �t) + �t = 0: (F1.2)

Combining (F1.1) and (F1.2) we receive the �rst order conditions (2.5).
3The extension to general LQ problems is set out in the Appendix.
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The �rst order conditions @Ht=@�t and @Ht=@yt imply

�t =
�



(�yt + �yt�1) : (2.8)

This is the unconditionally optimal program proposed by Blake-Jensen-McCallum

and proved to be unconditionally optimal by Whiteman (1986).

3. Non-linear Application4

The model of Section 2.2 represents an approximation to an underlying, non-linear

model. However, some researchers, such as Khan, King andWolman (2003), prefer

to solve a non-linear Ramsey problem and analyze the resulting linearized �rst-

order conditions. In this section we solve for the UO monetary policy of the

non-linear model underlying the set-up of Section 2.2. For an appropriate choice

of steady state, around which linearization of the �rst-order necessary conditions

takes place, we derive the same optimal policy as in Section 2.2. We also recover

a LQ formulation of the model.

In terms of the framework of Section 2, to �nd a �rst order approximation

to unconditionally optimal policy one log-linearizes the system of �rst order

conditions (2.5) and constraints (2.2) around the deterministic steady state (X; �)

de�ned by the system (3.1):

F (X;X; �) = 0; (3.1)
@l (X;�)

@xt
+ �

@F (X;X; �)

@xt
+ �

@F (X;X; �)

@ (Etxt+1)
= 0;

where X, � and � indicate the vectors of steady state values of endogenous

variables, Lagrange multipliers and the average value of shocks, respectively. We

refer to (X; �) as the "optimal steady state".

4We thank the editor for encouraging us to undertake the analysis in this section.
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We can easily derive the �rst order approximation to (2.5) in the neighborhood
of (3.1):

F (Etxt+1;xt; �t) = X
@F

@xt
bxt +X @F

@Etxt+1
Etbxt+1 + � @F

@�t
b�t +O2; (3.2)

@H

@xt
= X

@2l

@x2t
bxt + � @2l

@xt@�t
b�t + � @F@xtb�t + � @F

@Etxt+1
b�t�1

+�

�
X
@2F

@x2t
bxt +X @2F

@xt@Etxt+1
(Etbxt+1 + bxt�1) + � @2F

@xt@�t
b�t�

+�

�
X

@2F

@Etx2t+1
bxt + � @2F

@Etxt+1@�t
b�t�1�+O2;

where O2 denotes terms of order two, or higher.

3.1. The Model

We now provide a concrete example of this approach. The model can be very
brie�y laid out as it is developed at length in Woodford (2002) and Damjanovic

and Nolan (2006). Household period utility has the form ut = log (Yt) � �N
v+1
t

v+1
;

where Yt is consumption de�ned over a basket of goods of measure one and indexed

by i, in the manner of Spence-Dixit-Stiglitz: Yt =
hR 1
0
Yt(i)

��1
� di

i �
��1
; � is the

time discount rate; Nt is labour with v > 0. Labour is not �rm-speci�c. The

demand for each good is given by Yt(i) =
�
pt(i)
Pt

���
Yt; where pt(i) is the nominal

price of the �nal good produced by �rm i and Pt is the aggregate price level,

Pt =
hR 1
0
pt(i)

1��di
i 1
1��
: �t represents in�ation and � is the Calvo parameter and

also the fraction of �rms with sticky prices; �t is a measure of price dispersion,

�t =
R 1
0

�
pt(i)
Pt

����
di. Firms are monopolistic competitors who produce their

distinctive goods according to the following technology, Yt(i) = At [Nt(i)]
1=� ;

where At is a productivity shifter and � > 1: It follows that the total amount

of labour demanded will be Nt =
R
Nt(i)di =

�
Yt
At

�� R �Pt(i)
Pt

����
di =

�
Yt
At

��
�t:

Finally �t is a stochastic cost-push shock where � � E(�t). Parameter � is the
wage tax rate and we de�ne � := ��1

�
1��
�
: So, we are allowing for labour market

subsidies. The model can be reduced to three equations: The representative
agent�s utility (3.3); the pricing equation (3.4) and the law of motion for price
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dispersion (3.5):

Et

1X
k=0

�k

0B@log (Yt+k)� ��v+1t+k

�
Yt+k
At+k

�(v+1)�
v + 1

1CA ; (3.3)

"
1� ����1t

1� �

# �����1
��1

=
Et
P1

k=0 (��)
k ���t+k

� �vt+k

�
Yt+k
At+k

�(v+1)� �
Pt+k
Pt

���
�Et

P1
k=0 (��)

k
�

Pt
Pt+k

�1�� ; (3.4)

�t � ��t�1���t = (1� �)
"
1� ����1t

1� �

# ��
��1

: (3.5)

Before proceeding, we need to rewrite the pricing equation (3.4) in canonical
form (2.2). For this purpose, the following change of variables proves useful: Let

Xt := Et
P1

k=0 (��)
k
�

Pt
Pt+k

�1��
and rewrite the price-setting equation (3.4) as

Xt = 1 + Et���
��1
t+1Xt+1; (3.6)

��

�

�t
�
�vt
�
A�1t Yt

�(v+1)� � "1� ����1t

1� �

# �����1
��1

= Et��

24"1� ����1t

1� �

# �����1
��1

���1t+1 � �
��
t+1

"
1� ����1t+1

1� �

# �����1
��1

35Xt+1:
Hence, the unconditional Lagrangian may be written as (3.7)

L = E

 
log (Yt)� ��v+1t

�
A�1t Yt

�(v+1)�
v + 1

!

+E�t (�Xt + 1) + E���t�1���1t Xt + E�t
��

�

�t
�
�vt
�
A�1t Yt

�(v+1)�
�E

"
1� ����1t

1� �

# �����1
��1 �

�t
�
1 + ��Xt+1�

��1
t+1

�
� �t�1��Xt�

��
t

�
(3.7)

+E�t

0@��t + (1� �)"1� ����1t

1� �

# ��
��1
1A+ E�t+1 ���t���t+1�

where �t; �t; and �t are multipliers for constraints (3.5), and system (3.6).
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The �rst order conditions for the corresponding Hamiltonian are given by
system (3.8):

Yt
@H

@Y t
=

�
1� ���v+1t

�
A�1t Yt

�(v+1)����t�(v + 1)���� �t
�
�vt
�
A�1t Yt

�(v+1)��
= 0

@H

@�t
= ��v�1t

�
A�1t Yt

�(v+1)��
�t+v�t

�

�

�t
�

�
��t+�t+1��

��
t+1= 0

1

��

@H
@Xt

=
�t�1
��

���1t ��t+�t�1

24���1t

"
1� ����1t�1
1� �

#1� ��
��1

� ���t

"
1� ����1t

1� �

#1� ��
��1
35 (3.8)

�t
@H

@�t
= (� � 1)���t�1���1t Xt��t���

0@"1� ����1t

1� �

# ��
��1�1

���1t ��t�1���t

1A
�
"
1� ����1t

1� �

# ��
1��

� (��� � + 1)
1� � ���1t

h
�t

�
1 + �����1t+1Xt+1

�
����t�1�

��
t Xt

i

+���t�1Xt

24��"1� ����1t

1� �

# �����1
��1

���t � (� � 1)
"
1� ����1t�1
1� �

# �����1
��1

���1t

35
The optimal policy rule should solve system � := f(3:5); (3:6) and (3:8)g.

3.2. Optimal linear policy and the choice of steady state

We can verify that there is a unique steady state which solves system

f(3:5); (3:6) and (3:8)g for any given level of tax, � : However price stability, � = 1,
will be optimal steady state policy if and only if the level of subsidies is optimal:

� = 1, and � = 1 � � �
��1 < 1: Otherwise, the optimal deterministic steady-state

policy would imply a trend in in�ation. Log linearization of the model around

trend in�ation is straightforward but rather messy (For example see Damjanovic

and Nolan, 2006). In order to keep things uncluttered, we will consider the case

when price stability is optimal. That implies � = 1; � = 1; and X = 1
1��� : The

steady state value of output corresponds to �� (Y=A)(v+1)� = 1: The steady state

values of the Lagrange multipliers, using (3:8), are � = 0, � = � 1
(1��)� ; and � = 0:

Further, following conventional notation we de�ne byt := log(Yt=Y ) �
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log (At=A) ; b�t := log �t;cX t := log(Xt+1=X); b�t := log (�t=�) ; b�t := log(�t=�).

We de�ne b�t := log(1 + �t); b�t := log(1 + �t); which implies that up to second

order �t := b�t +O2; �t := b�t +O2.
The linearization of the Phillips curve and law of motion of prices yields

bXt = Et��
�
(� � 1) b�t+1 + bXt+1�+O2;

byt + �c�t = Et
1

1� ��
�� + ��+ 1
(v + 1)�

�

1� � [b�t � �b�t+1]� 1

(v + 1)�
b�+O2;

c�t = �[�t�1 +O2;

while the �rst order conditions imply:

Yt
(v + 1)�

@H

@Yt
= byt � b�t +O2 = 0;

@H

@�t
= byt � 1

(1� �)�
�b�t � � �b�t+1 + ��b�t+1��+O2;

@H

@Xt
= �b�t + ��b�t�1 +O2 = 0;

�t
@H

@�t
= (� � 1) ��

1� ��b�t�1 + �

1� �
(�� + ��+ 1)

1� ��

�b�t � �b�t�1�
+
� (�� + ��+ 1)

(1� �)
�

1� �b�t + ��

(1� �)�t�1 +O2:

From these relations we can solve for the optimal policy rule:

b�t = (1� �)
(1� ��) � (�byt + �byt�1) : (3.9)

Thus, for this particular assumption about subsidies, the non-linear problem
can be easily nested to the earlier LQ example considered in Section 2.2. The
second order approximation to the period objective function is

E

 
log (Yt)� ��v+1t

�
A�1t Yt

�(v+1)�
v + 1

!
= �E

�
1

�
b�t + 1

2

(v + 1)

�
b�2t + 12 (v + 1)�by2t

�
+O3;

and the second order approximation to the law of motion of price dispersion is

c�t = �[�t�1 +
1

2

�

1� ��� (��+ 1� �) b�2t +O3: (3.10)
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This implies that the expectation of price dispersion is a second order variable:

Ec�t = E
1
2

�
(1��)2 �� (��+ 1� �) b�2t : Therefore, in the case of optimal subsidies the

maximization of the unconditional expectation of (3.3), subject to (3.4) and (3.5)

can be written in linear quadratic form as in Section 2.2., with � := (1��)2
�

(v+1)�
�(��+1��) ;

and 
 := 1��
�
(1� ��) (v+1)�

1��+�� :We conclude that solution (3.9) is the same as (2.8).

4. Discussion

Two distinguishing attributes of UO policies are worth commenting on brie�y.

The �rst issue is how UO policies deal with initial conditions; and the second

issue concerns the impact of discounting.

4.1. The distribution of initial conditions

A key attribute of unconditionally optimal (monetary) policy is how it takes

account of the initial conditions that face current and future policymakers. In

a sense, one can think of UO policy as internalizing the distribution of initial

conditions. And even when models lack �jump variables� the UO policy still

impacts on the distribution of initial conditions. To see this, note that the

discounted loss function, Lt(�), very generally depends upon two factors, initial
conditions, Xt�1; and the policy adopted by the government P; Lt(Xt�1; P ): The

conditionally optimal policy minimizes the loss function

Pc = argminLt(Xt�1; P );

taking the initial conditions as given. In models without jump variables the

same policy will generally be optimal for all initial conditions, (see Walsh 2003).

However, the initial conditions depend on the policy of predecessors as well as on

the shocks: Xt�1 = X (P; et�) ; where et� := fet�kg1k=0 is the history of primary
shocks. For any particular history of shocks, there will generally be a policy which,
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had the previous policymaker adopted it, would have bequeathed its successor with

better (indeed, the best) initial conditions. That is,

Pe (et�) = argminLt(Xt�1 (P; et�) ; P ): (4.1)

The choice of this policy will depend on the realization of the shock. Since (et�)

is stochastic, the policymaker will generally wish to revise its policy each period.

The unconditionally optimal policy minimizes the loss function (4.1) "on average"

across all possible histories of shocks

Pu = argmin

Z
Lt(Xt�1 (P; et�) ; P )d (et�) : (4.2)

4.2. Invariance with respect to the social discount rate

Taylor (1979, p.1278-9) suggests that an in�nite horizon perspective with no

discounting may be hallmarks of optimal (time consistent) policy. That may

be contentious (in models with forward-looking constraints, at any rate), but the

sense in which discounting is irrelevant is not fully spelled out. However, we can

establish that the choice of social discount rate is, in a sense, irrelevant from the

perspective of unconditional optimality. Hence, we attribute this proposition to

Taylor:

Proposition 4.1. (Taylor, 1979) The time preference parameter in loss function

(2.1) is not important for the UO policymaker. That is, the best UO policy

minimizes losses (4.3) for all exogenous discount functions � =
�
�j
	1
j=0
; such

that
P1

j=0 �j = � <1:

ELt (�) = EEt

1X
j=0

�jlt+j: (4.3)

Here, lt denotes the period loss function.
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Proof. It follows immediately that,

argmin
'0

ELt (
; ') = argmin
'0

1X
j=0

�jElt (') = argmin
'0

�Elt (')

Hence, we have proved that the same policy is unconditionally optimal for any

time invariant discounting.

Proposition (4.1) is interesting as it demonstrates that the same policy is

unconditionally optimal for all households, regardless of their individual time

discount factors. For example, if we assume that the time discount rate does

not depend on current welfare, the unconditionally optimal policy would not

depend on the time-discounting function. Further, we may consider an overlapping

generations economy, or economy with hyperbolic time discounting, or any

time and condition invariant mixture of economic agents with di¤erent time

discounting. The �best-on-average� criterion avoids the need for one to take a

stand on what is the appropriate social discount rate; see the discussions of these

issues in Barro (1999) and Somers (1971). Of course, this issue was famously

raised by Ramsey (1928).

5. Conclusion

The simple procedure we have presented for uncovering UO policies appears to

be useful in a wide variety of environments of practical interest to researchers.

An interesting and important question is whether actual monetary (and other)

policies are, or should be, optimal from the unconditional perspective.

14



Appendix: Unconditional optimization for a general LQ problem

� Step 1: Write the �conditional Lagrangian�for the policy problem:

Jt = Et

1X
j=0

�j
�
1

2

�
xt+j � x�t+j

�0
Q
�
xt+j � x�t+j

�
+ �0t+j

� eAxt+j � eIxt+j+1�� :
x� is a vector of target values which could depend on disturbance terms,

and Q is a symmetric, positive de�nite matrix. xt is de�ned as in the main

text. The evolution of the endogenous variables zt and Zt is determined by

a system of simultaneous equations

bI � Zt+1
Etzt+1

�
= A

�
Zt
zt

�
+Bit + C�t;

where B =
�
0
B

�
; C =

�
0
C

�
and �t is a vector of exogenous disturbances,

all mean zero.

� Step 2: Re-formulate this as an unconditional Lagrangian:

J = EJt:

Since, Ext = Ext+j, we can write

J =
1

1� �E
�
1

2
(xt � x�t )

0Q (xt � x�t ) + �0t eAxt � �0t�1eIxt� ;
which corresponds to the Hamiltonian

H =
1

1� �

�
1

2
(xt � x�t )

0Q (xt � x�t ) + �0t eAxt � �0t�1eIxt� :
� Step 3: Write the �rst-order conditions for the optimal policy with respect
to all endogenous variables;

@H

@xt
=

1

1� �

�
(xt � x�t )

0Q+ �0t
eAt � �0t�1eI� = 0: (A)

Condition (A) implies the following dynamics for the Lagrange multipliers

(xt � x�t )
0Q+ �0t

eAt � �0t�1eI = 0:
15



References

[1] Barro, R. J., (1999), Ramsey Meets Laibson in the Neoclassical Growth
Model, The Quarterly Journal of Economics, Vol. 114, No. 4. (Nov., 1999),
pp. 1125-1152.

[2] Blake, A.P., (2001), A "Timeless Perspective" on Optimality in Forward-
Looking Rational Expectations Models," Papers 188, National Institute of
Economic and Social Research.

[3] Clarida, R., J. Gali, and M. Gertler, (1999), The Science of Monetary Policy:
A New Keynesian Perspective Journal of Economic Literature, 37, 3 pp.
1661-1707.

[4] Damjanovic T., and C. Nolan (2006), Relative Price Distortions and In�ation
Persistence, CDMA Working Paper 0611

[5] Jensen, C., and B. T. McCallum, (2002), The Non-optimality of Proposed
Monetary Policy Rules under Timeless Perspective Commitment, Economic
Letters, 77, pp. 163-168.

[6] Jensen, C., and B. T. McCallum, (2006), Optimal Continuation versus the
Timeless Perspective in Monetary Policy, working paper.

[7] Khan, A., R. G. King and A. L. Wolman (2003), Optimal Monetary Policy,
The Review of Economic Studies, Vol. 70, No. 4. pp. 825-860.

[8] Kollmann, R., (2002), Monetary Policy Rules in the Open Economy: E¤ect
on Welfare and Business Cycles, Journal of Monetary Economics, 49, pp.
989-1015.

[9] Ramsey, F.P. (1928), A Mathematical Theory of Saving, Economic Journal,
38, pp. 543-549.

[10] Rotemberg J. J. and M. Woodford, (1998), An Optimization-Based
Econometric Framework for the Evaluation of Monetary Policy: Expanded
Version, NBER Technical Working Paper No. 233.

16



[11] Schmitt-Grohe, S., and M. Uribe (2007), Optimal Simple and Implementable
Monetary and Fiscal Rules, Journal of Monetary Economics, 54, pp. 1702-
1725.

[12] Somers, H. M., (1971), On the Demise of the Social Discount Rate, The
Journal of Finance, Vol. 26, No. 2, Papers and Proceedings of the Twenty-
Ninth Annual Meeting of the American Finance Association Detroit, May,
pp. 565-578.

[13] Taylor, J. B., (1979), Estimation and Control of a Macroeconomic Model
with Rational Expectations, Econometrica, 47, 5, pp. 1267-1286.

[14] Walsh, C. E., (2003), Monetary Theory and Policy, 2nd. ed., The MIT Press,
2003.

[15] Whiteman, C. (1986), Analytical Policy Design under Rational Expectations,
Econometrica, 1986, vol. 54, issue 6, pp. 1387-1405.

[16] Woodford, M., (1999), Optimal Monetary Policy Inertia, The Manchester
School Supplement, 1463-6786, pp. 1-35

[17] Woodford, M., (2002), In�ation Stabilization and Welfare, Contributions to
Macroeconomics, vol. 2, issue 1, article 1.

17



www.st-and.ac.uk/cdma 

ABOUT THE CDMA 
 

 The Centre for Dynamic Macroeconomic Analysis was established by a direct grant from the 
University of St Andrews in 2003. The Centre funds PhD students and facilitates a programme of 
research centred on macroeconomic theory and policy. The Centre has research interests in areas such as: 
characterising the key stylised facts of the business cycle; constructing theoretical models that can match 
these business cycles; using theoretical models to understand the normative and positive aspects of the 
macroeconomic policymakers' stabilisation problem, in both open and closed economies; understanding 
the conduct of monetary/macroeconomic policy in the UK and other countries; analyzing the impact of 
globalization and policy reform on the macroeconomy; and analyzing the impact of financial factors on 
the long-run growth of the UK economy, from both an historical and a theoretical perspective. The 
Centre also has interests in developing numerical techniques for analyzing dynamic stochastic general 
equilibrium models. Its affiliated members are Faculty members at St Andrews and elsewhere with 
interests in the broad area of dynamic macroeconomics. Its international Advisory Board comprises a 
group of leading macroeconomists and, ex officio, the University's Principal. 

 

 

Affiliated Members of the School 

Dr Fabio Aricò. 
Dr Arnab Bhattacharjee. 
Dr Tatiana Damjanovic. 
Dr Vladislav Damjanovic.  
Prof George Evans. 
Dr Gonzalo Forgue-Puccio. 
Dr Laurence Lasselle.  
Dr Peter Macmillan. 
Prof Rod McCrorie. 
Prof Kaushik Mitra. 
Prof Charles Nolan (Director). 
Dr Geetha Selvaretnam. 
Dr Ozge Senay. 
Dr Gary Shea.  
Prof Alan Sutherland. 
Dr Kannika Thampanishvong. 
Dr Christoph Thoenissen.  
Dr Alex Trew.  
 

Senior Research Fellow 

Prof Andrew Hughes Hallett, Professor of Economics, 
Vanderbilt University.  

 

Research Affiliates 

Prof Keith Blackburn, Manchester University.  
Prof David Cobham, Heriot-Watt University. 
Dr Luisa Corrado, Università degli Studi di Roma.  
Prof Huw Dixon, Cardiff University. 
Dr Anthony Garratt, Birkbeck College London. 
Dr Sugata Ghosh, Brunel University.  
Dr Aditya Goenka, Essex University.  
Prof Campbell Leith, Glasgow University.  
Dr Richard Mash, New College, Oxford.  
Prof Patrick Minford, Cardiff Business School.  
Dr Gulcin Ozkan, York University.  

Prof Joe Pearlman, London Metropolitan University.  
Prof Neil Rankin, Warwick University.  
Prof Lucio Sarno, Warwick University.  
Prof Eric Schaling, Rand Afrikaans University.  
Prof Peter N. Smith, York University. 
Dr Frank Smets, European Central Bank.  
Prof Robert Sollis, Newcastle University.  
Prof Peter Tinsley, Birkbeck College, London.  
Dr Mark Weder, University of Adelaide.  
 

Research Associates 

Mr Nikola Bokan.  
Mr Farid Boumediene. 
Mr Johannes Geissler. 
Mr Michal Horvath.  
Ms Elisa Newby.  
Mr Ansgar Rannenberg. 
Mr Qi Sun.  
 
Advisory Board 

Prof Sumru Altug, Koç University.  
Prof V V Chari, Minnesota University.  
Prof John Driffill, Birkbeck College London.  
Dr Sean Holly, Director of the Department of Applied 

Economics, Cambridge University.  
Prof Seppo Honkapohja, Cambridge University.  
Dr Brian Lang, Principal of St Andrews University.  
Prof Anton Muscatelli, Heriot-Watt University.  
Prof Charles Nolan, St Andrews University.  
Prof Peter Sinclair, Birmingham University and Bank of 

England.  
Prof Stephen J Turnovsky, Washington University.  
Dr Martin Weale, CBE, Director of the National 

Institute of Economic and Social Research.  
Prof Michael Wickens, York University.  
Prof Simon Wren-Lewis, Oxford University.  

http://www.st-andrews.ac.uk/economics/CDMA/pages/v.damjanovic.shtml
http://www.st-andrews.ac.uk/economics/staff/pages/l.lasselle.shtml
http://www.st-andrews.ac.uk/economics/staff/pages/c.nolan.shtml
http://www.st-andrews.ac.uk/economics/staff/pages/g.shea.shtml
http://www.st-andrews.ac.uk/economics/staff/pages/a.sutherland.shtml
http://www.st-andrews.ac.uk/economics/staff/pages/c.thoenissen
http://www.st-andrews.ac.uk/economics/CDMA/pages/a.trew.shtml
http://www.st-andrews.ac.uk/economics/staff/pages/a.hughes-hallett.shtml
http://les1.man.ac.uk/ses/staffpages/blackburn.htm
http://www.economia.uniroma2.it/dei/professori/corrado/
http://www.cf.ac.uk/carbs/econ/ghosh/
http://www.essex.ac.uk/economics/people/staff/goenka.shtm
http://www.gla.ac.uk/economics/leith/
http://www.economics.ox.ac.uk/Faculty/EconDetails.asp?Detailno=104
http://www.cf.ac.uk/carbs/econ/webbbd/pm.html
http://www.york.ac.uk/depts/econ/res/indiv/gozkan.htm
http://www.lgu.ac.uk/%7Epearlman/
http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/rankin/
http://www.warwick.ac.uk/%7Ebssmv/LS/index.htm
http://general.rau.ac.za/economics/Ilse/ES.pdf
http://www.cepr.org/researchers/details/rschcontact.asp?IDENT=127091
http://www.dur.ac.uk/robert.sollis/
http://ideas.repec.org/e/pti14.html
http://ideas.repec.org/e/pwe62.html
http://www.st-andrews.ac.uk/economics/CDMA/pages/n.bokan.shtml
http://www.st-andrews.ac.uk/economics/CDMA/pages/m.horvath.shtml
http://www.st-andrews.ac.uk/economics/CDMA/pages/e.newby.shtml
http://www.st-andrews.ac.uk/economics/CDMA/pages/q.sun.shtml
http://home.ku.edu.tr/%7Esaltug/
http://www.econ.umn.edu/faculty/chari/
http://www.econ.bbk.ac.uk/faculty/driffill/
http://www.econ.cam.ac.uk/dae/people/holly/
http://www.valt.helsinki.fi/raka/seppo.htm
http://www.st-andrews.ac.uk/government/poffice/lang.html
http://www.gla.ac.uk/economics/muscatelli.html
http://www.st-andrews.ac.uk/economics/staff/pages/c.nolan.shtml
http://www.economics.bham.ac.uk/people/sinclairp.htm
http://www.econ.washington.edu/people/detail.asp?uid=sturn
http://www.niesr.ac.uk/staffbio/mweale.htm
http://www.york.ac.uk/depts/econ/res/indiv/wickens.htm
http://www.ex.ac.uk/sobe/Staff/SWrenLewis/SWrenLewis.html


www.st-and.ac.uk/cdma 
RECENT WORKING PAPERS FROM THE  
CENTRE FOR DYNAMIC MACROECONOMIC ANALYSIS 
 

Number Title Author(s) 

CDMA06/10 Disinflation in an Open-Economy 
Staggered-Wage DGE Model: 
Exchange-Rate Pegging, Booms and the 
Role of Preannouncement 

John Fender (Birmingham) and Neil 
Rankin (Warwick) 

CDMA06/11 Relative Price Distortions and Inflation 
Persistence 

Tatiana Damjanovic (St Andrews) 
and Charles Nolan (St Andrews) 

CDMA06/12 Taking Personalities out of Monetary  
Policy Decision Making? 
Interactions, Heterogeneity and 
Committee Decisions in the Bank of 
England’s MPC 

Arnab Bhattacharjee (St Andrews) 
and Sean Holly (Cambridge) 

CDMA07/01 Is There More than One Way to be E-
Stable? 

Joseph Pearlman (London 
Metropolitan) 

CDMA07/02 Endogenous Financial Development and 
Industrial Takeoff 

Alex Trew (St Andrews) 

CDMA07/03 Optimal Monetary and Fiscal Policy in 
an Economy with Non-Ricardian Agents

Michal Horvath (St Andrews) 

CDMA07/04 Investment Frictions and the Relative 
Price of Investment Goods in an Open 
Economy Model 

Parantap Basu (Durham) and 
Christoph Thoenissen (St Andrews) 

CDMA07/05 Growth and Welfare Effects of 
Stablizing Innovation Cycles 

Marta Aloi (Nottingham) and 
Laurence Lasselle (St Andrews) 

 
CDMA07/06 

 
Stability and Cycles in a Cobweb Model 
with Heterogeneous Expectations 

 
Laurence Lasselle (St Andrews), 
Serge Svizzero (La Réunion) and 
Clem Tisdell (Queensland) 

CDMA07/07 The Suspension of Monetary Payments 
as a Monetary Regime 

Elisa Newby (St Andrews) 

CDMA07/08 Macroeconomic Implications of Gold 
Reserve Policy of the Bank of England 
during the Eighteenth Century 

Elisa Newby (St Andrews) 

CDMA07/09 S,s Pricing in General Equilibrium 
Models with Heterogeneous Sectors 

Vladislav Damjanovic (St Andrews) 
and Charles Nolan (St Andrews) 

CDMA07/10 Optimal Sovereign Debt Write-downs Sayantan Ghosal (Warwick) and 
Kannika Thampanishvong (St 
Andrews) 

CDMA07/11 Bargaining, Moral Hazard and Sovereign 
Debt Crisis 

Syantan Ghosal (Warwick) and 
Kannika Thampanishvong (St 
Andrews) 



www.st-and.ac.uk/cdma 
CDMA07/12 Efficiency, Depth and Growth: 

Quantitative Implications of Finance 
and Growth Theory 

Alex Trew (St Andrews) 

CDMA07/13 Macroeconomic Conditions and 
Business Exit: Determinants of Failures 
and Acquisitions of UK Firms 

Arnab Bhattacharjee (St Andrews), 
Chris Higson (London Business 
School), Sean Holly (Cambridge), 
Paul Kattuman (Cambridge). 

CDMA07/14 Regulation of Reserves and Interest 
Rates in a Model of Bank Runs 

Geethanjali Selvaretnam (St 
Andrews). 

CDMA07/15 Interest Rate Rules and Welfare in Open 
Economies 

Ozge Senay (St Andrews). 

CDMA07/16 Arbitrage and Simple Financial Market 
Efficiency during the South Sea Bubble: 
A Comparative Study of the Royal 
African and South Sea Companies 
Subscription Share Issues 

Gary S. Shea (St Andrews). 

CDMA07/17 Anticipated Fiscal Policy and Adaptive 
Learning 

George Evans (Oregon and St 
Andrews),  Seppo Honkapohja 
(Cambridge) and Kaushik Mitra (St 
Andrews) 

CDMA07/18 The Millennium Development Goals 
and Sovereign Debt Write-downs 

Sayantan Ghosal (Warwick),  
Kannika Thampanishvong (St 
Andrews) 

CDMA07/19 Robust Learning Stability with 
Operational Monetary Policy Rules 

George Evans (Oregon and St 
Andrews),  Seppo Honkapohja 
(Cambridge) 

CDMA07/20 Can macroeconomic variables explain 
long term stock market movements? A 
comparison of the US and Japan 

Andreas Humpe (St Andrews) and 
Peter Macmillan (St Andrews) 

CDMA07/21 Unconditionally Optimal Monetary 
Policy 

Tatiana Damjanovic (St Andrews), 
Vladislav Damjanovic (St Andrews) 
and Charles Nolan (St Andrews) 

 
 

For information or copies of working papers in this series, or to subscribe to email notification, contact: 
 

Johannes Geissler 
Castlecliffe, School of Economics and Finance 
University of St Andrews 
Fife, UK, KY16 9AL 
 

Email: jg374@at-andrews.ac.uk; Phone: +44 (0)1334 462445; Fax: +44 (0)1334 462444. 


	!Endpages.pdf
	 
	Affiliated Members of the School
	Senior Research Fellow
	Research Affiliates
	Research Associates
	Advisory Board


