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Generalization of the Generalized Composite Commodity Theorem 

: Extension based on the Theil’s Aggregation Theory 

 

Introduction 

Empirical studies in economics have relied on various forms of classification and aggregation, 

since econometric considerations, such as degrees-of-freedom and multicollinearity, require an 

economy of parameters in empirical models. Even though the specific choice of such issues have 

been oftentimes based on convenience for addressing specific research objectives rather than on 

the empirical evidence for consistent classification and/or aggregation (Shumway and Davis, 

2001), it has been demonstrated that small departures from valid classification and/or 

aggregation can result in large mistakes in elasticity/flexibility and welfare estimates (Lewbel, 

1996). However, identifying a legitimate but less restrictive condition for a consistent 

classification and/or aggregation remains an open issue in general.  

In the literature of the commodity-wise aggregation, the Hicks-Leontief composite 

commodity theorem (Hicks 1936, Leontief 1936) and the homothetic or weak separability 

concepts (Leontief 1947) have been proposed. However, it has been demonstrated that these two 

types of conditions provide only restrictive possibilities for consistent aggregation in empirical 

applications; the empirical tests of both conditions are rejected in most cases. To address such 

difficulties, Lewbel (1996) proposed the generalized composite commodity theorem for the 

direct demand system in log-linear form. The objective of this study is to further generalize the 

Lewbel‟s composite commodity condition based on the Theil‟s aggregation theory (Theil 1954 

and 1971).  
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On the other hand, the problem of forming suitable partitions before conducting any 

empirical test to justify those classifications and/or aggregation has relied on researchers‟ 

intuition. However, the intuitive partitions based on the subjective reasoning are only a small set 

of possible partitions among an extremely large number of possible partitions. Thus when 

classification is empirically rejected, it might be simply because of researchers‟ unsuccessful 

identification of the partition itself, not because of non-existence of legitimate classification itself. 

Given the empirical implausibility of attempting all possible partitions, it can be useful to pursue 

inductive partitions related with legitimate aggregation conditions based on the data pattern.  

In these respects, this study proposes the approximated and generalized forms of the 

compositional stability condition derived from Theil‟s compositional stability condition (TCSC). 

The generalized compositional stability condition (GCSC) extends the non-stochastic TCSC to 

allow some randomness and requires less restrictive condition than LCCC as will be discussed. 

The empirical testing procedure of the GCSC is suggested based on the Hausman 

misspecification testing method (Hausman, 1978). In addition, the approximated compositional 

stability condition (ACSC) is also proposed to address issue of forming suitable classification 

before conducting any legitimate aggregation tests. Based on ACSC, the homogeneous grouping 

of commodities is identified by the block-diagonal pattern of static and dynamic correlation 

matrixes (Croux, Forni, and Reichlin, 2001) of price or quantity variables. The modified k-

nearest neighbor algorithm based on Wise‟s pseudo-color map is used as an alternative to the 

traditional clustering method to sort highly correlated commodities near each other along the 

main diagonal. The plausibility of the proposed classification/aggregation method is 

demonstrated by using the retail scanner data of soft drink consumption. 
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I. Framework: Theil’s Aggregation theory 

Theil‟s aggregation theory is concerned with the transformation of individual relations (micro-

relations) to a relation for the group as a whole (macro-relations) (Theil, 1971). It considers the 

possibility that micro-relations can be studied through the macro-relations, where micro-

variables are grouped and represented by macro-variables. The main issue is to understand the 

general relationship between micro-parameters and macro-parameters. The ultimate goal is to 

identify conditions for the meaningful aggregation that makes it possible to represent micro-

relations by macro-relations.  

Theil‟s aggregation theory can be summarized as follows. For a given T  time period, 

each individual unit has its own linear behavioral relationship. That is, for each individual micro-

unit ( Nn ,.....,1 ), an endogenous variable 
n

y  linearly depends on K  exogenous variables 

],.....,[
1 nKnn

xxx   with corresponding micro-parameters ]',.....,[
1 nKnn

  . These relationships 

can be represented by following set of micro-equations.  

(1)  
nnnn

uxy     , Nn ,.....,1 . 

To study the general tendency of phenomena which are common to most of all Nn ,.....,1  

individual micro-unit behaviors, it is postulated that the relation between the aggregated 

dependent variable Y  and aggregated predetermined variables ],.....,[
1 K

XXX   can be 

represented in the same linear form of micro-equations as the following macro-equation (2).  

(2)  UXY    where  



N

n

n
yY

1

  and  



N

n

n
xX

1

. 

The main issue is the properties of the macro-parameters ]',.....,[
1 K

   estimated by the 

least-squares (LS) estimator, especially in the context of the relationship between macro- and 

micro-parameters. To focus on such main issue, the following assumptions are introduced. 
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Assumption 0. The N elements of the disturbance vector  ntn uu   are distributed independently 

of micro-regressors ],.....,[
1 nKnn

xxx   and have zero means.  

Assumption 1. The micro-regressors 
n

x  are linearly related with macro-regressors X  as

nnn
vAXx  , where the auxiliary-disturbances 

n
v  are independent of X  and have zero means.  

The assumption 0 on 
nnnn

uxy   ensures the correctly specified disaggregated model and 

implies the independence of nu  with macro-regressors X . The assumption 1 on 
nnn

vAXx   

suggests that (i) the LS
nn

xXXXA ')'(ˆ 1
  is consistent for nA and (ii) nA can be used as the 

weighting scheme because 
)(

1

KK

N

n

n
IA






 
due to   













N

n

n

N

n

n

N

n

nn

N

n

n
vAXvAXxX

1111

. Note 

that the correct specification of the aggregated relation becomes 


















N

n

n

N

n

nn

N

n

n uxyY

111

  

and this true aggregated equation has the NK   explanatory variables, so it contains as detailed 

information as a set of individual micro-relations as a whole, except the loss of information due 

to using aggregated dependent variable. 

Under these settings, Theil (1954) defines the macro-parameters as mathematical 

expectation of its LS estimator and demonstrated following result. 

Result 0. If the assumption 0 and 1 hold, the macro-parameters generally depend upon 

complicated combinations of corresponding and non-corresponding micro-parameters, i.e.  

 kE ̂ =
 

N

n

K

kj

njnjka

1

,,  = 
 



N

n

K

kj

njnjknk

N

n

nkk aa

1

,,,

1

,   , Kk ,.....,1 .  

The meaning of the result 0 can be understood more clearly in matrix notation,  
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(3) 





















K

p







ˆ

ˆ

ˆ

lim 2

1


 = 





















































































N

n

nK

n

n

nKnK

nKn

nKn

nKK

n

n

aa

aa

aa

a

a

a

1

,

,2

,1

,2,1

,2,21

,1,12

,

,22

,11

0

0

0

00

00

00

























, where  

̂limp = YXXXp ')'(lim
1         , by true aggregation 




N

n

n

N

n

nn
uxY

11


 

= 









N

n

n

N

n

nn uXXXpxXXXp

1

1

1

1
')'(lim')'(lim   , by assumption 0 and 

nn
xXXXA ')'(ˆ 1

   

= 


N

n

nnAp

1

ˆlim  =


N

n

nnA

1


        

, by assumption 1 of nn AAp ˆlim . 

Theil‟s conclusion summarized above has negative implications for the aggregate approach. Few 

economists will or can meaningfully interpret macro-parameters as complicated mixtures of 

heterogeneous components.  

However, Theil (1954) identifies two special cases for the possibility of meaningful 

aggregation, which are the micro-homogeneity hypothesis and the compositional stability 

condition (Pesaran, Pierse, and Kumar 1989) as summarized in results 1 and 2.  

Result 1. When the assumption 0 and 1 hold, if each of the micro-parameters has the common 

parameters across all individual units (micro-homogeneity), i.e. CNH   21: , then 

the macro-parameters capture those common parameters. 

(4) CC

N

n

nAp  
1

ˆlim   , by
)(

1

KK

N

n

n
IA





  under CNH   21: . 

Condition 1. (Theil’s compositional stability condition: TCSC), The compositions of each of the 

micro-regressors across micro units 
n

x  remain fixed over time with respect to each of the macro-

regressors X , i.e. 
n

x  are non-stochastic linear function of X  as (5) 
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(5) nn CXx   or ],,,[
21 nKnn

xxx  =





















nK

n

n

K

c

c

c

XXX

,

,2

,1

21

00

00

00

],,,[









  , Nn ,.....,1  . 

Result 2. If the assumption 0 and the condition 1 hold, then each of the macro-parameter 

represents the weighted average of the corresponding micro-parameters only as (6). 

(6)

 




































































































N

n
nKnK

N

n
nn

N

n
nn

N

n

nK

n

n

nK

n

n

K c

c

c

c

c

c

p

,,

,1,2

,1,1

1

,

,2

,1

,

,2

,1

2

1

00

00

00

ˆ

ˆ

ˆ

lim






























, where  

̂limp = YXXXp ')'lim(
1        , by 




N

n

n

N

n

nn
uxY

11

  and assumption 1
 

= 



N

n

nnxXXXp

1

1
')'(lim  =



N

n

nnC

1

   , by condition 1 of nn CXx  . 

 

II. Generalized Compositional Stability Condition 

In literature, the consistent aggregation conditions have been studied based on either pattern of 

micro-parameters or pattern of micro-variables. For example, the micro-homogeneity and 

separability conditions are based on the some kinds of equality of micro-parameters, thus 

requires the complete knowledge of micro-parameters‟ patterns. On the other hand, the TCSC 

and Hick-Leontief and Lewbel‟s composite commodity conditions are based on the micro-

regressors‟ patterns without requiring any knowledge of micro-parameters. Note that when 

regressors are specified as either price variables or quantity variables, the non-stochastic 

compositional stability condition 1 becomes the Hicks-Leontief composite commodity condition.  

The Hicks composite commodity theorem shows that if all the prices of commodities 

within group A   
A

p  move in exact proportion to a certain common representative price  
A

P  
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with fixed vector of constant  Aa , i.e. AAA Pap  , then (i) an aggregated macro-utility function 

defined over composite commodity can be derived from disaggregated micro-utility functions as

      AAAABA
q

BA PEqaqqUqQU
A

 |,max, , which has same properties corresponding to 

micro-utility functions such as continuity, monotonicity, and quasi-concavity in its arguments; 

and (ii) the optimization problem based on disaggregated micro-utility functions as 

  EqpqpqqU BBAABA
qq BA

|,max
,

 is equivalent to the optimization problem based on aggregated 

macro-utility function as   EqpQPqQU BBAABAa
qQ A

BA

|,max
,

 in terms of equivalence with 

adjustment by constant proportional factor  Aa  between micro-optimization solution of  **
,

BA
qq  

and macro-optimization solution of  **
,

BA
qQ  where AAAAA PEqaQ

***
 .  

While the formal proofs for Hicks composite commodity theorem in the consumer 

context and its application in the producer context can be found in Diewert (1978), this result of 

Hicks composite commodity theorem can be intuitively understood based on the relationship of

    AAAAAAAAAAA QPEqaPqPaqp  . Similarly the Leontief-composite commodity 

theorem can also be understood by starting with quantity-proportionality   AAA Qaq 
1  instead of 

price-proportionality AAA Pap   and the intuitive relationship of AAAAA QPEqp   through 

    AAAAAAAAAA QPQpaQapqp 
 11 . The problem of Hicks-Leontief composite 

commodity condition is that the empirical test are always rejected because the variations in the 

price vector within group is restricted by the non-stochastic relation of nkkknk aXx , . Thus the 

ratios of the prices (quantities) of individual commodities to composite commodity price 

(quantity) are strictly equal to constant proportional factors and remain fixed over time. 

From approach of the micro-parameter patterns, it is argued that there can be group 

demand functions, when a structural property of preference (or technology) reveals a pattern 
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such that the marginal rate of substitution of all pairs of items within the subset is homogenous 

of degree zero in the quantities of items within the subset and is also independent of the 

quantities of all items outside the subset. While both conditions are required for homothetic 

separability, the latter condition is required for weak separability. Although the weakly separable 

condition implies only quantity aggregates not price aggregates, both of which are required for 

conducting consistent two-stage budgeting (Shumway and Davis, 2001). Although this 

separability assumption is less restrictive than the micro-homogeneity assumption, it still implies 

rather strong condition as (Lewbel, 1996) pinpoints that “even weak forms of separability impose 

very strong elasticity equality restrictions among every good in every group (pp. 525).”  

Furthermore, the separability assumption is difficult to test powerfully, and requires 

group price indexes that depend on the parameters of the individual utility function (Lewbel, 

1996). The empirical issue is that even when enough degrees of freedom are available to estimate 

disaggregated models, the multicollinearity among the prices as well as the relatively 

complicated cross equation parameter restrictions causes the resulting tests to have little or no 

power. In a Monte Carlo study, Barnett and Choi (1989) find that all of the standard tests fail to 

reject separability much of the time, even with data constructed from utility functions that are far 

from separable. Even though this “difficulty to reject” may be one reason why separability is so 

commonly assumed in practice, separability is often empirically rejected (Diewert and Wales, 

1995). 

In more general setting than commodity aggregation, Zellner (1962) propose hypothesis 

test of the micro-homogeneity (4) by the coefficient equality test across micro-units in 

disaggregated equations based on the seemingly unrelated regression Equation (SURE) method. 

However, Pesaran, Pierse, and Kumar (1989) and Lee, Pesaran, and Pierse (1990) criticize the 
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restrictiveness of the micro-homogeneity H  as a method of testing aggregation bias and 

propose more direct approach based on the following result: 

Result 3. The macro-disturbance vector U  becomes only the sum of micro-disturbance  

N

n
nu

1
 

if the perfect aggregation condition 0:
1

 
 XxH

N

n
nn   is satisfied. 

The hypothesis of H  has three implications. First, it is demonstrated that the gain in 

terms of fitting the macro-dependent variable is not expected by using disaggregated model 

rather than aggregated model (Pesaran, Pierse, and Kumar 1989). Second, Lee, Pesaran, and 

Pierse (1990) show that the perfect aggregation condition H can hold if 0 nn CXx  even 

though micro-homogeneity hypothesis is rejected, when the pseudo true macro-parameter value 

can be defined by the weighted average of micro-parameters as    


N

n
nknkkk cp

1
,,

ˆlim 

because   0:
11

  

N

n
nnn

N

n
nn CXxXxH  . And third implication is that the least 

square estimates of macro-parameters are not inconsistent since the macro-disturbance 

   


N

n
n

N

n
nnn uXuxXYU

11
 becomes independent of macro-regressors X  by 

the assumption 0. Otherwise, consistency is not guaranteed due to the dependency of macro-

regressors X  on non-zero components of   


N

n
nnn CXx

1
 . 

In this study, we argue that when the pseudo true macro-parameter values are defined by 

the weighted average of micro-parameters as    


N

n
nknkkk cp

1
,,

ˆlim  , the least square 

estimator of macro-parameter is consistent for those pseudo true values under weak condition 

without information of micro-parameters by following hypothesis 1 and result 4. 

Hypothesis 1. When the micro-regressors 
n

x  are stochastic function of macro-regressors X  as 
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nKnK

nKn

nKn
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,2,21

,1,12

,,

,2,22

,1,11

,

,2

,1


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












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



or  nkx , =













 



n

K

kj

nkjjnknkkknk vaXcaXcX ,,,, )( = nknk dcX
,,    , Kk ,.....,1  and Nn ,.....,1 , the 

(auxiliary) disturbance of nk
d

,  are independent with macro-regressors X . 

Result 4. If the assumption 0 and the hypothesis 1 hold, the macro-disturbance vector U is 

independent with macro-regressors X  and the least square estimator of macro-parameter is 

consistent for the weighted average of the corresponding micro-parameters only as (6). 

(7)
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̂limp = YXXXp ')'lim(
1     , by 




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uxY
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  and assumption 1
 

= 



N

n

nnxXXXp

1

1
')'(lim 

  
, by hypothesis 1 of nn xXXXC ')'(ˆ 1

  

= 


N

n

nnCp

1

ˆlim  =


N

n

nnC

1

   , by hypothesis 1 of nn CCp ˆlim . 

The independences of macro-regressors with nk
d

,  suggest the consistency of LS estimator of 

nnn xXXXpCpC ')'(limˆlim
1

  and the independences of macro-regressors X  with U is implied 

from      


N

n
n

N

n
nn

N

n
n

N

n
nnn

N

n
nnn uduCXxXuxXYU

11111
 . 

However, there have existed some ambiguities for the choice of nC  values, although the 

pseudo true macro-parameter value as    


N

n
nnCp

1

ˆlim   can be understood by the result 2 

based on the non-stochastic compositional condition 1. For example, Theil defines the true 
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macro-parameters as either a simple sum of micro-parameters by using 1nc  (Theil, 1954) or a 

simple average of micro-parameters by using Ncn 1  (Theil, 1971) based on the choice of 

aggregation function. However, this choice of a constant nC  is arbitrary because it is not related 

to the weighting schemes used in the aggregation function, so it is not related to the correct 

specification of aggregated relation. When the aggregation function defined as the simple sum is 

generalized to the weighted average as  n

y

n
yWY '  and  n

x

n
xWX ' , the above results can be 

applied, mutatis mutandis, based on following specifications for the true aggregated relation and 

macro-equations,         
 



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
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1 11111

'''' 

and '''' UXY   . Especially, when y

n
W = x

n
W , such changes are not required because YY ' ,

XX ' , and UU '  (Theil, 1954). In these respects, the choice of nC  does not depend on 

weighting schemes used in aggregation function and thus true macro-parameters do not depend 

on the correct specification of aggregated relation. 

As Lee, Pesaran, and Pierse (1990) clearly pinpoint “In practice … it is rare that a 

„consensus‟ value of b (true macro-parameters) or some of its elements is available, and b needs 

to be chosen in light of the knowledge of the disaggregate model. … The matrices nC  are the 

probability limits of the coefficients in the OLS regressions of the columns of nx  on X ; the 

„auxiliary‟ equation in Theil‟s terminology (pp. 139).” In this respect, the natural choice for nC  

is the diagonal element of nnn xXXXpApA ')'(limˆlim
1

  from the general relations 

nnn
vAXx   in assumption 1 (with constraint of 0,' nkka , 'kk  ). When we take this choice 

based on the knowledge of the pattern of disaggregate regressors with respect to aggregate 
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regressors, the hypothesis 1 become (8) as the generalization of the non-stochastic compositional 

stability condition 1.  

(8) nnn dHXx    or
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 ,  

where ],,,[],,,[ ,,,2,2,1,1,,2,1 nK

K

kj

njKjn

K

kj

njjn

K

kj

njjnKnn vaXvaXvaXddd  


 , Nn ,.....,1 . 

The hypothesis 1 in terms of (8) allows randomness of variables as long as the stochastic 

disturbances of nd  are independent with macro-regressors X  in the set of equations

nnn
dHXx  . Hausman (1978) shows that this type of condition can be empirically tested by 

using a statistical test of 0:
0


n

H   in 
IV

nnnn
IVHXx   , where IV  are instrumental 

variables such that IV  is closely correlated with regressors X  (relevance condition of IV ) and 

independent of error 
n

d  (validity condition of IV ). Based on this Hausman type misspecification 

testing method, we can empirically test the generalized form of the compositional stability 

condition for the consistent aggregation (result 4).  

Although it is not easy to identify the appropriate instrumental variables in general setting, 

the legitimate instrumental variable can be identified in demand analysis based on dual pairs of 

price and quantity for expenditure. The total expenditure variable can be used as the instrumental 

variable, when 
n

x  are disaggregated micro-variables of price (quantity) of a specific group and 

X  are corresponding aggregated macro-variables of price (quantity) of a specific group in the 

direct (inverse) demand system. First, the relevance condition can holds since the total 

expenditure is closely related with the aggregated price and quantity variables as in estimated 

macro-demand systems. Second, the validity condition can also hold based on the relationship of 
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QPEqp nn   if 1,,  nqnp aa  and        0,,,,,,  nqnpnpnqnqnp dddQadPa . It follows 

that   nn qp      nqnqnpnp dQadPa ,,,,        nqnpnpnqnqnpnqnp dddQadPaPQaa ,,,,,,,, 

QP   , where  npnpn dPap ,,   and nqnqn dQaq ,,  . While the condition 1,,  nqnp aa

corresponds to AAA Pap   and   AAA Qaq 
1  as discussed in the Hicks-Leontief composite 

commodity condition, the other condition implies the fact that either each of the idiosyncratic 

variations of disaggregated price or quantity variable can cancel each other in calculating the 

total expenditure variable. In other words, the idiosyncratic variations of individual price or 

quantity variable do not have dependencies on the total expenditure variable, which captures the 

common variation of an entire group of commodities within the demand system through group-

representative price and quantity macro-variables. 

As an alternative to generalize restiveness of the Hicks-Leontief composite commodity 

condition, Lewbel (1996) argues that (i) the differences of the prices of individual commodities 

and composite commodity price can be allowed to vary and (ii) the macro-demand functions are 

solutions of utility maximization as long as (i) these differences are independent of composite 

commodity price or general rate of inflation of the group and (ii) the micro-demand functions are 

solutions of utility maximization. This generalized composite theorem is based on the idea that (i) 

the differences between individual commodity prices and the aggregate commodity price can be 

regarded as the aggregation errors and (ii) the estimated aggregated parameters can be consistent 

if these aggregation errors are well behaved so that they can be either included in the intercept 

term or absorbed into the error term.  

This Lewbel‟s composite commodity condition (LCCC) can be understood in the context 

of the hypothesis 1 with the choice of  1nc  as (9). 
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 (9) Lewbel
nn dXx   or
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where XxvaXaXd nn

K

kj

nkjjnkkk
Lewbel

nk  


,,, )1( , Kk ,.....,1  and Nn ,.....,1 . 

The choice of 1nc  makes it possible for us to easily define Xxd
n

Lewbel

n
  and allows us to 

avoid difficulty involved in searching for instrumental variables in empirically testing the 

compositional stability condition. However, it is arbitrary since there is no a prior reason that the 

true macro-parameters cannot be a simple average of micro-parameters as discussed. 

Furthermore, it is restrictive because it implies that the true macro-parameters should be a simple 

sum of micro-parameters. Even if each of the micro-parameters has the common value (micro-

homogeneity), the macro-parameters should be the simple sum of those parameters rather than 

those common parameter value itself.  

 Another ambiguity in Lewbel‟s theorem is how to deal with fact that the Hick-Leontief 

composite commodity theorem is based on non-randomness of proportionality factors nkka , , 

given that there are no a priori reasons that the ratio of observed micro-variables to true macro-

variable should be restricted to one. Lewbel deals with this difficulty either (i) by restricting his 

generalized theorem into log-linear model which should absorb non-random part of 

nk

K

kj njkjnkkk

Lewbel

nk
vaXaXd

,,,,
)1(    into an intercept term in macro-parameter vector of   or (ii) 

by allowing the differences be absorbed into the random error term of macro-equation. If the first 

assumption is taken, the macro-model should always have a significant intercept term, which is a 

complicated mixture of heterogeneous components and thus is difficult to be meaningfully 

interpreted. If the second assumption is taken, the intuitive rationale of a constant or stable 
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budget constraint condition within each commodity group for the Hick-Leontief composite 

commodity theorem is lost.  

Compared with the Lewbel‟s consistent aggregation condition, the generalized form of 

the compositional stability condition maintains (i) the non-randomness of proportionality factors 

and thus the intuitive rationale of Hick-Leontief composite commodity theorem and (ii) it does 

not have a priori restrictions for true macro-parameters such as simple sum or simple average of 

micro-parameters. Furthermore, in contrast to the fact that Lewbel‟s condition is based on the 

direct demand system in the log-linear form, (i) the GCSC does not impose any restrictions on 

the functional forms except linearity in parameters; and (ii) it can be applied to direct, inverse, as 

well as mixed demand systems, where direct (inverse) system assume quantity (price) is a 

function of price (quantity) and mixed one captures demand system as a function of mixed set of 

price and quantities. 

 

III. Approximated Compositional Stability Condition 

Under the assumption 0, Theil reaches his generally negative conclusion for aggregation based 

on the assumption 1, which makes it possible to relate the macro-parameters to the micro-

parameters. By replacing this primary assumption with the hypothesis 1 in terms of (8), this 

article derives the GCSC for the positive possibility of legitimate aggregation. In other respect, 

the GCSC also generalize the non-stochastic condition 1 (TCSC) to allow some randomness in 

micro-regressors. This condition is, however, involved with the difficult search for instrumental 

variables in a Hausman-type misspecification test in the set of equations
nnn

dHXx  . When 

appropriate instrumental variables are not available, it is also possible to generalize the TCSC 

condition into the approximated compositional stability condition (ACSC). 
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The non-stochastic requirement of TCSC is that movements of corresponding micro-

variables across disaggregate units have the absolutely synchronous and perfect degree of co-

movements (the static correlation of one), whereas the non-corresponding micro-regressors are 

completely independent. In terms of degree of co-movements, this strict condition can be 

approximated by the condition that micro-variables within group are highly correlated but micro-

variables across groups are only weakly correlated over time. This ACSC implies a block-

diagonal pattern of the covariance or correlation matrix among micro-variables as in (10). 

(10)   
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The main feature of the ACSC is that the ratios of the aggregated macro-variables to 

corresponding micro-variables are “near” stable with constant compositional factors over time 

but degree of co-movements in non-corresponding micro-regressors across individual units are 

very weak (   ', kk ddCov , 'kk   where  is a small value). In this sense, the TCSC (or GCSC 

of Xd n   and   0
n

dE ) can be approximated by the condition of   ', kk ddCov .  

Not only the degree of co-movement, but also the way to measure the co-movement can 

be generalized. While the TCSC requires that corresponding micro-variables move absolutely 

synchronously, the ACSC can allow the possible lead and lag dependencies among micro-

variables within a group, as long as   ', kk ddCov  holds. While the standard static correlation 

only measures synchronous or contemporaneous co-movements between variables and requires 

an independence assumption over time, there are several alternative measurements of 
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dependency allowing for possible leads and/or lags in dependency among the time-series data in 

a dynamic setting. Two of these are the co-integration and the cross correlation. Co-integration is 

designed to measure long-run co-movements, so it can be too restrictive to use for identifying 

mid-run or short-run or contemporaneous dependency patterns. The cross-correlation with some 

leads and lags can capture mid-run or short-run dependency by varying lead and lag parameters, 

but the choice of lead and lag parameters can be somewhat arbitrary.  

In this respect, we propose to use the standard static correlation as well as the dynamic 

correlation defined in (11) and (12) to measure the high co-movements of micro-variables within 

a group and near independences of micro-variables across groups.  

(11)   yx =
 

   



yx

yx

SS

C


     for frequency   where    

(12)  yx =
 

   











dSdS

dC

yx

yx

  for frequency band  
21

, where  
21

0 ,  

where x  and y  are two zero-mean real stochastic processes,  
x

S  and  
x

S  are the spectral 

density functions, and  
yx

C is the co-spectrum of x  and y  (Croux, Forni, and Reichlin, 2001).  

The dynamic correlation, proposed from the frequency domain approach, has useful properties 

such as: (a) The dynamic correlation measures different degrees of co-movement which varies 

between -1 and 1 just as standard static correlation. (b) The dynamic correlation over the entire 

frequency band is identical to static correlation after suitable pre-filtering and it is also related to 

stochastic co-integration. (c) The dynamic correlation can be decomposed by frequency and 

frequency band, where the low or high frequency band in spectral domain have implication for 

the long-run or short-run in time domain respectively (Croux, Forni, and Reichlin, 2001).  

This ASCS can also be used for searching specific homogeneous groups of original 

variables to form an initial partitioning. In this case, the index k  become micro-variables‟ group 
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index that should be empirically identified, instead of an index for pre-determined classes of 

exogenous variables. The classification issue is important since the empirical rejection of any 

consistent aggregation condition can be simply because of researchers‟ unsuccessful 

identification of the classification not because of non-existence of legitimate aggregation. The 

issue of forming suitable partitions has relied on conventional classification or results of 

separability tests. However, the separability approach has some empirical difficulties as 

discussed in previous section. The conventional partitions are formed based on several reference 

variables such as animal origin, product quality etc., which hopefully proxy consumers‟ 

unobservable marginal utility structures. This intuition-based approach has an ambiguous aspect, 

since alternative choices of reference variables may result in several different classifications.  

In these respects, we propose to use the clustering approach based on the ACSC for 

searching for specific homogeneous (commodity) groups. This inductive procedure is based on 

the idea that (i) the underlying similarity or homogeneity of a group of variables (prices and/or 

quantities) can be identified through their high co-movements in dynamics; and (ii) the 

classifications are determined by the ACSC to less likely reject the consistent aggregation 

condition of the GCSC. The application of cluster method to aggregation problem in economics 

is discussed by Fisher (1996) and Pudney (1981) and Nicol (1991) are examples of such 

approach for commodity aggregation based on the standard clustering methods such as 

hierarchical algorithm.  

On the other hand, choice of algorithm for clustering can be important, given that (i) the 

resulting classifications implied cluster method can be not economically meaningful and (ii) the 

clustering results can depend on the choice of algorithms. For example, the standard clustering 

methods, such as hierarchical algorithm and k-mean algorithm, use the correlation matrix as only 
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an initial input of similarity measures and thus it is not easy to keep track of information on 

correlation matrix (Xu and Wunsch, 2005). In preliminary study, the hierarchical and k-mean 

algorithms return different final clustering results. Furthermore, the classifications implied by 

these clustering methods are not consistent with the block-diagonal pattern of (10), when the 

results are converted into the correlation matrix form. As an alternative, we choose to use the 

modified k-nearest neighbor algorithm based on Wise‟s pseudo-color map code in this study. 

The main feature of this algorithm is to reorder the variables in the correlation matrix such that 

highly correlated variables are sorted near each other along the main diagonal as (10). As will be 

discussed, this approach, based on the same correlation matrix used in preliminary study, returns 

an intuitively interpretable reordered final correlation matrix.  

 

IV. Empirical Results 

The proposed procedures for demand analyses can be summarized as follows: (i) the degree of 

co-movements in prices and/or quantities are measured by static and dynamic correlations; (ii) 

the measured co-movements are sorted by the modified k-nearest neighbor algorithm to identify 

block-diagonal pattern as (10); and (iii) based on the identified classification by the ACSC, the 

consistent aggregation condition of GCSC are tested by Hausman misspecification test method. 

In addition, the results of GCSC are compared with those based on LCCC. Note that the 

empirical tests are conducted for the direct, inverse, as well as mixed demand system in the 

differential form such as Rotterdam, CBS, and NBR demand systems. These differential demand 

systems are useful to address the nonstationarity issue, which cause several issues for the 

empirical test in LCCC. Furthermore, the Rotterdam functional form commonly exists for all 

specifications, including Rotterdam mixed demand system (Moschini and Vissa 1993). 
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The plausibility of the proposed classification/aggregation method is demonstrated by 

using the retail scanner data of soft drinks sold at Dominick‟s Finer Foods (DFF). The 

difficulties to identify legitimate classification and aggregation of soft drinks products are 

illustrated in Dhar, Chavas, and Gould (2003). After finding statistical evidence against various 

classifications of soft drinks suggested in literature based on the weakly separabiliy conditions, 

they argue that the classification/aggregation of soft drinks remains a significant challenge to 

investigate. The data set consists of weekly observations on 23 soft drink products with size of 

6/12 oz sold at DFF from 09:14:1989 through 09:22:1993 with the sample size 210. All the data 

are from the Dominick‟s database, which is publicly available from the University of Chicago 

Graduate School of Business (http://www.chicagogsb.edu/). Each soft drink used for this study is 

a specific soft drink of 6/12 oz size such as Coca-cola classic, Pepsi-cola cans, Seven-up diet can. 

The brand-level categories include Coke, Pepsi, Seven-up, Mountain Dew, Sprite, Rite-Cola, Dr. 

Pepper, A&W, Canada Dry, Sunkist, and Lipton Brisk. The size of 6/12 oz is chosen due to the 

data availability and identified homogeneity within this size of soft drinks in the preliminary 

study.  

First, to measure co-movement among the disaggregated price and quantity variables, 

both the standard static correlation matrix and the dynamic correlation matrix over identified 

frequency bands are used. For the dynamic correlation over frequency band, several different 

frequency bands are chosen as the non-overlapping bands or regions approximately centered at 

peak 
k

  so that      
jkiijji

0:,, , where the frequency 
k

  is specified 

as   2,,1:2 TkTk
k

   and T  is the sample size (Rodrigues, 1999). Note that if the 

frequency of a cycle is  , the period of the cycle is 2 . Thus, a frequency of Tk
k

  2  

corresponds to a period of kT
k
2 . We choose common frequency bands to measure co-
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movement among variables with possible leads and lags, based on the estimated spectrums of 

variables, which capture dynamics of variables in terms of their cyclic properties with long or 

short run trends (Hamilton, 1994). Although there are some degrees of differences, the common 

frequency bands can be identified across price and quantity variables and thus among 23 

commodities. We use three frequency bands: 0-62, 63-90, and 90-104.5 in terms of k . These 

correspond to a period more than 3.37 weeks (frequency Band 01), a period of 3.32 to 2.32 

weeks (frequency Band 02), a period of less than 2.30 weeks (frequency Band 03) respectively. 

These ranges approximately correspond to 1 month, a half month, and less that a half month 

period ranges.  

Based on these homogeneity or similarity measure of disaggregate micro-variables, the 

modified k-nearest neighbor algorithm is used to sort or reordered the variables such that the 

highly correlated variables are near each other along the main diagonal in the reordered 

correlation matrix. The final results of the sorted static correlation matrix and dynamic 

correlation matrixes for different frequency bands are presented in Figure 1. The black/white 

color scheme is used to represent the absolute value of measured correlations, where the darkest 

black represents the correlation of 1 and the brightest white represents the correlation of 0. More 

detailed information of measured correlation for the standard static correlation coefficient for the 

price variables (lower triangular matrix) and quantity variables (upper triangular matrix) is 

presented in Table 1. In the static correlation of price and quantity variables, the correlations 

among pair of products within the identified group are larger than 0.954 and 0.948 respectively.  

Although the correlations of pair-wise variables across different groups show somewhat 

different degrees of correlation over the different frequency bands, the common groups of 

variables are identified over all the different frequency bands. It is also noticed that both price 
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and quantity variables show similar correlation patterns, thus imply the common commodity 

classification. Based on these results, the following six groups of soft drink products are 

identified as homogeneous groups: (i) Group 1: The Sunkist and Canada Dry product group 

(Product of 1 to 4); (ii) Group 2: The Coca-Cola and Sprite product group (Products of 5 to 8); 

(iii) Group 3: The Pepsi-Cola and Mountain Dew product group (Product of 9 to 13); (iv) Group 

4: The Seven-Up and Dr Pepper product group (Products of 14 to 17); (v) Group 5: The A&W 

and Rite-Cola product group (Products of 18 to 21); and (vi) Group 6: The Lipton Brisk product 

group (Products of 22 to 23)
 1

. 

The above classification results can be interpreted as follows: (a) The products of group 2 

and 3 correspond to the products of Coca-Cola company (Coca-Cola and Sprite) and Pepsi 

company (Pepsi-Cola and Mountain Dew) respectively. (b) The products of group 4 and 5 

correspond to the products of competing companies (Seven-Up and Dr Pepper) and following 

companies (A&W and Rite-Cola) respectively, given that the Coca-Cola and Pepsi companies 

can be interpreted as the market leaders. (c) The products of group 1 and 6 correspond to the 

products of different substitutive groups for the carbonate soft drink products. The Sunkist and 

Canada Dry brands are identified as a homogenous group, although they represent two different 

types of substitute for the carbonate soft drink products. The Lipton Brisk product group shows 

different relationships across other groups and thus it is identified distinct group, although this 

group is closely related with group 5. 

                                                           
1 The group of 2 and 3 are discriminated by their relatively different relationship with group 5, 

given that the variables in group 2 have higher correlation with the variables in group 5. The 

group of 3 and 4 are discriminated by their relatively different relationship with group 6, given 

that the variables in group 3 have higher correlation with the variables in group 6. The group of 5 

and 6 are discriminated by their relatively different relationship with group 3, given that the 

variables in group 6 have higher correlation with the variables in group 3.  
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The resulting classification can be compared with other standard classifications, which 

rely on the conventions for the soft drink products in the literature. For example, one standard 

classifications scheme for multi-stage budgeting structures is as follows: (i) All soft drinks are 

classified as the branded, private label, and all-other products; (ii) The branded soft drinks are 

classified as Cola and Clear sub-segments; and (iii) The Cola sub-segment consists of Coke, 

Pepsi, RC Cola and Dr Pepper. On the other hand, the Clear sub-segment consists of Sprite, 7-Up 

and Mt. Dew (Dhar, Chavas, and Gould, 2003). Comparing with this and other conventional 

classification, the inductive classification of this study has following distinctive features: (a) The 

Cola and Clear sub-segments are not identified. (i) Sprite and Mountain Dew brands belong in 

their companies‟ brands, Coca-Cola and Pepsi-Cola respectively. (ii) The Seven-Up brand forms 

a distinct group with the Dr Pepper brand. (iii) The Rite-Cola brand forms a distinct group with 

the A&W brand. (b) The substitutive products for the carbonate soft drink products are classified 

as two distinctive groups, where one group consists of Sunkist and Canada Dry brands and the 

other group consists of Lipton Brisk product. (c) Diet or caffeine free products do not form 

distinctive groups. Note that Dhar, Chavas, and Gould (2003) find that classifications based on 

the Cola and Clear sub-segments are empirically rejected. In this respect, it can be argued that 

the classification inductively identified in this study provides another plausible classification 

scheme for soft drink products. 

Then, based on the classification identified by the ACSC, two types of consistent 

aggregation conditions (GCSC and LCCC) are empirically tested and compared. Note that both 

tests are conducted for both price and quantity variables due to our interest in the alternative 

specification among direct, inverse, and mixed demand system. It is worth to emphasize that the 

test is actually a joint test for both classification and aggregation. Thus for the robustness check 
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of test results, the different index number formulas are used for actual aggregation procedure to 

decide weighting schemes for aggregating micro-variables into representative macro-variables 

within each identified group. The following different index number formulas are used: 

Tornqvist-Theil (dd), Fisher (ff), Paasche (pp), Laspeyres (ll), Fisher with chain (fc), Paasche 

with chain (pc), Laspeyres with chain (lc), Unit value (uv), Quantity share weighted index (qw), 

and Expenditure share weighted index (ew). The Tornqvist-Theil index is primary used in this 

study. The preference toward the Tornqvist-Theil index, especially rather than the Fisher index, 

is due to facts that unlike the Fisher index, the Tornqvist-Theil index does not invoke the 

problematic assumption of a homothetic or linear homogeneous utility function as discussed in 

Hill (2006).  

First, the empirical results of the GCSC are presented in Table 2 and can be summarized 

as follows, given that a high p-value across almost all test implies a high probability of 0:
0


n

H 

in 
IV

nnnn
IVHXx    , which in turn implies that Xd n   in 

nnn
dHXx  : (i) The possible 

bias due to classification and aggregation for price variable can be ignored and thus the use of 

aggregate price variable for representing each group can be justified, when price variables are 

used as explanatory variables; (ii) The possible bias due to classification and aggregation for 

quantity variable can be ignored and thus the use of aggregate quantity variable for representing 

each group can be justified, when quantity variables are used as explanatory variables; and (iii) 

The classification itself, which is inductively identified, can be empirically justified in terms of 

both price and quantity variables, given that the results are robust with respect to different index 

number formulas for aggregation.  

In addition, for the comparison with the empirical finding for the Clear soft drink group 

in Dhar, Chavas, and Gould (2003), the Sprite, Mt. Dew, 7-up, and 7-up diet are tested as a one 
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homogeneous group based on the compositional stability condition. The p-values for 0:
0


n

H   

are 0.0018 (Sprite), 0.0001 (Mt. Dew), 0.00027 (7-up), and 0.0029 (7-up diet) in terms of the 

price variables and 0.000 for all the products in terms of quantity variables, when the Tornqvist-

Theil index is used for price and quantity aggregates. This result is consistent with the empirical 

rejection of homogeneity of Sprite, Mt Dew, and 7-up products in Dhar, Chavas, and Gould 

(2003) and thus provides additional evidence for the non-existence of the Clear sub-group. 

Second, Lewbel‟s generalized compositional commodity condition for differential 

demand system is tested based on the correlation test of   0,:
0

XdCorrH
Lewbel

n
, where 

Xxd
n

Lewbel

n
 . The empirical results of the unit root test (UR-test) for micro- and macro- 

variables imply stationarity of transformed variables in differential demand system, where unit 

root test results for disaggregate variables are in the column vector and those for aggregate 

variables are in the row vector under the heads of UR-Test for each group (Table 3.5). These 

results of unit root test are robust with respect to other specifications in unit root test. These 

results are consistent with the observation in the demand literature that the differential demand 

system has been considered as appropriate specification to deal with the possible non-stationarity 

problems.  

The empirical results of the LCCC are presented in Table 3 and can be summarized as 

follows, given that high p-value implies high probability of   0,:
0

XdCorrH
Lewbel

n
: (i) The 

possible bias due to classification and aggregation for price variable can be ignored and thus the 

use of aggregate price variable for representing each group can be justified, when price variables 

are used as explanatory variables; (ii) The possible bias due to classification and aggregation for 

quantity variable cannot be ignored and thus the use of aggregate quantity variable for 

representing each group cannot be justified, when quantity variables are used as explanatory 
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variables; and (iii) The test results are ambiguous for classification itself. The classification itself 

can be empirically justified in terms of price variables but it cannot be justified in terms of 

quantity variables. 

The different implications from the two test approaches for quantity variables can be 

explained based on the interpretation of the Lewbel‟s condition in the context of Theil‟s 

aggregation theory. As discussed, the ambiguity exists in the arbitrary choice on the 

proportionality factors 1nc  in relationship between micro-variables and macro-variable for 

each group. When a high probability of the proportionality factor 1nc  is empirically found, the 

same test results for the consistent aggregation condition are expected from the two test 

approaches. On the other hand, the low p-value of 1:
0


n

cH  can explain the different results 

from the two test approaches. The empirical test results of 1:
0


n

cH  are presented in Table 3.5. 

In general, high p-values are found for price variables, which can explain the same implications 

of two test approaches. On the other hand, low p-values are found for quantity variables, which 

can explain the different implications of two test approaches. 

 

V. Concluding Remarks 

Although the consistent aggregation conditions have been studied based on patterns of either 

micro-parameters (e.g. micro-homogeneity and separability hypotheses) or micro-variables (e.g. 

compositional stability or composite commodity conditions), identifying a legitimate but less 

restrictive conditions remains an open issue. Based on the general aggregation theory, this study 

proposes the generalized and approximated compositional stability conditions (GCSC and ACSC) 

to address such issue of the consistent classification and aggregation for the demand analyses.  
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The proposed procedure does not require restrictions on preferences and information on 

micro-parameters and does generalize Hick-Leontief composite commodity condition based on 

the pattern of the micro-regressors only. Compared with Lewbel‟s generalized composite 

commodity condition (LCCC), our approach does not require a priori restrictions for the true 

macro-parameters, maintains the intuitive rationale of Hick-Leontief composite commodity 

theorem, and has general application for the direct, inverse as well as mixed demand systems. 

The plausibility of the proposed method is demonstrated by using the retail scanner data 

of soft drinks consumption. While the application of the ACSC suggests alternative classification 

of the soft drinks, the results of the GCSC tests implies the aggregation bias can be ignored in 

terms of both price and quantity variables. These results allow the identified classification to be 

used for the direct, inverse as well as mixed demand system as aggregated macro-demand 

systems, while the results of LCCC restrict the use of that classification for only the direct 

demand system. The different implications between ours and Lewbel‟s condition are also 

explained by the restrictive condition imposed on the Lewbel‟s composite commodity condition. 
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Figure 1. Sorted Static and Dynamic Correlation Matrix
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Table 1. Sorted Static Correlation Matrix 

Var. # Variable Names dln(01) dln(02) dln(03) dln(04) dln(05) dln(06) dln(07) dln(08) dln(09) dln(10) dln(11) dln(12) dln(13) dln(14) dln(15) dln(16) dln(17) dln(18) dln(19) dln(20) dln(21) dln(22) dln(23)

01 SunkistStrawberry 1.000 0.988 0.983 0.975 0.248 0.272 0.269 0.274 0.282 0.287 0.281 0.289 0.269 0.264 0.282 0.300 0.297 0.212 0.191 0.187 0.189 0.196 0.187

02 SunkistOrange 0.998 1.000 0.988 0.982 0.270 0.297 0.294 0.302 0.308 0.313 0.311 0.316 0.294 0.298 0.317 0.332 0.327 0.237 0.222 0.215 0.210 0.207 0.202

03 CnadaDryGinger 0.998 0.999 1.000 0.994 0.264 0.291 0.287 0.291 0.304 0.310 0.306 0.311 0.293 0.288 0.302 0.317 0.314 0.239 0.223 0.220 0.214 0.218 0.216

04 CandaDryGngrAle 0.998 0.999 1.000 1.000 0.248 0.277 0.275 0.280 0.303 0.310 0.308 0.312 0.294 0.282 0.295 0.311 0.307 0.222 0.206 0.205 0.197 0.202 0.205

05 Sprite 0.279 0.282 0.287 0.291 1.000 0.971 0.968 0.967 0.734 0.740 0.730 0.734 0.728 0.654 0.653 0.637 0.645 0.570 0.568 0.587 0.575 0.537 0.507

06 CokeClassic 0.292 0.295 0.300 0.304 0.955 1.000 0.998 0.995 0.750 0.757 0.746 0.749 0.724 0.671 0.671 0.656 0.662 0.552 0.548 0.569 0.557 0.513 0.483

07 CokeDiet 0.291 0.295 0.300 0.304 0.954 0.999 1.000 0.995 0.748 0.756 0.745 0.748 0.722 0.661 0.661 0.647 0.652 0.550 0.544 0.568 0.555 0.506 0.480

08 CokeDietCaffeineFree 0.293 0.296 0.301 0.305 0.954 0.998 0.999 1.000 0.750 0.758 0.750 0.753 0.724 0.662 0.668 0.657 0.659 0.548 0.543 0.565 0.549 0.509 0.477

09 Pepsi 0.312 0.314 0.319 0.321 0.734 0.756 0.754 0.751 1.000 0.994 0.991 0.989 0.975 0.677 0.683 0.660 0.666 0.453 0.465 0.491 0.461 0.505 0.462

10 PepsiDiet 0.319 0.322 0.326 0.328 0.734 0.755 0.754 0.753 0.998 1.000 0.997 0.996 0.982 0.676 0.679 0.660 0.668 0.458 0.466 0.492 0.467 0.513 0.467

11 PepsiDietCaffeineFree 0.322 0.324 0.329 0.331 0.732 0.753 0.753 0.753 0.995 0.999 1.000 0.997 0.981 0.670 0.674 0.655 0.661 0.449 0.459 0.481 0.454 0.504 0.460

12 PepsiCaffeineFree 0.324 0.326 0.330 0.333 0.732 0.752 0.752 0.752 0.995 0.999 0.999 1.000 0.981 0.675 0.679 0.664 0.671 0.458 0.465 0.484 0.461 0.509 0.458

13 MountainDew 0.325 0.328 0.332 0.334 0.746 0.735 0.735 0.733 0.978 0.981 0.981 0.982 1.000 0.676 0.675 0.656 0.667 0.479 0.492 0.510 0.489 0.536 0.488

14 Seven-Up 0.319 0.321 0.325 0.329 0.652 0.648 0.644 0.642 0.646 0.644 0.641 0.641 0.662 1.000 0.993 0.982 0.988 0.467 0.477 0.490 0.464 0.359 0.316

15 Seven-UpDiet 0.321 0.325 0.329 0.332 0.648 0.645 0.642 0.641 0.643 0.642 0.640 0.641 0.661 0.998 1.000 0.990 0.991 0.458 0.469 0.481 0.449 0.353 0.304

16 DrPepperSugarFree 0.326 0.329 0.333 0.337 0.652 0.644 0.642 0.641 0.638 0.640 0.639 0.641 0.663 0.995 0.996 1.000 0.995 0.453 0.458 0.468 0.439 0.354 0.296

17 DrPepper 0.325 0.328 0.332 0.336 0.659 0.650 0.648 0.646 0.643 0.645 0.644 0.646 0.669 0.995 0.996 0.999 1.000 0.463 0.469 0.476 0.453 0.365 0.304

18 A&W_Diet 0.233 0.238 0.241 0.243 0.592 0.572 0.570 0.568 0.471 0.475 0.473 0.475 0.511 0.558 0.555 0.562 0.564 1.000 0.990 0.977 0.984 0.754 0.712

19 A&W 0.234 0.240 0.242 0.245 0.593 0.574 0.572 0.569 0.472 0.476 0.473 0.476 0.512 0.561 0.557 0.564 0.567 1.000 1.000 0.979 0.979 0.755 0.721

20 RiteColaDiet 0.222 0.228 0.230 0.233 0.601 0.588 0.586 0.584 0.482 0.486 0.483 0.484 0.516 0.541 0.537 0.539 0.544 0.990 0.989 1.000 0.979 0.754 0.722

21 RiteColaRedRasberry 0.224 0.230 0.232 0.235 0.598 0.579 0.578 0.576 0.476 0.479 0.477 0.479 0.515 0.538 0.534 0.540 0.546 0.994 0.994 0.996 1.000 0.750 0.717

22 LiptonBrisk 0.216 0.220 0.224 0.224 0.573 0.546 0.544 0.543 0.556 0.559 0.557 0.560 0.583 0.399 0.395 0.402 0.406 0.747 0.747 0.747 0.750 1.000 0.948

23 LiptonBriskDiet 0.218 0.223 0.226 0.227 0.568 0.541 0.539 0.538 0.547 0.552 0.550 0.553 0.577 0.394 0.391 0.398 0.402 0.748 0.748 0.747 0.751 0.999 1.000  

* The lower triangular is for the static correlation coefficients of price variables and the upper triangular is for the static correlation coefficients of quantity 

variables and the shaded areas represent the identified groups.  
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Table 2. Test for Generalized Compositional Stability Condition 

 

Var. # Variable Names dd ff pp ll fc pc lc uv qw ew dd ff pp ll fc pc lc uv qw ew

01 SunkistStrawberry 0.146 0.070 0.153 0.070 0.149 0.205 0.178 0.152 0.064 0.048 0.014 0.012 0.013 0.012 0.012 0.012 0.012 0.015 0.012 0.031

02 SunkistOrange 0.077 0.207 0.174 0.595 0.076 0.063 0.142 0.172 0.761 0.778 0.689 0.692 0.688 0.704 0.688 0.686 0.691 0.688 0.696 0.730

03 CnadaDryGinger 0.050 0.113 0.113 0.052 0.048 0.081 0.057 0.111 0.022 0.020 0.700 0.695 0.695 0.699 0.698 0.704 0.695 0.699 0.709 0.898

04 CandaDryGngrAle 0.296 0.427 0.375 0.805 0.289 0.254 0.314 0.378 0.659 0.638 0.549 0.537 0.549 0.540 0.536 0.543 0.533 0.545 0.538 0.379

05 Sprite 0.468 0.542 0.990 0.143 0.535 0.597 0.156 0.993 0.145 0.190 0.256 0.241 0.131 0.414 0.296 0.156 0.443 0.133 0.139 0.665

06 CokeClassic 0.577 0.645 0.552 0.137 0.673 0.695 0.587 0.585 0.111 0.155 0.927 0.935 0.877 0.805 0.951 0.894 0.909 0.878 0.893 0.560

07 CokeDiet 0.672 0.738 0.500 0.247 0.765 0.644 0.496 0.535 0.213 0.269 0.781 0.795 0.992 0.651 0.822 0.737 0.879 0.991 0.759 0.402

08 CokeDietCaffeineFree 0.978 0.977 0.382 0.898 0.959 0.513 0.323 0.418 0.990 0.961 0.913 0.912 0.821 0.946 0.911 0.961 0.764 0.818 0.945 0.893

09 Pepsi 0.218 0.264 0.937 0.119 0.267 0.815 0.194 0.933 0.127 0.165 0.082 0.080 0.100 0.076 0.092 0.096 0.080 0.099 0.077 0.020

10 PepsiDiet 0.628 0.606 0.627 0.132 0.673 0.827 0.892 0.652 0.175 0.181 0.206 0.219 0.250 0.175 0.222 0.252 0.171 0.245 0.292 0.041

11 PepsiDietCaffeineFree 0.713 0.786 0.356 0.825 0.715 0.511 0.352 0.362 0.752 0.832 0.735 0.716 0.718 0.766 0.730 0.713 0.791 0.709 0.663 0.653

12 PepsiCaffeineFree 0.275 0.333 0.164 0.186 0.289 0.275 0.067 0.164 0.160 0.198 0.148 0.153 0.165 0.132 0.156 0.169 0.124 0.177 0.183 0.066

13 MountainDew 0.051 0.113 0.190 0.020 0.066 0.187 0.019 0.216 0.012 0.017 0.624 0.594 0.487 0.745 0.599 0.467 0.758 0.484 0.552 0.680

14 Seven-Up 0.057 0.039 0.071 0.033 0.054 0.015 0.027 0.064 0.041 0.047 0.206 0.261 0.205 0.211 0.202 0.127 0.271 0.236 0.217 0.131

15 Seven-UpDiet 0.152 0.165 0.123 0.233 0.153 0.225 0.149 0.112 0.271 0.244 0.088 0.065 0.090 0.085 0.096 0.093 0.086 0.092 0.084 0.048

16 DrPepperSugarFree 0.147 0.169 0.132 0.235 0.140 0.069 0.058 0.128 0.235 0.261 0.594 0.641 0.587 0.600 0.588 0.550 0.630 0.605 0.603 0.392

17 DrPepper 0.069 0.085 0.066 0.154 0.065 0.031 0.026 0.059 0.156 0.168 0.986 0.984 0.997 0.971 0.986 0.972 0.998 0.997 0.977 0.661

18 A&W_Diet 0.029 0.035 0.042 0.040 0.027 0.011 0.046 0.042 0.035 0.061 0.019 0.017 0.018 0.017 0.008 0.026 0.020 0.018 0.017 0.014

19 A&W 0.019 0.022 0.028 0.025 0.017 0.005 0.026 0.028 0.023 0.056 0.066 0.049 0.060 0.064 0.062 0.075 0.053 0.064 0.058 0.039

20 RiteColaDiet 0.064 0.051 0.054 0.069 0.062 0.075 0.042 0.052 0.068 0.196 0.022 0.018 0.023 0.024 0.013 0.025 0.027 0.025 0.025 0.064

21 RiteColaRedRasberry 0.206 0.129 0.186 0.074 0.202 0.367 0.156 0.190 0.106 0.151 0.015 0.014 0.015 0.013 0.013 0.015 0.011 0.015 0.013 0.013

22 LiptonBrisk 0.795 0.717 0.897 0.583 0.795 0.681 0.763 0.898 0.562 0.555 0.039 0.033 0.052 0.034 0.034 0.033 0.035 0.033 0.033 0.046

23 LiptonBriskDiet 0.398 0.426 0.329 0.576 0.403 0.386 0.350 0.332 0.554 0.548 0.105 0.092 0.138 0.090 0.094 0.094 0.097 0.096 0.092 0.127

Quantity variablesPrice variables

 
 

* All the values are the p-values for 0:0 nH   in IV

nnnn IVHXx   , where IV  is the total expenditure variable as the instrumental 

variable.
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Table 3. Test for Lewbel‟s Composite Commodity Condition 

 

Var. # Variable Names dd ff pp ll fc pc lc uv qw ew dd ff pp ll fc pc lc uv qw ew

01 SunkistStrawberry 0.458 0.559 0.550 0.572 0.457 0.441 0.478 0.550 0.494 0.495 0.197 0.202 0.203 0.202 0.196 0.194 0.199 0.203 0.203 0.019

02 SunkistOrange 0.126 0.087 0.077 0.098 0.126 0.128 0.126 0.077 0.100 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

03 CnadaDryGinger 0.070 0.264 0.269 0.305 0.071 0.094 0.071 0.269 0.200 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

04 CandaDryGngrAle 0.807 0.908 0.900 0.909 0.807 0.796 0.831 0.900 0.963 0.963 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

05 Sprite 0.748 0.670 0.209 0.595 0.659 0.483 0.774 0.212 0.614 0.610 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

06 CokeClassic 0.854 0.804 0.206 0.547 0.754 0.433 0.378 0.204 0.552 0.551 0.005 0.006 0.036 0.000 0.007 0.014 0.004 0.036 0.036 0.959

07 CokeDiet 0.740 0.699 0.177 0.797 0.654 0.382 0.305 0.176 0.802 0.802 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

08 CokeDietCaffeineFree 0.694 0.658 0.175 0.930 0.619 0.368 0.303 0.174 0.934 0.934 0.038 0.038 0.038 0.036 0.038 0.046 0.030 0.038 0.038 0.000

09 Pepsi 0.072 0.094 0.352 0.076 0.090 0.333 0.067 0.370 0.079 0.079 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 PepsiDiet 0.688 0.659 0.951 0.603 0.706 0.996 0.996 0.920 0.783 0.783 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

11 PepsiDietCaffeineFree 0.334 0.391 0.361 0.175 0.366 0.392 0.132 0.344 0.146 0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12 PepsiCaffeineFree 0.127 0.159 0.188 0.044 0.149 0.207 0.037 0.178 0.037 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

13 MountainDew 0.225 0.263 0.367 0.144 0.251 0.394 0.123 0.354 0.133 0.133 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 Seven-Up 0.112 0.113 0.085 0.150 0.112 0.108 0.122 0.088 0.152 0.152 0.732 0.726 0.739 0.712 0.732 0.733 0.730 0.737 0.737 0.888

15 Seven-UpDiet 0.976 0.966 0.990 0.947 0.976 0.978 0.979 0.998 0.935 0.934 0.727 0.720 0.734 0.706 0.727 0.729 0.725 0.732 0.732 0.578

16 DrPepperSugarFree 0.559 0.543 0.542 0.542 0.559 0.561 0.555 0.536 0.584 0.585 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

17 DrPepper 0.066 0.067 0.069 0.065 0.066 0.067 0.065 0.067 0.064 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010

18 A&W_Diet 0.972 0.967 0.931 0.968 0.974 0.825 0.904 0.931 0.888 0.889 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

19 A&W 0.678 0.660 0.633 0.662 0.680 0.559 0.788 0.633 0.613 0.614 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

20 RiteColaDiet 0.725 0.856 0.864 0.888 0.724 0.869 0.632 0.864 0.822 0.823 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

21 RiteColaRedRasberry 0.800 0.862 0.988 0.753 0.799 0.944 0.709 0.988 0.743 0.743 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

22 LiptonBrisk 0.268 0.204 0.191 0.220 0.269 0.239 0.306 0.191 0.226 0.226 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

23 LiptonBriskDiet 0.196 0.243 0.273 0.218 0.196 0.217 0.182 0.273 0.224 0.224 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Price variables Quantity variables

 

* All the values are the p-values for   0,:
0

XdCorrH
Lewbel

n
 where Xxd n

Lewbel
n  .
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Table 4. Tests for the Unit Root and the Proportionality Factors 

 
dd ff pp ll fc pc lc uv qw ew dd ff pp ll fc pc lc uv qw ew

dlnP06 UR-Test -11.55 -11.54 -11.55 -11.54 -11.55 -11.53 -11.57 -11.55 -11.54 -11.54 dlnQ06 UR-Test -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.93

dln(p_01) -11.61 0.57 0.67 0.66 0.50 0.58 0.34 0.44 0.65 0.52 0.51 dln(q_01) -11.13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00

dln(p_02) -11.52 0.93 0.78 0.76 0.55 0.95 0.72 0.77 0.77 0.67 0.68 dln(q_02) -10.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_03) -11.54 0.27 0.35 0.68 0.46 0.26 0.40 0.26 0.68 0.78 0.79 dln(q_03) -10.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_04) -11.51 0.43 0.14 0.18 0.11 0.43 0.47 0.41 0.18 0.12 0.13 dln(q_04) -10.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dlnP01 UR-Test -11.10 -11.09 -10.98 -11.14 -11.09 -13.81 -10.72 -10.98 -11.14 -11.14 dlnQ01 UR-Test -10.86 -10.85 -10.84 -10.87 -10.85 -10.76 -10.90 -10.84 -10.84 -10.88

dln(p_05) -10.69 0.86 0.84 0.31 0.35 0.79 0.93 0.77 0.31 0.36 0.36 dln(q_05) -10.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_06) -11.15 0.53 0.54 0.08 0.85 0.47 0.26 0.16 0.08 0.82 0.82 dln(q_06) -10.89 0.02 0.03 0.10 0.00 0.03 0.02 0.04 0.10 0.10 0.81

dln(p_07) -11.16 0.67 0.66 0.10 0.37 0.59 0.30 0.20 0.10 0.37 0.37 dln(q_07) -10.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_08) -11.04 0.94 0.92 0.15 0.19 0.83 0.40 0.35 0.15 0.20 0.19 dln(q_08) -10.90 0.31 0.32 0.30 0.31 0.32 0.43 0.18 0.29 0.29 0.00

dlnP02 UR-Test -13.19 -13.19 -13.11 -11.45 -13.17 -13.10 -13.20 -13.11 -11.46 -11.46 dlnQ02 UR-Test -10.38 -10.38 -10.37 -10.39 -10.38 -10.37 -10.38 -10.37 -10.37 -10.39

dln(p_09) -11.59 0.34 0.47 0.94 0.29 0.42 0.94 0.12 0.92 0.30 0.31 dln(q_09) -10.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_10) -11.43 0.72 0.78 0.62 0.21 0.80 0.62 0.78 0.59 0.29 0.28 dln(q_10) -10.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_11) -13.10 0.53 0.55 0.30 0.72 0.52 0.31 0.25 0.29 0.64 0.64 dln(q_11) -10.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_12) -13.11 0.16 0.18 0.12 0.15 0.17 0.12 0.04 0.11 0.13 0.13 dln(q_12) -10.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_13) -12.51 0.28 0.41 0.51 0.20 0.33 0.55 0.16 0.48 0.18 0.17 dln(q_13) -14.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dlnP03 UR-Test -11.25 -11.26 -11.26 -11.26 -11.25 -11.27 -11.22 -11.26 -11.26 -11.26 dlnQ03 UR-Test -13.53 -13.52 -13.53 -13.52 -13.53 -13.53 -13.52 -13.53 -13.53 -13.47

dln(p_14) -11.27 0.25 0.28 0.27 0.30 0.26 0.33 0.13 0.28 0.29 0.27 dln(q_14) -13.39 0.46 0.46 0.47 0.45 0.42 0.46 0.48 0.50 0.50 0.53

dln(p_15) -11.25 0.85 0.75 0.82 0.73 0.85 0.88 0.92 0.82 0.75 0.75 dln(q_15) -13.38 0.80 0.80 0.80 0.82 0.80 0.81 0.80 0.80 0.80 0.93

dln(p_16) -11.17 0.84 0.88 0.86 0.91 0.84 0.97 0.65 0.85 0.98 0.98 dln(q_16) -13.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_17) -11.26 0.06 0.06 0.06 0.07 0.06 0.09 0.03 0.06 0.07 0.06 dln(q_17) -13.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

dlnP05 UR-Test -11.92 -11.93 -11.93 -11.94 -11.92 -11.87 -11.94 -11.93 -11.93 -11.93 dlnQ05 UR-Test -10.45 -10.45 -10.45 -10.45 -10.45 -10.44 -10.46 -10.45 -10.45 -10.47

dln(p_18) -11.91 0.81 0.69 0.80 0.62 0.80 0.91 0.70 0.80 0.71 0.71 dln(q_18) -10.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_19) -11.99 0.64 0.72 0.63 0.78 0.64 0.47 0.82 0.63 0.74 0.74 dln(q_19) -11.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_20) -11.90 0.83 0.98 0.90 0.98 0.83 0.88 0.75 0.90 0.90 0.90 dln(q_20) -10.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_21) -9.86 0.74 0.69 0.56 0.85 0.75 0.53 0.85 0.56 0.88 0.88 dln(q_21) -10.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dlnP04 UR-Test -12.63 -12.63 -12.63 -12.64 -12.63 -12.64 -12.62 -12.63 -12.64 -12.64 dlnQ04 UR-Test -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.71

dln(p_22) -12.63 0.04 0.03 0.03 0.02 0.04 0.05 0.06 0.03 0.01 0.07 dln(q_22) -11.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dln(p_23) -12.64 0.04 0.05 0.07 0.02 0.04 0.06 0.04 0.07 0.01 0.07 dln(q_23) -15.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Price Variables Quantity Variables

 

* Unit Root test (UR-Test) is based on no constant and no trend with BIC lag length selection specification, where critical values are -

2.58 (1%), -1.95 (5%), -1.62 (10%); the column vector of UR-Test is for disaggregate variables and row vector of UR-Test is for 

aggregate variables; and all other values are the p-values for 1:0 ncH  in nnn cXx  . 


