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Introduction  

 Despite the explosion of interest in industry clusters, formal studies evaluating the 

impacts of firm agglomeration on industry performance remain relatively scarce.  

Important exceptions include Gibbs and Bernat (1997) and, more recently, Gabe (2004 

and 2008) and Graham and Kim (2008).  Previous research has focused primarily on 

identifying and measuring industry clusters (e.g., Porter, 2003, Goetz, Shields, and Wang, 

2008), or on assessing factors underlying their formation (Ellison and Glaeser, 1997; 

Ellison, Glaeser, and Kerr, 2007).  In the food and agricultural sector, Roe, Irwin, and 

Sharp (2002) and Davis and Schluter (2005) directly or indirectly quantify 

agglomerations effects in spatial hog production trends and new food manufacturing 

investments.   However, considering that Porter (1998) used the California wine industry 

in his seminal work, the rarity of empirical work is especially glaring in the food and 

agricultural sector, and even more so for organic produce, which despite a growing 

importance is itself an under-researched component of the food system.  The agricultural 

sector is particularly relevant for agglomeration research because food production and 

distribution are closely tied to space.   In other words, the consequences of 

agglomerations in which buying and selling firms both compete and cooperate with one 

another as a result of proximate locations may be especially critical for food and 

agricultural firms.   

In addition to the issue of measuring agglomeration impacts, important questions 

remain about the definition and measurement of clusters in agriculture and in other 

industries, and how these affect performance measures.  Unresolved and largely 

unstudied is just how many firms and what geographic space should define a cluster, or 
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how this cluster variable should be specified.  Gabe (2004), for example, follows a line of 

research that measures industry agglomeration as an industry intensity variable and 

compares a region’s particular industry concentration with the national average.  In 

addition, Gabe (2004) investigates the implications of measuring this intensity variable 

on a county or municipality level. Alternatively, Cainelli (2008) measures agglomeration 

as a binary indicator variable that takes the value of 1 if a firm belongs to an officially 

defined Italian business district.  This almost purely empirical issue of cluster 

identification could be expected to a strong factor when measuring the impact of clusters 

in the organic industry.  In our study, the agglomeration measure is a binary variable (like 

Cainelli 2008) that takes the value 1 if some minimum number of similar firms is present 

within a specific geographic area.  Unlike other studies, however, we investigate the 

implications of agglomeration impacts from specifying alternative minimum numbers of 

firms within an industry cluster.   

Economic Clusters in the Organics Industry 

This study targets the certified organic “handling” sector, which lies between 

production and retailing.  Organic handlers are firms that serve as packers, shippers, 

manufacturers, processors, or brokers, distributors, and wholesalers.  According to 

Dimitri and Oberholtzer (2008), markets in this industry grew rapidly, increasing 17 

percent a year between 1995 and 2006.  While this growth reflects the potential for 

increased profits in the organic handling sector, it may simultaneously lead to industry 

growing pains as supply chains continually shift to accommodate more organic 

production and consumer demand.  Within this shifting supply chain (or market channel) 

in which organic firms face the competitive challenges of a high-growth sector, firm 
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clusters could have a positive or negative impact on firm performance depending on 

whether cooperative or competitive forces dominate.   

Very little empirical research is available to guide our operating definition of 

industry clusters among organic handlers.  Figure 1, reproduced from Dimitri and 

Oberholtzer (2008, p. 12) shows the geographic dispersion of certified organic handlers.  

The map uses U.S. zip codes to cluster firms, and the number of organic firms within a 

single zip code ranges from zero to over ten.  Our preliminary results showed little 

difference from using zip codes or counties, but more differences when the 

agglomeration variable varies with the number of firms in a cluster.  More specifically, 

we use U.S. counties as the cluster boundaries and explicitly investigate how the number 

of firms within a boundary affects the estimated impacts of a firm cluster.   

Our effort to explore various definitions of firm clusters is secondary, however, to 

our primary goal of quantifying the impact of a cluster on firm decisions or firm 

performance.  Using data from a population survey of U.S. certified organic handlers 

(Dimitri and Oberholtzer 2008), we investigate the impact of clustering on several firm-

level variables that reflect firms’ performance and their marketing or procurement 

decisions.  These firm-level variables include the following:  total gross sales per 

employee, total gross sales, total number of full-time employees, the percentage of 

handlers’ sales total sales that is organic, the percentage of handlers’ total procurement 

that is organic, and the percentage of organic products sold or procured locally, 

regionally, nationally, or internationally.   

Before we can estimate the impact of clusters on these firm-level variables, our 

empirical investigation has several preliminary steps.  The first step is to operationalize 
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the definition of a firm cluster.  Here, we find little difference from using zip codes or 

counties; we do, however, find important differences when the definition of a cluster 

depends on the number of firms in a cluster.1  Our second step is to account for potential 

endogeneity in the cluster variable by estimating a cluster-formation equation where the 

formation or presence of a cluster, from the firm’s perspective, is a binary dependent 

variable.  Our third step is to estimate the impact of a cluster’s presence, along with other 

exogenous factors, on the firm-level output variables mentioned above.  Because cluster 

impacts are conditional on cluster formation, which is itself endogenous, we model 

cluster formation as a treatment effect and estimate the second and third steps 

simultaneously following the maximum-likelihood methods outlined in Cameron and 

Trivedi (2005, Chapter 25).  Our last step is to replicate these system estimations after 

varying the minimum number of firms that define a cluster.   

Our results confirm that the presence of a firm cluster often does have a 

significant impact on firm-level performance or decision variables.  For example, 

clustered firms have more than $1 million in additional sales per-employee.  In addition, 

the results from our last step show that the impact of clusters on firm performance and 

other firm decisions is sensitive to the minimum number of firms chosen to define a 

cluster.  When a firm cluster is defined as a three or more organic firms located within a 

county, for example, clusters positively impact a firm’s total gross sales.  However, when 

the cluster is defined using a larger minimum number of firms (e.g., nine or more organic 

firms within a county), then a cluster’s presence negatively impacts a firm’s total sales.  

                                                 
1 We eventually present estimated econometric models using a county-based definition of a cluster because 
more socio-economic data are available at the county level than the zip code level. 
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These results and others, along with some robustness checks, are presented and discussed 

following a more formal presentation of our methods and data. 

Model and Methods 

In this section, we develop an econometric model where an equation that describes 

cluster formation is linked to an equation that describes the impact of clusters on firm 

performance or firm decisions.   Our model characterizes a cluster’s impacts as a 

treatment effect (see for example Cameron and Trivedi, 2005), where cluster formation is 

endogenous and therefore its effect on firm performance may be subject to selection bias.  

Modeling cluster impacts first, we let yj
i denote firm-level decision j of firm i or an 

indicator of firm i’s performance, and we allow this variable to depend on the presence of 

a firm cluster, Cn, and other controlling factors, x, so that 

(1)    yj
i = α Cn,i  + xi′ββββ1 + ε1i ,    

where ββββ1 are the estimated coefficients on the controlling factors, x′ββββ1 takes a linear form 

by assumption, ε1i is an error term described below, and α is the impact of firm clustering 

on yj.  In the estimated models that follow, we assume that j takes on a number of forms 

to reflect J different firm-level decisions or performance measures.2  Controls in the x 

vector are variables that describe the function of firm i or the demographic surroundings 

of firm i.  Described this way, (1) is not intended to represent a structural equation that 

describes a firm’s optimizing behavior.   Rather, it explains variations in observed 

differences in performance measures or output variables that might come from 

optimizing behavior.3 

                                                 
2 In most of the following discussion, the index j will be suppressed to reduce the notational burden. 
3 While equation (1) is admittedly ad hoc in nature, it could be thought of as analogous to an output supply 
equation obtained by applying Hotelling’s lemma to a restricted profit function of the form π(w, p; Cn, x, z), 
where w and p are input and output prices, and Cn, x, and z are treated as fixed factors.  To make the 
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The binary cluster variable relevant to firm i, Cn,i, is modeled as the outcome of an 

unobserved latent variable, C*n,i.  Both the observed and latent variables are indexed by n 

to imply that the definition of a cluster depends on the minimum number of firms defined 

to make up a cluster.  We assume that C*n,i  is a linear function of a second set of 

controlling factors, z, which are based on Goetz (1997) and some of which may overlap 

with x, so that 

(2)    C*n, i  =  zi′ββββ2 + ε2i , 

and the observed cluster variable is  

(3)  ��,� � �1,   	
  ��,�� � 00,   ������	�� �  . 
Because of the endogeneity of Cn,i and the possibility that cluster formation and cluster 

impacts may occur simultaneously, equations (1) and (3) are estimated jointly.  The error 

terms ε2i and ε2i are bivariate normal with mean zero and covariance matrix 

   �� �� 1� . 
Given this specification, the log likelihood for observation i is: 

(4)  ln � � � ��Φ �!"′ββββ#$%&"'("′ββββ)'*+,/./0'1# 2 3 04 5&"'("′ββββ)'*6 74 3 ln%√2:�+ , ;" � 1
 ��Φ �'!"′ββββ#'%&"'("′ββββ)+,/./0'1# 2 3 04 5&"'("′ββββ)6 74 3 ln%√2:�+,         ;" � 0� , 

where F(.) is the cumulative standard normal distribution function.   

 To examine the effect of firm clustering on the dependent variable y, we are most 

interested in estimating parameter a.  However, as Cameron and Trivedi (2005) explain 

for more general cases, the average effect of a firm cluster must take into account the 

                                                                                                                                                 
analogy to an output supply equation complete, w and p must vary proportionally across firms at any point 
in time, and must be estimated with cross-sectional data.   In that case, the proportional prices would be 
incorporated into an estimated constant term. 
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endogeneity of clusters.  In other words, the average effect must account for potential 

selection bias and therefore, parameter ρ as well.  In our case, the average effect is the 

difference in the dependent variable conditional on whether a firm is in a cluster or not.  

Greene (2008, p. 890) shows that this average effect of a cluster on the dependent 

variable is: 

(5)   <=;�|��� � 1? 3 <=;�|��� � 0? � @ A �� B C=!"′ββββ#?D%!"′ββββ#+E0'D%!"′ββββ#+FG , 
where φ(.) is the standard normal density function.4  From (5), one can see that α would 

provide an appropriate estimate of the cluster effect if ρ = 0, which occurs if the cluster 

formation and the cluster effect equations are independent.  On the other hand, if ρ is 

positive, then α would underestimate the cluster effect. 

 Established theories on agglomeration and regional development provide little 

guidance for identifying elements of x, z, or even the best choices of for the dependent 

variable, yj
i.  In prior empirical research, two choices for the dependent variable include 

the change in output (Cainelli 2008), and investment per worker (Gabe 2004).  In our 

study, yj
i represents total gross sales, total employees, total sales per employee, and ten 

other firm-level variables available from the dataset described in the next section. 

 Choices for elements of x and z can be more problematic.  For research based on 

the estimation of structural equations (e.g., Graham and Kim 2008, and Cainelli 2008), 

the choice are somewhat clear.  For non-structural model estimation, however, there are 

more choices.  Roe, Irwin, and Sharp (2002) list seven categories of variables in their 

estimatable model:  (i) the agglomeration variable, (ii) urban encroachment and 

                                                 
4 The statistical software package Stata (release 10.0), which is later used for estimation, describes the same 
formula but also allows one to estimate the left-hand side of equation (5) directly by recovering the 
predicted values of y, conditional on the cluster variable being equal to zero or one. 
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population characteristic variables, (iii) input availability variables, (iv) firm productivity 

and specialization variables, (v) local economic variables, (vi) market access variables, 

and (vii) regulatory variables.  Our study uses the first five categories, (i), (ii), (iii), (iv), 

and (v), to help identify available data that can be used for elements of x and y.  These 

categories are identified on the list of variables found in Table 1.   

Data 

 Much of our data comes from a 2004 survey of certified organic handlers 

administered by USDA’s Economic Research Service.  Dimitri and Oberholtzer (2008) 

describe in detail the survey methodology and results.  The survey included questions on 

firm characteristics as well as marketing and procurement practices.  For each firm 

surveyed, we used county codes to identify firm clusters.  For example, using one 

definition, firm i was said to be in a cluster if at least two additional certified organic 

handlers from the survey were located in the same county.  In this example, n = 3, so if 

firm i is part of this cluster, then C3,i = 1. 

In addition to survey data, we also collected data from the U.S. Census of 

Agriculture to help describe the economic conditions found in an individual firm’s county.   

Table 1 lists and describes the variables from both the USDA survey and Census data 

used in our analysis.  In total, 316 firms in the survey have a complete set of data for all 

the variables listed in Table 1.5  Several of the variables listed in Table 1 are the result of 

minor manipulations of the original handler survey data.  For example, in the original 

survey, organic handlers were asked to prioritize the “Availability of year-round supply” 

                                                 
5 The results that follow fix the sample size at 316, the minimum sample size where valid observations for 
variables used in all the estimated models.  Because survey response varied across the 13 questions that 
generate the different dependent variables used in these models, an alternative approach is to let the sample 
size “float” for each of the estimated models.  When we used this approach, we found that the results were 
not substantially different from the results presented here. 
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and were given four choices: High Priority, Medium Priority, Low Priority, and No 

Difference.  Responses to this question were converted to a binary variable that equals 1 

if the firm answered High Priority or Medium Priority, and 0 otherwise.  In the case of 

one question in particular, Total Gross Sales, we imposed a substantial change to the raw 

data.  The sales question in the USDA survey asked organic handlers to describe their 

total annual gross sales by picking from among a list of seven sales-range categories.  In 

our current analysis, we transform this categorical variable to an integer by using the 

midpoints of the sales categories.  The conversion for the highest sales category (over 

$100 million) is chosen as 1.5 times the cutoff ($150 million).  We also created a 

productivity or output efficiency variable by dividing this new total sales variable by a 

firm’s number of full-time employees.  Much of the survey-based data in Table 1 is 

described in Dimitri and Oberholtzer (2008), although our smaller sample size may lead 

to some discrepancies in mean values.  Additional county-level data comes from the 

Census of Agriculture and the Bureau of Economic Analysis. 

We identify 31 variables from the organic handler survey that might be expected 

to influence firms’ decisions or performance and help control for impacts not due to the 

presence of a firm cluster. These variables form the basis for the x and z vectors.6  In all 

cases, these variables fit within categories used by Roe, Irwin, and Sharp (2002).  Table 1 

identifies each variable with a particular category.   

Upon examination of Table 1, one can see that more than half of the 316 firms are 

part of clusters if we use the C3 definition.  Alternatively, only 21.5 percent of the total lie 

in a cluster if 10 is chosen as the minimum number of clustering firms (C10i).  Organic 

                                                 
6 Greene (2008) notes that joint ML estimation of the system can be complicated by identification issues.  
For this reason, we are careful to include some elements of  x and z that are unique to each vector. 
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sales are mostly national (38.7 percent) or regional (29.8 percent); organic procurement, 

however, is split almost evenly among local, regional, national and international sources.   

Table 1 also shows that most firms function as manufacturers or processors, and the 

average is around 71.8 percent.  While 16.8 percent of the total sample handle organic 

manufactured products related to grain or oilseed milling, only 5.1 percent of the total 

relate to animal slaughtering or processing.  More than 60 percent of the firms in the data 

place a high or medium priority on procuring supplies locally, and more than 70 percent 

of the total use contracts for procurement.   

Results and Discussion 

Thirteen dependent variables listed in Table 1, along with each of the eight cluster 

variables, are estimated in Maximum Likelihood systems represented by equations (1), 

(2), and (3).  Because reporting 104 separate ML estimation results is impractical, we 

present instead a small illustrative selection of results.7  First, we select one particular 

cluster variable, C6, chosen because its criterion of requiring at least six organic firms to 

define a cluster is in the middle of our range of examined definitions.  Second, for 

presentation purposes, we select one individual firm-level performance variable, total 

sales per employee, which is chosen because it provides the clearest measure of firm 

efficiency available from our data.  Table 2 presents the full ML results for this two-

equation system.  Near the bottom of Table 2, one sees that the estimate for ρ is positive 

and a Chi-square test strongly suggests that the two error terms from (1) and (2) are in 

fact correlated.  Thus, OLS estimation of (1) would lead to significant bias if the 

recovered estimate for α were used by itself to calculate the effect of firm clusters on 

                                                 
7 A full set of results for the 104 systems is available from the authors.  Tables 3 and 4 draws from all 104 
systems to summarize the impact of clusters on various firm decisions, and illustrates how this impact is 
sensitive to the definition of a firm cluster.   
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sales per employee.  In addition to the results for one particular system estimation, we 

summarize select results from all 104 systems in Table 3, which presents the 104 

estimates of α.8 

i. Cluster Formation 

 The first numeric column of Table 2 presents the ML results that reflect how firm 

characteristics and economic conditions influence the formation of a six-firm cluster of 

organic handlers.  Nine of the 30 coefficient estimates (excluding the constant term) are 

found to differ significantly from zero.  Four of the nine describe firm functions or 

specialization:  Firms that function as a broker, and firms that have both production and 

handling functions, are less likely to be in a cluster.  On the other hand, firms functioning 

as packers or shippers, and independent firms with only one facility are more likely to be 

in a cluster.  Three other of the variables with significant impacts generally describe input 

availability:  The number of small farms in a county has a positive impact on clustering, 

while a firm’s priority for year-round supplies and a firm’s total number of organic 

suppliers both have a negative impact on clustering.  Finally, two demographic 

variables – population and the percent of the population with college degrees – both have 

a positive impact on clustering.9   

 Taken collectively, several of these results provide insight into the potential 

positive and negative tradeoffs from firm clustering that stem from competitive and 

cooperative behavior.   Firms with many organic suppliers may feel disadvantaged in a 

cluster because of increased competitive pressures.  On the other hand, independent one-

                                                 
8 Actually, Table 3 presents only 101 estimates of α because a joint ML estimation of the two-equation 
system fails to converge in three instances.  While a two-step procedure is successful in recovering 
estimates of α, these results are omitted in Table 2 to preserve a more direct comparison of estimates. 
9 Though not presented in Table 2, similar results generally hold when the clustering definition, Cn, varies 
for n = 4, 5, 7, and 8.      
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facility firms may find advantages if clustering firms can increase scope economies 

through cooperation.  Firms that produce as well as handle, however, may see less need 

for cooperation and therefore be less inclined to cluster.    

ii. Impacts of Clusters on Firm Efficiency 

  The second numeric column of Table 2 shows how the cluster variable, C6, and 

other factors impact firm efficiency as measured by sales per employee.  First and 

foremost one should see that the coefficient on C6 is negative and significant.  By itself, 

this estimate would lead one to believe that firm clusters have a detrimental effect on firm 

efficiency.  However, as equation (5) shows, and as we discuss below, the true estimate 

of the average effect of clusters must take into account the impact of sample selection 

bias.   

 Apart from the cluster variable, eight of the other 25 coefficient estimates 

(excluding the constant) are statistically significant.  All else equal, firms with multiple 

locations are more efficient than the single-location firms, as are firms that self-identified 

themselves as large.  Food manufacturers/processors and packer/shippers are less 

efficient than firms with other functions.  And firms that experienced shortages of organic 

ingredients ended up being more efficient than firms that did not.  Finally, firms located 

in more populated counties and in counties with higher nonfarm per capita income are 

also more efficient.  Some of these results may suggest productivity gains from 

specialization or returns to scale.  Others may suggest gains from a stronger labor pool.   

iii. Impacts of Clustering on Additional Firm Decisions 

 Tables 3 and 4 present results from all 104 estimated ML systems showing  (i) the 

coefficient estimates for α in each case, and (ii) the selection bias-adjusted average effect 
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from clusters for the wider range of firm-level decision variables or firm performance 

measures.   Table 3 shows that the estimated α is statistically significant in most models 

(i.e., in 57 out of 101 ML estimations that converged).  It also shows that the sign and 

level of significance can vary across the two dimensions depicted in the table:  variation 

in the dependent variable, and variation in the minimum number of firms used to define a 

cluster.  An extreme example of this variation is found in the system with the dependent 

variable “Organic procurement – % local”, which captures the percentage of total organic 

procurement that is done at a local level.  For this case, Table 3 shows that the estimate 

for α is positive and significant when a three-firm cluster is used (C3), but negative and 

significant when an eight- or nine-firm cluster (C8 or C9) is used.  Looking at all 104 

cases, however, Table 3 shows that when the estimate for α is statistically significant, the 

sign of α is generally stable.   

 Table 4 uses recovered estimates of α plus estimates for ρ and other recovered 

information to calculate the average cluster effect, accounting for selection bias, given by 

equation (5).   The first row of Table 4 shows the average impact of clusters on total 

gross sales per employee.  Note that for the C6 column, Table 4 shows that a firm cluster 

(defined with a six firm minimum) leads to an average gain of $1.32 million in increased 

sales per employee.  This positive value for a cluster’s impact contrasts with the 

corresponding negative estimate of α reported in Tables 2 and 3.  Following equation (5) 

for this example, a positive estimate for ρ helps overcome a negative estimate for α.   

This finding suggests that firms that are naturally more likely to benefit from clusters do 

in fact seek out clusters.  A good example of this effect, mentioned in the discussion of 

Table 2, concerns firms that are independent with a single organic facility.  These firms, 
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apparently, choose to cluster, and in turn expect the cluster to provide efficiencies in 

scope that would otherwise be unavailable to an independent firm.    

 Table 4 furthermore shows that firm clusters have a positive (i.e., beneficial) 

impact on sales per employee.  Clusters also have a positive impact on a firm’s 

percentage of organic sales and organic procurement.  Clustering positively impacts the 

percentage of sales and procurement in local markets, while negatively impacting the 

percent of sales and procurement in national markets.  Perhaps the most noticeable 

impacts concern procurement decisions.  The presence of a cluster increases the organic 

component of total procurement by as much as 37.2 percent (in column 10); it increases 

organic procurement made locally by as much as 23.4 percent (in column 6); and it 

decreases procurement from national markets by as much as 32.5 percent (in column 6). 

iv. Sensitivity of Impacts to Cluster size 

Table 4 also shows that the impacts from clusters are sensitive to the definitional 

size of a cluster.  A good example of this sensitivity concerns total sales per employee.  

When the minimum number of firms used in the cluster definition is small (e.g., n = 3) 

the impact is relatively small ($0.17 million).  However, this impact increases as n 

increases:  For n = 8, the average effect of a cluster is an additional $1.44 million sales 

per employee.  Other dependent variables show similar sensitivity.  For low values of n, 

the impact of clusters on full-time employees is somewhat minimal (ranging between 9.0 

fewer or 8.7 additional employees when n equals 3, 4, or 5), but the impact is more 

dramatic for higher levels of n.  When n = 10, for example, firms in a cluster have on 

average 93.6 fewer employees.  In several cases, the sign of the average impact changes 

as n changes:  For example, firms in a C5 cluster have $11.4 million more  in total gross 
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sales than non-clustered firms, on average.  On the other hand, firms in a C9 cluster have 

$13.7 million less in total gross sales than non-clustered firms, on average.  In many 

instances, the cluster effect intensifies as the definitional number of firms in a cluster 

increases. 

v. Robustness of Results and Model Specification 

 In addition to experimenting with variations of the cluster definition based on the 

minimum number of firms, we also investigated several other specification issues to see 

how robust our results were.  First, instead of basing clusters on counties, we replaced 

county borders with the geographic boundaries that follow the first three digits of the U.S. 

zip codes.  Second, instead of fixing the sample size for estimation at 316 observations, 

we allowed the number of observations to vary for the estimation of the 104 ML systems.  

Because each system’s estimation relies on different dependent variables, and because 

not all questions in the USDA Economic Research Service’s survey were answered with 

the same frequency (see Dimitri and Oberholtzer 2008) we allowed the econometric 

software to pick the maximum number of observations for each estimation. And third, we 

experimented with subsets of the x and z vectors to estimate the ML systems.  More 

specifically, we removed some of the category (iv) dummy variables from equation (1) 

listed in Table 2, and also some elements of x that were potentially endogenous (such as a 

dummy variable for “Year-round availability priority”).  In all of the model specifications 

described by these cases, we found almost no substantial differences in our estimation 

results described by Tables 3 and 4.  These robustness checks, therefore, provide an 

increased sense of confidence.   
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Discussion and Conclusion 

This paper expands the sparse literature that attempts to document the impacts of firm 

agglomeration (or firm clusters) on firm-level performance or firm-level decisions.   We 

investigate the certified organic handler sector, a specialized component of the middle 

part of the farm-to-table marketing chain.  To estimate the impacts from clusters, 

however, we have at least two preliminary tasks.  First, in an attempt to explore how firm 

clusters might be defined, we allow the definition of a cluster to vary by the minimum 

number of similar firms present in a geographic area.  Second, we draw on the treatment 

effects literature to estimate clusters’ impacts only after accounting for possible 

endogeneity in the formation of clusters.   

While our study confirms that endogeneity often is an issue that could bias results, 

our most important findings confirm that firm clusters have significant impacts in the 

organic handling sector.  The exact measurement of clusters’ impacts, however, depends 

on how a firm cluster is defined.  For example, significant impacts on sales per employee 

range from an additional $0.17 million to $1.47 million, depending on whether a small or 

large number of firms is used as the minimum number to define a firm cluster.   

Taken collectively, our results also help shed light on the tradeoffs between 

competition and cooperation in the organic handling sector.  For this sector, our results 

suggest that cooperative forces may outweigh competitive forces.  For example, one 

might be tempted to speculate that organic handlers in a county-based cluster of at least 

seven or eight similar organic firms may be forced out of local markets for their 

procurement because of intense competitive pressures.  However, the opposite is true:  

clustered firms are more likely to procure locally.  At least two reasons could explain this 
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finding.  First, as the firm agglomeration literature suggests, clustered firms attract 

organic production and create a strong local economy that can support a large cluster.  

Second, clustered firms in our data may be heterogeneous enough to create sufficient 

synergies in operations, thereby using other firms to create economies of scope.  In other 

words, one possible explanation for the positive impact of clusters is that these organic 

handlers are middlemen who buy and sell from each other, thereby allowing more 

specialization to occur.    

The above discussion notwithstanding, intense competition is still evident in our 

results, particularly when the definition of a firm cluster is based on a large number of 

firms.  For example, firms in a large cluster may have, on average 75 to 95 fewer 

employees than other firms.  It is interesting to note, however, that the same clustered 

firms (using a C9 cluster definition, for example) see sales per employee increase by 

$1.47 million while the total number of employees decreases by 74.9 employees.  Here, 

the competition for labor may be so intense that firms have adjusted their operations to be 

less labor intensive and more output efficient.   
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Table 1:  Descriptive Statistics for Data Used in the Empirical Models 
 

Variable Description/ 
Units 

Min. Mean Max. 

Endogenous Cluster Variables: Cn     
  C3  (i) 0,1 0 0.560 1 
  C4  (i) 0,1 0 0.472 1 
  C5  (i) 0,1 0 0.411 1 
  C6  (i) 0,1 0 0.332 1 
  C7  (i) 0,1 0 0.313 1 
  C8  (i) 0,1 0 0.275 1 
  C9  (i) 0,1 0 0.247 1 
  C10  (i) 0,1 0 0.215 1 
 
Endogenous Firm-level Variables:  y 

    

  Total gross sales per employee $ 500 557,682 20 mil. 
  Total gross sales $ 250,000 13.3 mil. 150 mil. 
  Total full-time equivalent employees # 0.25 55 750 
  Percentage of organic procurement % 0.05 43.887 100 
  Percentage of organic sales % 0 40.961 100 
  Organic sales – % local (w/in 1 hour) % 0 24.081 100 
  Organic sales – % regional (bordering states) % 0 29.768 100 
  Organic sales – % national % 0 38.675 100 
  Organic sales – % international % 0 7.608 100 
  Organic procurement – % local % 0 23.019 100 
  Organic procurement – % regional % 0 29.816 100 
  Organic procurement – % national % 0 24.312 100 
  Organic procurement – % international % 0 22.821 100 
 
Exogeneous Variables (x) and category 

    

Multiple locations* (iv) 0,1 0 0.250 1 
Manufacturer/processor* (iv) 0,1 0 0.718 1 

   Wholesaler/distributor*  (iv) 0,1 0 0.307 1 
   Broker* (iv) 0,1 0 0.076 1 
   Packer/shipper*  (iv) 0,1 0 0.184 1 

Years as a certified organic handler* (iv) # 0 4.703 29 
Years in business* (iv) # 1 26.27 138 
Certified organic producer and handler* (iii) 0,1 0 0.215 1 

  Animal food manufacturer* (iv) 0,1 0 0.092 1 
Grain or oilseed milling* (iv) 0,1 0 0.168 1 

  Sugar or confectionery products* (iv) 0,1 0 0.057 1 
Fruit or vegetable preserving*(iv)  0,1 0 0.146 1 
Dairy product manufacturing* (iv) 0,1 0 0.104 1 

  Animal slaughtering or processing *(iv) 0,1 0 0.051 1 
  Bakery or tortilla manufacturing* (iv) 0,1 0 0.070 1 
  Beverage manufacturing* (iv) 0,1 0 0.095 1 

Shortage of organic products (iii) 0,1 0 0.358 1 
Priority of choosing local suppliers* (iii) 0,1 0 0.601 1 

   Self-identified facility size* (iv) 1=small, 2=med., 
3=large 

1 1.465 3 

  #of farms with size 10-49 acres* (iii) # 0 513.40        2,928  
  # of farms with size 50 acres or more* (iii) # 0 60.36 522 
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Table 1 (continued) 
 

    

Variable Description/ 
Units 

Min. Mean Max. 

     
Exogeneous Variables (x) and category 
(cont’d) 

    

  Market value of land/building per acre* (ii) $ 136.00 5,731.54 48,159.00 
  Education - college*  (ii) % 8.2 23.48 54.6 
  Nonfarm Income Per Capita* (v) $    15.60   31.06   73.99  
  Population* (ii) #      2,160   731,380.9   9,880,732  
     
Exogeneous Variables (z) and category     
  Recruits existing organic suppliers (iii) 0,1 0 0.465 1 
  Year-round avail. a main priority (iii) 0,1 0 0.661 1 
  Using contracts for procurement (iii) 0,1 0 0.725 1 
  Independent with 1 cert. organic facility (iv) 0,1 0 0.737 1 
  % procured from spot market (iii) % 0 29.241 100 
 Total # of certified organic suppliers (iii) # 0 12.541 750 
     
Number of complete observations = 316     

 
Notes:  
*  Exogenous variables in x marked with an * are also included in z.  
Categories for Cn,  x and z:  (i) firm agglomeration variable, (ii) urban encroachment and population 
characteristic variables, (iii) input availability variables, (iv) firm productivity and specialization variables, (v) 
local economic variables, 
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 Table 2:  ML Results for Cluster Formation, C6, and Sales Per Employee 
(z-stats in parentheses) 

 Dependent Variables  

 C6 
Total Gross Sales 

per Employee 

Constant 
-2.01** 
(-2.92) 

-219,961 
(-0.32) 

Cluster (C6) --- -2.22x106** 
(-9.54) 

Multiple locations 0.290 
(1.08) 

413,873* 
(1.61) 

Manufacturer/processor -*0.023 
(-0.09) 

-995,182*** 
(-3.49) 

Wholesaler/distributor 0.239 
(1.17) 

331,225 
(1.31) 

Broker    -0.677* 
(-1.95) 

-269,626 
(1.31) 

Packer/shipper   0.146 
(0.60) 

-562,032* 
(-1.87) 

Years certified organic handler -0.053 
(-0.28) 

-5,467 
(-0.25) 

Years in business -0.004 
(-1.11) 

-3,552 
(-0.79) 

Certified organic producer and 
handler 

 - 0.382* 
(-1.71) 

-361,526 
(-1.32) 

Animal food manufacturing 0.018 
(0.06) 

-138,824 
(-0.33) 

Grain or oilseed milling 0.298 
(1.18) 

549,710* 
(1.64) 

Sugar or confectionery products -0.662* 
(-1.71) 

-535,636 
(-1.10) 

Fruit or vegetable preserving 0.428 
(1.59) 

316,830 
(0.98) 

Dairy product manufacturing -0.214 
(-0.77) 

-408,393 
(-1.13) 

Animal slaughtering or 
processing 

-0.102 
(-0.24) 

-446,429 
(-0.90) 

Bakery or tortilla 
manufacturing 

-0.182 
(-0.48) 

-345,207 
(-0.78) 

Beverage manufacturing -0.114 
(-0.38) 

-361,090 
(-0.96) 

% procured from spot market 0.001 
(0.60) 

--- 

Total # of organic suppliers   -0.0.29*** 
(-12.74) 

--- 

Shortage of organic products --- 334,290* 
(1.92) 
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Table 2 (Continued) 
 

 Dependent Variables  

 C6 Total Gross Sales 
Recruiting existing organic 
suppliers 

-0.059 
(-0.45) 

--- 

Choosing local suppliers a 
priority  

    0.511** 
(2.62) 

335,485 
(1.37) 

Year-round availability a main 
supplier priority  

-0.039 
(-0.27) 

--- 

Using contracts for 
procurement 

0.113 
(0.81) 

--- 

Independent with one certified 
organic facility 

   0.505* 
(1.94) 

--- 

Self-Indentified Facility Size 0.023 
0.15) 

308,167* 
(1.77) 

# of farms with size 10-49 
acres 

     0.001*** 
(2.92) 

312.0 
 (1.24) 

# of farms 50 acres or more 0.000 
(0.21) 

520.3 
(0.33) 

Market value of land/building 
per acre 

2.97x106 
(0.18) 

1.44 
(0.07) 

Education - college     0.025** 
(2.13) 

--- 

Population 6.65x107*** 
(3.96) 

0.180*** 
(2.64) 

Nonfarm income per capita -0.003 
(-0.13) 

40,878** 
(2.38) 

 
ρ 

 
0.930 

LR test ρ = 0:  χ2(1)=65.50, Prob > χ2(1) = 0.000 

 
Notes:  *** = statistically significant at the 99 percent level; ** at the 95 percent level; * at the 90 percent level. 
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Table 3:  Signs of ML Estimates for αααα, with Different Cluster Definitions  
 

 Clusters, Cn, where n = 3 to 10 
Dependent Variable n = 3 4 5 6 7 8 9 10 

Total gross sales per employee 
   ($ millions) 

+ –*** –*** –*** –*** –*** –***  nc 

Total gross sales 
   ($ millions) 

+*** +*** – – – + +*** – 

Total full-time employees +** +* + +*** +*** +*** + *** +*** 

Percentage of organic sales –** –** –* – – – – – 

Percentage of organic procurement –*** –* –** –** –*** –** –*** –*** 

Organic sales - % local –*** –*** – + + + – – 

Organic sales – % regional +*** +** +* + + + – + 

Organic sales – % national nc – – + + + nc nc 

Organic sales – % international –*** –*** –*** –*** –*** –** +*** – 

Organic procurement – % local +*** + – – – –* –** – 

Organic procurement – % regional –** –** –** – – – – –** 

Organic procurement – % national +*** +*** +*** +*** +*** +*** +*** +*** 

Organic procurement – % internat’l –** –* –** – – – – – 

Notes:   

*** = α statistically significant at the 99 percent level; ** at the 95 percent level; * at the 90 percent level. 
nc = two-equation ML estimation did not converge. 
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Table 4:  Average Firm-Cluster Effect Accounting for Selection Bias, with Different Cluster Definitions 
 

 Clusters, Cn, where n = 3 to 10 
Dependent Variable n = 3 4 5 6 7 8 9 10 

Total gross sales per employee 
   ($ millions) 

0.17 0.43 0.98* 1.32* 1.38* 1.44* 1.47* nc 

Total gross sales 
   ($ millions) 

3.24* 0.05* 11.4* 9.47 11.1 3.88 -13.7* 3.63 

Total full-time employees 8.7 -9.0 8.6 -53.7* -50.4* -79.0* -74.9* -93.6* 

Percentage of organic sales 6.3* 9.7* 8.4 11.8 12.8 6.1 11.6 17.5 

Percentage of organic procurement 8.3* 11.2* 8.9* 18.8* 24.5* 20.8* 27.2* 37.2* 

Organic sales - % local 9.0* 10.1* 9.3 8.7 7.7 5.6 7.9 11.3 

Organic sales – % regional -7.7* -10.1* -9.1* 0.4 -3.7 -2.2 -3.6 0.3 

Organic sales – % national nc 5.2 -0.5 -14.1 -7.4 -6.3 nc nc 

Organic sales – % international 3.9* 4.9* 6.5* 3.1* 4.3* 2.9 -19.2* -1.7 

Organic procurement – % local 2.8* 5.9 17.3 23.4* 23.3* 22.5* 20.6* 16.9 

Organic procurement – % regional 2.9* 1.0* 1.4 -0.7 -2.5 -9.9 5.0 12.8 

Organic procurement – % national -20.9* -23.5* -26.8* -32.5* -30.4* -28.3* -24.3* -26.1* 

Organic procurement – % internat’l 8.4* 12.6* 16.0* 15.4* 15.0* 18.0 5.3 9.6 

Notes:   
*= estimates of ρ are statistically significant at the 90 percent level or better. 
nc = two-equation ML estimation did not converge. 
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Figure 1:  The Geographic Dispersion of Certified Organic Handlers (Dimitri and 
Oberholtzer, 2008) 

 

 
 
 


