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Studies of pest management in agricultural production focus on determining the optimal 

use of pest control inputs while treating harvest dates as inflexible. Our analysis adds to 

the agricultural pest management literature by modeling the choice of harvest date as 

another tool that producers may use to mitigate damage from a pest. In this paper, we 

formulate a stochastic intra-seasonal model of joint harvest and damage control input 

decisions at the level of the individual grower. We frame the analysis within the 

empirical context of the olive fruit fly infestation in California. 

As well as expanding the set of feasible management options available to a 

grower, the choice of when and whether to harvest may alter the character of interior pest 

treatment optima. Specifically, growers may alter their harvest date to reduce the cost of 

pest control input applications throughout the season. In the extreme, by altering harvest 

timing, the grower may avoid application of pest control treatments altogether. 

Alternatively, a grower may abandon production mid-season, ceasing treatments from 

that moment, if pest damage escalates to such a level that continued production yields 

expected losses that exceed the costs of production to date.  

Significant potential exists for harvest timing to affect growers’ management of 

pest damage in our example. In general, the olive crop in California is mature well in 

advance of traditional harvest dates. However, even after fruit attains maturity, it 

increases in size, a characteristic that is rewarded with price premiums from processors. 

The tradeoff for a grower against a higher price for larger fruit is that olives become more 

susceptible to fly damage as they increase in size. Anecdotally, California olive growers 

have sometimes responded to the fly infestation by altering harvest timing to reduce 

insecticide use or to avoid losses due to high damage rates late in the growing season.  
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Fly damage affects both yield and fruit quality. Damage to olives by the fly 

reduces yield (in tons per acre) over the growing season via premature fruit drop. It is 

important at this point to define what we mean by fruit quality. One component of fruit 

quality is olive size, which determines the price received by a grower on delivery to a 

processor. Fly damage does not directly affect the equation of motion governing changes 

in fruit size. The second quality component is the percentage of fruit that show evidence 

of fly infestation. The fly stings olives to oviposit, leaving visible holes which ruin the 

fruit’s aesthetic and preclude them from canning. Subsequent larval development inside 

an olive destroys the fruit’s sensory characteristics by introducing an avenue for fungal 

and bacterial infections. This type of advanced infestation prohibits olives from oil 

processing as well. Both canning and oil olive processors enforce quality standards at the 

processing gate, rejecting deliveries with a damage rate exceeding a set threshold.  

The model of intra-seasonal pest management decisions that we present 

incorporates detailed pest-host biological relationships into a stochastic optimization 

framework. We focus our attention on yield loss due to fly infestation. In particular, we 

evaluate the tradeoff involved in delaying harvest to allow fruit to increase in size with 

the decrease in yield associated with extending production into periods of peak 

infestation late in the growing season. We solve the problem numerically in order to 

determine the combination of treatment strategy and harvest date that maximizes returns 

for a representative producer of several olive cultivars across the state’s producing 

regions. We conclude by comparing optimal management practices when harvest timing 

is fixed versus when it is flexible.  
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Relevant Literature 
 
Pest control inputs are one in a larger class of inputs that are designed to mitigate 

damages or losses realized during production. Producer decisions regarding the use of 

damage control inputs differ from decisions regarding “positive” inputs. The latter affect 

productive yield directly. In contrast, damage control inputs influence output indirectly 

by reducing negative deviations from the yield level determined by positive inputs (Feder 

and Regev 1975; Lichtenberg and Zilberman 1986).  

 Lichtenberg and Zilberman (1986) demonstrate that the way in which damage 

control inputs enter a production function alters predicted behavior by a profit-

maximizing producer. They express production (Q) as a function of positive inputs (Z) 

and a damage abatement function (G(•)) that depends on pest control inputs (X), i.e. 

. They show that treating X as a positive input, or assuming a production 

function of the form , leads to overestimates of the marginal productivity of 

X in an econometric analysis. They also demonstrate that incorporating X indirectly via a 

damage abatement function is particularly important in the presence of pesticide 

resistance, which generates temporal externalities across growing seasons.

( )[ XGZFQ ,= ]

]

                                                

[ XZFQ ,=

1 When pest 

resistance to X increases over time, treating X as a positive input (assuming the standard 

properties for a neoclassical production function) yields the conclusion that use of the 

input will decline over time as its marginal productivity decreases. Incorporating X in the 

production function via G(•) yields exactly the opposite prediction, which corresponds to 

observed producer behavior. In short, a producer first chooses the optimal level of 

 
1 Lichtenberg and Zilberman (1986) demonstrate that this result holds under the assumption that pesticide 
resistance dynamics are governed by the aggregate use of the pest control input, i.e. an individual producer 
views his use of X as having a negligible impact on regional resistance dynamics. In this case, an individual 
grower’s problem can be characterized as one of sequential myopic decision-making. 
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abatement, then the level of X required to obtain that goal. Thus, as X declines in efficacy, 

a grower will tend to increase their use of the damage control input over time.  

The framework specified by Lichtenberg and Zilberman provides the foundation 

for two subsequent analyses that highlight additional points to consider when modeling 

pest control input decisions. Babcock, Lichtenberg, and Zilberman (1992) incorporate the 

quality effects of pest control inputs in addition to yield quantity impacts. They 

demonstrate that, when a pest control input affects yield and product quality, failing to 

account for quality understates the optimal level of pest control input use. Saha, 

Shumway, and Havenner (1997) allow damage abatement to depend on both X and 

elements of Z, i.e. , where .([ ]zXGZFQ ,,= )

                                                

Zz ⊆ 2 They consider the case in which 

fertilizer applications enhance pest survival, reducing the efficacy of X in damage 

abatement. In their model, the optimal level of fertilizer takes into account the direct 

marginal benefit of fertilizer on production as well as its marginal cost in terms of 

requiring increased X to attain the optimal level of damage abatement.3  

These three analyses do not explicitly define a pest damage function. Rather, they 

implicitly include the baseline level of damage in the production function (as output 

 
2 Lichtenberg and Zilberman consider a similar formulation in their definition of a production function in 
the face of increasing pesticide resistance (R): ( )[ ]RXGZFQ ,,= . However, R enters only into the 
abatement function. It does not affect output both directly and indirectly as in Saha, Shumway, and 
Havenner’s specification. 
3 Assume the existence of a unique interior maximum (i.e. convexity in the production function) and 
differentiability of the production and abatement functions. For a producer operating in a perfectly 
competitive environment, with single positive input z and damage abatement input X, with exogenous unit 
prices r and w, respectively, the profit-maximizing problem can be written as 
 ( )[ ] .,,max

,
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when abatement equals zero). The pest management literature most often models pest 

damage as a function of the pest population (see, for example, Feder and Regev 1975; 

Regev, Gutierrez, and Feder 1976; Moffit, Hall, and Osteen 1984; Pannell 1991; and 

Deen et al. 1993). It follows from this conceptualization of damage that abatement takes 

the form of a “kill” function, i.e. the proportion of the pest population eliminated with the 

use of one or more pest control inputs. 

Several studies highlight cases in which population-based damage and abatement 

functions may be incorrect. McKee et al. (2009) identify the importance of distinguishing 

the age distribution of the pest population when defining a damage relationship. The 

authors also define damage as a function of pest activity, which depends on both the pest 

population and the amount of time spent within biological development thresholds. 

Marsh, Huffaker, and Long (2000) consider an example in which a pest transmits a virus 

to a host and the level of viral infection determines crop quality and quantity damage. 

Their empirical analysis indicates that the optimal timing of pest control applications 

coincides with periods when an insect pest is most efficient at transmitting a virus. This 

timing need not coincide with periods in which the pest population is largest. Christiaans, 

Eichner, and Pethig (2007) derive a crop production function based on micro-level 

constrained optimizing behavior by a pest and a host. Their approach allows simultaneity 

in host susceptibility and pest population levels. In so doing, they find that an optimal 

management approach may include enhancing crop resilience to infestation, reducing 

pest populations, or by altering some input that accomplishes both ends.  

The analyses discussed in this section, taken together, highlight three key 

quantitative relationships to define in an analysis of pest control incentives. The first key 
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relationship defines the damage process. One should consider the mechanics of the 

damage process, such as whether the pest population directly inflicts damage (and what 

portion of the population damages the host) and whether the level of damage at any point 

in time depends on other factors, such as the susceptibility of the host or temperatures. 

The second defines yield as a function of positive inputs. As in Babcock, Lichtenberg, 

and Zilberman (1992), the specification of potential yield should include a quality 

dimension, in addition to quantity considerations, when quality plays a role in 

determining growers’ returns. The third component is the damage abatement function. In 

general, this function depends on inputs specifically designed to mitigate damage (such 

as insecticide applications) and inputs that jointly affect yield and abatement.4  

We are not aware of any literature that examines joint harvest and pest control 

treatment decisions directly. However, the harvest timing decision considered in this 

analysis fits well within the framework described by Saha, Shumway, and Havenner 

(1997). The olive harvest date plays both positive and damage abatement roles in the 

production function. Absent fly infestation, the optimal harvest date maximizes fruit yield 

quantity and quality by balancing increases in fruit volume with the risk of an over-ripe 

crop, premature fruit drop, and freeze damage (Sibbett and Ferguson 2005). However, 

harvest timing is now another means of limiting olive fruit fly damage. The optimal date 

of harvest will balance the marginal losses from increasing damage with the gains in 

revenue from fruit growth associated with a delay in harvest. In this paper, X represents 

insecticide applications and Z includes harvest timing along with other productive inputs.  

                                                 

)]
4 Saha, Shumway, and Havenner (1997) point out that their damage function specification, 

 involves assumptions about the separability of inputs. This specification assumes that 
the marginal rate of substitution among pairs of inputs included in X is independent of elements of Z not 
included in z. The authors recommend pre-testing for separability if possible. We discuss this issue in the 
context of our empirical application in the modeling subsection. 

([ zXGZFQ ,,=
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The Olive Fruit Fly in California 
 
This analysis focuses on an empirical application to the olive fruit fly (Bactrocera oleae), 

an invasive species that became established in all California olive-producing regions 

between 1998 and 2004. The fly does not harm the future productivity of an olive tree, it 

damages only olive fruit. The fly is monophagous – olives are its only reproductive 

medium – and it does not inflict damage on any other flora.5 However, damages to 

California olive producers can be severe. Left uncontrolled, the majority of olive cultivars 

grown in California sustain 80 to 100 percent damage over the course of a growing 

season. The domestic olive industry is particularly vulnerable to infestation from an 

economic standpoint. Over 98 percent of the olives grown in California are processed 

into canned table olives. Because canned fruit remains intact visible fly damage renders 

olives unacceptable for any type of canning. Table processors currently enforce a zero-

damage threshold for raw olives.  

The mechanism of damage by the olive fruit fly is reproduction. The fly damages 

fruit first when it oviposits (stings and lays an egg in the fruit’s pulp, leaving a visible 

puncture), and later as the egg develops into a larva which feeds on the interior of the 

fruit. The size of olive fruit also plays a critical role in the damage process, as female 

flies prefer larger olives (Cobourn et al. 2008). Thus, the female fly population influences 

the amount of ovipositional activity, but the most advanced infestation is a function of 

immature fly development after oviposition. 

                                                 
5 It remains to be seen whether the fly might jump to another host. However, the olive fly has a long history 
in Mediterranean olive-producing regions, possible dating as far back as the third century B.C. (Vossen, 
Varela, and Devarenne (2005), during which it has not infested any host outside of olive tree species 
included in the family Olea europaea. 
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Prior to the arrival of the olive fruit fly in California, there were no registered 

pesticides for olives that could be used to combat fly infestation. Today, two insecticides, 

GF-120 Naturalyte Bait (Dow AgroSciences LLC) and Surround WP (Engelhard 

Corporation), are registered with the California Department of Pesticide Regulation 

(CDPR) to mitigate fruit fly damage. At present, the fly has no natural enemies in 

California. There are a number of other control mechanisms for olive fruit fly, including 

cultivation and trapping (Johnson et al. 2006). However, none of these reduce damage to 

a level sufficiently low for either canning or oil processing.  

Surround WP works by coating the fruit with a layer of kaolin clay. After harvest, 

fruit treated with Surround require intensive washing prior to processing, and the 

treatment’s effect on olive quality is uncertain. The efficacy of Surround hinges on 

whether all fruit are completely covered by the clay mixture. Surround is therefore both 

costly and time-consuming to use. Surround is not used widely in commercial olive 

orchards in California at present.  

 
Table 1.  Percent olive fruit fly damage by treatment, 2004 
Treatment Damage (%) 
Kaolin clay 2.18 a 
GF-120 3.88 a 
Attract and Kill 14.53 
Yellow Sticky Trap 30.78 b 
Olipe Trap (plain) 32.58 b 
McPhail Trap 33.95 b 
Olipe Trap (combination) 45.78 c 
Olipe Trap (spiroketal) 59.75 c 
Control (untreated) 87.62 
a,b,c: data followed by the same letter is not significantly different at the five percent level. 
Source: Vossen and Devarenne, 2007. 
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GF-120 is a Spinosad bait formulation that has been used successfully to combat a 

number of tropical and temperate fruit flies in the family Tephritidae.6 Spinosad is a bait 

that attacks a pest’s nervous system upon ingestion and leads to death. Several studies 

have demonstrated, in the context of Tephritids other than the olive fruit fly, that 

Spinosad is not harmful to natural parasitoids or to beneficial insects. Therefore, the 

treatment does not encourage secondary pest outbreaks (Stark, Vargas, and Miller 2004; 

Thomas and Mangan 2005). Moreover, Spinosad-based control formulations pose 

relatively little risk to human and environmental health (Revis, Miller, and Vargas 2004). 

GF-120 is the most widely used insecticide to control olive fruit fly damage in 

California. The University of California Integrated Pest Management (IPM) program 

recommends that producers dilute the bait at a ratio of one part insecticide to 1.5 parts 

water. The dilution is applied from the ground with a spray gun mounted on an all-terrain 

vehicle, with the goal of coating the underside of the plant’s leaves. Doing so prevents 

droplets from drying out in the sun and extends the number of days over which the bait is 

effective. The spinosad mixture need not be sprayed on every tree within a grove at once 

because flies can detect the bait from several yards away (Dow AgroSciences LLC 2006). 

The recommended practice is to spray the spinosad-water mixture on every other row of 

trees each week, from the first date of fruit susceptibility through harvest. The CDPR 

prohibits producers from applying GF-120 more often than every five days or more than 

19 times per tree in one season (CDPR 2005). 

                                                 
6 Spinosad bait formulations have been used to control the Caribbean fruit fly (Anastrepha suspensa), 
Mexican fruit fly (Anastrepha ludens), the Melon fly (Bactrocera cucurbitae), the Mediterranean fruit fly 
(Ceratitis capitata), the apple maggot fly (Rhagoletis pomonella), and the blueberry maggot (Rhagoletis 
mendax; Pelz et al. 2005; Prokopy et al. 2003; Stark, Vargas, and Miller 2004). 
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GF-120 treatments have been shown to reduce damage rates by the olive fruit fly 

from their uncontrolled level by 95.5 percent (table 1). However, even when used per 

IPM recommendations, the efficacy of the bait diminishes rapidly after application. 

Revis, Miller, and Vargas (2004) find that melon flies are significantly more attracted to 

fresh bait than that bait spray applied as little as 24 hours earlier. Precipitation events are 

even more detrimental to spinosad bait efficacy, reducing fly mortality rates by up to 50 

percent (ibid.).7 Taken in combination with the five-day minimum wait between sprays, 

the diminishing power of the bait makes olive groves particularly vulnerable to pest re-

entry. The olive fruit fly is a highly mobile pest, traveling up to 6.5 kilometers without 

rest to find a host (F.G. Zalom, personal communication, 2008). As a result, the efficacy 

of GF-120 suffers when there are untreated olive trees outside of the treated grove but 

within the pest’s range of mobility. Depending on weather factors and the proximity of 

untreated trees, which serve as a pest reservoir or refuge, GF-120 may suppress damage 

rates for as little as four or as many as 14 days after application (Prokopy et al. 2003; 

Mangan, Moreno, and Thompson 2006).  

 
The Producer-level Optimal Control Model 
 
In this section, we develop a modeling approach to examine the intra-seasonal pest 

treatment and harvest timing incentives facing California growers producing a variety of 

olive cultivars used in the canning and/or oil processing sectors under uncertainty. We 

consider a representative producer for each of fifteen location-cultivar combinations.8 

                                                 
7 However, the authors find that temperature and relative humidity do not affect fly mortality rates. 
8 The producing area-cultivar combinations are Sierra Foothills: Region I/Leccino; Northern Sacramento 
Valley: Region II/Manzanillo, Region II-Mission; Southern Coastal Sacramento Valley: Region 
III/Arbequina, Region III/Frantoio, Region III/Koroneiki, Region III/Leccino, Region III/Manzanillo, 
Region III/Mission, Region III/Sevillano; Northern Coast: Region IV/Mission; San Joaquin Valley: Region 
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These location-cultivar combinations span the full range of commercial production 

regions and include a heavy representation of Manzanillo and Mission olives, the two 

most popular cultivars grown in California.9 

 
The Optimization Model 
 
The olive fruit fly is a highly mobile pest. Additionally, it is well-known in the olive 

industry that an individual producer’s treatment decisions have a negligible impact on fly 

population dynamics. Rather, the pest population over time depends on treatment by all 

producers within a region (as defined by the extent of pest mobility and the growers’ time 

horizon). Regev, Gutierrez, and Feder (1976) explain that these conditions uniquely 

generate the potential for stock externalities. The immediate implication is that from the 

point of view of an individual producer (unless that producer is sufficiently large relative 

to the producing region) pest population dynamics are exogenous.10 If so, each producing 

agent behaves myopically, sequentially optimizing in each time period by choosing the 

level of pest control inputs (Feder and Regev 1975).11 Thus, a successive static 

optimization approach for pest control input decisions is appropriate for our empirical 

application.12 

                                                                                                                                                 
V/Manzanillo; Southern Coast: Region VI/Mission; and Southern Inland Sacramento Valley: Region 
VII/Manzanillo, Region VII/Mission. Manzanillo, Mission, and Sevillano cultivars can be used for either 
canning or oil production (though traditionally for the former). Arbequina, Frantoio, Koroneiki, and 
Leccino are cultivars grown specifically for oil. 
9 Glenn and Tehama Counties, which together account for 11 and 15 percent of the total value of olive 
production in California, formed producer-funded Pest Management Districts (PMDs) early in the course of 
the olive fruit fly infestation. The PMDs enforce uniform spraying standards across orchards in both 
counties, and remove untreated ornamental trees. 
10 A parallel is that of perfect competition, in which no individual producer affects the price of their 
product, but the actions of all producers taken in aggregate affect price.   
11 A social planner for the region would, in contrast, consider pest population dynamics when determining 
optimal pest control practices. 
12 This approach is appropriate only if the representative producers considered are small relative to the size 
of a producing region. On average, oil olive growers cultivate 14 acres and table olive growers hold 32 
acres, out of a total of about 5,000 oil acres and 25,000 table olive acres (National Agricultural Statistics 
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We formulate the producer-level pest control model with endogenous harvest in 

discrete time. The model’s state variables include average olive size in each period (vt) 

and the maximum proportion of the crop damaged by the fly in time period t (ndt). The 

grower chooses whether to apply a chemical insecticide at a fixed rate in period t (ut). We 

focus on treatment timing alone, treating the rate of application as fixed, as in Swinton 

and King (1994). We do so for two reasons. First, growers are constrained by liability 

issues to apply insecticide treatments per the manufacturer’s recommendation on the 

product label. Second, because the olive fruit fly and its chemical control products are 

new to California, little is known about differences in efficacy for variable application 

rates. Under these circumstances, it is reasonable to assume that producers apply the 

insecticide at the recommended dilution. 

When harvest is endogenous, the grower chooses the terminal period T that 

maximizes expected profit for the season.13 We assume that the grower operates a mature 

orchard; we do not model decisions concerning the planting date. The optimal harvest 

timing decision takes into account expected changes in yield over the growing season. 

Expected yield changes depend on the use of pest control inputs. The grower’s objective 

in terms of harvest timing is 

(1) . ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−−=Π ∑

−

=

1

1
**max

T

i
iiTTTTT

cuSyHyvPEE

                                                                                                                                                 
2007). Oil olive acres are more spatially dispersed than table olive acres, which are concentrated in the 
Sacramento and San Joaquin Valleys. Due to the spatial concentration of the majority of olive acres this 
assumption seems reasonable. 
13 Because the harvest window is so short, on the order of a couple of months, the discount rate is 
negligible. Therefore, the grower’s objective is to maximize expected profit rather than expected net 
present value. For modeling simplicity, we assume that harvest can be implemented and completed in a 
single period. In reality, harvest takes anywhere up to four weeks to complete. One could view the choice 
of harvest date here as the median date in the optimal harvest period. 
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( )TvP  is the per-unit value of the crop at harvest which depends on contemporaneous 

average olive size (vT). Revenue at harvest is a function of fruit size and yield (yT). 

Harvest costs are denoted H and depend on yield. The final term on the right-hand-side of 

(1) is the sum of per-period variable costs prior to period t. These include the costs of 

insecticide treatments, where S is the cost of a single application, and ut is a binary 

variable indicating whether the insecticide was applied in t. Other variables costs are 

included in c. 

Equation (1) implicitly defines the optimal terminal period T* as a function of 

yield, which depends on fly damage and insecticide treatments, which in turn affect the 

damage rate over the course of the growing season. T* is on the order of 228 to 304, 

measured in days from the beginning of the growing season and corresponding to 

September 15 to December 1. Damage control efforts affect yield in (1) as follows. In the 

absence of fly infestation, let 00 pyy = , and ( )ttttttt pypyypyyy −+=Δ+= +++ 11,1 . Yield 

in the absence of pest damage follows an equation of motion that depends on the change 

in average pre-infestation yield (py) in each period. This equation of motion takes into 

account yield loss due to factors other than pest damage in an average year.14  

Yield in the presence of pest damages depends on py and the amount of fly 

damage in each period, which is denoted dt and is observed at the beginning of t. We 

express the damage rate as a proportion of the crop remaining on an olive tree. Therefore, 

the change in damage rate on day t is the difference in observed damage between period t 

                                                 
14 The main factors that reduce yield from its potential include extreme weather events and non-optimal 
management (irrigation, pruning, thinning, or fertilization). We assume that producers manage their 
orchards optimally so that we can isolate the effect of pest control inputs as in Talpaz et al. (1978). We also 
assume that if extreme weather events occur and affect yield, they do not also affect the optimal timing of 
pesticide applications. 
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and t+1. Yield with fly infestation is ( ) ( )1,1,1 1* +++ Δ−Δ+= tttttt dpyyy . Thus yield today is 

a function of pest damage in t = 1,…,t-1. 

As discussed in the introduction, fly damage translates into yield loss because 

damaged fruit tend to drop from the tree prematurely. Olive fruit set at the beginning of 

the season determines total potential yield for a tree. In our model, the amount of yield 

lost in period t is related to fruit damage in previous periods. Unfortunately, there are no 

data available on the amount or timing of fruit drop due to fly infestation. The maximum 

amount of fruit that may drop prematurely is equal to the total proportion of the crop 

damaged up to the current time period. We specify yield loss as yield in t-1 less the 

proportion damaged between t-1 and t, thereby placing an upper bound on yield loss.15  

A producer’s choice to treat in period t affects the change in damage between t 

and t+1. Specifically, if no insecticide is applied ( 0=tu

tnd

), the incremental change in 

damage between t and t+1 is given by ttt ndd −=Δ +1+1, . We assume that insecticide 

applications reduce the damage in any period by a proportional amount equal to 

[ ].1,0∈δ 16 The incremental change in damage between t and t+1 if an insecticide is 

applied ( ), is 1=tu ( )tndttt ndd −=Δ ++ 11, *δ , [ ]T,t 0∈∀ . As a starting point, we assume 

that the bait remains effective for a certain period of time after an insecticide application 

and that the proportion of damage abated over that period is constant. In practice, the 

length of efficacy depends on weather during the intervening period and the proximity of 

                                                 
15 Alternatively, this is the yield loss if a producer were to separate damaged and undamaged fruit at harvest 
and deliver only undamaged fruit to the processor. To explicitly consider this option, we would simply 
extend the model to include sorting costs as a function of the proportion of fruit damaged at harvest. 
16 Studies in the entomological literature uniformly measure the efficacy of spinosad as a proportional 
reduction in pest damages (Mangan, Moreno, and Thompson 2006). 
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the closest untreated olive tree. We later extend the model to consider the case where 

damage abatement potential varies with time after application. 

In periods prior to harvest, the grower decides whether or not to apply an 

insecticide to suppress pest damage. The grower’s objective is to maximize the current 

period’s contribution to profit at harvest: 

(2) ( ) ( ) ( ) ( )[ ]tttttTttu
uSyyHyyvPEE

t

**max 111, −−−−=ΔΠ +++ . 

The decision rule is to apply the insecticide if ( ) ( 0|1| =ΔΠ> )=ΔΠ ttt uEuE . The 

maximization above defines implicitly the optimal treatment decision in period t, ut*, 

which depends on the price expectation at harvest (and therefore on T* which affects 

expected damage). 

 Two biological relationships describe the equations of motion for the system. The 

uncontrolled damage rate and average olive volume at t are outside of the control of the 

individual producer and are given by: 

(3) ( ) Ttvfndnd tttdtt ,...,1,,,1 ==−+ εX , and 

(4) ( ) Ttfvv ttvtt ,...,1,,1 ==−+ νZ . 

Equations (3) and (4) are as in Cobourn et al. (2008). Z includes variables describing 

weather and management practices. X includes olive size as well as weather and 

management variables. The ε andν  are stochastic error terms that capture uncertainty in 

the uncontrolled damage and olive volume trajectories. 

In any pest management problem there may be multiple sources of uncertainty. 

As discussed by Pannell (1991), stochastic variation may characterize pest population 

densities, pesticide efficacy, the actual amount of pesticide applied, maximum potential 

yield in the absence of pest damage, pest damage rates, realized yield, and output price. 
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While a large number of analyses consider a single source of stochasticity, few model 

interacting stochasticity from multiple sources. Deen et al. (1993) consider uncertainty in 

both a pest’s spatial distribution and in maximum potential yield. However, the authors 

do not comment on the implications of treating multiple sources of uncertainty separately 

or jointly. Saha, Shumway, and Havenner (1997) consider stochasticity in yield and a 

damage abatement function explicitly. They find significantly different estimates of 

pesticide productivity when they include a random error term in both functions. 

We choose to limit our attention in this analysis to random variation in olive size 

and the uncontrolled damage rate. Some of this variation is driven by weather, which also 

impacts average pre-infestation yield (py). However, Cobourn et al. 2008 discuss 

substantial remaining uncertainty regarding olive size, olive fruit fly damage rates, and 

the appropriate damage function specification. The authors find evidence of correlation 

between stochastic variation in olive size and infestation rates. These sources of 

uncertainty likely have important ramifications for intra-seasonal management of the 

olive fruit fly in California. Therefore, we explicitly model correlated uncertainty in (3) 

and (4). 

 
Model Implementation 
 
For the numerical programming model, we specify t as day of the growing season. The 

first day of the season is February 1, which is the biofix used to estimate equations (3) 

and (4) in Cobourn et al. (2008). The season ends on December 15 (t = 318), two weeks 

after the latest traditional harvest date for the region-cultivar pairings considered. To 

solve the treatment problem with exogenous harvest, we set T equal to the historically-

optimal average harvest date and solve the period-by-period pest control input problem. 
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Table 4 lists historically-optimal harvest dates by producing region and cultivar (Sibbett 

and Ferguson 2005). For the joint harvest-treatment problem, we initialize the model with 

the pre-infestation average optimal T and iterate over (2) and (1) until convergence. 

The olive volume and uncontrolled damage trajectories are based on the damage 

specification, estimation methodology, and dataset described by Cobourn et al.17 The 

equations are as follows:  

(5) 
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( ) ( ) ( )
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**33.0**57.0**10*81.0
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2

23

++−

+++

+−−+=
−

−

 

where j indexes region-cultivar pairings.18 Changes in olive volume (v) are driven by 

changes in accumulated growing degree-days (CD), relative humidity (HD), precipitation 

(PR), the use of irrigation (IR), ground cover (GC), and cultivar type (OIL = 1 if 

Arbequina, Frantoio, Koroneiki, or Leccino). Changes in the uncontrolled damage rate 

(nd) are driven by changes in olive volume, the effect of which differs late in the growing 

                                                 
17 The simulation equations differ from those presented in Cobourn et al. We estimate the fixed effects by 
location-cultivar pairing and define uncontrolled damage as the proportion of the sampled olive crop with 
visible ovipositional stings. For simplicity, the estimated specifications in (5) and (6) also exclude olive 
shape and minimum temperature variance variables, both of which are insignificant at any level in the 
original analysis. 
18 Equation (5) was estimated using the Tobit methodology with a lower limit of zero and an upper limit of 
one. The reported parameters are for a normally distributed random variable. Predictions less than zero 
were assigned a value of zero, and predictions greater than one were assigned a value of one in the 
simulation model to create density points consistent with observed damage rates.  
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season (LATE indicates dates after August 31), adult fly non-activity days (AD), 

irrigation, ground cover, and cultivar type.19 

We use weather data over a 20-year period (1989 through 2008) to specify mean, 

minimum, and maximum daily temperatures, precipitation, and relative humidity for each 

location each day of the growing season. We estimate mean accumulated growing 

degree-days, mean accumulated adult fly non-activity days, mean relative humidity, and 

mean precipitation as fifth order polynomials in t. We also use (5) and (6) to specify the 

stochastic elements of (3) and (4). We specify a bivariate normal distribution for the two 

error terms, each with mean and covariance matrix based on the residuals from estimation 

of (5) and (6). Figure 1 displays densities for the estimated volume and uncontrolled 

infestation residuals. The former is aptly characterized by a normal distribution. Although 

the distribution of the latter is slightly skewed to the left, assuming a normal distribution 

is not an unreasonable starting point.  
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Figure 1. Probability Densities for Estimated Volume and Infestation Residuals 
 
 
                                                 
19 Adult fly non-activity days are similar to degree-days in the sense that they track the amount of time that 
temperatures fall outside of fly activity thresholds, during which the fly will not damage fruit. However, 
they differ from degree-days in that they are not a measure of developmental time.  
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Each August, California’s table and oil olive processors and the Olive Growers 

Council of California bargain on and set the prices to be paid by all processors for raw 

olives. There is a separate price schedule for each of two main groups of table olive 

cultivars. The first group contains the Manzanillo and Mission cultivars, among others. 

The second group contains Sevillano fruit. Each schedule specifies price premiums based 

on the average size of fruit in a delivery.20 U.S. Department of Agriculture (USDA) 

grading standards specify olive size as a fruit count per unit weight. These fruit counts 

correspond with a range of fruit diameters. We estimate a relationship between diameter 

and volume for each of the table cultivars in our sample using ordinary least squares.21 

Table 2 reports the count, diameter, and estimated volume for each cultivar and size 

category. Table 3 lists the prices paid by processors for raw olives in 2008. 

In order to specify py, we use yield estimates from growing seasons prior to the 

olive fruit fly infestation (Sibbett and Ferguson 2005). Olive yield increases over the 

course of the season until the fruit reach maturity. After that point, yield in terms of total 

weight plateaus while olives continue to increase in size. After the traditional harvest 

date, yield declines due to “overripeness, drying wind, and cold damage” (p.135, ibid.). 

We model the potential yield trajectory as increasing linearly from fruit set until maturity.  

We assume that the first date of maturity for table olives is September 1 and the first date 

of maturity for oil olives is October 1. After these dates, yield equals its historical 

 

                                                 
20 In practice, the specification of size for a delivery of fruit depends on both the average size and the size 
variance on the downside. 
21 We estimate the minimum, maximum, and mean volume associated with each fruit diameter measure in 
Table 4.2 by using the estimated regression coefficient and the bounds on a 95 percent confidence interval. 
Using this approach, the ends of the size intervals overlap. We use the midpoint of the max/min overlap 
between two categories to define the volume cutoff point for each size class. The data on host 
characteristics are from the dataset used for estimation by Cobourn et al. (2008). 
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Table 2. Olive Size Categories 

 

Count per lb. Estimated Volume (100 mm3) 

Designation 
Manz., 
Mission 

Sevillano Diameter 
(mm) Manz. Mission Sevillano 

Sub-petite >180 n/a <12 <18 <15 n/a 

Petite 141-180 n/a 12-15 18-24 15-20 n/a 

Small 128-140 n/a 16-17 24-27 20-22.5 n/a 

Medium 106-127 n/a 17-19 27-30 22.5-25 n/a 

Large 91-105 n/a 19-20 30-31.5 25-26.5 n/a 

Extra Large 65-90 65-75 20-22 31.5-34.5 26.5-29 61.5-67.5 

Ex. Lg. ‘L’ n/a 76-90 20-21 n/a n/a 61.5-64.5 

Ex. Lg. ‘C’ n/a 65-75 21-22 n/a n/a 64.5-67.5 

Jumbo 47-60 47-60 22-24 34.5-37.5 29-31.5 67.5-73.5 

Colossal 33-46 33-46 24-26 37.5-40.5 31.5-34 73.5-79 

Super 
Colossal <32 <32 >26 >40.5 >34 >79 

Source: Agricultural Marketing Service (2004, 2007).  

Table 3. Olive Prices 
Table Olives 

Manzanillo and Mission Sevillano Oil Olives 
Size Class Price ($/ton) Size Class Price ($/ton) Price ($/ton) 

Undersize/Cull 10 Undersize/Cull 10 

Sub-Petite 350 Extra Large ‘L’ 300 

Petite 400 Extra Large ‘C’ 350 

Small 650 

Medium/Large/
Extra Large 1210 

Jumbo/Colossal/
Super Colossal 1050 

All 450 

Source: California Olive Council (2008). 
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average of five tons per acre (National Agricultural Statistics Service 1990-2009). After 

the median historically-optimal harvest date for each region-cultivar pairing, as listed in 

table 4, yield declines linearly to zero by the model’s terminal date. Fruit monotonically 

increase in size until harvest. 

We assume a pesticide efficacy rate of 95.5 percent as in table 1 (2007). We 

initially assume a pesticide efficacy interval of seven days, which corresponds to current 

University of California IPM treatment recommendations. We test the model’s sensitivity 

to the length of this interval. According to University of California Davis cost studies, 

one application to every other row of trees costs 10 dollars per acre (Krueger et al. 2004; 

O’Connell et al. 2005). All other costs of production are also taken from University of 

California Extension publications.22  

 
Results 
 
In table 4, we present the baseline model results when no pest control inputs are used and 

fruit is harvested at the traditional date. We average the first date of infestation, the fly 

infestation rate at harvest, and yield loss over 100 draws of the multivariate normally 

distributed error terms for each t. The percent yield loss at harvest represents the 

maximum yield loss assuming that all fruit damaged prior to harvest drop prematurely 

from the tree.  

The first date of infestation differs substantially between cultivars. For Sevillano 

olives, first infestation occurs shortly after fruit set in mid-April. Sevillano fruit are the 

largest and fastest-growing of all olive cultivars grown in California, so this result is as 

expected. Manzanillo olives are also large and become susceptible to fly infestation from 

                                                 
22 We assume that a grower operates a mature orchard (all trees exceed eight years of age). 
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late April through mid-June. Mission olives, which are smaller than other table olives but 

larger than the oil cultivars, become infested in mid-June through mid-July, on average. 

Among the oil olives considered, the high-density cultivars are the largest in size. Not 

surprisingly, they become infested earlier than the smaller, super-high density oil 

cultivars. The smallest of all cultivars, the super high-density Arbequina and Koroneiki 

varieties, do not exhibit signs of infestation until mid-August at the earliest. 

 
Table 4. Uncontrolled Yield Loss with Traditional Harvest Timing 

Regiona Cultivar 
Traditional 
Harvest Date 

Date of First 
Infestation 

Maximum Yield 
Loss (%) 

Super High-Density Oil Olives 
   III Arbequina 304 (Dec. 1) 195 (Aug. 14) 27.4 
   III  Koroneiki 304 (Dec. 1) 211 (Aug. 30) 22.4 
High-Density Oil Olives 
   III Frantoio 304 (Dec. 1) 185 (Aug. 4) 39.4 
   I Leccino 304 (Dec. 1) 129 (Jun. 9) 53.1 
   III  Leccino 304 (Dec. 1) 166 (Jul. 16) 46.5 
Table Olives 
   II Manzanillo 262 (Oct. 20) 138 (Jun. 18) 100.0 
   III Manzanillo 262 (Oct. 20) 139 (Jun. 19) 67.0 
   VI Manzanillo 258 (Oct. 16) 134 (Jun. 14) 66.5 
   IV Manzanillo 262 (Oct. 20) 88 (Apr. 29) 69.4 
   II Mission 247 (Oct. 5) 160 (Jul. 10) 8.8 
   III Mission 247 (Oct. 5) 167 (Jul. 17) 40.9 
   V Mission 247 (Oct. 5) 152 (Jul. 2) 9.2 
   VII  Mission 278 (Nov. 5) 152 (Jul. 2) 24.2 
   IV Mission 247 (Oct. 5) 134 (Jun. 14) 13.5 
   III Sevillano 262 (Oct. 20) 79 (Apr. 19) 85.4 
aSierra Foothills (I), Northern Sacramento Valley (II), Southern Coastal Sacramento Valley (III), Southern 
Inland Sacramento Valley (IV), Northern Coast (V), San Joaquin Valley (VI), Southern Coast (VII). 
 

 

 

 22



There is little information on uncontrolled damage rates by cultivar, which makes 

validating the baseline difficult. Burrack (2007) suggests a range of uncontrolled damage 

of 10 to 30 percent for oil cultivars based on 2005 data. Relative to these estimates, the 

baseline model seems to overstate damage rates for oil olives. However, this estimate is 

extremely sensitive to date on which damage is measured because the majority of damage 

for oil olives occurs very late in the growing season. If we move the harvest date forward 

by even a week, the damage rate falls dramatically. Because we lack data on uncontrolled 

damage across years and the relative magnitude of the damage rates across cultivars 

matches Burrack (2007), we deem this an apt baseline for the analysis.  

For table olive cultivars, Burrack (2007) estimates losses of 18 to 68 percent for 

Manzanillo olives, eight to 81 percent for Mission olives, and 80 to 100 percent for 

Sevillano olives. All of the estimates produced by the baseline model fall within or very 

close to these ranges. The only aberration of note is the damage rate of 100 percent for 

Manzanillo olives in Region II. Region II observations were taken from Butte County, 

which is home to a number of abandoned orchards. The fly population has flourished as a 

result, which would contribute to inflated damage rates area-wide. 

Table 5 displays the optimal treatment strategy for a grower producing a given 

cultivar in a given region. The table displays the model results with the exogenous, 

traditional harvest date by region and cultivar and with the endogenously optimal harvest 

date with fly infestation. Because olive size increases until harvest, leading to rapidly 

increasing infestation rates, the optimal harvest date falls earlier in the season than the 

traditional date. The only exception to the rule is for Sevillano olives, for which harvest is 
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optimally delayed by four days. However, this date falls within the range of traditional 

harvest dates for Sevillano olives. Thus, the results from the two models are equivalent. 

Across region-cultivar pairings in table 5, allowing for flexibility in harvest 

timing alters the optimal pattern of pest control treatments. In several cases, endogenizing 

harvest pushes the optimal date of the first treatment forward in time, essentially lowering 

the economic threshold over which insecticide treatments increase profits. An earlier 

harvest date, relative to the traditional date, also eliminates pest control applications late 

in the growing season. For Leccino olives in Region I, no damage treatments accompany 

an earlier harvest date. For several table olive varieties, the change in harvest date 

eliminates the need for up to four weekly sprayings. It is also interesting to note that, 

when harvest is exogenous, there are weeks in which a grower will optimally skip 

damage control treatments (spraying at t = 188 for Manzanillo olives in Region III and t 

= 218 for Manzanillo olives in Region IV). Endogenizing harvest timing lowers the 

economic threshold for spraying and fills in these gaps in the joint treatment-harvest 

model. Further, for Sevillano olives, sprayings optimally extend later into the season. 

For table olives, a change in harvest timing alters the expected size of olive fruit 

at harvest and the expected price. This alters the value of yield losses due to fly damage. 

As yield losses become more or less expensive in terms of lost profit, the grower alters 

his treatment decisions, which affect the damage trajectory and yield losses. The extent of 

yield losses over the season in turn determines the optimal date of harvest. The rationale 

for optimal oil olive harvest timing and treatment differs because oil olives do not receive 

a price premium. Oil olive growers optimally harvest at the earliest date of fruit maturity 

because yield losses increase monotonically over the growing season.    
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Table 6. Yield Loss with Fixed and Flexible Harvest Timing 
  Maximum Yield Loss (%) 
Regiona Cultivar Fixed Harvest Endogenous Harvest 
  Uncontrolled w/ Treatment Uncontrolled w/ Treatment 
Super High-Density Oil Olives 
   III Arbequina 27.4 21.3 11.2 7.6 
   III  Koroneiki 22.4 20.1 7.8 4.7 
High-Density Oil Olives 
   III Frantoio 39.4 23.8 18.7 12.7 
   I Leccino 53.1 34.5 29.5 29.5 
   III  Leccino 46.5 30.5 24.6 20.3 
Table Olives 
   II Manzanillo 100.0 5.9 97.8 3.6 
   III Manzanillo 67.0 2.1 59.6 1.2 
   VI Manzanillo 66.5 6.4 26.6 5.6 
   IV Manzanillo 69.4 13.7 61.8 13.6 
   II Mission 8.8 6.8 7.5 5.5 
   III Mission 40.9 0.8 36.7 0.7 
   V Mission 9.2 8.5 7.8 7.1 
   VII  Mission 24.2 9.7 16.5 6.3 
   IV Mission 13.5 8.1 11.8 6.5 
   III Sevillano 85.4 26.3 86.0 21.9 
aSierra Foothills (I), Northern Sacramento Valley (II), Southern Coastal Sacramento Valley (III), Southern 
Inland Sacramento Valley (IV), Northern Coast (V), San Joaquin Valley (VI), Southern Coast (VII). 
 

For most of the table olive cultivars, optimal treatment involves spraying every 

seven days, or at the end of the interval over which GF-120 bait remains effective. 

Reducing the efficacy interval to three days narrows the treatment intervals, but does not 

change the total number of days over which treatment is optimal, thus increasing the total 

number of sprays.23 The optimal harvest date does not change from that listed in Table 5. 

An increase in the percent damage abatement from an insecticide application reduces the 

                                                 
23 However, with reductions in the duration of pesticide efficacy, the spray limitations set by CDPR become 
binding. We do not consider the effect of this regulation in this analysis, though we expect it to reduce 
producer welfare as in the analysis by McKee et al. (2009). 
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optimal number of sprays, and pushes their dates later into the growing season. This last 

result seems counterintuitive, but agrees with Lichtenberg and Zilberman (1986).24  

The results presented are the optimal treatment and harvest timing decisions when 

no quality constraints are included in the grower’s optimization calculus. California’s 

canning processors have a zero-tolerance policy for infested olives. The threshold for fly 

infestation in canning olives in Europe is one percent. A 95.5 percent efficacy rate for 

GF-120 is not sufficient, under average weather conditions, to suppress damage over the 

growing season to one percent for most table cultivars.25 The exception is Mission olives 

from Region III, for which optimal treatment leads to average damage less than the 

canning processor threshold. However, anecdotal evidence suggests that increased 

temperatures have suppressed damage rates further, allowing producers to meet canning 

quality standards in recent years (Hearden 2009). Sensitivity analysis supports this result: 

an increase in mean temperature over the season reduces fly damage and yield losses. 

The oil industry, as a rule of thumb, considers ten percent damage the threshold 

below which fly infestation has a negligible effect on the sensory characteristics of olive 

oil (Vossen, Varela, and Devarenne 2005). With the optimal treatment-harvest 

combination, super high-density cultivars exhibit less than the threshold level of damage 

at harvest. Additionally, all Mission cultivars exhibit less than ten percent damage at 

harvest with or without treatments. Although Mission olives have historically been a 

table cultivar, they have a high enough oil content to work well for oil processing too. 

(Sibbett and Ferguson 2005) 

                                                 
24 As explained in the literature review, they show that a decrease in the marginal productivity of an 
insecticide leads to an increase in the number of treatments. 
25 With a proportional reduction in damage levels from the insecticide, it is impossible to achieve a zero 
level of infestation if the uncontrolled damage level is at any point greater than zero. 

 28



Conclusions 
 
Our empirical analysis demonstrates the impact of changes in harvest timing on grower-

level optimal treatment decisions. While the example is specific to the olive fruit fly, the 

results and the modeling approach hold implications for studies of pest management in 

general. Harvest timing may not always be flexible, but the analysis applies in any case 

where inputs affect productivity directly through yield and/or quality and indirectly via 

damage abatement. Our results suggest that there is a cost to treating those inputs as fixed 

when determining optimal treatment timing. In this paper, treating harvest timing as fixed 

overstates the total cost of treatment and the losses to producers from infestation. In 

general this bias may operate in either direction depending on the relationships among 

positive inputs, yield/quality, and damage abatement (Saha, Shumway, and Havenner 

2007). 

Another issue that the analysis touches upon, and which we intend to examine 

more thoroughly in the future, is the optimal choice of treatment and harvest under 

processor-imposed quality standards. Without quality standards, the grower optimizes 

treatment and harvest timing in such a way as to maximize yield. With quality standards 

the grower’s treatment plan will reflect the relatively greater importance of suppressing 

the level of damage so that all revenue is not lost. We do not consider quality thresholds 

herein because the efficacy of GF-120 treatments depends, in part, on the pest control 

practices used by all producers in a region. In a future analysis, we intend to formulate a 

region-wide stochastic dynamic programming model with quality thresholds to determine 

socially optimal treatment and harvest practices in the presence of stock externalities. 
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