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Does economic endogeneity of site facilities in recreation demand models lead to statistical 

endogeneity? 

Abstract 

Different kinds of endogeneity problems in Random Utility Models of recreation demand have been 

studied in previous literature. Some site characteristics, like facilities, could be endogenous in an 

economic sense due to the interplay of supply and demand. That is, it may be that more popular recreation 

sites tend to have better site characteristics since managers with limited budgets would be more willing to 

invest in them. If recreation site improvements are more likely to occur at the more popular sites, then 

might this economic endogeneity cause problems for econometric models linking site demand to facilities.  

In this paper, we use Monte Carlo simulations to test whether this economic endogeneity will lead to 

statistical endogeneity. 
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1 Introduction 

Random Utility Models (RUMs) are widely applied in the travel cost technique for valuing recreational 

activities, relating visitation to travel costs and site characteristics. Discrete response models, like 

multinomial logit or conditional logit, are used to estimate people’s choice behaviors. From the 

econometric standpoint, obtaining consistent estimates requires the exogeneity of the independent 

variables like travel costs and site characteristics. 

    Specification problems potentially causing bias in travel cost methods were paid attention to as early as 

1970s, especially the omission of travel time variable and congestion effects. Cesario and Knetsch (1970), 

Brown and Nawas (1973) and Gum and Martin (1975) discussed how to incorporate travel time and 

reduce its multicollinearity with travel cost at the same time; McConnell and Duff (1976) and Wetzel 

(1977) stated that congestion effects, if there were any, should be incorporated into the travel cost model 

to avoid estimation bias. Allen Stevens and Barrett (1981) found that the impact of excluding travel time 

and congestion varied from situation to situation. Caulkins, Bishop and Bouwes (1985) showed that the 

omission of cross-price variables did not necessarily cause bias, and the sign of the omission bias was 

determined by the true economic relationship.  

    Recent studies have been focusing on the possible endogeneity in RUMs. Following Ben Akiva and 

Leerman (1985), Haab and Hicks (1997) raised the issue that the set of alternatives, rather than defined by 

researchers, could be endogenously determined by individuals. They added weighted probabilities to the 

log likelihood function to reflect the probability that certain sites are selected into the set of alternatives, 

and the estimation results turned out to be very different. Murdock (2006) studied unobserved site 

characteristics, which were absorbed into the error term, which could be correlated with the travel cost 

variable. Monte Carlo simulations were used to test whether the proposed approach for addressing this 

endogeneity problem performed better than the traditional methods. Timmins and Murdock (2007) stated 

that the omission of the variable of congestion in the estimation would lead to significant endogeneity 
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problems, since it depended on real visits. They supposed individuals made rational decisions given 

others’ choices and considered Nash equilibrium in repeated games. A quantile regression with 

instrumental variables was applied to get new estimates. Von Haefen and Phaneuf (2008) developed a 

combined revealed and stated preference approach to overcome the endogeneity of unobserved 

determinants. 

    Those endogeneity problems addressed in this literature have mainly focused on the site selection, 

congestion and omitted variables, and are corrected to ensure the consistency of estimates. Now, let’s 

consider site characteristics, for example, facilities. Many studies have found that facilities variables are 

often significant in explaining people’s recreational behaviors. Parson (2003) reported the presence of 

amusement parks and restroom facilities as explanatory variables in the latent utility equation, and their 

estimated coefficients were statistically significant at 95% level of confidence.  Lew and Larson (2005) 

included lifeguard presence and parking availability dummies as two explanatory variables for beach use, 

which were also statistically significant. Von Haefen, Massey and Adamowicz (2005) used bathroom 

availability and public parking in their recreational demand estimation. Yeh, Haab and Sohngen (2006) 

took into account the effects of lifeguard and number of picnic tables when valuing recreation trips to 

beaches. Cutter, Pendleton and DeShazo (2007) considered the effects of toilets, trails, tables and benches 

in their model of recreational demand.  

    At the same time, the supply and types of facilities are also determined by people’s visitation as the 

literature in parks management makes clear.  Lee and Driver (1999) compared three recreation resource 

management frameworks: activity-based management (ABM), experience-based management (EBM) and 

benefits-based management (BBM). BBM is an extension of the first two, aiming at providing public 

recreation opportunities which people benefit from. Shin, Jaakson and Kim (2001) pointed out that 

“Benefits-based management seeks to provide recreation benefits for recreation participants by managing 

the physical environments in which recreation occurs”, and they included facilities and their maintenance 

as one attribute of the setting of recreational sites. Faghri, Lang, Hamad and Henck (2002) mentioned a 
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set of criteria for where to optimally locate park-and-ride facilities, one of which suggested that a site with 

lots of traffic passing through should be a suitable location. Cook (2008) used a benefit transfer method to 

estimate the value of a new long-distance walking trail in a tropical rainforest. If no people went for 

recreational activities in the forest, managers would not be likely to build a walking track since its value 

was low.  

    If we view the managers as the supply side and the recreationists as the demand side, managers change 

facilities in response to recreational demand, and recreational demand varies in response to facilities. The 

interplay of supply and demand makes facilities endogenous in the economic sense. Usually, this will 

cause inconsistency of estimates in econometric models, but not necessarily. Therefore, the objective of 

this paper is to examine the extent to which economic endogeneity of facilities leads to statistical 

endogeneity. If it does, we should use instrumental variables to address this problem; if it does not, we 

don’t have to worry about it. 

    To address the issue, Monte Carlo simulations are applied.  In the simulations, we set values for the 

“true” parameters, simulate choice sets, run regressions, and obtain estimates. If estimates converge to the 

true parameters, they are consistent and the economic endogeneity of facilities does not matter. If they do 

not converge, then facilities are statistically endogenous. The advantage of Monte Carlo simulations is 

that we know what the “truth” is; otherwise, with empirical data, we can test the statistical endogeneity, 

but we cannot judge the consistency of a certain estimator for sure without knowing the true values. 

    In the following sections, we present the basic choice model for our recreation demand simulations.  In 

the simulations, we first assume all explanatory variables including facilities are exogenous to test that the 

approach works for the base case. Next, we let facilities be determined by recreational demand and supply, 

and investigate whether we still get consistent estimates under this circumstance. Then, we conduct 

sensitivity analysis, changing the underlying factors of simulations. Finally, the results from simulations 

are discussed. 
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2 Methods 

2.1 Conditional Logit Models 

In RUMs, the latent utility that person i gains from visiting site j is: 

𝑈𝑖𝑗 = 𝑋𝑖𝑗𝛽 + 𝜀𝑖𝑗    

Where 𝑋𝑖𝑗  includes travel cost, which varies across people and sites, and site characteristics, which only 

varies across sites; 𝜀𝑖𝑗  is a random term counting for unobserved preferences. If there are J sites and 

individual i chooses to go to site k, it must be that:  

𝑈𝑖𝑘 = max 𝑈𝑖1 ,𝑈𝑖2 ,… ,𝑈𝑖𝐽   

    The revealed choice variable for this person would be a set of binary responses: 

 𝑦𝑖1 ,𝑦𝑖2 ,… ,𝑦𝑖𝑘 ,… ,𝑦𝑖𝐽  =  0,0,… ,1,… ,0 . 

    Following McFadden (1974), when 𝜀𝑖𝑗  follows a Type I extreme value distribution, the maximization 

of the random utilities yields site choice probabilities given by a conditional logit model where the 

probability that individual i chooses site k is: 

𝑃𝑟𝑖 𝑘 =
𝑒𝑋𝑖𝑘𝛽

 𝑒𝑋𝑖𝑗 𝛽
𝐽
𝑗=1

 . 

The log-likelihood function for the individual is: 

𝑙𝑖 = 𝑙𝑛    𝑃𝑟𝑖 𝑗  
𝑦𝑖𝑗

𝐽

𝑗=1

 =  𝑦𝑖𝑗 𝑙𝑛 𝑃𝑟𝑖 𝑗  

𝐽

𝑗=1

 

When we have the choice sets for all recreationists, we can sum their log-likelihood functions and apply 

maximum likelihood to get the estimated coefficients. 
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    The estimated welfare change in RUMs for individual i is: 

∆𝑊𝑖
 =

1

𝛽𝑦 
 𝑙𝑛   exp 𝑋𝑖𝑗

1𝛽  

10

j=1

 − 𝑙𝑛   exp 𝑋𝑖𝑗
0𝛽  

10

j=1

   

Where 𝑋𝑖𝑗
1 and 𝑋𝑖𝑗

0 represent the new status and the initial status respectively. Often they are quality 

changes on one or several sites. 𝛽𝑦  is the estimated coefficient of income variable, the monetary measure 

of utility; it equals the negative of the estimated coefficient of travel cost.  When a particular site 

characteristic l is changed by one unit at all sites, the welfare measure reduces to 𝛽𝑙 /𝛽𝑦  

2.2 Basic Simulation 

To simplify the simulations, we assume the recreational sites are beaches and there are three explanatory 

variables: travel cost (D), beach length (BL) which represents exogenous site characteristics, and facilities 

(F) which will serve as our potentially endogenous site characteristic. Then the latent utility equation 

becomes: 

𝑈𝑖𝑗 = 𝐷𝑖𝑗𝛽1 + 𝐵𝐿𝑗𝛽2 + 𝐹𝑗𝛽3 + 𝜀𝑖𝑗  

Following the estimates reported in Parson (2003), we set “true” values for the population parameters as 

follows: 

𝛽1 = −0.06,𝛽2 = 0.49,𝛽3 = 0.06 

  Then the utility equation becomes: 

 1      𝑈𝑖𝑗 = 𝐷𝑖𝑗 ×  −0.06 + 𝐵𝐿𝑗 × 0.49 + 𝐹𝑗 × 0.06 + 𝜀𝑖𝑗  

    We assume there are 1,000 people and 10 sites, and the steps of the basic simulation are as follows: 
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Step I: Take 10,000 random draws for 𝐷𝑖𝑗  uniformly over the range from 0 to 100, since travel costs are 

varying across people and sites. Take 10 uniform random draws for 𝐵𝐿𝑗  from 0 to 2, and 10 uniform 

random draws for 𝐹𝑗  from 0 to 5, both of which just vary across sites and are the same for all people. 

These random draws form the pseudo data set for explanatory variables. 

Step II: For individual i, extract his/her 𝐷𝑖𝑗 , 𝐵𝐿𝑗  and 𝐹𝑗 , 𝑗 = 1,2,… ,10, and produce 10 random draws for 

𝜀𝑖𝑗  from a Type I extreme value distribution with scale factor equal to one. Following Train (2003), the 

cumulative distribution function for 𝜀𝑖𝑗  is: 

𝐹 𝜀𝑖𝑗  = exp − exp −𝜀𝑖𝑗    

Then its inverse function is:                   𝜀𝑖𝑗 = −𝑙𝑛 −𝑙𝑛 𝐹 𝜀𝑖𝑗     

Since 𝐹 𝜀𝑖𝑗   falls between 0 and 1, we can take 10 random draws from a (0, 1) uniform distribution first 

and then use the inverse CDF function to compute 10 correspondent random numbers for 𝜀𝑖𝑗 . 

Step III: Use (1) to calculate 𝑈𝑖𝑗 , 𝑗 = 1,2,… ,10. Pick the maximum, mark it as one and others as zero, and 

we get the pseudo choice variable for individual i. 

Step IV: Repeat Step II and III for 1,000 people to obtain the pseudo choice sets and choices for all 

recreationists, which compose one random sample. 

Step V: Regress the pseudo choice variable on the pseudo choice set data set for 1,000 people and get 𝛽1
 , 

𝛽2
  and 𝛽3

 . Do hypothesis tests, where the hypotheses are that the estimated coefficients are equal to their 

“true” values, and get three t statistics for the three estimates. 

Step VI: Repeat Step II, III, IV and V 1,000 times to generate 1,000 random samples, where the 

explanatory variables remain the same but the error terms are newly drawn for each sample. 
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Step VII: For the t statistics from 1,000 random samples, calculate the fraction at which they are greater 

than 1.96, which is the critical value for t statistics at 5% significance level. For the estimated coefficients 

from 1,000 random samples, calculate the descriptive statistics, such as mean, variance and minimum 

squared error (MSE).  

    Table-1 shows the process of simulating individual i’s choice set in one random sample. 

Table-1: Simulating individual i’s choice set 

Site 1 2 3 4 5 6 7 8 9 10 

D 7.79 61.90 4.23 79.48 56.79 31.95 2.87 71.57 89.71 50.87 

F 0.98 4.34 3.48 4.62 2.48 4.98 0.76 1.42 2.45 4.20 

BL 1.02 0.64 1.86 1.45 0.90 1.71 0.33 1.59 1.94 1.31 

ε -0.12 0.54 3.61 0.17 7.25 0.62 1.02 0.23 -0.81 1.55 

U -0.03 -2.60 4.48 -3.61 4.43 -0.16 1.05 -3.20 -5.10 -0.61 

y 0 0 1 0 0 0 0 0 0 0 

 

    According to Cameron and Trivedi (2005), usually there are two types of simulations, one fixed trials 

and the other with random regressors. The simulation above is the former, but we also try the latter. The 

steps are very similar, only with a modification to step VI in which we will also repeat step I for each 

sample. Now, not only the error terms but also the explanatory variables are different for every random 

sample.  

    Table-2 and Table-3 show the simulation results for fixed trials and random regressors. 

Table-2: Basic simulation results-Fraction of t statistics above 1.96  

 𝛽1
  𝛽2

  𝛽3
  

Fixed Trials 0.039 0.053 0.047 

Random Regressors 0.047 0.047 0.048 

 

    If the null hypotheses are true, each t statistic will follow a standard normal distribution and the fraction 

at which it is greater than 1.96 should be around 0.05 with a large sample. Here we have 1,000 t statistics 
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for each β. The fractions in Table-2 are all around 0.05, so the Monte Carlo simulations with exogenous 

explanatory variables generate consistent estimates, both with fixed trials and with random regressors. 

Table-3: Basic simulation results-Descriptive statistics 

 Fixed Trials Random Regressors 

 𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

True Value -0.060 0.490 0.060 -0.060 0.490 0.060 

Mean -0.060 0.488 0.060 -0.060 0.490 0.061 

Min. -0.066 0.292 -0.019 -0.067 0.198 -0.094 

Max. -0.054 0.784 0.142 -0.054 0.835 0.173 

Var. 4.397e-06 3.965e-03 6.770e-04 4.419e-06 5.638e-03 9.542e-04 

MSE. 4.406e-06 3.966e-03 6.764e-04 4.417e-06 5.633e-03 9.545e-04 

 

    Also, since 𝛽1
 , 𝛽2

  and 𝛽3
  are actually random variables, we can use descriptive statistics to study their 

properties. In the simulations of fixed trials, their means are very close to their true values (see Table 3). 

The variance and MSE of 𝛽1
  are almost zero, implying the high precision of simulations on this parameter. 

𝛽2
  and 𝛽3

  have wider ranges, likely because these site variables do not vary across individuals resulting in 

less variation in the data set when compared to the travel cost variable. However, their variances and 

MSEs are still very small. The descriptive statistics convey the same information as the fractions of t 

statistics do. In the simulations of random regressors, the results are similar. 

3 Simulations with Endogeneity 

Next, we make facilities economically endogenous and see whether the estimates still converge to their 

“true” values. The way we introduce economic endogeneity is to assume there are no facilities at the sites 

and then the managers will decide the facility levels at each site based on past visitation. Two cases are 

considered: first, called Case I, when people don’t care about facilities, we examine whether the 

economically endogenous facilities would spuriously affect people’s choices (that is, will the estimated 

conditional logit models suggest a significant parameter estimate for the facilities variable even though 
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the true parameter is zero); second, called Case II, when people do care about facilities, we examine 

whether the economic endogeneity causes bias in the estimated coefficients.  

    In Case I, the process of simulations with fixed trials would be different from the one stated in Section 

2, and we just list the differences below. 

Step I 3a: No data for facilities are created, since there is no facility at the beginning. 

Step III 3a: The utility equation used in this step becomes: 

 2       𝑈𝑖𝑗 = 𝐷𝑖𝑗 ×  −0.06 + 𝐵𝐿𝑗 × 0.49 + 𝜀𝑖𝑗  

Step V 3a: This step includes several sub-steps. 

1) Average the pseudo choice sets across 1,000 people and get the averaged visit for site j, 

j=1,2,…,10, denoted by 𝐴𝐹𝑃𝑗  

2) Suppose the manager’s supply is linearly related with past visitation, and we assume the supply 

function is: 

 3       𝐹𝑗 = 𝐴𝐹𝑃𝑗 × 25 + 𝑒𝑗  

Since only the relative magnitude of utility matters, we don’t include an intercept. 25 is a 

randomly picked constant. It can be any number. We just want to make sure the scale of newly 

provided facilities is similar to that of the exogenous facilities in the basic simulation. The error 

term for the facilities supply function is assumed to have a standard normal distribution, 

incorporating other factors that may affect facility supply. Take 10 random draws from the 

standard normal distribution and calculate the facility level using (3) for each site, which is 

obviously endogenous. 

3) This is similar to Step V in part 2. We add the supplied facilities to the pseudo data set, and the 

true value for 𝛽3 is zero, rather than 0.06. 
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    The rest of the steps are the same. With random regressors, we just need to repeat Step I for each 

random sample. The results are shown in Table-4 and Table-5. 

    The fractions of t statistics for 𝛽1
  and 𝛽2

  are around 0.05, so the two estimates are consistent. The 

fractions for 𝛽3
  are a little bit higher, around 0.08. We could reject the consistency of 𝛽3

  at 5% 

significance level; however, this is a marginal change in the performance of the conditional logit. We 

cannot reject that the parameters for facilities are zero if we set the test size as 10%. If we conducted a 

survey 1,000 times and obtained 1,000 data sets, we would not have a statistically significant impact on 

the facilities parameter in more than 900 data sets. So, although the endogeneity of facilities does have 

some effects on 𝛽3
 , they are not very substantial.  

Table-4: Case 1: Simulation results-Fraction of t statistics above 1.96 

 𝛽1
  𝛽2

  𝛽3
  

Fixed Trials 0.043 0.055 0.080 

Random Regressors 0.048 0.046 0.084 

 

Table-5: Case 1: Simulation results-Descriptive statistics 

 Fixed Trials Random Regressors 

 𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

True Value -0.060 0.490 0 -0.060 0.490 0 

Mean -0.060 0.469 0.021 -0.060 0.471 0.023 

Min. -0.066 0.163 -0.203 -0.067 0.132 -0.165 

Max. -0.054 0.860 0.165 -0.054 0.839 0.201 

Var. 4.302e-06 5.359e-03 2.036e-03 4.314e-06 6.892e-03 1.979e-03 

MSE. 4.301e-06 5.801e-03 3.536e-03 4.314e-06 7.254e-03 3.342e-03 

 

    With fixed trials, the mean of 𝛽1
  is almost equal to the true value; the variance and MSE are close to 

zero. The mean of 𝛽2
  is slightly smaller than the true value, and the variance and MSE are bigger than 

those in the basic simulation. The mean of  𝛽3
 , which is the estimated coefficient of the economically 

endogenous facilities, is greater than the true value as we might expect (though the size of this effect is 
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small). The variance and MSE get bigger, too. 𝛽1
  , 𝛽2

  and 𝛽3
  all seem to converge to their true values. So 

the economic endogeneity does not seem to have much influence in this case.  Simulations with random 

regressors generate similar results. For the types of simulations performed here, facilities do not 

spuriously affect people’s behaviors when the facilities in fact do not matter to the individuals.  

    In Case II, we now assume that people do care about facilities, so after the facilities are provided, 

people will update their choice of the best site within their choice sets. We need to account for this in the 

process of simulations with both fixed trials and random regressors by making the following 

modifications to the simulation steps: 

Step V 3b: After the calculation of endogenous facilities, we add them to the pseudo data set and repeat 

Step III and IV to get the updated pseudo choice sets for 1,000 people, where the error terms are kept the 

same and the true 𝛽3 is 0.06. Then the updated pseudo choice sets are used to get estimated coefficients 

and t statistics. 

  The results are found in Table-6 and Table-7. 

Table-6: Case 2: Simulation results-Fraction of t statistics greater than 1.96  

 𝛽1
  𝛽2

  𝛽3
  

Fixed Trials 0.039 0.060 0.078 

Random Regressors 0.035 0.045 0.089 

 

Table-7: Case 2: Simulation results-Descriptive statistics 

 Fixed Trials Random Regressors 

 𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

True Value -0.060 0.490 0.060 -0.060 0.490 0.060 

Mean -0.060 0.470 0.080 -0.060 0.470 0.083 

Min. -0.066 0.187 -0.146 -0.067 0.161 -0.112 

Max. -0.053 0.864 0.272 -0.054 0.770 0.252 

Var. 4.253e-06 5.470e-03 2.063e-03 4.259e-06 6.761e-03 1.970e-03 

MSE. 4.257e-06 5.851e-03 2.455e-03 4.262e-06 7.129e-03 2.470e-03 
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    Case II seems to give the same results. The fraction of t statistics above 1.96 for  𝛽1
  is smaller than 0.05, 

so we can accept that 𝛽1
  is a consistent estimator of 𝛽1. In the descriptive statistics, the mean of 𝛽1

  is 

more or less the same as the true value and it has a relatively small range, variance and MSE. Recall that 

the travel cost variable varies across sites and across individuals which contributes to the robustness of its 

estimated parameter. The means of 𝛽2
  and 𝛽3

  with both simulations are greater than the true values, 

coincidentally by around 0.02 for both of them. For 𝛽2
 , we can view the differences as slight deviations 

since the true value of 𝛽2is 0.49, and 0.02 0.49 ≈ 4%. The consistency of 𝛽2
  is not affected very much. 

For 𝛽3
 , the much more substantial since the true value of 𝛽3 is 0.06, and 0.02 0.06 ≈ 33.33%, so the 

endogeneity has some influence over 𝛽3
 , inflating its value by 33%.  Since the estimated travel cost 

parameters are essentially the true values and are estimated very precisely, we would expect that the error 

in any welfare measures on the endogenously supplied facilities to be driven by the error in the facilities 

parameter.  Despite the 33% increase in the average facilities parameter, the fractions of t statistics above 

1.96 for 𝛽3
  is less than 0.10 implying that the chance is more than 90% that we get consistent estimates. 

4 Sensitivity Analyses 

To investigate how underlying factors in Monte Carlo simulations would influence the simulation results, 

we conduct sensitivity analysis by changing three elements of the simulation.  First, we change the 

number of sites from 10 to 5 and to 15.  Second, we use discrete facilities instead of continuous ones.  , 

Third, we randomly pick numbers as the “true” population parameters rather than use the values from the 

Parson (2003) study. Since the fractions of t statistics could tell whether the estimates are consistent or 

not, we just list the fractions here. “RP” stands for randomly drawn parameters, and we pick 5 groups of 

randomly drawn parameters as the true values for βs with both fixed trials and random regressors. For 

each group of randomly drawn parameters, 𝛽1 is uniformly drawn over the range of -0.1 and 0; 𝛽2 is 

uniformly drawn over the range of 0 and 1; 𝛽3 is uniformly drawn over the range of 0 and 0.1. The ranges 

are chosen with respect to their true values in basic simulations, allowing variations to some extent. 
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    Given an overall review of these data, changing underlying factors of simulations does not change the 

results very much. The number of sites matter to some extent. As the number of sites grows bigger, the 

effects of endogeneity become more significant. Variations in the true parameters may have some 

influence, but if we average across the five groups of randomly assigned true values, the influence may 

fades.  Overall, the patterns observed in the above simulations appear robust for the types of sensitivity 

analyses conducted here. 

Table-8: Sensitivity Analysis-Fractions of t statistics 

  Fixed Trials Random Regressors 

  𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

Basic 

Simulation 

5 Sites 0.044 0.049 0.057 0.049 0.045 0.048 

15 Sites 0.051 0.042 0.049 0.047 0.036 0.058 

Discrete 0.040 0.050 0.040 0.055 0.062 0.048 

RP 1 0.049 0.051 0.044 0.043 0.045 0.039 

RP 2 0.041 0.055 0.059 0.044 0.051 0.068 

RP 3 0.054 0.052 0.054 0.055 0.043 0.055 

RP 4 0.036 0.042 0.045 0.034 0.053 0.058 

RP 5 0.054 0.042 0.053 0.058 0.043 0.049 

Case I 

Simulation 

5 Sites 0.042 0.048 0.057 0.045 0.052 0.054 

15 Sites 0.061 0.058 0.111 0.046 0.050 0.101 

Discrete 0.052 0.048 0.081 0.058 0.052 0.086 

RP 1 0.059 0.053 0.107 0.039 0.057 0.094 

RP 2 0.041 0.066 0.068 0.044 0.077 0.092 

RP 3 0.048 0.078 0.101 0.055 0.051 0.087 

RP 4 0.037 0.059 0.093 0.036 0.074 0.092 

RP 5 0.054 0.045 0.114 0.057 0.050 0.075 

Case II 

Simulation 

5 Sites 0.048 0.048 0.056 0.048 0.044 0.057 

15 Sites 0.051 0.051 0.090 0.044 0.052 0.092 

Discrete 0.050 0.050 0.070 0.059 0.063 0.077 

RP 1 0.048 0.050 0.099 0.044 0.056 0.087 

RP 2 0.044 0.061 0.072 0.033 0.076 0.078 

RP 3 0.059 0.078 0.093 0.061 0.053 0.066 

RP 4 0.032 0.055 0.086 0.036 0.073 0.097 

RP 5 0.056 0.049 0.106 0.057 0.050 0.075 

 

    In the table, almost all the fractions of t statistics of 𝛽1
  are around 0.05. No matter whether facilities are 

economically endogenous or not,  𝛽1
  is consistent. If we are only interested in the estimated coefficient of 

travel cost, we may not need to worry about any economic endogeneity in facilities. The fractions of t 
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statistics of 𝛽2
  are a little bit higher than 0.05 in Case I and Case II; the fractions of t statistics of 𝛽3

  are 

much greater, but smaller than 0.10 most of the time. Thus, as discussed before, the economic 

endogeneity of facilities would have effects on both estimates of beach length and facilities, which may 

be attributed to the fact that they both vary across sites but not people. Although the endogenous facilities 

in Case II can have a substantially inflated effect on the facilities parameter, based on the statistical tests 

the estimates are generally inconsistent with a probability less than 0.10.  

5 Tests for Aggregation Effects 

In the econometric sense, the interplay of supply and demand would seem likely to cause simultaneous 

endogeneity among equations; that is to say, the economic endogeneity of the way that facilities are 

supplied might be expected to result in statistical endogeneity. However, the results of the simulations do 

not show strong evidence that the estimates are inconsistent. We notice that the way we made facilities 

economically endogenous was to build facilities on the average visits of 1,000 people. In other words, 

facilities are economically endogenous at an aggregate level, and the effect could be diminished when we 

come to the individual level. Put differently, we assigned the best facilities to the sites that had the highest 

visitation (i.e., the sites that were best on average).  However, the site that is best on average will not best 

in each individuals choice set, especially given the way we randomly constructed the travel costs.  

Perhaps the aggregation across all people results in a supply of facilities that remains relatively 

uncorrelated with what is best in the individual choice sets.  To test whether the aggregation across all 

people influences the results, we change the supply mechanism a little bit. Instead of averaging across all 

people in one sample, we divide 1,000 people into 10 groups and 100 groups respectively. Under each 

division principle, we average past visitation within every group, and the facilities are correlated with the 

group’s average visits to each site. Now the economically endogenous facilities are different for different 

groups. We apply the new mechanism to Case I and Case II. The results are shown in Table-9 and Table-

10. 
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Table-9: Simulation results with endogeneity in different aggregate levels-Fractions of t statistics 

  Fixed Trials Random Regressors 

 
Average 

Across 
𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

Case I 
100 0.056 0.444 1 0.053 0.554 1 

10 0.059 1 1 0.062 0.991 1 

Case II 
100 0.055 0.396 1 0.047 0.504 0.998 

10 0.08 1 1 0.089 0.989 1 

 

Table-10: Simulation results with endogeneity in different aggregate levels-Descriptive Statistics 

   100 

people 
 Fixed Trials Random Regressors 

  𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

Case I 

True Value -0.060 0.490 0 -0.060 0.490 0 

Mean -0.060 0.361 0.152 -0.060 0.340 0.152 

Min. -0.067 0.184 0.075 -0.067 0.108 0.071 

Max. -0.054 0.613 0.240 -0.054 0.590 0.242 

Var. 4.881e-06 3.829e-03 6.303e-04 4.276e-06 3.898e-03 6.329e-04 

MSE. 4.876e-06 2.041e-02 9.086e-03 4.277e-06 2.648e-02 9.070e-03 

Case II 

True Value -0.060 0.490 0.060 -0.060 0.490 0.060 

Mean -0.060 0.367 0.201 -0.060 0.345 0.201 

Min. -0.067 0.193 0.123 -0.067 0.102 0.108 

Max. -0.054 0.595 0.298 -0.054 0.593 0.296 

Var. 4.997e-06 3.985e-03 6.844e-04 4.230e-06 4.108e-03 6.865e-04 

MSE. 5.007e-06 1.905e-02 2.041e-02 4.256e-06 2.511e-02 2.056e-02 

 

   10 

people 
 Fixed Trials Random Regressors 

  𝛽1
  𝛽2

  𝛽3
  𝛽1

  𝛽2
  𝛽3

  

Case I 

True Value -0.060 0.490 0 -0.060 0.490 0 

Mean -0.061 0.155 0.324 -0.061 0.155 0.324 

Min. -0.068 -0.099 0.284 -0.068 -0.099 0.284 

Max. -0.053 0.364 0.363 -0.053 0.364 0.363 

Var. 4.961e-06 3.021e-03 1.593e-04 4.961e-06 3.020e-03 1.593e-04 

MSE. 5.791e-06 0.115 0.070 5.791e-06 0.115 0.070 

Case II 

True Value -0.060 0.490 0.060 -0.060 0.490 0.060 

Mean -0.062 0.169 0.346 -0.062 0.169 0.346 

Min. -0.070 -0.066 0.295 -0.070 -0.066 0.296 

Max. -0.054 0.390 0.387 -0.054 0.390 0.387 

Var. 5.171e-06 3.360e-03 1.732e-04 5.171e-06 3.360e-03 1.732e-04 

MSE. 7.578e-06 0.107 0.082 7.578e-06 0.107 0.082 
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    As we gradually reduce the aggregation level, making the facilties more correlated with the individual 

choice sets, the effect of economic endogeneity becomes more and more significant. When we average 

across 100 people, the fractions of t statistics for  𝛽3
  that are above 1.96 are 1, so 𝛽3

  does not converge to 

the true value and we can reject the null hypotheses in all cases. The fractions of t statistics of 𝛽2
  also 

increase to around 0.50, so 𝛽2
  is not consistent, either. 𝛽1

  , being based on a variable with individual and 

site specific variation, is not influenced under this situation. 

    When we average across 10 people, not only are 𝛽3
  and 𝛽2

  inconsistent but 𝛽1
  is also affected some. 

The fractions of its t statistics go up to 0.08 or 0.09. Although the probability at which 𝛽1
  is not consistent 

is still small, the endogeneity of facilities does have some spillover effects on the estimated coefficient of 

travel cost. 

    We could see how the properties of the estimated coefficients change compared to previous simulations 

more clearly through the descriptive statistics. For 𝛽1
 , when we average across 100 people, the means 

remain the same as the true value. The variances and MSEs, although still very small, are bigger than 

previous ones. When we average across 10 people, the means are slightly smaller than the true value, and 

the ranges keep getting bigger. For 𝛽2
 , when we average across 100 people, the means are smaller than 

the true value; when we average across 10 people, the means become much smaller. The variances and 

MSEs are getting bigger. The bias is downward. For 𝛽3
 , the bias is upward. The means are much greater 

than the true values. As the aggregation effect declines, the means almost double, with a great increase in 

MSEs. Thus, when the economic endogeneity of facilities approaches the individual level, the coefficient 

of beach length tends to be underestimated (attenuated) and the coefficient of facilities tends to be 

overestimated. Both of the estimates are inconsistent. Actually, since the mean of 𝛽1
  starts to decline 

when we average across 10 people, we might even expect that 𝛽1
  would become inconsistent with 

downward bias if we had many more people and the aggregation level was very low. 
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    When the economic endogeneity effect dominates the aggregation effect, the economic endogeneity of 

facilities will lead to statistical endogeneity, which makes the estimated coefficient of facilities 

inconsistent. Here, the other two estimated coefficients are influenced, too. It may arise from the fact that 

facilities are not only correlated with error terms, but also correlated with the other two explanatory 

variables. A popular site would have a longer beach or be closer to people’s houses, and the popularity is 

proportional to facilities. Thus, facilities are positively correlated with beach length, and negatively 

correlated with travel cost. So 𝛽2
  would have a downward bias when 𝛽3

  is upward biased; it is also the 

case with 𝛽1
 , since 𝛽1

  is negative. It could be possible that, with a low aggregation level, even if facilities 

are not included as one explanatory variable in the estimation, as long as they do contribute to people’s 

choices, their economic endogeneity might still have significant effects through their correlations with 

other site characteristics and travel cost. Plus, within the settings, the estimated marginal welfare change 

due to a change in facilities at all sites is −𝛽3
 𝛽1

  . So if 𝛽3
  is not a consistent estimate, the welfare 

estimate is also biased, which has important policy implications.  

6 Conclusions and Future Study 

Site characteristics make contributions to explaining the popularity of recreational sites. Facilities, like 

parking lots, restrooms, picnic tables and so on, have been identified by previous studies on recreational 

demand as having a statistically significant on people’s utility equations. On the other hand, previous 

studies on recreational management also show that better facilities are provided at sites where more 

people go, which means that facilities are typically economically endogenous. 

    Usually, the interplay of supply and demand will cause simultaneous endogeneity and then lead to 

inconsistent estimates; however, the Monte Carlo simulations examined here do not strongly support that 

facilities are statistically endogenous when the supply is based on aggregate demand. In fact, the 

estimates still converge to the population parameters at a probability of more than 90% even though the 

mean facilities parameters were overstated by 33%. Because in our simulation design the individuals 
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experience a wide range of travel costs, there likely remain sufficient differences between the sites that 

are best for an individual and the sites that were best in aggregate.  This effect likely minimizes any 

widespread inconsistency of the facilities parameters even in the endogenous supply case.  We test this 

suspicion by diminishing the aggregation level. The simulation results then become very susceptible to 

statistical endogeneity of facilities. Therefore, the economic endogeneity effect on the estimation is 

greatly reduced by the aggregation effect for our simulation.  

    To clarify, we caution readers against drawing too much from our Case I and Case II simulations 

results that indicate a high level of consistency of the parameters since the offsetting effect of the 

aggregation could be caused by the basic property of our simulations. Here we randomly draw numbers as 

the travel cost, which means that both people and sites are fully dispersed across our hypothetical 

landscape.  That is, our simulations do not involve any spatial clustering of individuals which implies 

maximal variation in the individual specific travel costs.  As a result, on average, the probability of 

visitation should be almost the same for all sites. And it is the case in our simulation results. When we 

average the visits across all people, we find that each of the 10 sites has a probability of being visited of 

about 0.10. So it does not make much difference from the case in which managers do not consider past 

visitation and construct similar facilities on all sites.  On the contrary, it would be common that 

recreationists cluster at some areas, like cities, and sites such as beaches are dispersed along a shoreline. 

Then there would be some sites that are more frequently visited than others. In fact, this situation is much 

closer to reality. Lupi and Feather (1998) put recreational sites into three categories: the most popular 

ones, the ones which are the subject of policy analysis and remaining sites. In their survey of sport fishing 

in Minnesota, Lake Mille Lacs dominated all other lakes; Lake of the Woods, Lake Minnetonka and Lake 

Leech were the second popular; when it came to other lakes, the number of visitors dramatically declined. 

So, in this case, even if we aggregate across all people, the popular sites wouldn’t disappear.  

     When dealing with real data, if there is a large degree of spatial dispersion among recreationists when 

compared to site locations, we might be inclined to neglect the possible economic endogeneity of 
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facilities; however, if the dispersion of recreationists is limited (perhaps because they live in spatially 

clustered regions so will have similar travel costs) then the economic endogeneity may be more 

problematic.  In such situations, statistical techniques such as apply instrumental variables may be 

warranted.  Future directions for our subsequent investigations include incorporating these situations of 

disproportionately popular sites and spatial clustering of travel costs into our simulations and 

investigating whether the economic endogeneity of facilities will cause statistical endogeneity under those 

circumstances. That examination will provide more robust conclusions which would allow researchers to 

identify the types of situations likely to cause more or less of a concern about the impacts of 

endogenously supplied site characteristics. 
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