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Empirical Analysis of Land-use Change and Soil Carbon

Sequestration Cost in China
Man Li, JunJie Wu, Xiangzheng Deng

This project examines the driving forces behind ldral-use change and evaluates the
effects of land-use transition on soil organic carlgensity and sequestration cost in
China. It contributes to the literature in thre@exgs. First, it applies a discrete choice
method to model multiple land-use options with aqua set of high-quality data.

Second, it conducts a comprehensive analysis ghgical characteristics and changes
in soil carbon storage caused by land-use chanbid,Tit examines the economic

efficiency of alternative land use policies as rimstents for carbon sequestration in

China.
Key words: carbon sequestration, land-use, soiharg carbon density, China

Increased concern over global climate change hasght great attention to China’s
carbon dioxide emissions. From 1991 to 2004 Chioabbtkd its carbon dioxide
emissions due to the increased energy consumpiitamlignd et al. 2007). In 2006,
China surpassed the United States to become tipestaemitter of carbon dioxide in the
world, releasing 6.2 billion tons of carbon dioxioto the atmosphere each year. The
emission affects China as well as countries. Fangpte, due to the greenhouse effect,
China has witnessed many negative environmentadtspincluding changes in planting

seasons for some crops, shrinkage of inland lakes tandra, and increases in the
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intensity of drought and flood.

Increasing energy demand, driven by fast economveldpment and unprecedented
urbanization, makes it a limited strategy to retyenergy-based abatement alone. As a
supplement, biological carbon sequestration hasiegaimore attention due to its
forward-looking, multi-benefits for sustainable aomic development, environmental
conservation, and food security. Biological segatisin involves managing land in ways

that enhance the natural absorption of atmosphartwon by vegetation and soil.

With the total land area of 932.7 million hectar€ina, like the United States and
Canada, has a large potential for soil carbon strpi®n. China has witnessed a
remarkable land-use conversion over the past tweadks, which has changed the
storage of soil carbon significantly. According @orecent study, China losses 1.95
percent of soil organic carbon in its cropland adlyyand the largest losses take place in
the northeastern regions, which include the masildesoils in the country (Tanet al,
2006). Therefore, understanding the relationshipyéen land-use change and soill

carbon sequestration becomes an urgent issue.

This paper evaluates the impacts of land-use changéhina’s soil organic carbon
(hereafter SOC) density and estimates sequestratosts under four land policy
scenarios. To achieve these objectives, we fingtldp an econometric model of discrete
land-use choice among six alternatives: farmlanasgland, forestland, water area, urban

area, and unused land. The expected utilities a@etad in terms of characteristics of
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individuals and alternatives, which is a combinmatiof multinomial and conditional
logistic formulations. We then develop a biomeiriodel to assess the regional pattern of
SOC density in China. The biometric model incluflas types of variables — climate,
soil physical and chemical properties, land-useegaty, and regional dummy. This
approach can easily be applied to a large regiahtlans overcomes the limitation of a
detailed site-specific, field-level process modghally, by combining the econometric
and biometric models, we are able to use a revgakfgrence approach to estimate

sequestration cost (Stavins 1999).

The data come from three sources. The Chinese AvadéScience (CAS) provided
data on land use, soil property, and socioeconeani@bles. CAS compiled the land use
panel data (1988, 1995, and 2000) based on the asdislat TM/ETM images with a
spatial resolution of 30 by 30 meters. Geophysicass-sectional variables come from a
geographical information system (GIS) database atlay 1 square kilometer level.
Socioeconomic variables are available at the colavgl (with a few exceptions) from
various editions of statistical yearbooks of Chilmathe current version of the paper, we
conduct a case study on Huang-Huai-Hai Plain, whidhcludes 9

provinces/provincial-level metropolis and 421 coesit

The paper makes several contributions to the titeea First, it analyzes multiple
land-use options in China with a discrete choicel@hoPrevious literature on land use in

China mainly focuses on aggregate changes at tinetycéevel or above. To the best of
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our knowledge, no one has assessed land allocathamg multiple uses with a discrete
choice approach in the literature. This methodvedlaus to model land use at a very
disaggregated scale, which is necessary for amajythie environmental impacts of land
use changes. Second, it considers economic eiffigieand involves some

socioeconomic variables in the model. In contrpstvious studies of China’s carbon
sequestration typically develop biophysical andch@amical models. Third, it examines
the economic efficiency of alternative land useige$ such as urban development
control and farmland protection as instrumentscianbon sequestration in China. Most

previous studies have been limited to the costyaisabf afforestation policies.

Economic efficiency is a major criterion for evding the feasibility of alternative
carbon sequestration strategies. However, preMitrature of carbon sequestration in
China typically involves biophysical and biochenhicenodeling without taking
socioeconomic factors into account. With the datebaof China’s National Forest
Resource Inventory (1949-1998) and China’s SecoatibNal Soil Survey (1979-1985),
many Chinese scholars have sought to assess thal gyztern and change of carbon
storage in forest and soil in China over the lastadle. The land areas covered in
previous studies include forestland (Fagtgal. 2001), cropland/farmland (Targf al.
2006; Zhanget al. 2006), and all types of lands (Waegal. 2003; Wanget al. 2004; Wu
et al. 2003; Yanget al. 2007). Huang and Sun (2006) conduct a nice suoreyhe

changes in topsoil carbon of China’s croplands ¢lverdast two decades by selecting 132



representative articles from literature databasdslighed since 1993. Internationally,
Canadian and Chinese collaborators execute a far{2002-2006) project of carbon
sequestration in China’s forest ecosystems. Theaements of the project are published
in a special issue ofJournal of Environmental Managemen2007). Three
biochemical/biophysical models are widely appliedttie estimation of carbon storage:
Denitrification-Decomposition (DNDC), Integrated Terrestrial Ecosystem C-budget
(INTEC), and the Bemmelen index (0.58) equationfetv cost-benefit analyses of
afforestation include early work by Xu (1995) amtent efforts by Wangt al. (2007)

and Zhowet al. (2007) in the Canadian-Chinese collaborative ptoje

Researchers have been analyzing the sequestratits for almost two decades in
the United States and European countries. Initiadiess generally address the topics of
measuring forest sequestration costs (Adatrad. 1993; Aliget al. 1997; Lubowsket al.
2006; Parks and Hardie 1995; Plantiregaal. 1999; Stavins 1999). Richards and Stokes
(2004) conducted a comprehensive review of thealitee on this subject and pointed out
there were three approaches to modeling opportuoitst of foregone land use:
bottom-up engineering studies, the sectoral op#ton approach, and the
revealed-preference econometric method. Subsegtfents involve the assessments of
economic potential for agricultural soil carbon wesfration such as conservation tillage
adoption (Pautscht al. 2001; Antle and Diagana 2003; Capa#ical. 2004; Fenget al.

2006; Antleet al. 2007). After adjusting for the variation among gtedies, it is reported



that in the United States, afforestation can sequ@s0 to 500 million Mg C (Megagram

of carbon) per year at a price range of 10 to 1&s per Mg C, whereas conservation
tillage may generate 0.25 to 6.2 million Mg C inl g@r year at a cost range of 50 to 270
dollars per Mg C. The cost estimates of conserndilage are sensitive to the choice of

baseline and the spatial heterogeneity of the area.

The organization of this paper is as follows. Thextntwo sections describe the
econometric and the biometric modeling structufégn we report the estimation results
and carry out an analysis. Section five estimagegiastration costs through a series of
simulations and discusses policy implications. Tieal section contains some

concluding comments.

An Econometric Modédl of Land-Use Change

Consider a risk-neutral landholder making land abkeice decisions. The choice set
contains six elements: farmland, grassland, faed{lwater area, urban area, and unused
land. Assuming that urban development is irrevégsithat is, urban area will never be
converted into other categories of land use, wardeeested in land transitions from five

starting land-use groups (farmland, grasslandsttaed, water area, and unused land).

We perform an empirical analysis by combining Madlfead (1973)’s conditional
logistic formulation and traditional multinomialdistic method. The difference between
them lies in model specification, where the multmal approach specifies the expected

utility in terms of the characteristics of indivials while McFadden’s method specifies it
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as a function of the attributes of alternatives.nd-aise decision is a relatively
complicated process thus the econometric moddlisnstudy involves both site-specific

and choice-specific variables.

Specially, let subscripi be land plot index,n denote countyt represent time

period, k and | be initial and final land use, respectively. Lawder’s utility from

where V,, is

t& itk

converting land usek to land usel is specified asU,, =V, K o

itk — Vitlk
the observable component arg, is the unobserved type | extreme value error.
(1) Viik :V(Zit Xnt ) = M TV +Xm|’ﬁk
where z, is a vector of site-specific variables and, is a vector of
alternative-specific regressorg. denotes socioeconomic variables andis a vector of
a site’s natural attributes such as land quality slope. We indexx by n since the
most disaggregated form of socioeconomic variaidesften at the county level. We

interpret 4, as land conversion coefficient, which partly capsuthe conversion costs
from use k to alternativel .
The absolute magnitude of coefficient in logisticodel has no economic

interpretation. Hence we set the initial land-useas the reference within each of five

categories and normalizg,, =0 and y, =0, which will avoids redundant parameters.
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Therefore the probability of converting plot from land-usek to land-usel at
period t+1 is given by equation (2). The logarithm of oddsbbosing| over k can
be written as

P -
(3) log——= =V ~Vik = Hic T Vi T %oy B = Xou B

it +1k |k

We estimate the parameters with maximum likelihoedhod using SAS version 9.2.
Biometric Soil Organic Carbon Model

The dynamics of SOC flow are a complex processvibue studies suggest that the
balance of carbon inputs from plant production aatputs controls SOC storage through
a decomposition process (Jobbagy and Jackson Fdipnet al. 1993; Schlesinger
1977). The diagram of SOC flow in Century modelr{@aet al. 1993) demonstrates the
joint effects of soil temperature, moisture, anxtues, which control the decomposition
rates of SOC in various carbon pools. For examgié, temperature and soil moisture
influence the decomposition rates at an invertegdttern with a heavy left-tail. By
contrast, the effects of soil texture are much ntmm@plicated. Sandy soils tend to have
higher decomposition rates of active carbon podl more carbon loss due to microbial
respiration, whereas an increase in clay contertdstéo decrease the fraction of carbon
flows from slow carbon pool into passive carbonl@ow raise the fraction of flows from
active carbon pool into passive carbon pool. Stidilso show that SOC density is
negatively correlated with soil bulk density (Waetgal. 2004; Wuet al.2003; Yanget al.

2007).



In contrast to biophysical/biochemical carbon medsbdplied in previous literature,
we use a statistical method to describe the reiship of SOC density and four types of
variables — climate, soil property, land use, asgianal dummy — as shown in equation
(4). Yanget al. (2007) find that such variables can explain 84@et of the variations in

SOC storage in China. Specially, we use a humidibgex (defined as

humity indesxs ot EeeRaien ) to replace precipitation and temperature as &ypro
for the climate variable. This substitution avoglgnificant correlation between mean
annual temperature and annual precipitation. Sailables include soil PH value, soil
bulk density, and content of soil loam, clay, amshds To be consistent with the six
categories of land-use choice in the econometridehowe partition land use into
farmland, forestland, grassland, water area, udraa, and unused land. Finally, we use

regional dummies to capture the unobserved chaistats that vary across regions of

China.

(4) _ _ _
SOC= f( climate soil property region landuse

= f | humidity index soil PH soil loam soil sand soil clay bulk din,landuse dummyegional dumm%

clivate soll property lantiuse region
To guarantee the robustness of the model, wé agveral statistic techniques to
validate and test the specification of equation Tdere are three alternative criteria used
for model selection: a) corrected Akaike’s Inforioat Criterion (AICc), b) Bayesian
Information Criterion (BIC), and c) 5-fold CrossiMation criterion (CV Press). AlCc

and BIC are penalized criteria, measuring the tfideetween bias and variance (loosely,
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2(p+1)
n-p-2

complexity and precision) in model constructione8fically, AlCc=1+ Iog(STSE)+
and BIC = nlog(SSE) + 2( p+ 2) g- 2d ,g=22., where n is the number of observations,
p is the number of parameters (including interceghd SSEis sum of squares error.
These two criteria indicate that a complex model. (with more number of parameters)
would be penalized. CV Press is a technique foessiisg how the results of a statistical
analysis will generalize to an independent dataBet. example, in a 5-fold cross
validation, the sample is randomly partitioned ibtsubsamples. Of the 5 subsamples, a
single subsample is retained as a validation datas®the remaining 4 subsamples are
used for estimatiorPredictedresidualsum of square (Press) is calculated by fitting the
model estimated from four subsamples with the ffata single validation subsample.
The CV process is then repeated 5 times with eddheo5 subsamples are used for
validation. By averaging the 5 Press’s, we obtasirgle estimation as a criterion for

model selection. The advantage of this methodas aH observations are used for both

estimation and validation, and each observatiasesl for validation exactly once.

Under a procedure of random sampling without repiant, we start with
partitioning the whole data into two subsets: osenamed as thé&aining dataset,
composed of 75% of observations in the whole sarplselect specification and to
estimate model; the other is called thest dataset, which contains 25% of total
observations and is used for validation. Then vetgasa candidate biometric model that

is specified as a quadratic polynomial of all qitative regressors. A competing model is
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composed of a subset of parameters in the candidatel. Given theraining dataset,
we use a stepwise procedure to rank all possibiepeting models according three
criteria (AlCc, BIC, and CV Press) in turn, withetlone having the lowest values being
the best. Next we use thestdataset to examine the robustness of model predlibly
calculating the average sum of square error (ASBg idea is similar to that behind
cross validation process. However, CV press istarmn for model selection, while here
we use thdestdataset for model validation. Finally we compdre ASE from thdest
dataset with the ASE thteaining dataset. If the former is less than or close &l#itter,
the model is robust and can generalize to an intbpe dataset.

The model selection results are very consisteneutite three alternative criteria.
All parameters are selected into the model. Intamdithis model is robust for prediction.
The ASE'’s of thdraining andtestdatasets are quite close, equaling 0.03938 ar3967/0

respectively (Three criteria selects a same maddaheir ASE’s are same).
Data
Case Study Area: Huang-Huai-Hai Plain

This study will cover the whole country. For thené being, we apply an analysis on a
random sample from Huang-Huai-Hai Plain, which udgls 9 provinces/provincial-level
metropolis and 421 counties. We will keep workimgtbe other regions and will finish
the complete analysis soon. Huang-Huai-Hai Plaladated in low reaches of the Yellow,

Huai, and Hai rivers within an area of 350 ¥ ki’ with 18.67 million ha of farmland
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under cultivation. As a highly productive agricudilarea, the Huang-Huai-Hai is often
referred to as China's breadbasket (Shi, 2003). t&jiure in the region ranges from
sandy loam to loamy clay, and soil pH generallygembetween 7.4 and 8.6. This is one

of the most important agricultural regions in Ch{ifang and Janssen, 1997).

Xinjiang

Qinghai

Sichuan
Chongging

Hunan jiangxi

Guizhou Fuiiag .
Guangdong T@an
‘Yunnan Guangxi — S

Figure 1. Location map of the soil profile in theadhg-Huai-Hai Plain

Data Description

The data come from three sources and are provigedebChinese Academy of Science
(CAS). Land-use data are from a unique databaseeflal, 2003; Denget al, 2006),
which was developed based on the US Landsat TM/Efidges with a spatial resolution
of 30 by 30 meters. The database includes timeseatata for the late 1980s, the
mid-1990s, and the late 1990s. This study uses,18835, and 2000 to denote the three
time periods. There are 25 land use/cover claséesgroup them into six land use
categories — farmland, forestland, grassland, watea, urban area, and unused land.

Table 1a reports the frequencies and the percentafysix land-use classes for three
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periods. Farmland is a major component of the laask, accounting for 70.2% of the
total land of the case study area in the initiaghry@988. Urban is the second largest
land-use category in the sample region. The laedsaof forestland, grassland, water
area, and unused land are relatively small. Theesbafarmland declined to 69.1% in

2000. The share of unused land decreases by 25%anknast, the share of urban area
increased from 12.3% to 13.5% from 1988 to 2000.

Table 1a. Summary Statistics of L and-use categories

1988 1995 2000

Land-use category

Freq Percent Freq Percent Freq Percent
Farmland 311170 0.702 303126 0.684 306618 0.691
Forestland 28805 0.065 36362 0.082 29084 0.066
Grassland 31356 0.071 27570 0.062 30834 0.070
Water area 13746  0.031 14157 0.032 14125 0.032
Urban area 54749 0.123 57810 0.130 60027 0.135
Unused land 3644  0.008 4437  0.010 2759 0.006
Observations 443470 443462 443447

Data on geophysical variables come from a GIS daglhat includes all parameters
of soil properties used in the biometric SOC modigk variables of soil attribute include
SOC content, soil PH value, soil bulk density, so&m, sand, and clay content.
Information on the properties of soil is from thA& data center. Originally collected by
a special nationwide research and documentatiojegir{the Second Round of China’s
National Soil Surveyorganized by the State Council and run by a ctigo of
universities, research institutes and soils extengienters. By using a conventional
Kriging algorithm (Kravchenko and Bullock 1999), vaee able to interpolate the soil

information into surface data to get more disaggted) information on the property of
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the soil over space for each pixel.

The database also contains three variables ustt inconometric land-use change
model, i.e., land productivity, terrain slope, drghway density. Land productivity was
included here was to measure the pixel-specifiecaljural productivity (Denget al,
2006), was introduced and used in our studies. ®hginal values of the land
productivity were estimated by the research teamfinstitute of Geographical Sciences
and Natural Resources Research, Chinese Acaden8ciehces (CAS) by using the
standalone software, Estimation System for the cuipural Productivity (ESAP). The
terrain slopevariable, which measures the nature of the terodiach county, are
generated from China’s digital elevation model dsgathat are part of the basic CAS
data base. Based on a digital map of transportatetworks in the mid-1990s, we
measureHighway densityas the total length of all highways in a countyidigd by the
land area of the county. All of the geophysicaliafalles are cross-sectional data at a 1 by
1 square kilometer level. The summary statistichefgeophysical variables is given in

Table 1b.

Additionally, we use two climate variables, meamwad temperature and mean
annual precipitation as proxies for soil tempematand soil moisture. The data for
measuringprecipitation(measured in millimeters per year) aethperaturdmeasured in
accumulated degrees centigrade per year) are fier@AS data center but were initially

collected and organized by the Meteorological Oletézn Bureau of China. For use in

15



our study, we take the point data from the climstations in our case study and
interpolate them into surface data using an apprazdled the thin plate smoothing
spline method (Hartkamp et al. 1999).

Table 1b. Summary Statistics of Geophysical Variables

Variable Level Mean Std Dev
SOC Model
SOC density (g/m2) 1 km2 2.23 0.62
Mean annual temperature (degree 1km2  12.79 1.52
Celsius)
Annual precipitation (mm) 1km2 652.82 134.39
Soil PH 1 km2 6.56 0.74
Bulk density (g/cm3) 1km2 137.53 3.50
Soil loam content (%) 1km2  30.68 5.67
Soil sand content (%) 1km2 59.15 9.84
Soil clay content (%) 1km2  19.85 3.47
Percentage of inland 1km2 29.72 n/a
Percentage of north coastal 1km2 28.98 n/a
Percentage of middle coastal 1km2 4131 n/a
Land-use Model
Land productivity (kg/km?2) 1km2  78.45 39.95
Terrain slope (degree) 1 km2 0.85 1.95
Highway density (km/km2) county 0.06 0.06

From various versions of statistical yearbooks ohin@, we collected the
socioeconomic data, mainly for years 1988, 1998, 2000. Most of the socioeconomic
data are at the county-level. Data in value termesna@easured at the 2000 real yuan (in
RMB ¥ 10%). Table 1c reports the summary statistics of thiase-series variables.

Table 1c. Summary Statistics of Time-series Variables

: 1988-2000
Variable Level
Mean  Std Dev
Value-added of farming (¥10000 /year) province 41964.20 23312.22
Value-added of forestry (¥10000/year) province 2056.01 1238.67

Value-added of animal-husbandry (¥10000/year, province 15060.02 7514.62
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Agricultural investment (¥10000/km2/year) county 0.20 1.37

Percentage of farmland converted to urban county 0.13 0.05
Forest investment (¥10000year) province 3158.08 1890.09
Afforetation project (1=yes, 0=no) n/a 0.22 0.41
Net industry output (¥10000/km2/year) county 926.69 6455.16
GDP per capita (¥10000 per person) county 0.36 0.18
Average annual change in GDP (¥10000) province 27449.35 23655.67
Std dev of annual change in GDP (¥10000) county 169.60 57.90
Share of urban area county 0.12 0.06
Nonrural population density (people per km2)  county 0.54 0.94

Ideally, we should use land rents to evaluate e&irms on alternative land use.
However, land in China is either state-owned (urbesa) or collectively owned (rural
area). Local governments, on behalf of the statmtrol all categories of land-use
transitions. Therefore, the actual land rents doeaxist in China. Furthermore, policy
preference may guide a land-use pattern and doen@w@nomic incentives even if there
is an appropriate measure of land rents. Conselguéntaddition to economic values,

socioeconomic variables include some measuresofayfactors.

The urban land rents merit a comment. In theirugrtial article, Capozza and
Helsley (1990) propose a structure of equilibriuand rent under uncertain
circumstances. It provides a guideline for us tostauct landholder’s utility from urban
use. Except for minor alterations, the theoretichian land rent in this paper is identical
to that in the stochastic monocentric urban modeCapozza and Helsley (1990). In
particular, the average rent of urban area is gherR= R + rc+%+&;, where R,
denotes pre-conversion land remt, is the discount rateC is one-time conversion cost,

T represents the commuting cost of unit distance, a?(t) Is the distance from urban
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boundary to the central business district. Spagid? represents option value, which
is a premium of irreversible urbanization arisimgni future uncertaintyA is the

. (gz+202r)]/2—g 2 . . .
defined asA =-——— and g and o° are, respectively, the drift and the variance
of Brownian motion rents. Option value will postgoa transition decision to urban area
and an increase in uncertainty of ) will result in a further delay since

6(r;fg)/6(az)>0.

We use net industry output per square kilometgréxy for the basic part of urban

land rents R + rC). The option value%) is approximated by a function of average
annual change in GDP and the standard deviatianoéial change in GDP. We use the
share of urban area and highway density in a cownéyaluate the value of accessibility
%E). As two supplements, we use gross domestic pto@DP) per capita and
non-rural population density to capture the levekeconomic development and urban
land capacity, respectively. Due to the large arh@firmissing observations of land-use
area, we do not directly use the area share ohuebal in a county to measure the share
of urban area. By contrast, we use a county-leeetgntage of observations of urban
land in the sample to proxy for the land area sh&mecifically, we perform three
separate simple linear regressions on observatmtigee periods, with a regressand of
the land area share and a regressor of the pegeeotabservations. We hope the fit line
to be a 45 degree line through the origin. Thissneament is very robust with a range of

R-square’s is from 0.97 to 0.98. Intercept and sleptimates are close to zero and one,
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respectively.

Based on the idea of augmented investment resuitingigher output, we use
agricultural investment per square kilometer axigsofor rents of farmland. However,
there are no appropriate measurements for land @mtforestland. So we employ a
continuous variable of aggregate provincial foiesestment and a dummy variable of
natural forests protection project to examine thgdct of afforestation policy on
land-use change. We also use aggregate value-addedarm, forestry and
animal-husbandry at a province-level as a grosssureaent for return on farmland,

forestland, and grassland.

The Basic Farmland Protection Regulati@stablished in 1994 deserves some
comments. The regulation aims at protecting cukiggdand by prohibiting conversions
of farmland to nonagricultural uses. It requiresggoaments at the county-level or above
to designate a basic farmland protection zone eryevillage or township. The same
amount of farmland lost must be replaced by newl@nd somewhere else if there was
an inevitable land conversion within a protectimne. This requirement is also called
“dynamic balance”. To capture this policy’s inflwenon transition from non-farmland to
farmland, we define a variable of percentage oanited farmland conditional on being
in initial farmland use (i.e., divide the obsenragnber of urban land parcels which were
initially farmland in a county by the total obsedvamount of farmland parcels of that

county in the starting period). This variable estfarestland, grassland, water area, and
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unused land model as a covariate. The idea belundtructing this variable is that, if
“dynamic balance” has impacts on land transitiamnmfrnon-farmland to farmland, an
increase in the percentage of urbanized farmland wise the probability of

non-farmland converted to farmland.

Estimation and Results

Parameters of separate models are estimated awralibn each of five starting land-use.
We employ two versions of econometric model by tmiesing data in two ways. First,
we drop variables in 1995 and conduct a crosses@itianalysis. Second, we estimate
the model using panel data with two time interva@38-1995 and 1995-2000. The
second model of panel data also involves fixed-teffects to capture the unobserved
time-dependent errors. The estimation results oftvodels are quite close, even though
most of the fixed-time effects are statisticallgrsficant. Minor differences lie in that the
goodness-of-fit of cross-sectional model is slightwer than that of panel data model
when beginning with farmland, and a bit highert#rsng with forestland, grassland, and
water area. In terms of initial unused land, padata model performs better than
cross-sectional model, indicating that there migihtsome unobservable time-dependent

factors influencing the transition probability afused land.

We will interpret estimation results and estimatsts of carbon sequestration based
on the cross-sectional model for two reasons: Iphaty avoid a server econometric

problem of error correlation over time, 2) unusadd only accounts for less than 1
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percent of the total land base, which is not of major concern. To save space, we only

present the results of cross-sectional model (ZB2)).

Table 2 shows the frequency and probability of Itnagisitions from 1988 to 2000.
Urban expansion is a remarkable phenomenon andaiadmas the largest component of
land base, is the main source of urbanization.del3.2 percent of farmland converted
to urban area from 1988 to 2000, accounting fo¥ @&rcent of the total urbanized land
parcels. In contrast, urban expansion from non{fmth is negligible. Meanwhile,
forestland, grassland, water area, and unused #&eadconverted to farmland in a
percentage of range between 19.0 and 46.8. Landlititns between forest and grass, as
well as land changes from unused land to water, alea account for a relatively large
percent of their respective initial land-use area.

Table2. Land Transitionsfrom 1988 to 2000
Final land-use

Initial Farm Forest Grass Water Urban Unused
land-use  1988-2000 1988-2000 1988-2000 1988-2000 1988-2000 1988-2000
Farm Freq 200962 4123 7017 4365 33158 896
Prob 0.802 0.017 0.028 0.017 0.132 0.004
Forest Freq 4371 14331 3496 283 500 30
Prob 0.190 0.623 0.152 0.012 0.022 0.001
Grass Freq 6623 4234 13236 454 760 79
Prob 0.261 0.167 0.521 0.018 0.030 0.003
Water Freq 4771 245 392 3964 743 74
Prob 0.468 0.024 0.039 0.389 0.073 0.007
Freq 996 55 118 628 233 818
Unused
Prob 0.350 0.019 0.041 0.221 0.082 0.287

Table 3 reports the estimation results for fivessés of initial land-use. It indicates

an accessible McFadden’s likelihood ratio indiceRIf for the models starting with
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farmland and with forestland, which fit variatioms land transition by 63.71% and

50.26%, respectively. By contrast, McFadden’s LRls relatively low for the remaining

three models (initially used as grassland, watea,aand unused land). Insufficient

covariates are a suspectable reason for the lowesdDespite that, this model can

explain well on probability of urban expansion aswhversion to farmland, which are

two main transitions of land-use in the sampleaegiver 1988-2000.

Table 3. Coefficient Estimatesfor the Econometric Land-use Change M odel

Initial Land-use Farmland Forestland Grassland Water area Unused land
Parameter Coefficient Estimates
Farm Intercept nfa -1.2448**  -1,1038*"* -0.9064*** 0.4961
Land prod n/a 0.0275** 0.0178**  0.0143*** 0.021 7%
Terrain slope nfa -0.3597**  -0.2433** (0.4289*** -0.3727**
Value-added 0.0000** -0.0000***  0.0000*** -0.0000  0.0000***
Value-added*Land prod  -0.0000*** -0.0000 -0.0000*** 0.0000 -0.0000**
Log(agri inv ) 0.0076 -0.0225 -0.0049 -0.0615***  -0.2674***
Log(agri inv)*Land prod -0.0000 0.0006* 0.0004 0.0007* 0.0011
% of farm to urban nfa  1.8947*  2.8843** 2.712*  -45,5231***
(% of farm to urban)”2 n/a -6.7948** -11.5495** -10.0875* 176.3782***
Forest Intercept -2.8087*** nfa -1.2914*= -3.2965*** -2.3713**
Land prod -0.0161*** n/a -0.0085** -0.0024 0.0040
Terrain slope 0.8256*** n/a  0.3300** 1.1931*** 1.6771**
Value-added -0.0000 -0.0004*** 0.0001 -0.0000 0.0001
Value-added*Land prod 0.0000 0.0000*** 0.0000 0.0000 -0.0000
Forest inv -0.0002*** -0.00002 -0.0001*** -0.0000 -0.0008**
Forest inv*terrain slope -0.0000 -0.0000**  -0.0000*** -0.0000 0.0000
Afforest proj(0-1 indicator) -0.2014**  0.1900** 0.0481 0.3708*  1.7232***
Afforest proj*terrain slope -0.0357** -0.0137 -0.1356***  -0.1996** 0.0246
Grass Intercept -2.4612*** -0.7396*** nfa -2.3083**  -2.7742**
Land prod -0.0196***  -0.0044*** n/a -0.0070* -0.0038
Terrain slope 0.7541** -0.1240*** n/fa 1.0923*** 1.3685***
Value-added -0.0000*** -0.0001*** 0.0000 -0.0000* 0.0000
Value-added*Land prod 0.0000* 0.0000*** -0.0000 0.0000 0.0000
Water Intercept -2.6657*** -3.2129**  -2.0342*** n/a 0.0867
Land prod -0.0139**  0.0109*** -0.0024 n/fa  -0.0057**
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Terrain slope -0.1816*** -0.5535***  -0.6032*** nfa -2.4208***
Urban Intercept -2.3884***  .3.7900***  -3.9661** -2.8172** -0.4540
Land prod -0.0036***  0.0211*** 0.0008 0.0126***  -0.0105***
Terrain slope -0.1368*** -0.5510***  -0.4078**  (0.3222*** 0.4245*
Log(value-added) 0.0906*** 0.0114 0.0582 -0.0663  -0.7616***
GDP per capita -0.8707*** -0.9118 1.0585* -1.3308** 3.4384**
(GDP per capita)*2 0.3247**+* 1.0422* -0.6771  1.0557** -1.8127
Ave change in GDP 0.0000***  -0.0000*** -0.0000 0.0000 -0.0000***
Std dev of change in GDP -0.0011**  -0.0018** 0.0003 0.0002 0.0042**
Share of urban area 5.3337**  9.151**  11.3836*** 5.4702**  11.1822**
Highway density -0.0860 0.7409  3.5149*** 0.5017 1.7424
Nonrural pop density 0.0188 0.5661 0.2871* 0.2731  2.9210***
(Nonrural pop density)"2 -0.0028 -0.4701 -0.0171*  -0.0212* -0.1819***
Unused Intercept -3.9288***  .5,5999***  -3.0534***  .3.4310*** n/a
Land prod -0.0178***  0.0136** 0.0013 -0.0096*** n/a
Terrain slope -0.3730*** -0.5393***  -0.5927*** -0.8097* n/a
Number of observations 250611 23011 25386 10189 2848
McFadden's LRI 0.6371 0.5026 0.4021 0.3982 0.2845

Note: *, ** and *** indicate statistical signifigzce at 10, 5, and 1% levels, respectively.

In general, almost all of site-specific variables statistically significant at 1% level
or less. As anticipated, lands with higher produttitend to be converted to farmland
and urban area and lands with higher slope are hketg to be changed into forestland.
The conversion coefficient estimates (intercepé) r@gative and statistically significant,
which is in line with the expected economic intetption.

Most of explanatory variables for urban expansioa significant and have the
expected signs. For instance, an increase in metsiry output will accelerate lands
converted to urban. The negative and statisticadjgificant sign of standard deviation of
change in GDP provides an evidence for option vahoaposed by Capozza and Helsley
(1990), i.e, increased uncertainty will delay aeversible urbanization. The influence of

share of urban area on urban expansion deserves eoocerns, which is statistically
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significant at 1% level for all of five initial atnatives. In this sense, a highly urbanized
area tends to requisition more lands from the ramgifive classes of non-urban land. In
contrast to the share of urban area, highway derssihot significant except for initial
grassland. Non-rural population exhibit an invertedurve and statistically significant
for initial unused land use, but marginal signifitar insignificant for other cases. These
results indicate that land conversion from diffén@itial use to urban area is sensitive to
different components of the theoretical urban leemds.

We report own-return elasticity of land-use choinetable 4 by selecting some
representative variables. Elasticity is definec gercentage change in the probability of
choosing the final land-use conditional on beinghia initial use, for a 1% change in the
variable to the final use. We evaluate elasticittha means of data. Generally, the signs
of value-associated own-return elasticity are usistawhile the signs of policy-related
elasticity are consistent. For example, the eldgtiovith respect to agricultural
investment is positive given initial use in farmfarand grassland. Forestland is
insensitive to forest investment. Except for unukedl, all other lands respond to the

percentage of land parcels converted from farnrib@amas anticipated.

Table 4. Own-return Elasticity of Land-use Choice

Final land-use

Initial
Farm Forest Grass Urban

land-use -

log(Agrl) A-value Prob forestl A-value A-value log(Ind) Std gdp Urban Highway Pop
Farm 0.002 -0.006 n/a -0.509 0.016 -0.032 0.485 -0.163 0.599 -0.005 0.009
Forest -0.016 -0.335 0.020 -0.061 -0.174 -0.567 0.079 -0.265 0.759 0.028 0.307
Grass 0.020 0.144 0.051 -0.606  0.153 0.014 0.395 0.050 0.765 0.134 0.140
Water -0.022 -0.061 0.011 -0.132  0.090 -0.252 -0.389  0.038 0.605 0.027 0.138
Unused -0.399  0.599 -0.599 -2.409 0.178 0.435 -3.106  0.567 0.846 0.084 2.381
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Soil Organic Carbon Model

The SOC density is sensitive to geophysical locatitherefore we split the plain into
three regions (inland, north, and south) in thdofeing analysi$. Table 5 reports
coefficient estimates of the biometric SOC modéie Tesults indicate good fit of the
model. Specially, it can explain 89.78 percent afiation in SOC density. Within 99
parameters, only 7 ones are not statistically gamnt at a 5% level or above. We
examine the signs of climate and soil variablehvatlinear model, which allows us
purging the disturbance from the square and interacterms in the quadratic
specification. The signs of variables are geneiadlgxpected. For example, SOC density
increases in humidity index and decreases in sidsand soil clay content in most
regions. An increase in soil PH value and soil léksity also cause a reduction of SOC
density. In summary, the estimated signs of clinsatd soil parameters are robustly in

line with the scientific rationale proposed by pledical and ecological literature.

The coefficient estimates of land-use categories adrour interest. As shown in
Table 2, the marginal effects of land-use changeS@C density exhibit great spatial
heterogeneity. Farmland has a similar SOC densityrlban area, where the density is a
bit higher than that of farmland in the north regi&and slightly lower in the other two.

Deforestation generally lowers SOC density in tamgle region except for converting

! Inland region includes Shanxi and Henan provinbiesth area contains Beijing city, Tianjian citpcaHebei and
Liaoning provinces. South region is composed aigsa, Anhui, and Shandong provines.
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forestland to grassland in the inland area. Imibith coastal region, land converted from

forest to farm and grass suffers losses 0.084 affl90gram C per square meter,

respectively. In the inland region, land transitfoom forest to farm loses 0.237 gram C

per square meter. By contrast, the distributio®OfC density in grassland varies greatly

across regions. It is high in the inland region endery low in the north area.

Table 5. Coefficient Estimates for the Biometric SOC M odel

Qquadratic Model Linear Model
Inland North South Inland North South
Variables Coefficient Coefficient  Coefficient Coefficient Coefficient Coefficient
Intercept 35.7000***  -45,7537*** 6.5938**  4.0113***  2.1006***  0.8809***
Farmland 0.0323*  0.1407*** -0.0066 0.0492*  0.3430***  -0.0948***
Forestland 0.2696%*** 0.2245%** 0.0459*** (0.26835***  0.6870*** -0.0890***
Grassland 0.2756*** 0.1351*** 0.0287**  0.4124**  0.5789*** -0.0858***
Water area 0.0666*** 0.1474*** -0.0023  0.0623**  0.3421** -0.1152***
Urban area 0.0214 0.1616*** -0.0096* 0.0305 0.3735** -0.0891***
Humidity index -0.0801*** 0.2537**  -0.3259**  0.0083***  0.0247** -0.0049***
Soil PH value 0.6611***  -5.4712%* 0.1466***  -0.0277**  0.1744** -0.0638***
Soil loam 0.05496***  -0.3037*** -0.06115*** -0.0098***  0.0047**  (0.0154***
Soil sand 0.3268***  -0.2276*** 0.1385*** -0.0015***  0.0269*** -0.0075***
Soil clay -1.5410%** -0.0660**  -0.4167** -0.0618**  0.1254** -0.0061***
Soil bulk density -0.3661*** 1.0770*** 0.0090***  -0.0029*** -0.0405***  0.0126***
(Humidity index)"2 0.0026***  -0.0019*** 0.0022***
(Soil PH value)*2 0.0029%** 0.0320***  -0.0043***
(Soil loam)”2 -0.0029***  -0.0036*** 0.0006***
(Soil sand)”2 0.0007***  -0.0003***  -0.0003***
(Soil clay)”2 -0.0003*** 0.0014***  -0.0016***
(Soil bulk density)"2 0.0008***  -0.0053*** 0.0002***
Humidity index*soil PH value -0.0150*** 0.0035***  -0.0085***
Humidity index*soil loam 0.0009***  -0.0024***  -0.0002***
Humidity index*soil sand 0.0035%** 0.0065*** 0.0014***
Humidity index*soil clay -0.0007**  -0.0044*** 0.0080***
Humidity index*soil bulk density ~ -0.0013***  -0.0030*** -0.0000
Soil PH value*soil loam 0.0105*** 0.0093***  -0.0027***
Soil PH value*soil sand -0.0034*** 0.0081***  -0.0036***
Soil PH value*soil clay -0.0030***  -0.0036*** 0.0053***
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Soil PH value*soil bulk density
Soil loam*soil sand

Soil loam*sail clay

Soil loam*soil bulk density
Soil sand*soil clay

Soil sand*soil bulk density
Soil clay*soil bulk density
Observations

Total number of observations
R-Square

-0.0023***
-0.0013***
0.0010***
0.0004***
-0.0050***
-0.0024***
0.0130***
71929

0.0324***
-0.0016***
0.0005***
0.0044***
-0.0015***
0.0010***
0.0022***
95151
331033
0.898

0.0021***
-0.0000
0.0011%+*
0.0003***
0.0016***
-0.0012*+*
0.0004*+*
163953 71929 95151
331033

0.789

163953

Note: *, **, and *** indicate statistical signifiaace at 10, 5, and 1% levels, respectively.

Simulation

We estimate carbon sequestration costs with sepelialy simulations at a 1 by 1 square

kilometer level. To be specific, we predict landrsition probability with the results of

econometric model. The total land area can be naeithto one because each of

land-use observations is gathered at the same (&vbly 1 square kilometer). After

weighted by the percentage of land-use observaiiotie starting period, we are able to

use the predicted probability directly to estimesebon storage and carbon flows based

on the coefficient estimates of three separate éiommodels. One distinguished feature

of this simulation is that it estimates the costves by involving all categories of land

rather than only concerning forestland. We usecalitiral investment as a measure for

cost and evaluate impacts of two land policieshe Basic Farmland Protection

Regulation(hereafterregulatior) and urban expansion control — on SOC densitygdan

The procedure is as follows. First, we take dat2000 as a baseline, predicting

land-use change and the associated SOC storaggech@hen we generate the first



scenario by ranging RMB ¥50/Knincrements of agricultural investment on farmland
from RMB ¥0/knf to RMB ¥1000/kri. We assess the effects of the “dynamic balance”
policy in the regulationunder scenario 2. In particular, based on scerdanee modified
the land-use choice model by setting the coeffictdrpercentage of urbanized farmland
to be zero. Therefore this scenario is a packagegotultural investment augment and
farmland policy. With a similar strategy we examitieze effectiveness of urban
development control policy under scenario 3 anth@ce 4, under which e restrict urban
expansion 20% off and 30% off the baseline, respaygt These two scenarios are a

combination of agricultural investment incremend ainban land policy.

Figure 2 demonstrates the marginal costs of sodarasequestration under scenario
1. The cost curves exhibit great spatial variatiomghree regions. An increment of
agricultural investment on farmland increases S@age in inland and south regions.
By contrast, increased agricultural investment Itesin a reduction of SOC density.
Besides, the marginal sequestration cost in saath is8 much higher than that in inland
region. For example, an increase in agriculturaestiment by RMB ¥400/kfrtends to
sequester 0.0003 tons of SOC in south region, whiéesame amount investment in

inland area sequesters 0.0017 tons.

It is not difficult to understand why an incremeat agricultural investment
decreases SOC storage in the north part. Incresgéziiltural investment does augment

the farmland areas in all three regions as showigume 5, which presents a comparison
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of land area percent for farmland, forestland, arfthnland with an extra RMB¥1000
agricultural investment. However, in north regi®@QC density of farmland is lower than
that of urbanland, which produces a downward slfp@arginal cost curve in the north
region. In this sense, it is more efficient to &rat inland area for soil carbon

sequestration. We will extend the simulation toe¢éhpolicy scenarios based on this

region.
1200
| 1060
(]
[ ]
.. 800
o |
£ (]
-ff_ [} 00
e - i —&—scenario 1 (Inland)
= [ ]
o -ﬁﬂ'e— W—scenario 1 (North)
.E —a—scenario 1 (South)
[ |
) T O T 1
=0. 004 —0. 002 ] 0. 002 0. 004
SOC (tons)

Figure 2. The marginal costs of soil carbon sega#sh under scenario 1 in Huang-Huai-Hai Plain
Figure 3a, 3b, and 3c suggest that a land polickage is much more cost-effective
than economic incensives alone for soil carbon esmation. Specifically, if there were
no a requirement for “dynamic balance”, an extrauand RMB ¥/kr spent on
agricultural investment can sequester 0.3794 tanison from atmosphere, in contrast to
0.0034 tons carbon in the case with the requirem€&herefore “dynamic balance”
exacerbates losses of SOC. A story can be told aomlénd protection and urban

expansion. In the past decades, China has expedantprecedented urban expansion,
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which is not only driven by fast economic growthit by local governments. The large
number of literature demonstrates that revenue fumad land requisition is an important
fiscal source for local governments in China. lis tfircumstance, theegulationplays a
real role in ensuring the amount of farmland ratttlean protecting farmland from
converting to urban area. “Dynamic balance” thusobees a guide for local governments
to replace urbanized farmland with other lands. Sf@@sities of forestland, grassland,
and water area are generally higher than that ohléand. Since SOC densities of
farmland and urban area are very close, an expardiarban to farmland results in

carbon losses mainly from losses of forestlandssiaamd, and water area.
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Figure 3a. The marginal costs of soil carbon segatésn under scenario 2 in Inland region

The story by no means indicates that farmland ptiaie makes no sense. In contrast,
we emphasize the effectiveness of a land policydddrscenario 3 and 4, we analyze
urban control policy package based on the baselsancreasing agricultural investment

plus restricting urban expansion. In this casegeatma agricultural investment of one
30



thousand RMB ¥/kfcan sequester 0.2788 and 0.4144 tons carbon,ctesbe by
bounding the share of urban area 20% off and 3(thefbaseline. These results are
comparable to that under scenario 2. Figure 5 tepmrcomparison of percentage of
farmland, forestland, and urban land areas amoedo#iseline and three scenarios. In
particular, farmland area has the largest percesténario 4 and the least one in scenario
2; the percentage of forest land area is the ptgerof forest is highest in scenario 4
and lowest under the baseline; while urban aresesidargest under the baseline and

lowest in scenario 4.
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Figure 3b. The marginal costs of soil carbon sematisn under scenario 3 in Inland region
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Figure 3c. The marginal costs of soil carbon sematsn under scenario 4 in Inland region

Given the relative positions of the cost curveg, tésults suggest that soil carbon
sequestration merits consideration by combinin@l&cy of urban development control.
This policy implication makes sense to the curstutation in China. Urban expansion is
not equivalent to urbanization. Vernon Hendersos diescribed China’s urbanization as
“too many city, too few people” in one of his retemports. High-degree urban
expansion, together with low-level urbanizationlwipair the sustainable development
in China. In addition, either land policy or ecorionmcentives should consider a spatial

variation issue because the shape of cost cusenisitive to geographical location.
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Figure 5. The land area percent of farmland, ftaedt and urban area with RMB¥ 1000 extra agricaltu
investment in Huang-Huai-Hai Plain

Concluding Comments

This paper evaluates the effects of land-use tiiansion soil carbon storage and
sequestration costs in Huang-Huai-Hai Plain of @hiwe model land-use selection with
a discrete choice method among six alternativeooptiWe also conduct a cross-sectional
analysis separately on SOC density of three regiéing-resolution data of land-use, soil
property are employed. We estimate the marginaliesteption costs under several
scenarios. A comparison is carried out among thegens, between economic incentives

and policy, and within various land policies.

In terms of marginal cost curves, the sign and ntade of the slope are both
sensitive to spatial location. An increment of agltural investment can increase SOC

density in inland and south area. However, theeimemt make SOC density in north area
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declined. In addition, carbon sequestration inndlaegion is more cost-effective than
that in south region. By making a comparison ofngfgain land-use area and SOC
storage under three land policy scenarios, we firad the policy of urban expansion

control is more environmental friendly.
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