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LOCAL-GLOBAL NEURAL NETWORKS:
A NEW APPROACH FOR NONLINEAR TIME SERIES MODELLING

MAYTE SUAREZ FARIÑAS, CARLOS E. PEDREIRA, AND MARCELO C. MEDEIROS

ABSTRACT. In this paper, the Local Global Neural Networks model is proposed within the context of time

series models. This formulation encompasses some already existing nonlinear models and also admits the

Mixture of Experts approach. We place emphasis on the linear expert case and extensively discuss the theoretical

aspects of the model: stationarity conditions, existence, consistency and asymptotic normality of the parameter

estimates, and model identifiability. The proposed model consists of a mixture of stationary or non-stationary

linear models and is able to describe “intermittent” dynamics: the system spends a large fraction of the time

in a bounded region, but, sporadically, it develops an instability that grows exponentially for some time and

then suddenly collapses. Intermittency is a commonly observed behavior in ecology and epidemiology, fluid

dynamics and other natural systems. A model building strategy is also considered and the parameters are

estimated by concentrated maximum likelihood. The whole procedure is illustrated with two real time-series.

KEYWORDS. Neural networks, nonlinear models, time-series, model identifiability, parameter estimation,

model building, sunspot number.

Forthcoming in theJournal of the American Statistical Association:

Theory and Methods

1. INTRODUCTION

The past few years have witnessed a vast development of nonlinear time series techniques (Tong, 1990;

Granger and Teräsvirta, 1993). Among them, nonparametric models that do not make assumptions about

the parametric form of the functional relationship between the variables to be modelled have become widely

applicable due to computational advances. For some references on nonparametric time series models see

Härdle (1990), Ḧardle, L̈utkepohl, and Chen (1997), Heiler (1999), and Fan and Yao (2003). Another class

of models, the flexible functional forms, offers an alternative that in fact also leaves the functional form

of the relationship partially unspecified. While these models do contain parameters, often a large number

of them, the parameters are not globally identified. Identification, if achieved, is local at best without

imposing restrictions on the parameters. Usually, the parameters are not interpretable either as they often

are in parametric models.
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The artificial neural network (ANN) model is a prominent example of such a flexible functional form. It

has found applications in a number of fields, including economics, finance, energy, epidemiology, etc.

The use of the ANN model in applied work is generally motivated by the mathematical result stating

that under mild regularity conditions, a relatively simple ANN model is capable of approximating any

Borel-measurable function to any given degree of accuracy (Funahashi, 1989; Cybenko, 1989; Hornik,

Stinchombe, and White, 1989, 1990; White, 1990; Gallant and White, 1992).

Another example of a flexible model, derived from ANNs, is the mixture-of-experts. The idea is to

“divide and conquer” and was proposed by Jacobs, Jordan, Nowlan, and Hinton (1991). The motivation for

the development of this model is twofold: first, the ideas of Nowlan (1990), viewing competitive adaptation

in unsupervised learning as an attempt to fit a mixture of simple probability distributions into a set of data

points; and the ideas developed in Jacobs (1990) using a similar modular architecture but a different cost

function. Jordan and Jacobs (1994) generalized the above ideas by proposing the so-called hierarchical

mixture-of-experts. Both the mixture-of-experts and the hierarchical mixture-of-experts have been applied

with success in different areas. In terms of mixtures-of-experts of time series models, the literature focuses

mainly on mixtures of Gaussian processes. For example, Weigend, Mangeas, and Srivastava (1995) show

an application to financial time series forecasting. Good applications of hierarchical mixtures-of-experts in

time series are given by Huerta, Jiang, and Tanner (2001) and Huerta, Jiang, and Tanner (2003). Carvalho

and Tanner (2002a) and Carvalho and Tanner (2002b) proposed the mixture of generalized linear time series

models and derived several asymptotic results. It would worth mentioning the Mixture Autoregressive

model proposed by Wong and Li (2000) and its generalization developed in Wong and Li (2001).

This paper proposes a new model, based on ANNs and partly inspired by the ideas form the mixture-of-

experts literature, named Local Global Neural Networks (LGNN). The main idea is to locally approximate

the original function by a set of very simple approximation functions. The input-output mapping is ex-

pressed by a piecewise structure. The network output is constituted by a combination of several pairs, each

of those, composed by an approximation function and by an activation-level function. The activation-level

function defines the role of an associated approximation function, for each subset of the domain. Partial

superposition of activation level functions is allowed. In this way, modelling is approached by the special-

ization of neurons in each of the sectors of the domain. In other words, the neurons are formed by pairs of

activation level and approximation functions, which emulate the generator function in different sub-sets of

the domain. The level of specialization in a given sector is proportional to the value of the activation-level

function. This formulation encompasses some already existing nonlinear models and can be interpreted as

a mixture of experts model. We place emphasis on the linear expert case. The model is then called the
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Linear Local Global Neural Network (L2GNN) model. A geometric interpretation of the model is given

and the conditions under which the proposed model is asymptotically stationary are carefully studied. We

show that the L2GNN model consists of a mixture of stationary or non-stationary linear models, being able

to describe “intermittent” dynamics: the system spends a large fraction of the time in a bounded region,

but, sporadically, it develops an instability that grows exponentially for some time and then suddenly col-

lapses. Furthermore, based on Trapletti, Leisch, and Hornik (2000), we extensively discuss the existence,

consistency, and asymptotic normality of the parameter estimates. Conditions under which the L2GNN

model is identifiability are also carefully considered. Identification is essential for consistency and asymp-

totic normality of the parameter estimates. A model building strategy is developed and the parameters

are estimated by concentrated maximum likelihood, which reduces dramatically the computational burden.

The whole procedure is illustrated with two real time-series. Similar proposals are the Stochastic Neural

Network (SNN) model developed in Lai and Wong (2001) and the Neuro-Coefficient Smooth Transition

Autoregressive (NCSTAR) model of Medeiros and Veiga (2000a).

The paper proceeds as follows. Section 2 presents the model and Section 3 discuss the geometric inter-

pretation for it. Section 4 presents some probabilistic properties of the L2GNN model. Parameter estimation

is considered in Section 5. A model building strategy is discussed in Section 6. Section 7 shows examples

with real time-series and finally, Section 8 briefly summarizes our results. A technical appendix provides

the proofs of the main results.

2. MODEL FORMULATION

The Local Global Neural Network (LGNN) model describes a stochastic processyt ∈ R through the

following nonlinear model:

yt = G (xt; ψ) + εt, t = 1, . . . , T, (1)

wherext ∈ Rq represents a vector of lagged values ofyt and/or some exogenous variables,{εt} is sequence

of independently and identically distributed random variables with zero mean and varianceσ2 < ∞. The

functionG (xt; ψ) is a nonlinear function ofxt, with the vector of parametersψ belonging to a compact

subspaceΨ of the Euclidean space, and is defined as:

G (xt; ψ) =
m∑

i=1

L
(
xt; ψLi

)
B

(
xt; ψBi

)
, (2)
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FIGURE 1. Example of an activation-level function withxt ∼ Unif(−30, 30), γ = 1,
d = 1, β(1) = −10, andβ(2) = 10.

whereψ =
[
ψ′

L, ψ′
B

]′
, ψL =

[
ψ′

L1
, . . . , ψ′

Lm

]′
, ψB =

[
ψ′

B1
, . . . , ψ′

Bm

]′
, and the functionsB

(
xt; ψBi

)
:

Rq → R andL
(
xt; ψLi

)
: Rq → R are named, respectively, as activation-level and approximation func-

tions. Furthermore,B
(
xt; ψBi

)
is defined as:

B
(
xt; ψBi

)
= −


 1

1 + exp
(
γi

(
〈di,xt〉 − β

(1)
i

)) − 1

1 + exp
(
γi

(
〈di,xt〉 − β

(2)
i

))

 , (3)

where

ψBi
=

[
γi, di1, . . . , diq, β

(1)
i , β

(2)
i

]′
,

〈·, ·〉 denotes the internal product in Euclidean space,γi ∈ R, di ∈ Rq, β
(1)
i ∈ R, andβ

(2)
i ∈ R,

i = 1, . . . ,m. It is clear that due to the existence ofγi in the expression (3), the restriction‖di‖ = 1 can

be made, without loss of model generality. Figure 1 shows an example of an activation-level function.

In the present paper, the approximation functions are linear, that is:L
(
xt; ψLi

)
= a′ixt + bi, with

ai = [a11, a12, . . . , a1q]
′ ∈ Rq andbi ∈ R. In that case the model is called the Linear Local-Global Neural

Network (L2GNN) model, where

yt =
m∑

i=1

(a′ixt + bi)B
(
xt; ψBi

)
+ εt, t = 1, . . . , T, (4)

ψLi
= [ai1, . . . , aiq, bi]

′, ψ ∈ R2m(2+q), and the stochastic processyt consists of a mixture of linear

processes. In (4), we consider thatεt is a random noise normally distributed. The normality assumption

can be relaxed and substituted by some moment conditions.
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FIGURE 2. Neural network architecture.

This architecture, initially proposed by Pedreira, Pedroza, and Fariñas (2001) for the problem of ap-

proximations ofL2-integrable real functions in the univariate case, can be represented through the diagram

illustrated in Figure 2. Notice that the hidden layer is formed bym pairs of neurons. Each pair of neu-

rons is composed of the activation-level unit, represented by functionB(xt;ψBi
), and the approximation

unit related to functionL(xt; ψLi
), i = 1, . . . , m. We should however stress the fact that model (4) is, in

principle, neither globally nor locally identified. This issue will be fully addressed in Section 5.2.

As pointed out in the introduction, the L2GNN model is closely related to the NCSTAR model of

Medeiros and Veiga (2000a) and the SNN model of Lai and Wong (2001). But though closely related,

there are significant differences. The NCSTAR model can be written as

yt = a′0xt + b0 +
m∑

i=1

(a′ixt + bi)F (xt;di, βi) + εt (5)

whereF (xt;d, βi) is asinglelogistic function, unlike our equation (3) which is the difference between two

logistic functions, defined as

F (xt;di, βi) =
1

1 + e−(d′ixt+βi)
,

and εt is a Gaussian white noise. The SNN model starts from this same equation (see equation (8) in

Lai and Wong (2001)), and then replaces the logistic functionsF (·) by stochastic Bernoulli variablesIti,

i = 1, . . . , m, whose expectation value equalsF (xt;di, βi) (equations (9a) and (9b) in op. cit.). There

are two main implications of these differences. First, on the contrary of the NCSTAR and L2GNN models,

the SNN model is a stochastic linear map; since given the choice ofIti the map is linear, the nonlinearities

do not appear in the maps themselves, but in the probabilities of choosing which particular map is applied
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at a specific timestep. This allows Lai and Wong to use the notion of soft splits proposed by Jordan and

Jacobs (1994), mapping the model to a hierarchical mixture of experts and to use a fast EM (Expectation-

Maximization) estimation algorithm. But though the introduction of the random variablesIti looks minor,

in fact it changes the asymptotics of the model in important ways. First, it should be noted that the one-step-

ahead predictor is the same in the SNN model and in (5), because the expected value of the variablesIti is

F (xt;di, βi); however, the residuals, and with them thevarianceof the predictor, are different, since, for a

given timeset, the variablesIti, i = 1, . . . , m, can assume2m distinct values and so introduce a new source

of variability beyond theεt. Therefore, then−step dynamics of the L2GNN, NCSTAR, and SNN models

are quite different, and the estimators differ accordingly. The second difference sets apart the L2GNN model

from bothNCSTAR and SNN models, and is to our mind more fundamental. Given a random choice of the

model parameters, if an eigenvalue of the characteristic equation of some of the limiting linear model falls

outside the unit circle, the NCSTAR and SNN models will be asymptotically non-stationary with probability

strictly greater than0; particular (i.e., measure zero) choices of parameters have to be made to guarantee as-

ymptotic stationarity in this case. On the contrary, the L2GNN model will remain asymptotically stationary

with probability one by imposing some very weak restrictions on the parameterd (see Theorem 1); particu-

lar choices of parameters have to be made to permit the dynamics to diverge. It is thus interesting to notice

that although the NCSTAR and SNN models are in some sense “supersets” of the L2GNN model, since

each L2GNN map can be written as two maps in (5), an important property which is generic for the L2GNN

case (asymptotic stationarity) is not generic for the “more general” models. Furthermore, the stationarity

condition presented in Section 3 of Lai and Wong (2001) eliminates the possibility of mixing non-stationary

linear models. Asymptotic stationarity of L2GNN model is discussed in Section 4. The core of the idea

is that the activation functions of the NCSTAR and SNN models are “large”, being “active” in half the

space, while the activation functions of the L2GNN model are “small”, since they cover a small fraction of

any sufficiently large sphere. Thus if the NCSTAR or SNN models are non-stationary, the dynamics can

easily escape to infinity; if an L2GNN model is non-stationary, the trajectory has to escape along a direction

exactly perpendicular tod, and any deviation will cause the trajectory to “fall off” the activation function

and return close to the origin. Both NCSTAR and SNN models could do exactly this by using extra maps;

however, the parameters of these extra maps have to be chosen exactly, and a small random perturbation of

the model parameters would, with probability one, destroy the property. An important type of dynamical

behavior is called “intermittent” dynamics: the system spends a large fraction of the time in a bounded re-

gion, but, sporadically, it develops an instability that grows exponentially for some time and then suddenly

collapses. Intermittency is a commonly observed behavior in ecology and epidemiology (breakouts), fluid
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dynamics (turbulent plumes) and other natural systems. The L2GNN model can fit such dynamicsrobustly,

meaning small perturbations of the parameters do not change the behavior; NCSTAR and SNN models can

by definition fit that dynamics too, but the fit is sensitive to small perturbations.

3. GEOMETRIC INTERPRETATION

In this section we give a geometric interpretation of a layer of hidden neuron-pairs. Let bext ∈ X,

whereX is a vector space with internal product denoted by〈·, ·〉. The parametersd, β(1) andβ(2) in (4)

define two parallel hyperplanes inX:

H1 =
{
xt ∈ Rq| 〈d,xt〉 = β(1)

}
and H2 =

{
xt ∈ Rq| 〈d,xt〉 = β(2)

}
. (6)

The position of each hyperplane is determined by direction vectord. The scalarsβ(1) andβ(2) determine

the distance of the hyperplanes to the origin of coordinates. As a hyperplane has infinite direction vectors,

the restriction‖d‖ = 1 reduces this multiplicity, without loss of generality. Thus, the hyperplanesH1 and

H2 are parallel due to the fact that they have the same direction vector, and divideX into three different

regions:H−,H0,H+ defined as:

H− =
{
xt ∈ Rq| 〈d,xt〉 < β(1)

}

H0 =
{
xt ∈ Rq| 〈d,xt〉 ≥ β(1) and 〈d,xt〉 ≤ β(2)

}

H+ =
{
xt ∈ Rq| 〈d,xt〉 > β(2)

}
(7)

The regionH0 represents the active state of the neuron pair and regionsH− andH+ represent the in-

active state. The active or non-active state of the neuron pair is represented by activation-level function

B (xt; ψB). Parameterγ determines the slope of the activation-level function, characterizing the smooth-

ness of transition from one state to another. Thus, the extreme caseγ →∞ represents an abrupt transition

between states.

Whenm neuron-pairs are considered, there arem pairs of hyperplanes. Therefore,m closedH0-type

regions will exist that could intercept one another or not. Thus,X will be divided into polyhedral regions.

If not all hyperplanes are parallel, that is, if∃i, j, i 6= j, such thatdi 6= dj the region formed by the

interception of hyperplanes,H0
ij = H0

i

⋂
H0

j , is non-empty region and represents the region where the

neuron-pairsi andj are both active.

One case that worth special mention is when the hyperplanes are parallel to each other, that isdi = d,

∀i. In that case we would havem parallel regions of theH0-type. Under conditionβ(2)
i < β

(1)
i+1, ∀i, the
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intersection of these regions is empty. The L2GNN model can thus be interpreted as a piecewise linear

model with a smooth transition between regimes. For a review on smooth transition time-series models see

van Dijk, Ter̈asvirta, and Franses (2002).

4. PROBABILISTIC PROPERTIES

Deriving necessary and sufficient conditions for stationarity of nonlinear time-series models is usually

not easy and that is also the case of the L2GNN model. One possibility, as the L2GNN model can be

interpreted as a functional coefficient autoregressive (FAR) model ifxt = [yt−1, . . . , yt−p]
′, is to apply

the results derived in Chen and Tsay (1993) and applied in Lai and Wong (2001). However, the resulting

restrictions are extremely restrictive. For example, asεt is normally distributed,yt is geometrically ergodic

if all roots of the characteristic equationλp − c1λ
p−1 − · · · − cp = 0 are inside the unit circle, wherecj =

∑m
i=1 |aij |, j = 1, . . . , p. Fortunately, following a similar rationale as in the case of linear autoregressive

(AR) processes, Theorem 1 gives less restrictive sufficient conditions for the asymptotically stationarity of

the L2GNN model. It is easy to check that model (4) has at mostN limiting linear models of the form

yt = c
(k)
0 + c

(k)
1 yt−1 + · · ·+ c

(k)
p yt−p + εt, whereN =

∑m
i=1

(
m
i

)
.

THEOREM1. The L2GNN model is asymptotically stationary if one of the following restrictions is satisfied:

(1) The roots ofλp − c
(k)
1 λp−1 − · · · − c

(k)
p = 0, k = 1, . . . , N , are inside the unit circle.

(2) There is ak ∈ {1, 2, . . . , N} such that at least one root ofλp−c
(k)
1 λp−1−· · ·−c

(k)
p = 0 is outside

the unit circle anddij 6= 0, i = 1, . . . , m, j = 1, . . . , p.

(3) There is ak ∈ {1, 2, . . . , N} such that at least one root ofλp − c
(k)
1 λp−1 − · · · − c

(k)
p = 0 is

equal to one, the others are inside the unit circle, anddi, i = 1, . . . ,m is not orthogonal to the

eigenvectors of the transition matrix

A(k) =




c
(k)
1 c

(k)
2 c

(k)
3 · · · c

(k)
p−1 c

(k)
p

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

.. .
...

...

0 0 0 · · · 1 0




. (8)

The proof of the theorem is given in the Appendix and is based on the results for linear autoregres-

sive models. The intuition behind the above result is that whenyt grows in absolute value, the functions

B
(
xt; ψBi

) → 0, i = 1, . . . ,m, and thusyt is driven back to zero. Condition 1 is trivial and implies that
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all the limiting AR models are asymptotically stationary. Condition 2 considers the case where there are

explosive regimes. Finally, Condition 3 is related to the unit-root case.

REMARK 1. Whenp = 1, the L2GNN model is asymptotically stationary independent of the conditions on

the autoregressive parameters.

The following examples show the behavior of some simulated L2GNN models. Examples 1 and 2 show

two stationary L2GNN models that are combinations of explosive linear autoregressive models. To illustrate

the dependency on the elements of vectordi, i = 1, . . . , m, Example 3 shows a model whered2 = [1, 0]′.

Example 4 considers the case with unit-roots.

EXAMPLE 1. 1000 observations of the following L2GNN model:

yt =(−0.5− 1.5yt−1)×
[

1
1 + exp (10 (yt−1 + 6))

− 1
1 + exp (10 (yt−1 − 1))

]
+

(−0.5− 1.2yt−1)×
[

1
1 + exp (10 (yt−1 + 2))

− 1
1 + exp (10 (yt−1 − 2))

]
+ εt,

(9)

whereεt ∼ NID(0, 1). Figure 3 shows the generated time-series, the activation-level functions, the auto-

correlogram of series, and the histogram of the data. Model (9) is a mixture of two explosive autoregressive

processes. Either when only one of the activation-level functions are active or when both of them equal

one, the autoregressive model driving the series is explosive. However, as can be observed, the series is

stationary. The distribution of the data is highly asymmetrical and there is also some evidence of bimodal-

ity. When iterating the skeleton of model (9) and makingt → ∞ the process has, in the limit, three stable

points: 0.0052, 1.0140, and 2.6567.

EXAMPLE 2. 3000 observations of the following L2GNN model:

yt =(−0.5− 2.2yt−1 + 2.5yt−2)×
[

1
1 + exp (0.7yt−1 − 0.7yt−2 + 10)

−

1
1 + exp (0.7yt−1 − 0.7yt−2 − 10)

]
+

(0.5− 1.9yt−1 − 1.2yt−2)×
[

1
1 + exp (1.5 (0.7yt−1 − 0.7yt−2 + 2))

−

1
1 + exp (1.5 (0.7yt−1 − 0.7yt−2 − 40))

]
+ εt,

(10)
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FIGURE 3. Example 1. Panel (a): generated time-series. Panel (b): Scatter plot of the
activation-level functions againstyt−1. Panel (c): Autocorrelogram of the series. Panel
(d): Histogram of the series.

whereεt ∼ NID(0, 1). Figure 4 shows the generated time-series, the activation-level functions, the auto-

correlogram of series, and the histogram of the data. As can be observed , even with explosive regimes, the

series is stationary. However, it is strongly not normal and bimodal.

EXAMPLE 3. 30000 observations of the following L2GNN model:

yt =(−0.5− 2.2yt−1 + 2.5yt−2)×
[

1
1 + exp (0.7yt−1 − 0.7yt−2 + 10)

−

1
1 + exp (0.7yt−1 − 0.7yt−2 − 10)

]
+

(0.5− 1.9yt−1 − 1.2yt−2)×
[

1
1 + exp (1.5 (yt−1 + δyt−2 + 2))

−

1
1 + exp (1.5 (yt−1 + δyt−2 − 40))

]
+ εt,

(11)
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FIGURE 4. Example 2. Panel (a): generated time-series. Panel (b): Scatter plot of the
activation-level functions againstyt−1 − yt−2. Panel (c): Autocorrelogram of the series.
Panel (d): Histogram of the series.

whereεt ∼ NID(0, 1) andδ = 0, 10−10. Figure 5 shows the generated time-series. As can be observed,

the process is explosive whenδ = 0 but is asymptotically stationary whenδ = 10−10.

EXAMPLE 4. 30000 observations of the following L2GNN model:

yt =(0.5 + 2yt−1 − yt−2)×
[

1
1 + exp (0.7yt−1 − 0.7δyt−2 + 10)

−

1
1 + exp (0.7yt−1 − 0.7δyt−2 − 10)

]
+

(0.5− 0.5yt−1 + 0.5yt−2)×
[

1
1 + exp (0.7yt−1 − 0.7δyt−2 − 5)

−

1
1 + exp (0.7yt−1 − 0.7δyt−2 − 15)

]
+ εt,

(12)
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FIGURE 5. Example 3. Generated time-series. Panel (a):δ = 0. Panel (b):δ = 10−10.
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FIGURE 6. Example 4. Generated time-series. Panel (a):δ = 1. Panel (b):δ = −1.

whereεt ∼ NID(0, 1) andδ = −1, 1. It can be seen that model (12) has three limiting AR regimes. The

associated transition matrixes – see Equation (8) – are:

A(1) =




2 −1

1 0


 , A(2) =




1.5 −0.5

1 0


 , A(3) =



−0.5 0.5

1 0


 ,

with the respective eigenvalues pairs:(1, 1), (1, 0.5), and(−1, 0.5). Figure 6 shows the generated time-

series. As can be observed, the process is not stationary whenδ = 1 but is asymptotically stationary when

δ = −1.

5. PARAMETER ESTIMATION

A large number of algorithms for estimating the parameters of models based on neural networks are

available in the literature. In this paper we estimate the parameters of our L2GNN model by maximum
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likelihood making use of the assumptions made ofεt in Section 2. The use of maximum likelihood or

quasi maximum likelihood makes it possible to obtain an idea of the uncertainty in the parameter estimates

through (asymptotic) standard deviation estimates. However, it may be argued that maximum likelihood

estimation of neural network models is most likely to lead to convergence problems, and that penalizing the

log-likelihood function one way or the other is a necessary precondition for satisfactory results. Two things

can be said in favour of maximum likelihood here. First, we suggest a model building strategy that proceeds

from small to large models, so that estimation of unidentified or nearly unidentified models, a major reason

for the need to penalize the log-likelihood, is partially avoided. Second, the starting-values of the parameter

estimates are chosen carefully, and we discuss the details of this later in this section.

The L2GNN model is similar to many linear or nonlinear time series models in that the information

matrix of the logarithmic likelihood function is block diagonal in such a way that we can concentrate the

likelihood and first estimate the parameters of the conditional mean. Thus conditional maximum likelihood

is equivalent to nonlinear least squares. Hence the parameter vectorψ of the L2GNN model defined by (4)

is estimated as

ψ̂ = argmin
ψ

QT (ψ) =
1
T

T∑
t=1

[yt −G (xt;ψ)]2 . (13)

The least squares estimator (LSE) defined by (13) belongs to the class of M-estimators considered by

Pötscher and Prucha (1986). We next discuss the conditions that guarantee the existence, consistency, and

asymptotic normality of the LSE. We also state sufficient conditions under which the L2GNN model is

identifiable.

5.1. Existence of the Estimator. The proof of existence is based on Lemma 2 of Jennrich (1969), which

establishes that under certain conditions of continuity and measurability on the mean square error (MSE)

function, the least squares estimator exists. Theorem 2 state the necessary conditions for the existence of

the LSE.

THEOREM 2. The L2NGG model satisfies the following conditions and the LSE exists.

(1) For eachxt ∈ X, functionGx (ψ) = G (xt; ψ) is continuous in compact subsetΨ of the Euclidean

space.

(2) For eachψ ∈ Ψ, functionGψ (X) = G (xt; ψ) is measurable in spaceX.

(3) εt are errors independent and identically distributed with mean zero and varianceσ2.

REMARK 2. In order to extend the set of approximation functions beyond linear functions, we need to

check that conditions (1) and (2) of Theorem 2. Thus, the class of functionsL
(
xt;ψLi

)
, i = 1, . . . ,m, to
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be considered must be a subset of the continuous functions on compact setΨ that are also measurable in

X.

REMARK 3. The hypothesis of compactness of the parameter space may seem a little too restrictive. It is

presented in Huber (1967) results that only require locally compact spaces, and an extension of this can be

applied to obtain similar results in the present case. However, the compactness assumption is convenient

for theoretical reasons and is still general enough to be applied whenever the optimization procedure is

carried out by a computer.

5.2. Identifiability of the Model. A fundamental problem for statistical inference with nonlinear time

series models is the unidentifiability of the model parameters. To guarantee unique identifiability of the

mean square error (MSE) function, the sources of uniqueness of the model must be studied. These questions

are studied in Sussman (1992), Kurková and Kainen (1994), Hwang and Ding (1997), Trapletti, Leisch, and

Hornik (2000), and Medeiros, Teräsvirta, and Rech (2002) in the case of a feedforward neural network

model. Here, the main concepts and results will be briefly discussed. In particular, the conditions that

guarantee that the proposed model is identifiable and minimal will be established and proven. Before

tackling the problem of the identifiability of the model, two related concepts will be discussed: the concept

of minimality of the model, established in Sussman (1992) and which Hwang and Ding (1997) called “non-

redundancy”; and the concept of reducibility of the model.

DEFINITION 1. The L2GNN model is minimal (or non-redundant), if its input-output map cannot be ob-

tained from another model with fewer neuron-pairs.

One source of unidentifiability comes from the fact that a model may contain irrelevant neuron-pairs.

This means that there are cases where the model can then be reduced, eliminating some neuron-pairs without

changing the input-output map. Thus, the minimality condition can only hold for irreducible models.

DEFINITION 2. Defineθi` =
[
γi,d′i, β

(`)
i

]′
and letϕ (xt; θi`) = γi

(
〈di,xt〉 − β

(`)
i

)
, i = 1, . . . , m, and

` = 1, 2. The L2GNN model defined in (4) is reducible if one of the following three conditions holds:

(1) One of the pairs(ai, bi) vanishes jointly for somei = 1, . . . , m.

(2) γi = 0 for somei = 1, . . . , m.

(3) There is at least one pair(i, j), i 6= j, i = 1, . . . , m, j = 1, . . . , m, such thatϕ (xt; θi`) and

ϕ (xt; θj`) are sign-equivalent. That is,|ϕ (xt; θi`)| = |ϕ (xt; θj`)|, ∀xt ∈ Rq, t = 1, . . . , T .

DEFINITION 3. The L2GNN model is identifiable if there are no two sets of parameters such that the

corresponding distributions of the population variabley are identical.



LOCAL-GLOBAL NEURAL NETWORKS: A NEW APPROACH FOR NONLINEAR TIME SERIES MODELLING 15

Four properties of the L2GNN model cause unidentifiability of the models:

(P.1) The property of interchangeability of the hidden neuron-pairs. The value of the likelihood function

of the model does not change if the neuron-pairs in the hidden layer are permuted. This results

in m! different models that are indistinct among themselves (related to the input-output map).

As a consequence, in the estimation of parameters, we will havem! equal local maxima for the

loglikelihood function.

(P.2) The symmetry of the functionB
(
xt;ψBi

)
, i = 1, . . . , m. The fact that activation-level function

satisfies that

B
(
xt; γ,di, β

(1)
i , β

(2)
i

)
= −B

(
xt; γ,di, β

(2)
i , β

(1)
i

)
,

establishes another indetermination in the model, as we may have2m equivalent parameterizations.

(P.3) The fact thatF (−z) = 1−F (z), whereF (z) = [1 + exp(−z)]−1 which implies that the activation

level function satisfies that

B
(
xt; γ,di, β

(1)
i , β

(2)
i

)
= −B

(
xt;−γ,di, β

(2)
i , β

(1)
i

)
,

or

B
(
xt; γ,di, β

(1)
i , β

(2)
i

)
= −B

(
xt; γ,−di,−β

(2)
i ,−β

(1)
i

)
.

(P.4) The presence of irrelevant hidden neuron-pairs. Conditions (1) – (2) in the definition of reducibility

give information about the presence of pairs of irrelevant units, which translate into identifiability

sources. If the model contains some pair such thatai = 0 andbi = 0, parametersdi, β
(1)
i , and

β
(2)
i remain unidentified. On the other hand, ifγi = 0, then parametersai andbi may take on any

value without affecting the value of the loglikelihood function. Furthermore, ifβ
(1)
i = β

(2)
i , then

γi, ai andbi remain unidentified.

Properties (P.2)–(P.3) are related to the concept of reducibility. In the same spirit of the results stated in

Sussman (1992) and Hwang and Ding (1997) we show that, if the model is irreducible, property (P.1) is

is the only form of modifying the parameters without affecting the distribution ofy. Hence, establishing

restrictions on the parameters of (4) that simultaneously avoid reducibility and any permutation of hidden

units, we guarantee the identifiability of the model.

The problem of interchangeability (property (P.1)) can be prevented with the following restriction

(R.1) β
(1)
i < β

(1)
i+1 andβ

(2)
i < β

(2)
i+1, i = 1, . . . , m.
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Now the consequences due to the symmetry of the activation-level function (property (P.2)) can be resolved

if we consider:

(R.2) β
(1)
i < β

(2)
i , i = 1, . . . , m.

To remove the lack of identification caused by property (P.3) we have to impose two additional restric-

tions.

(R.3) γi > 0, i = 1, . . . , m.

(R.4) di1 > 0, i = 1, . . . ,m.

The first one prevents that a simple change of sign in parameterγ leads to problems in the identification

of the model. As previously discussed, we saw that condition‖d‖ = 1 restricts this multiplicity in the

direction vector of the hyperplane. However, there is still some ambivalence arising from the fact that both

d, and−d have the same norm and are orthogonal to the hyperplane. Restriction (R.4) avoids that problem.

Sincedi is a unit vector, then:

di1 =

√√√√1−
q∑

j=2

d2
ij > 0.

The presence of irrelevant hidden neuron-pairs, property (P.4), can be circumvented by applying a

“specific-to-general” model building strategy as suggested in Section 6.

Corollaries 2.1 in Sussman (1992) and 2.4 in Hwang and Ding (1997) guarantee that an irreducible

model is minimal. The fact that irreducibility and minimality are equivalent implies that there are no mech-

anisms, other than the ones listed in the definition of irreducibility, that can be used to reduce the number of

units without changing the functional input-output relation. Then, restrictions (R.1)–(R.4) guarantee that if

irrelevant units do not exist the model is identifiable and minimal.

Before stating the theorem that gives sufficient conditions under which the L2GNN model is globally

identifiable we should make the following assumption.

ASSUMPTION 1. The parametersai and bi do not vanish jointly for somei = 1, . . . ,m. Furthermore

γi > 0, ∀ i andβ
(1)
i 6= β

(2)
i , ∀ i.

ASSUMPTION 2. The covariate vectorxt has an invariant distribution which has a density everywhere

positive in an open ball.

Assumption 1 guarantees that there are no irrelevant hidden neuron-pairs as described in property (P.4)

above and Assumption 2 avoids problems related to multicollinearity.

THEOREM 3. Under the restrictions:
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(R.1) β
(1)
i < β

(1)
i+1 andβ

(2)
i < β

(2)
i+1, i = 1, . . . ,m;

(R.2) β
(1)
i < β

(2)
i , i = 1, . . . , m;

(R.3) γi > 0, i = 1, . . . , m;

(R.4) di1 =
√

1−∑q
j=2 d2

ij > 0, i = 1, . . . , m;

and Assumptions 1 and 2 the L2GNN model is globally identifiable.

5.3. Strong Consistency of Estimators.In White (1981) and White and Domowitz (1984) the conditions

that guarantee the strong convergence of the LSE are established. In the context of stationary time series

models, the conditions that assure the (almost certain) convergence are established in White (1994) and

Wooldridge (1994). In what follows we state and prove the theorem of consistency of the estimators of the

L2GNN model.

ASSUMPTION3. The data generation process (DGP) for the sequence of scalar real valued observations

{yt}T
t=1 is a stationary and ergodic L2GNN process with the true parameter vectorψ∗ ∈ Ψ. The parameter

spaceΨ is a compact subset ofRr, wherer = 2m(2 + q).

THEOREM4. Under Restrictions (R.1)–(R.4) and Assumptions 1 and 3 the least squares estimator is almost

surely consistent.

5.4. Asymptotic Normality. The following two conditions are required for the asymptotic normality of

the LSE.

ASSUMPTION4. The true parameter vectorψ∗ is interior toΨ.

ASSUMPTION5. The family of functions

{xt}
⋃
{B (xt; ψB)}

⋃
{∇B (xt; ψB))}

⋃
{xtB (xt; ψB)}

⋃
{xt∇B (xt; ψB)} ,

xt ∈ R and∀t, is linearly independent, as long as the functionsϕ
(`)
i (xt; θi`), i = 1, . . . , m, ` = 1, 2, are

not equivalent in sign.

THEOREM 5. Under restrictions (R.1)–(R.4) and Assumptions 1–5

[
1

2σ2
∇2QT (ψ∗)

]−1/2√
T

(
ψ̂ −ψ∗

)
d→ N(0, I),

where∇2QT (ψ∗) = E
[∇2QT (ψ∗)

]
, ∇2Qn (ψ∗) is the Hessian matrix ofQT (ψ) at ψ∗, andσ2 is the

variance ofεt.
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5.5. Concentrated Likelihood. In order to reduce the computational burden we can apply concentrated

maximum likelihood to estimateψ as follows. Consider theith iteration of the optimization algorithm and

rewrite model (1)–(3) as

y = Z(ψB)ψL + ε, (14)

wherey′ = [y1, y2, . . . , yT ], ε′ = [ε1, ε2, . . . , εT ], and

Z (ψB) =




z′1 B
(
x1; ψL1

)
z′1 . . . B

(
x1; ψLm

)
z′1

...
...

. . .
...

z′T B
(
xT ; ψL1

)
z′T . . . B

(
xT ; ψLm

)
z′T




,

with zt = [1,x′t]
′. AssumingψB fixed, the parameter vectorψL can be estimated analytically by

ψ̂L =
(
Z (ψB)′ Z (ψB)

)−1
Z (ψB)′ y. (15)

The remaining parameters are estimated conditionally onψL by applying the Levenberg-Marquadt algo-

rithm which completes theith iteration. This form of concentrated maximum likelihood was proposed by

Leybourne, Newbold, and Vougas (1998). It reduces the dimensionality of the iterative estimation problem

considerably.

5.6. Starting-values. Many iterative optimization algorithms are sensitive to the choice of starting-values,

and this is certainly so in the estimation of L2GNN models. Assume now that we have estimated an L2GNN

model model withm− 1 hidden neuron-pairs and want to estimate one withm neuron-pairs. Our specific-

to-general specification strategy has the consequence that this situation frequently occurs in practice. A

natural choice of initial values for the estimation of parameters in the model withm neuron-pairs is to use

the final estimates for the parameters in the firstm − 1 ones. The starting-values for the parameters in the

mth hidden neuron-pair are obtained in steps as follows1.

(1) Fork = 1, . . . , K:

(a) Construct a vectorv(k)
m =

[
v
(k)
1m, . . . , v

(k)
qm

]′
such thatv(k)

1m ∈ (0, 1] andv
(k)
jm ∈ [−1, 1], j =

2, . . . , q. The values forv(k)
1m are drawn from a uniform(0, 1] distribution and the ones for

v
(k)
jm, j = 2, . . . , q, from a uniform[−1, 1] distribution.

(b) Defined(k)
m = v(k)

m ‖v(k)
m ‖−1.

(c) Compute the projectionsp(k)
m =

〈
d(k)

m ,x
〉

, wherex = [x1, . . . ,xT ].

1A similar procedure was proposed in Medeiros and Veiga (2000b) and Medeiros, Teräsvirta, and Rech (2002).
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(d) Let c(k)
1m = Z1/3

(
p(k)

m

)
andc

(k)
2m = Z2/3

(
p(k)

m

)
, whereZα is theα-percentile of the empiri-

cal distribution ofp(k)
m .

(2) Define a grid ofN positive valuesγ(n)
m , n = 1, . . . , N , for the slope parameter and estimateψL

using equation (15).

(3) For k = 1, . . . ,K and n = 1, . . . , N , compute the value ofQT (ψ) for each combination of

starting-values. Choose the values of the parameters that maximize the concentrated log-likelihood

function as starting values.

After selecting the starting-values we have to reorder the units if necessary in order to ensure that the

identifying restrictions are satisfied.

Typically, K = 1000 andN = 20 will ensure good estimates of the parameters. We should stress,

however, thatK is a nondecreasing function of the number of input variables. If the latter is large we have

to select a largeK as well.

6. MODEL BUILDING

In this section, a specific-to-general specification strategy is developed. From equation (4) two specifica-

tion problems require special care. The first is variable selection, that is, the correct selection of elementsxt.

The problem of selecting the right subset of variables is very important because selecting a too small subset

leads to misspecification, whereas choosing too many variables aggravates the “curse of dimensionality.”

The second problem is the selection of the correct number of neuron-pairs. The specification procedure as

a whole may be viewed as a sequence consisting of the following steps:

(1) Selecting the elements ofxt.

(2) Determining the number of neuron-pairs.

(3) Evaluation of the estimated model.

The first two steps of the modelling cycle will be discussed in detail. The evaluation is step is beyond the

scope of the present paper. However, the results in Medeiros and Veiga (2002), and Medeiros, Teräsvirta,

and Rech (2002) can be easily generalized to the case of L2GNN models.

6.1. Variable Selection. The first step in our model specification is to choose the variables for the model

from a set of potential variables. Several nonparametric variable selection techniques exist (Tcherning

and Yang, 2000; Vieu, 1995; Tjøstheim and Auestad, 1994; Yao and Tong, 1994; Auestad and Tjøstheim,

1990), but they are computationally very demanding, in particular when the number of observations is not

small. In this paper variable selection is carried out by linearizing the model and applying well-known
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techniques of linear variable selection to this approximation. This keeps computational cost to a minimum.

For this purpose we adopt the simple procedure proposed in Rech, Teräsvirta, and Tschernig (2001). Their

idea is to approximate the stationary nonlinear model by a polynomial of sufficiently high order. Adapted

to the present situation, the first step is to approximate functionG(xt; ψ) in (4) by a generalk-th order

polynomial. By the Stone-Weierstrass theorem, the approximation can be made arbitrarily accurate if some

mild conditions, such as the parameter spaceψ being compact, are imposed on functionG(xt; ψ). Thus

the L2GNN is approximated by another function. This yields

G(xt;ψ) = π′x̃t +
q∑

j1=1

q∑

j2=j1

θj1j2xj1,txj2,t

+ · · ·+
q∑

j1=1

· · ·
q∑

jk=jk−1

θj1...jk
xj1,t · · ·xjk,t + R(xt; ψ),

(16)

wherex̃t = [1,x′t]′ andR(xt; ψ) is the approximation error that can be made negligible by choosingk

sufficiently high. Theθ′s are parameters, andπ ∈ Rq+1 is a vector of parameters. The linear form of the

approximation is independent of the number of neuron-pairs in (4).

In equation (16), every product of variables involving at least one redundant variable has the coefficient

zero. The idea is to sort out the redundant variables by using this property of (16). In order to do that, we

first regressyt on all variables on the right-hand side of equation (16) assumingR(xt; ψ) = 0 and compute

the value of a model selection criterion (MSC), AIC (Akaike, 1974) or SBIC (Schwarz, 1978) for example.

After doing that, we remove one variable from the original model and regressyt on all the remaining terms

in the corresponding polynomial and again compute the value of the MSC. This procedure is repeated by

omitting each variable in turn. We continue by simultaneously omitting two regressors of the original model

and proceed in that way until the polynomial is of a function of a single regressor and, finally, just a constant.

Having done that, we choose the combination of variables that yields the lowest value of the MSC. This

amounts to estimating
∑q

i=1

(
q
i

)
+ 1 linear models by ordinary least squares (OLS). Note that by following

this procedure, the variables for the whole L2GNN model are selected at the same time. Rech, Teräsvirta,

and Tschernig (2001) showed that the procedure works well already in small samples when compared to

well-known nonparametric techniques. Furthermore, it can be successfully applied even in large samples

when nonparametric model selection becomes computationally infeasible.

6.2. Determining the number of neuron-pairs. In real applications, the number of neuron-pairs is not

known and should be estimated from the data. In the neural network literature, a popular method for

selecting the number of neuron is pruning, in which a model with a large number of neurons is estimated
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first, and the size of the model is subsequently reduced by applying an appropriate technique such as cross-

validation. Another technique used in this connection is regularization, which may be characterized as

penalized maximum likelihood or least squares applied to the estimation of neural network models. For

discussion see, for example, Fine (1999,pp. 215–221). Bayesian regularization may serve as an example

(MacKay, 1992a; MacKay, 1992b).

Another possibility is to use a MSC to determine the number of hidden neuron-pairs. Swanson and White

(1995), Swanson and White (1997a), and Swanson and White (1997b) apply the SBIC model selection

criterion as follows. They start with a linear model, adding potential variables to it until SBIC indicates that

the model cannot be further improved. Then they estimate models with a single hidden neuron and select

regressors sequentially to it one by one unless SBIC shows no further improvement. Next, the authors

add another hidden unit and proceed by adding variables to it. The selection process is terminated when

SBIC indicates that no more hidden units or variables should be added or when a predetermined maximum

number of hidden units has been reached. This modelling strategy can be termed fully sequential.

In this paper we adopt a similar strategy as described above. After the variables have been selected with

the procedure described before, we start with a model with a single neuron-pair and compute the value of

the SBIC. We continue adding neuron-pairs until the SBIC indicates no further improvement. The SBIC is

defined as

SBIC(h) = ln(σ̂2) +
ln(T )

T
× [2m(2 + q)] , (17)

whereσ̂2 is the estimated residual variance. This means that to choose a model withm neuron-pairs, we

need to estimatem + 1 models.

Another way of determining the number of neuron-pairs is to follow Medeiros and Veiga (2000b) and

Medeiros, Ter̈asvirta, and Rech (2002) and use a sequence of Lagrange Multiplier tests. However, this is

beyond the scope of this paper.

7. NUMERICAL EXAMPLES

In this section we present numerical results for the L2GNN model with real time series data. The first

example considers only in-sample fitting and the second shows one-step ahead forecasts. The modelling

cycle strategy described before was used to select the models.

7.1. The Canadian Lynx series.The first data set analyzed is the classic 10-based logarithm of the number

of Canadian Lynx trapped in the Mackenzie River district of North-west Canada over the period 1821–

1934. For further details and a background history see Tong (1990,Chapter 7). Some previous analysis
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of this series can be found in Ozaki (1982), Tsay (1989), Teräsvirta (1994), and Xia and Li (1999). We

start selecting the variables of the model among the first seven lags of the time series. With the procedure

describe in Section 6.1 and using the SBIC, we identified lags 1 and 2 and with the AIC, lags 1,2,3,5,6,

and 7. We continue building a L2GNN model with only lags 1 and 2, which is more parsimonious. The

final estimated mode has 2 neuron-pairs (m = 2), and when compared to a linear AR(2) model, the ratio

between the standard deviation of the residuals from the nonlinear model and linear one isσ̂
σ̂L

= 0.876.

The estimated residual standard deviation (σ̂ = 0.204) is smaller than in other models that use only

the first two lags as variables. For example, the nonlinear model proposed by (Tong, 1990,p. 410), has

a residual standard deviation of 0.222, and the Exponential AutoRegressive (EXPAR) model proposed by

(Ozaki, 1982) haŝσε = 0.208.

7.2. The Sunspot Series.In this example we consider the annual sunspot numbers over the period 1700–

1998. The observations for the period 1700–1979 were used to estimate the model and the remain-

ing were used to forecast evaluation. We adopted the same transformation as in Tong (1990),yt =

2
[√

(1 + Nt)− 1
]
, whereNt is the sunspot number. The series was obtained from the National Geo-

physical Data Center web page.2 The sunspot numbers are a heavily modelled nonlinear time series: for a

neural network example see Weigend, Huberman, and Rumelhart (1992).

We begin the L2GNN modelling of the series by selecting the relevant lags using the variable selection

procedure described in Section 6.1. We use a third-order polynomial approximation to the true model.

Applying SBIC, lags 1,2, and 7 are selected whereas AIC yields the lags 1,2,4,5,6,7,8,9, and 10. As in the

previous example, we proceed with the lags selected by the SBIC. However, the residuals of the estimated

model are strongly autocorrelated. The serial correlation is removed by also includingyt−3 in the set of

selected variables. When building the L2GNN model we select the number of hidden neuron-pairs using

the SBIC as described in Section 6.2.

After estimating a model with 3 neuron-pairs, we continue considering the out-of-sample performance

of the estimated model. In order to assess the out-of-sample performance of the L2GNN model we compare

our one-step-ahead forecasting results with the ones obtained from the two SETAR models, the one reported

in Tong (1990,p. 420) and the other in Chen (1995), an artificial neural network (ANN) model with 10

hidden neurons and the first 9 lags as input variables, estimated with Bayesian regularization (MacKay,

1992a; MacKay, 1992b), the Stochastic Neural Network (SNN) model estimated in Lai and Wong (2001),

the Neuro-Coefficient STAR (NCSTAR) model of Medeiros and Veiga (2000a), and a linear autoregressive

2http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html
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model with lags selected using SBIC. The SETAR model estimated by Chen (1995) is one in which the

threshold variable is a nonlinear function of lagged values of the time series whereas it is a single lag in

Tong´s model. The estimated SNN model of Lai and Wong (2001) can be viewed as a form of smooth

transition autoregression with multivariate transition variables in the same spirit of the NCSTAR model of

Medeiros and Veiga (2000a).

Table 1 shows the results of the one-step-ahead forecasting for the period 1980-1998, with the respective

root mean squared error (RMSE) and mean absolute error (MAE). As shown in Table 1, the L2GNN model

has the smallest RMSE and MAE among the alternatives considered in this paper. Over 19 forecasts, the

L2GNN model outperforms the ANN and Tong´s SETAR models in 12 cases, the SETAR model of Chen

(1995) in 15 cases, the AR specification in 11 cases, and the SNN and NCSTAR models in 10 cases.

8. CONCLUSIONS

In this paper we have proposed a new nonlinear time-series model based on neural networks. The model

is called the Local Global Neural Network and can be interpreted as a mixture of experts model. The

case of linear experts is analyzed in detail and its probabilistic and statistical properties were discussed.

The proposed model consist of a mixture of stationary or non-stationary linear models and is able to de-

scribe “intermittent” dynamics: the system spends a large fraction of the time in a bounded region, but,

sporadically, it develops an instability that grows exponentially for some time and then suddenly collapses.

Intermittency is a commonly observed behavior in ecology and epidemiology, fluid dynamics and other

natural systems. A specific-to-general model building strategy, based on the SBIC, has been suggested to

determine the variables and the number of hidden neuron-pairs. When put into test in a real experiment con-

cerning one-step-ahead forecasting, the proposed model outperforms the linear model and other nonlinear

specifications considered in this paper, suggesting that the theory developed here is useful and the proposed

model thus seems to be a useful tool for practicing time series analysts.
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APPENDIX A: PROOFS

8.1. Lemmas.

LEMMA 1. If the functionsϕ(`)(x) = hx− γβ(`), ` = 1, 2, x ∈ R, h > 0, β(1) < β(2) are not equivalent

in sign, the class of functions{B (x; ψB)}⋃ {xB (x; ψB)}, where

B (x; ψB) = −
{[

1 + exp
(
ϕ(1)(x)

)]−1

−
[
1 + exp

(
ϕ(2)(x)

)]−1
}

,

is linearly independent.

LEMMA 2. Let{di} be a family of vectors inRq such thatdi1 > 0 for everyi. Letv be the unitary vector

that, according to Hwang and Ding (1997), exists and satisfies:

(1) 〈di,v〉 > 0 and

(2) if di 6= dj then〈di,v〉 6= 〈dj ,v〉.

Thus it follows that there exists a vector basev1, . . . ,vq that satisfies the same conditions.

8.2. Proofs of Theorems.

8.2.1. Proof of Theorem 1.Write model (4) as

Yt = at−1 + At−1Yt−1 + et, (18)
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where

Yt =




yt

yt−1

...

yt−p+1




, Yt−1 =




yt−1

yt−2

...

yt−p




, et =




εt

0
...

0




, at−1 =




∑m
i=1 biB (Yt−1)

0
...

0




At−1 =




∑m
i=1 ai1Bi (Yt−1)

∑m
i=1 ai2Bi (Yt−1) · · · ∑m

i=1 aip−1Bi (Yt−1)
∑m

i=1 aipBi (Yt−1)

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. ..

...
...

0 0 · · · 1 0




andBi (Yt−1) ≡ B
(
Yt−1; ψBi

)
.

After recursive substitutions, model (18) can be written as

Yt = at−1 +
t−2∑

i=0




t−1∏

j=i+1

Aj


ai +




t−1∏

j=0

Aj


Y0 +

t−1∑

i=1




t−1∏

j=i

Aj


 ei + et. (19)

Model (19) will be asymptotically stationary if
∏
t
At → 0 ast → ∞. This will be of course the case if

Condition 1 in Theorem 1 is satisfied. As

Bi (Yt) = −
{[

1 + exp
(
γi

(
〈di,Yt〉 − β

(1)
i

))]−1

−
[
1 + exp

(
γi

(
〈di,Yt〉 − β

(2)
i

))]−1
}

,

∏
t
At → 0 if Bi (Yt) → 0, i = 1, . . . , m. This will be true if |〈di,Yt〉| → M , whereM >>

max
(
β

(1)
i , β

(2)
i

)
. If at least one limiting AR regime is explosive then|〈di,Yt〉| → ∞ as far asdij 6= 0

(Condition 2 in Theorem 1). When a given limiting AR regime has unit-roots in order to guarantee that

|〈di,Yt〉| → M , the vectorsdi must not be orthogonal to the eigenvectors of the respective transition

matrix (Condition 3 in Theorem 1).

Q.E.D

8.2.2. Proof of Theorem 2.Lemma 2 of Jennrich (1969) shows that the conditions (1)–(3) in Theorem 2

are enough to guarantee the existence (and measurability) of the LSE. In order to apply this result to the

L2GNN model we have to check if the above conditions are satisfied by the model.

Condition (3) in Theorem 2 was already assumed when defining the model. It is easy to prove in our

case thatG (xt; ψ) is continuous in the parameter vectorψ. This follows from the fact thatB
(
xt; ψBi

)
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andLi(xt; ψL), i = 1, . . . , m, depend continuously onψB andψL for each value ofxt. Similarly, we

can see thatG (xt,ψ) is continuous inxt, and therefore measurable, for each fixed value of the parameter

vectorψ. Thus (1) and (2) are satisfied.

Q.E.D

8.2.3. Proof of Theorem 3.Suppose that̃ψ =
[
ψ̃
′
L, ψ̃

′
B

]′
is another vector of parameters such that

m∑

i=1

(a′ixt + bi)B
(
xt; ψBi

)
=

m∑

i=1

(
ã′ixt + b̃i

)
B

(
xt; ψ̃Bi

)
. (20)

In order to show global identifiability of the L2GNN model, we need to prove that, under Assumption 1

and restrictions (R.1)–(R.4), (20) is satisfied if, and only if,ai = ãi, bi = b̃i, andψB = ψ̃B , i = 1, . . . , m,

∀xt ∈ Rq.

Equation (20) can be rewritten as

2m∑

j=1

(
c′jxt + ej

)
B

(
xt, ψ̆Bj

)
= 0, (21)

whereB
(
xt, ψ̆Bj

)
= B

(
xt, ψBj

)
for j = 1, . . . , m, B

(
xt, ψ̆Bj

)
= B

(
xt, ψ̃Bj−m

)
, for j = m +

1, . . . , 2m, cj = aj , for j = 1, . . . , m, cj = −ãj−m, for j = m + 1, . . . , 2m, ej = bj , for j = 1, . . . , m,

andej = −b̃j−m, for j = m + 1, . . . , 2m.

To relate this problem to Lemma 1, we reduce the dimension ofxt to one. Following Hwang and Ding

(1997), letv be the unit vector such that for distinctdis, the projections overv are likewise different. Since

the set{d1, . . . ,dm} has a finite number of points,γi > 0 (restriction (R.3)), anddi1 > 0 (restriction

(R.4)), i = 1, . . . , m, it is possible to construct a vectorv such that the projectionhi = γi 〈di,v〉 is

positive. Replacingxt in (21) byxtv, xt ∈ R, leads to

2m∑

j=1

(cjxt + ej)B
(
xtv, ψ̆Bj

)
= 0, (22)

wherecj = 〈cj ,v〉.
For simplicity of notation letϕ(`)

j = ϕ (xt;θj`), j = 1, . . . , 2m. Lemma 1 imply that ifϕ(`)
j1

and

ϕ
(`)
j2 are not sign-equivalent,j1 ∈ {1, . . . , 2m} , j2 ∈ {1, . . . , 2m}, (22) holds if, and only if,cj andej

vanish jointly for everyj ∈ {1, . . . , 2m}. However, the conditioncj , j = 1, . . . , 2m, does not imply

thatcj = 0. Lemma 2 shows in fact that vectorv is not unique and that there exists vectorsv1, . . . ,vq

that satisfy the same conditions asv and form a basis ofRq. Then the inner product〈ci,vj〉 = 0, ∀j,

implying thatci = 0. However, Assumption 1 precludes that possibility. Hence,ϕ
(`)
j1

andϕ
(`)
j2 must be
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sign-equivalent. But restrictions (R.2)–(R.4) avoid that two functionsϕ
(`)
j1

andϕ
(`)
j2

coming from the same

model being sign-equivalent. Consequently,∃ j1 ∈ {1, . . . , m} andj2 ∈ {m + 1, . . . , 2m} such thatϕ(`)
j1

andϕ
(`)
j2

, ` = 1, 2 are sign-equivalent. Under restrictions (R.2)–(R.4) the only possibility is that the hidden

neuron-pairs are permuted. Restriction (R.1) excludes that possibility. Hence, the only case where (20)

holds is whenai = ãi, bi = b̃i, andψB = ψ̃B , i = 1, . . . , m, ∀xt ∈ Rq.

Q.E.D

8.2.4. Proof of Theorem 4.For the proof of this theorem we use Theorem 3.5 of White (1994), showing

that the assumptions stated therein are fulfilled.

Assumptions 2.1 and 2.3, related to the probability space and to the density functions, are trivial.

Let q (xt; ψ) = [yt −G (xt; ψ)]2. Assumption 3.1a states that for eachψ ∈ Ψ, −E(q (xt;ψ)) exists

and is finite,t = 1, . . . , T . Under the conditions of Theorem 3 and the fact thatεt is a zero mean normally

distributed random variable with finite variance, hencek-integrable, Assumption 3.1a follows.

Assumption 3.1b states that−E(q (xt; ψ)) is continuous inΨ, t = 1, . . . , T . Let ψ → ψ∗, since for

any t, G (xt; ψ) is continuous onΨ, thenq (xt; ψ) → q (xt;ψ∗), ∀t (pointwise convergence). From the

continuity ofG (xt, ψ) on the compact setΨ, we have uniform continuity and we obtain thatq (xt; ψ) is

dominated by an integrable functiondF . Then, by Lebesgue´s Dominated Convergence Theorem, we get
∫

q (xt;ψ) dF → ∫
q (xt; ψ∗) dF , and E(q (xt; ψ)) is continuous.

Assumption 3.1c states that−E(q (xt;ψ)) obeys the strong (weak) Uniform Law of Large Numbers

(ULLN). Lemma A2 of P̈otscher and Prucha (1986) guarantees that E(q (xt;ψ)) obeys the strong law of

large numbers. The set of hypothesis (b) of this lemma is satisfied:

(1) we are working with a strictly stationary and ergodic process;

(2) from the continuity of E(q (xt;ψ)) and from the compactness ofΨ we have thatinf E(q (xt; ψ)) =

E(q (xt; ψ∗)) for ψ∗ ∈ Ψ, and with Assumption 3.1a we may guarantee that E(q (xt; ψ∗)) exists

and is finite, getting thatinf E(q (xt; ψ)) > −∞.

Assumption 3.2 is related to the unique identifiability ofψ∗. In Theorem 3, we have showed that under

Assumption 1 and with the restrictions (R.1)–(R.4) imposed, the L2GNN is globally identifiable.

Q.E.D

8.2.5. Proof of Theorem 5.We use Theorem 6.4 of White (1994) and check its assumptions.

Assumptions 2.1, 2.3, and 3.1 follow from the proof of Theorem 4 (consistency).

Assumptions 3.2’ and 3.6 follow from the fact thatG (xt; ψ) is continuously differentiable of order 2 on

ψ in the compact spaceΨ.
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In order to check Assumptions 3.7a and 3.8a we have to prove that E(∇Qn(ψ)) < ∞ and E
(∇2Qn(ψ)

)
<

∞, ∀n. The expected gradient and the expected Hessian ofQn(ψ) are given by

E(∇Qn(ψ)) = −2E(∇G (xt;ψ) (yt −G (xt; ψ)))

and

E
(∇2Qn(ψ)

)
= 2E

(∇G (xt; ψ)∇′G (xt; ψ)−∇2G (xt; ψ) (yt −G (xt; ψ))
)
,

respectively.

Assumptions 3.7a and 3.8a follow considering the normality condition onεt, the properties of the func-

tion G (xt; ψ), and the fact that∇G (xt;ψ) and∇2G (xt;ψ) contains at most terms of orderxi,txj,t,

i = 1, . . . , q, i = 1, . . . , q. Following the same reasoning used in the proof of Assumptions 3.1a in Theo-

rem 4, Assumptions 3.7a and 3.8a hold.

Assumption 3.8b: Under Assumption 4, the fact that the functionG (xt; ψ) is continuous, and dominated

convergence, Assumption 3.8b follows.

Assumption 3.8c: The proof of Theorem 4 and the ULLN from Pötscher and Prucha (1986) yields the

result.

Assumption 3.9: White´sA∗n ≡ E
(∇2Q(ψ∗)

)
= 2E(∇G (xt;ψ∗)∇′G (xt; ψ∗)) is O(1) in our setup.

Assumption 5, the properties of functionG (xt; ψ), and the unique identification ofψ imply the non-

singularity of E(∇G (xt;ψ∗)∇′G (xt; ψ∗)).

Assumption 6.1: Using Theorem 2.4 from White and Domowitz (1984) we can show that the sequence

2ξ′∇G (xt; ψ∗) εt obeys the Central Limit Theorem (CLT) for some(r × 1) vectorξ, such thatξ′ξ = 1.

Assumptions A(i) and A(iii) of White and Domowitz (1984) hold becauseεt is NID. Assumption A(ii)

holds withV = 4σ2ξ′E(∇G (xt; ψ∗)∇′G (xt; ψ∗)). Furthermore, since any measurable transformation

of mixing processes is itself mixing (see Lemma 2.1 in White and Domowitz (1984)),2ξ′∇G (xt;ψ∗) εt

is a strong mixing sequence and obeys the CLT. By using the Cramér-Wold device∇Q (xt; ψ) also obeys

the CLT with covariance matrixB∗
n = 4σ2E(∇G (xt;ψ∗)∇′G (xt;ψ∗)) = 2σ2A∗n which is O(1) and

non-singular.

Q.E.D

8.3. Proofs of Lemmas.

8.3.1. Proof of Lemma 1.In order to make the proof clearer letϕ
(`)
i (x) =

(
hix− γiβ

(`)
i

)
, wherehi =

γi 〈di,v〉, and writeB
(
x;ψBi

)
asB

(
ϕ

(1)
i (x), ϕ(2)

i (x)
)

. Let n be a positive integer. We should prove



30 M. S. FARIÑAS, C. E. PEDREIRA, AND M. C. MEDEIROS

that if there are scalarsλi, ωi, γi > 0, hi > 0, andβ
(1)
i < β

(2)
i , i = 1, . . . , n, with

(
hi, γi, β

(1)
i , β

(2)
i

)
6=

(
hj , γj , β

(1)
j , β

(2)
j

)
for i 6= j (due to their not being equivalent in sign) such that∀x ∈ R we have:

n∑

i=1

(λi + ωix)B
(
ϕ(1)(x), ϕ(2)(x)

)
= 0, (23)

thenλi = ωi = 0, i = 1, . . . , n.

Considering thatB
(
ϕ

(1)
i (x), ϕ(2)

i (x)
)

= F
(
−ϕ

(1)
i (x)

)
− F

(
−ϕ

(2)
i (x)

)
, whereF (·) is the logistic

function, (23) is equivalent to:

n∑

i=1

(λi + ωix)
[
F

(
−ϕ

(1)
i (x)

)
− F

(
−ϕ

(2)
i (x)

)]
= 0. (24)

Developing the Taylor series ofF
(
−ϕ

(`)
i (x)

)
, ` = 1, 2, we have:

F
(−ϕ`

i(x)
)

=
∞∑

k=1

(−1)k
e−kγiβ

(`)
i ekhix. (25)

The series converges absolutely whene−kγiβ
(`)
i < 1, that is forx <

(
γiβ

(`)
i

hi

)
. Therefore, there exist

M small enough such that (25) converges for everyx ∈ (−∞,M). Substituting (25) in (24) and writing

C
(`)
i = γiβ

(`)
i we obtain:

n∑

i=1

{
(λi + ωix)

∞∑

k=1

(−1)k
[
e−C

(1)
i − e−C

(2)
i k

]
ekhix

}
= 0. (26)

Notice that due to the fact thatγi is positive, thenC(1)
i < C

(2)
i . DenotingW

(`)
i = −e−C

(`)
i , ` = 1, 2,

we have thatW (1)
i < W

(2)
i and substituting in (26):

n∑

i=1

{
(λi + ωix)

∞∑

k=1

(−1)k

[(
W

(1)
i

)k

−
(
W

(2)
i

)k
]

ekhix

}
= 0.

This series can be written (as it is absolutely convergent) as:

∞∑

k=1

α∗keh∗kx + α∗∗k xeh∗kx = 0, (27)

whereh∗1 < h∗2 < · · · < h∗∞, and eachh∗i is an integer multiple of somehj . However, we can prove that

α∗k = α∗∗k = 0.

Dividing (27) byxeh∗1x, we obtain

∞∑

k=1

{
α∗kex(h∗k−h∗1) + α∗∗k

ex(h∗k−h∗1)

x

}
= 0 (28)
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assuming the limit in (28) asx → ∞ and considering thath∗k − h∗1 > 0, for k 6= 1, we conclude that

α∗1 = 0. Considering the expression (27) withα∗1 = 0 and dividing byeh∗1 we obtain

α∗∗1 +
∞∑

k=2

(α∗k + xα∗∗k ) ex(h∗k−h∗1) = 0.

Now, taking the limit whenx → −∞, the terms in the sum go to zero and we obtainα∗∗1 = 0. Repeating

this procedure we will thus obtain thatα∗k = α∗∗k = 0.

There is still left to prove that starting fromα∗k = α∗∗k = 0 it follows thatλi = ωi = 0. The expressions

for λi andωi in terms ofα∗k andα∗∗k are similar, so we will present only the proof forα∗k.

Let J = {j ∈ {1, . . . , m} : hj = h1}. We should prove thatλj = ωj = 0, ∀j ∈ J . For eachs ∈ N,

there existks, such thath∗ks
= sh1. Also there exists an integerN > 0 such that for everỳ andi ≥ 2,

(1 + N`)h1 is not an integer multiple ofhi. Denoteθi = h1
hi

. As 0 < h1 < hi , θi is a non-integer

number less than 1. So, we have to prove that there are a sequenceKn such as for alli ≥ 2, Knθi is not

an integer. LetJZ = {j ∈ J |∃r integer, such thatrθj ∈ Z}. SelectK =
∏

j∈JZ
rj . Then, the sequence

Kn = (1 + nK) satisfies the desired statement. Ifi ∈ JZ , thenKnθi = θi + n
∏

j∈JZ ,j 6=i (rj) riθi, where

riθi ,
∏

j rj andn are all integer numbers andθi is a non-integer, soKnθi cannot be an integer number.

Otherwise, ifi /∈ JZ , then there are no integer number such as asKnθi would be an integer. AsKn is an

integer number, thenKnθi is not an integer.

For eachks it is satisfied thatα∗ks
= 0, in particular fors = (1 + N`) we have:

α∗ks
=

∑

j∈J

λj

[(
W

(1)
j

)s

−
(
W

(2)
j

)s]
= 0,

that is
∑

j∈J

λj

(
W

(1)
j

)s

=
∑

j∈J

λj

(
W

(2)
j

)s

. (29)

If j ∈ J thenhj = hi0 and due to the definition of thehi’s this can only happen if∀j ∈ J , dj = di0 ,

then it follows thatdj = di0 andγj = γi0 . Considering that
(
hi, γi, β

(1)
i , β

(2)
i

)
6=

(
hj , γj , β

(1)
j , β

(2)
j

)
it

follows thatβ(1)
i 6= β

(1)
j , β

(2)
i 6= β

(2)
j we have then that obtaining that∀j, j′ ∈ J , j 6= j′: W

(`)
j 6= W

(`)
j′ ;

and considering thatβ(1)
j < β

(2)
j , it follows thatW (1)

j < W
(2)
j , ∀j ∈ J .

Let nJ be the cardinal ofJ andφ : {1, . . . , nJ} → J a reordering ofJ such thatW (1)
φ(1) < W

(1)
φ(2) <

· · · < W
(1)
φ(nJ ) andW

(2)
φ(1) < W

(2)
φ(2) < · · · < W

(2)
φ(nJ ). Dividing (29) byW

(2)
φ(nJ ) and passing to the limit as
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k →∞ we have

lim
k→∞




nJ∑

j=1


 W

(1)
φ(j)

W
(2)
φ(nJ )




k

 = aφ(nJ ) + lim

k→∞




nJ−1∑

j=1


 W

(2)
φ(j)

W
(2)
φ(nJ )




k



and from this we obtainaφ(nJ ) = 0. Repeating this procedure, we obtainaφ(nJ−1) = · · · = aφ(1) = 0.

Consideringi = 2, . . . ,m and with the corresponding setJ that defines groupJ and following an identical

line of reasoning, we arrive at the conclusion thatλi = 0, i = 1, . . . ,m. Similarly , we obtainωi = 0,

i = 1, . . . , m.

Q.E.D

8.3.2. Proof of Lemma 2.Let v0 be a unitary vector such that for differentdis, the projections onv0,

bi = 〈di,v0〉 are also different and positive. We should find a vector basev1, . . . ,vq such that these

vectors satisfy the same conditions asv0. Let v0 be given, let us define thevjs as:

v1 = v0, v2 = v0 − δ2e2, v3 = v0 − δ3e3, . . . ,vq = v0 − δqeq, (30)

whereej is the canonical vector with 1 in positionj and zero otherwise andδj is small enough. We should

prove (1) that they satisfy the conditions of Lemma 2 and (2) that they form a vector base of the space.

For everyj, the projection of thedis onvi is bi = 〈di,vj〉 = 〈di,v0〉 + δjdij , where the first terms in

the sums are always positive and different when thedis are different. Therefore, we can chooseδj small

enough such thatbi = 〈di,vj〉 remains positive and different for differentdis. To show that theq vectors

already defined form a vector base it is enough to show that they are linearly independent. Let us consider

an arbitrary linear combination of these vectors equal to zero:

q∑

j=1

αjvj = 0 ⇒ α1v0 +
q∑

j=2

αj (v0 − δjej) = 0 ⇒ v0

q∑

j=1

αj −
q∑

j=2

αjδjej = 0. (31)

From this it follows that:

v0

q∑

j=1

αj =
q∑

j=2

αjδjej . (32)

Writing the previous equality for the first component of each vector and taking in to consideration that

the left member contains sums of the canonical vectors from2 to q, we have that:


v0

q∑

j=1

αj




1

=




q∑

j=2

αjδjej




1

= 0, (33)
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sincev01

∑q
j=1 αj = 0 andv01 6= 0. Writing (33) for the componentk, k = 2, 3, . . . , q, we have that:

0 =




q∑

j=2

αjδjej




k

= αk + δk ⇒ αk = 0, k = 2, . . . , q. (34)

Considering that
∑q

j=1 α− j = 0, it follows thatα1 = 0. Therefore, all theαjs are zero and the{vj} are

linearly independent, forming a base ofRq.

Q.E.D
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RECH, G., T. TERÄSVIRTA , AND R. TSCHERNIG (2001): “A Simple Variable Selection Technique for

Nonlinear Models,”Communications in Statistics, Theory and Methods, 30, 1227–1241.

SCHWARZ, G. (1978): “Estimating the Dimension of a Model,”Annals of Statistics, 6, 461–464.

SUSSMAN, H. J. (1992): “Uniqueness of the Weights for Minimal Feedforward Nets with a Given Input-

Output Map,”Neural Networks, 5, 589–593.

SWANSON, N. R., AND H. WHITE (1995): “A Model Selection Approach to assesssing the information in

the term structure using linear models and artificial neural networks,”Journal of Business and Economic

Statistics, 13, 265–275.

(1997a): “Forecasting Economic Time Series Using Flexible Versus Fixed Specification and Linear

Versus Nonlinear Econometric Models,”International Journal of Forecasting, 13, 439–461.

(1997b): “A Model Selection Approach to Real-Time Macroeconomic Forecasting Using Linear

Models and Artificial Neural Networks,”Review of Economic and Statistics, 79, 540–550.
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