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Abstract

Individuals at the same age in the same population differ along numerous risk factors that
affect their chances of various causes of death. The frail and susceptible tend to die first. This
differential selection may partially account for some of the puzzles in cancer epidemiology,
including the lack of apparent progress in reducing cancer incidence and mortality rates over
time.

1. Introduction

The epidemiology of cancer seems peculiar, puzzling, even paradoxical:

• cancer incidence and mortality rates level off or even decline at older ages;

• cancer accounts for a greater proportion of deaths around ages 50 or 60 than at
younger or older ages;

• when the age trajectories of cancer rates for two cohorts, from different time periods,
countries, histological types, etc., are compared, a crossover or at least some
convergence with age is frequently evident, so that the cohort that is disadvantaged at
younger ages is less disadvantaged or even advantaged at older ages;

• incidence and mortality rates from various forms of cancer differ far more from
country to country than do rates of total cancer incidence and mortality;

• countries with high age-specific cancer rates tend to have low age-specific mortality
rates from other causes and countries with high age-specific mortality rates from other
causes tend to have low age-specific cancer rates;

• mortality from some forms of cancer, notably lung cancer, is increasing, whereas
mortality from some other forms of cancer, especially stomach cancer and cancer of
the uterus, is decreasing;

• overall, cancer incidence and mortality rates are tending to somewhat increase,
whereas mortality rates from almost all other major causes of death, including heart
disease and cerebrovascular disease, are declining.

The various forms of cancer and other causes of death can be considered competing risks.
In analyzing patterns of cause-specific mortality, two assumptions are usually made:



(1) individuals of the same age in the same population group face the same probability of
death from each of the various causes, and

(2) the competing risks are independent of each other: a change in the force of mortality
(i.e., the intensity or hazard of death by age) from any specific cause is assumed to
have no impact on the force of mortality from any other cause [8, 9, 24, 61].

The first assumption is clearly inconsistent with the generally recognized fact that
individuals, even of the same age and in the same population or subpopulation, differ in their
overall frailty and in their susceptibility to various causes of death. Physicians,
epidemiologists, biostatisticians, and demographers have long recognized that individuals
differ along numerous risk factors, some observed and others unobserved, some genetic in
origin and others resulting from behavior and environment exposure, that influence morbidity
and mortality rates.

 We show that this heterogeneity implies that the second assumption is also invalid: in a
heterogeneous population competing risks of death will not, except in special circumstances,
be independent on the population level, even though the competing risks may be independent
for every individual in the population.

Even if an assumption is invalid it might be useful as a simplifying approximation. The
question thus is: are the effects of heterogeneity and the resulting dependency among
competing risks small enough to be ignored? The models we develop suggest that the effects
might be sufficiently substantial to at least partially account for the puzzles and paradoxes in
the epidemiology of cancer listed above.

That selection in a heterogeneous population might be at least a contributing cause of the
leveling off and decline with age in cancer rates is a hypothesis familiar to cancer
epidemiologists, although it has tended to be dismissed. Therefore, we start with this effect
and devote a large share of the article to scrutinizing it.

Two major conclusions emerge:

(1) a variety of alternative models of selection and competing risks can produce the
leveling off and decline, and even if most of these models are implausible, some
variant or other may prove appropriate, and

(2) even if substantial heterogeneity exists in a population no noticeable leveling off or
decline may be apparent, so the absence of this kind of effect is not evidence against
heterogeneity.

We then turn to illustrating how heterogeneity may be at least a partial cause of puzzles and
paradoxes of cancer epidemiology involving variation in cancer rates over time and place,
instead of over age. Probably our most significant finding, given the scientific and policy
interest in cancer trends, is that observed cancer rates in a heterogeneous population may
increase over time even though the risks of cancer for individuals are declining. We explain
three different mechanisms that can produce this effect.

2. Age Patterns

2.1 The Rise and Fall of Cancer Trajectories: Background

Cancer incidence and mortality rates, for most forms of cancer in most countries, increase at a
declining rate with age, showing some leveling off before some age and, quite often, reaching
a maximum and then declining [10, 16, 21, 26, 38, 50, 58].The most common pattern shows
cancer rates increasing at least up to age 75, with marked leveling off or decline occurring, if



at all, at more advanced ages where data may be unreliable. The second basic pattern shows a
definite peak in cancer rates, either at a fairly young age and or in middle age, with declining
rates after this peak.

The first pattern, with cancer rates increasing at a decreasing rate, can be modeled by a

power (or Weibull) function of the form µ(x)= kbx , where µ(x)  is the hazard rate of incidence
or mortality at age x and b and k are parameters [2, 42]. In many cases, however, the incidence
(or mortality) rates rise even less rapidly than a power curve and, as noted above, show a distinct
leveling off and even decline at advanced ages. In an analysis of cancers with rates that generally
increase with age, Cook [10] examined 338 data sets for 24 types of cancer in males, females, or
both in eleven countries for ages 35 to 74: "In 54% (181 out of 338), the lines showed downward
curvature, that is, the rate of increase with age was less than predicted by [a power function]".
Numerous other data sets, both for periods and for cohorts, also show a distinct leveling off of
many cancer rates at older ages, especially at ages after 75 [21, 26, 50, 58].

The second basic pattern of cancer incidence and mortality rates shows a definite peak at an
age at which data are generally considered to be reliable. Many nonepithelial tumors (such as
leukemias or sarcomas) fit this pattern; the nonepithelial tumors, which account for only
roughly 10 percent of fatal malignant tumors, may be produced by different mechanisms than
epithelial tumors [44]. There are, however, also examples of carcinomas (i.e., epithelial
tumors) that follow this second pattern. For instance, over the period 1973-77, the incidence
of lung cancer peaked at about age 65 for U.S. females and the incidence of testicular cancer
peaked at about age 25 for U.S. males. The incidence of cervical cancer among various
cohorts of Danish, Finish, Icelandic, Norwegian, and Swedish women shows peaks at ages,
depending on the cohort and the country, ranging from about 40 to about 60 [18]. In the case
of the lung cancer, the pattern of sharp decline in period cancer rates (i.e., rates pertaining to
some particular period of time, such as 1973-1977) can be largely explained by differences
among cohorts, probably due to differences in smoking behavior [13]. Nonetheless, cohort
patterns of lung cancer incidence and mortality also exhibit a definite leveling off and even
some decline [11, 25, 28, 30, 33, 47, 53].

The leveling and falling off of cancer rates is puzzling because the force of mortality for
most causes of death and for all causes of death combined is most commonly modeled by an
exponential (Gompertz) curve, at least until very advanced ages, and because theories of the
causes of cancer suggest that the incidence of cancer should increase with age [6, 22]. The
observation that the age-trajectory of many cancer rates resembles a power function, at least
before age 70 or so, led epidemiologists to develop various theories, most involving some
multistage process, that imply a power function (or some similarly shaped trajectory) for
cancer rates [2, 3, 5, 35, 45, 59]. Which of these theories, if any, appropriately captures the
etiology of cancer is, however, as yet unknown, given available ancillary theory and evidence,
but it does seem likely that some kind of multistage process underlies the generation of most
human cancers [44].

Numerous explanations have been suggested to explain the downward deviation of many
cancer trajectories from the hypothesized power function pattern, including genetic
heterogeneity among individuals in their susceptibility, environmentally acquired
heterogeneity, age-related changes in insult, distortions in period data resulting from
differences among cohorts, undercertification among the old, the effects of the time it takes a
tumor to grow, and the effects of cellular event rates that are not small [37, 44]. Explanations
based on the elimination of genetically-susceptible population groups have tended to be
dismissed [10, 34], in part because of the strong evidence, from migrant studies [20] and



studies of the causes of lung cancer and other cancers [14], that behavioral and environmental
factors must be very important.

Nonetheless, there appear to be substantial genetic differences among individuals,
especially regarding genetic predisposition to environmental carcinogens [7, 23, 36, 43, 52],
and the existence of strong genetic differences is not inconsistent with observed
epidemiological patterns [45] or with the clear importance of environmental factors [23].
Moreover, even if susceptibility to some form of cancer is not influenced by genetic factors,
susceptibility is influenced by various behavioral and environmental factors e.g., cigarette
smoking, consumption of green vegetables, or exposure to asbestos that differ among the
members of a population, leading to the formation, after birth, of more or less susceptible
groups [17, 51]. Indeed, multistage theories of cancer imply heterogeneity, because different
individuals, even of the same age, will be at different stages.

Several alternative models that recognize heterogeneity among individuals in frailty and
susceptibility yield population trajectories of cancer rates that rise, level off, and perhaps
decline even though cancer trajectories for the individuals that comprise the population rise
steadily [10, 27, 30, 32, 33, 45]; for more general reviews, see Economos [15], Keyfitz [24],
and Vaupel and Yashin [55, 56].

Using cohort data on mortality from lung cancer among U.S. whites, Manton et al. [33]
investigated twelve different models based on alternative assumptions about the age-specific
pattern of mortality risks for individuals and about the distribution (if any) of mortality risks
across individuals. For U.S. females, the best fitting model used an exponential function for
the age trajectory of lung cancer mortality, although for U.S. males, the best fitting model
used a power function. Employing the same approach to analyze total mortality from all
causes for various U.S. cohorts, Manton et al. found the best fitting power function and
exponential function models fit the data virtually equally well, for both female and male data.
A lesson here is that it may be difficult to discriminate, using epidemiological data, between
models based on different mortality functions, even though the different functions may have
radically different theoretical implications about the etiology of cancer; Peto [45] discusses
this. It should be noted that in Manton et al.’s analyses, models that assumed a considerable
degree of population heterogeneity fit the data much better than models assuming
homogeneity among individuals in mortality risks.

2.2 The Rise and Fall of Cancer Trajectories: Some Simple Models

One model of cancer mortality (or incidence) in a heterogeneous cohort is illustrated in Figure
1a; we will call this the prototypical susceptibility model. Some individuals are susceptible to
some particular form of cancer (or, alternatively, to cancer in general); others are immune.
This differential susceptibility could be the result of genetic, behavioral, or environmental
factors. At starting age zero, which may be some age substantially later than birth to allow
environmental risk factors to create the two sub-cohorts, a proportion 0π  are susceptible. For
these individuals, the force of mortality from the cancer at age x is c (x)µ ; for both susceptible

and immune individuals the force of mortality from other causes of death is 0 (x)µ . The

observed force of mortality from the cancer for the population as a whole, 
c
(x)µ , is given by:

c c(x)= (x) (x)µ π µ {1}



where π (x)  denotes the proportion of the population alive at age x that is susceptible to the
cancer. This proportion is given by:

or, canceling and rearranging, by:

The formula developed by Peto and presented in Cook et al. [10] as formula (v) is, with
appropriate change in notation and some rearrangement, equivalent to formula {3}. Note that
the force of mortality from causes other than cancer does not appear in this formula and hence
does not influence the cancer trajectory. Thus in this simple model, cancer and other causes of
death are independent risks on both the individual and population levels.

Figure 2a displays population trajectories of the cancer mortality rates, 
c

µ , produced by

curves for the cancer mortality rates among susceptible individuals, c
µ , given by a power

function. The five curves in the figure, which differ because different parameter values were
used in the underlying model, are reminiscent of observed trajectories of cancer mortality, as
displayed, for instance, in Segi et al. [50] or Magnus [26]. Two parameters were used in drawing
the curves π0 = π(0), the proportion susceptible, and a parameter, called C, that gives the
cumulative proportion of the susceptible population that would suffer this cancer by age 75 if
they did not die of something else before then. This parameter C can be interpreted as a measure
of how much selection has taken place among the susceptible population by age 75. For each of
the curves, the power k in the power function µ(x)  was taken to be 6, a frequently used value in
cancer studies. Given C and k, the scaling factor b in the power function can be easily calculated.
The proportion of the entire population that would suffer the cancer by age 75 is given by 0π
times C; for each of the five curves in the Figure 2a this product was held constant at 1 percent.
Hence the curves can be interpreted as being determined by the five values chosen for C, namely
1 percent, 10 percent, 50 percent, 80 percent, and 100 percent. The curves thus illustrate how the
impact of selection on a cancer trajectory depends on the degree of selection that has occurred.
Experiments with other values of the product of C and 0π  indicate that variation in how
common the cancer is among the entire population has hardly any effect on the shape of the
trajectories compared with the effect of changes in C (at any constant level of C times 0π ).

Cook et al. [10] present, in their Figure 4, some curves similar to the ones in Figure 2a.
They reject the importance of differential susceptibility, but their logic pertains to innate
susceptibility rather than susceptibility acquired by behavior or environmental exposure and
their evidence is based on some uncomplicated analysis of limited data pertaining to period
rates for seven cancers in eleven countries, with a cutoff age of 74.

( )

( ) ( )
π

π µ µ

π µ µ π µ
( )

( ) exp ( ) ( )

( ) exp ( ) ( ) ( ) exp ( )
x

t t dt

t t dt t dt

c

x

c

x x
=

− +∫






− +∫



 + − − ∫





0

0 1 0

0
0

0
0

0
0

{2}

π
π

π
µ( )

( )

( )
exp ( )x t dtc

x

= +
− 
















∫

−

1
1 0

0 0

1

. {3}



The prototypical susceptibility model in Figure 1a might be generalized to the prototypical
frailty model shown in Figure 1b. Here the force of mortality from causes other than the

cancer differs in the two subpopulations. If 0
µ  is greater than 0

/µ , then the individuals in the

first subpopulation might be called frail, because they are susceptible to the cancer and have a
higher chance of death from other causes as well. This may be reasonable if risk factors
associated with the cancer, whether genetic, behavioral or environmental, tend also to be
associated with other causes of death or if persons with the cancer are weakened such that they
have a higher chance of dying from other causes. For this frailty model, the death rate from the

cancer in the population, 
c

µ , is given, as before, by {1}, but π  now depends on both c
µ  and

0
µ :

The death rate from other causes in the population, 
0

µ , is given by

0 0(x) = (x) (x)+ (1- (x)) (x)  ,µ π µ π µ0
/ {5}}

so now 
c

µ  and 
0

µ  are linked (via their common dependence on π ): on the population level, the

cancer and the other causes are not independent risks even though they are independent for every

individual in the population. For instance, if c
µ  decreases, then 

c
µ  will also decrease but 

0
µ

will increase.

This prototypical frailty model can produce, depending on the parameters used, population
trajectories of cancer mortality that rise and fall or that rise and then level off before the cutoff
age.

Some further directions for generalization of the susceptibility and frailty models are
suggested in Figure 1c. Instead of being susceptible or immune, individuals might be more or
less susceptible to the cancer under study. The parameters λ  and /λ  represent intensities of
flow from one state to the other. Individuals might become more susceptible to the cancer as a
result of, e.g., cigarette smoking or exposure to radiation. On the other hand, individuals, by
giving up cigarette smoking or changing jobs, might reduce their susceptibility. The force of

mortality from other causes, 0
µ  and 0

/µ , might also differ in the two states. If individuals who

are susceptible to the cancer are frail or debilitated, 0
µ  might be greater than 0

/µ . If, on the other

hand, the risk factors that increase the chances of the cancer decrease the chances of, say, heart

disease, then 0
/µ  might be greater than 0

µ . In any case, in this model the two causes of death are

not independent on the population level: a change in the observed force of mortality from the
cancer will produce a change in the observed force of mortality from other causes and visa versa.

The model can be explored by running the following formulas and difference equations on
a personal computer:
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As an illustration of this general point, consider the model shown in Figure 1d. In this
model, individuals are assumed, at starting age zero, to be immune from some cancer: people
gradually become susceptible to the cancer at a constant rate λ . Susceptible individuals are
assumed not only to be susceptible to the cancer being studied, but also to a related set of
cancers. In terms of a multistage model, the transition from immune to susceptible can be
considered a transition common to a group of cancers, a transition based on some environmental
or behavioral factor that is a risk factor for all the various cancers in the group. This simple
transition model was used to produce the curves shown in Figure 2b: the more important other
cancers are as a cause of death, the more bowed is the trajectory for the cancer being studied.

In addition to demonstrating that there are a variety of ways in which selection in a
heterogeneous population can cause the age trajectory of cancer rates to level off or even
decline, the various models presented above can be used to show that even substantial
heterogeneity may produce only weak effects on age trajectories. Using the variant
diagrammed in Figure 1e, Peto [45] demonstrates that even in cases where predisposed
individuals – be they 1 percent, 10 percent or 50 percent of the total population – suffer 50
times the incidence of some cancer compared with the rest of the population, the age
trajectory of cancer incidence in the population as a whole may closely mimic, at least up to
age 75 or so, the age trajectory of a homogeneous population. Other variants of the model
diagrammed in Figure 1c can produce similar results; some of the trajectories in Figures 2a
and 2b are examples. Thus, although heterogeneity may be a possible explanation for some of
the observed leveling off and decline in cancer trajectories, the absence of apparent leveling
off or decline does not imply homogeneity or even approximate homogeneity. This is
reassuring because it is virtually certain that substantial heterogeneity exists, produced by
various genetic, behavioral, and environmental risk factors, for cancers of all types. A key
question that thus arises and which will be addressed in subsequent sections is the possible
impact heterogeneity might have on time trajectories and geographic variations, even in those
cases where the heterogeneity does not have a substantial effect on age trajectories.

More elaborate models, with many states of susceptibility or a continuous distribution of
susceptibility and with susceptibility changing with age or time, can be developed [4, 31, 54,
57, 60]. In empirical analyses of particular forms of cancer or other causes of death, it may be
appropriate to use models complicated enough to capture the key details of the disease
process. Here our purpose is not statistical inference but insight. We will henceforth illustrate
our examples with a single model that captures the key feature driving the process; it turns out
that in all instances it is sufficient to use models as simple as the prototypical susceptibility
model in Figure 1a, for which the risk of the cancer is independent of other mortality risks, or
the prototypical frailty model in Figure 1b, for which the mortality risks are linked on the
population level although they are independent for all individuals.

2.3 Successive Apogees

p(0)= (0)  , p (0)= 1- (0)  ,/π π {6}

p(x+ )= p(x)+ [ (x)p (x) -( (x)+ (x)+ (x))p(x)]  ,c∆ ∆ λ µ µ λ/ /
0 {7}

/ /
c

/ /p (x + ) = p (x)+ [ (x)p(x) - ( (x)+ (x)+ (x)) p (x)]  ,∆ ∆ λ µ µ λ/ /
0 {8}

π (x)= p(x) / (p(x)+ p (x))  ,/ {9}

c c c(x) = (x) (x)+ (1- (x)) (x)  µ π µ π µ / . {10}



Figure 3a displays the age trajectories of incidence rates from cervical cancer for three birth
cohorts of Icelandic women (redrawn from data in Hakama [18]). Similar patterns of
crossover and successive apogees can be found for other cohorts, other countries, and other
forms of cancer, e.g., for cervical cancer in Denmark [18], cancer of the larynx for French
males [53], cancer of the bone among Japanese males and females, and leukemia among
survivors of the atomic bomb attacks in Japan and lung cancer among insulation workmen
[40].

The prototypical susceptibility model, shown in Figure 1a and described by formulas {1}
and {3}, yields successive apogees that resemble observed patterns. One simulation is
presented in Figure 3b; in this simulation, the trajectories shift to the right as the mortality rate
declines and the trajectories reach higher peaks as the proportion of the population susceptible
to the cancer increases. As indicated above, a variety of other heterogeneity models, including
models in which the observed rates of cervical cancer are increasing because competing
causes of death are decreasing, can be used to produce trajectories similar to those in Figures
3a. We present Figure 3b, and the simple model underlying it, not as an explanation of
cervical cancer trends in Iceland but as an illustration of the fact that such trends are consistent
with the operation of selection in heterogeneous populations and hence might be partially
accounted for by an appropriate heterogeneity model.

Although clear examples of successive mortality apogees for successive cohorts are
unusual, perhaps because the age trajectories are usually cutoff at some age like 75 or 80
before the full effects of selection can be seen, examples of crossover or strong convergence
are more common, as illustrated by the various cohort graphs in Segi et al. [50] and Magnus
[26]. An interesting instance of a crossover in incidence rates is given in Hanai et al. [19] for
stomach cancer among males and females in Osaka, Japan, who were classified into histologic
groups. In addition, patterns of decline over time in age-specific rates at younger ages and
increases at older ages are evident for all cancers combined and for various specific cancers in
Japan [50] and other countries: Figure 4, which displays the age trajectories of death rates
from cancer and from other causes among U.S. women in 1970 and 1980, shows a crossover
for cancer at age 55.

Differential selection in a heterogeneous population, which has been widely accepted as at
least a partial explanation for mortality crossover and convergence in several areas [29, 56],
may provide at least a partial explanation of these observations as well. In any case, under
fairly general conditions [55], a decrease in mortality rates at younger ages will result, in a
heterogeneous population, in an increase at older ages and a uniform decrease in the rates at
all ages will result in an observed mortality trajectory that converges toward and may cross the
previous trajectory. It follows, however, from Peto’s [45] analysis, discussed above, that even
strong heterogeneity and substantial cohort differences may not lead to noticeable
convergence. Consequently, absence of convergence cannot be taken as evidence that the
population is homogeneous.

2.4 The Falling Cancer Share

Death rates from cancer among U.S. women in 1980 rose more slowly with age than death
rates from other causes. As a result, cancer accounted for a declining share of deaths with age:
the share of deaths accounted for by cancer fell from 43 percent at ages 50-54 to only 9
percent at ages above 85. In contrast, cardiovascular diseases accounted for 28 percent of
deaths at ages 50-54 and fully 71 percent at ages above 85. The declining cancer share and
rising cardiovascular share, which can also be observed for males, other times, and other
countries [46], is an implication of the fact that cancer rates tend to rise even more slowly than



a power function, whereas cardiovascular disease death rates (and total death rates) rise
exponentially. An interesting (and speculative) perspective on this can be developed by using
a simple model, like the one in Figure 1a, that recognizes that people differ in their
susceptibility to cancer. It may be that among people who are susceptible to cancer, the force
of mortality from cancer is higher at all ages than the force of mortality from, say,
cardiovascular disease. Indeed, the force of mortality from cancer among the susceptible
population may be increasing exponentially. Nonetheless the observed age trajectory of cancer
mortality may cross over the cardiovascular disease trajectory.

In the prototypical susceptibility model, the population force of mortality from cancer is
given by formulas {1} and {3}. Substituting {1} into {3} yields an integral equation for π (x) :

Given the trajectory of mc (x) and the value of π (0) , numerical methods can be applied to
this equation to estimate the trajectory of π (x) . Then, by using {1}, the trajectory of µc(x)  can
be calculated. Thus, if the proportion of the population at age zero that is susceptible to cancer is
specified, it is possible to estimate the force of mortality from cancer among the susceptible
population. In the model the force of mortality from cardiovascular diseases is the same for all
individuals, regardless of their susceptibility to cancer, so the individual and population death
rates from cardiovascular disease will be identical.

Figure 5 was constructed by taking the observed cardiovascular disease and cancer
mortality trajectories as given in the 1980 U.S. mortality statistics for females; it was assumed
that 25 percent of the synthetic cohort experiencing these rates were susceptible to cancer at
the starting age of 20. The observed age-specific death rate from cancer falls below the death
rate from cardiovascular disease after age 60. The model, however, indicates that the death
rate from cancer among susceptible individuals exceeds the death rate from cardiovascular
diseases at all ages on the graph. We emphasize that this result is presented as an illustration
only; the model is simplistic and the data faulty: selection operates on real cohorts, not
synthetic ones. The point, however, remains: the age trajectory of cancer mortality for
susceptible individuals might rise considerable more quickly, reach considerably higher
levels, and have a different shape than the observed population trajectory.

3. Variation over Time and Place

3.1 Compensating Cancers

The incidence of different kinds of cancer varies enormously, sometimes by several orders of
magnitude, among various countries and regions [14, 38]. For all forms of cancer combined,
the variation tends to be less. Table 1 presents the age-adjusted death rates for various forms
of cancer and for cancer at all sites for the country that ranked 1st and the country that ranked
40th in a data set for 1978-9 compiled by the World Health Organization (and presented in
[1]). (We chose rank 40 to avoid erroneous values associated with poor data collection and
processing in some countries with very low reported rates; the data for the first ranked
countries appeared fairly reliable, given its consistency with values reported for countries
ranked 2 and 3). With the exception of leukemia, the ratio of the rates for the various cancers
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ranges from about 4 to about 9, in contrast with a ratio of 2 for all cancers combined.
Apparently when some forms of cancer are unimportant, other forms grow in importance.

Table 1. Age-adjusted death rates per 100, 000 for various forms of cancer and for cancer at
all sites for the 1st and 40th ranked country.

Cancer Sex For 1st

ranked
country

For 40th

ranked
country

Ratio

Oral M 20.3 2.2 9.2

F 7.2 0.8 9.0

Prostate M 41.0 5.4 7.6

Lung M 113.2 15.6 7.3

F 30.9 5.0 6.2

Colon & rectum M 34.0 5.7 6.0

F 29.5 7.7 3.9

Stomach M 66.1 14.4 4.6

F 33.5 7.2 4.6

Breast F 33.8 7.9 4.3

Uterus F 30.0 7.5 4.0

Leukemia M 9.6 3.9 2.5

F 6.3 2.8 2.3

All sites M 275.0 135.0 2.0

F 172.3 86.9 2.0

Source: [1].

A similar phenomenon can be observed over time: in various countries as some forms of
cancer have declined in importance, others have increased, so that total cancer rates tend to be
more steady than rates from particular forms of cancer. In the United States, for instance,
age-adjusted lung cancer mortality rates have increased substantially over recent decades,
rates for stomach cancer and cancer of the uterus have substantially declined, and various
other cancer rates have shown considerable fluctuation, but the overall cancer mortality rate
has remained relatively steady, showing only a small rate of increase [1, 39].

Such compensating changes are consistent with a model that assumes people differ in their
susceptibility to cancer (or some set of cancers). A simple version of such a model is shown in

Figure 1f. The population death rates from the two forms of cancer, 
1

c (x)µ  and 
2

c (x)µ , are

given by

µ π µc
i

c
i(x)= (x) (x)  , i = 1,2 {12}



where, following {3}, it can be shown that

Hence, the two trajectories for 
i

c (x)µ  are linked. If 
1

c (x)µ , say, declines, then π (x)  will

grow and 
2

c (x)µ  will increase. Indeed, even if both 
1

c
µ  and 

2
c

µ  are declining, if more progress

is being made against cancer 1 than cancer 2, it may look, at ages old enough that selection has
had a major impact, as if cancer 2 is increasing. Table 2 summarizes the results of a simulation
using this model.

Table 2. Annual rates of progress in reducing death rates at various ages for cancer 1, cancer
2, and cancer 1 and 2 combined, for the susceptible subpopulation and the entire
population

Annual rate of progress (in percent) in reducing death rate

from cancer 1 from cancer 2 from cancer 1 and 2

Age

Actual rate
for

susceptible
population
(in percent)

Observed
rate for
entire

population
(in percent)

Actual rate
for

susceptible
population
(in percent)

Observed
rate for
entire

population
(in percent)

Actual rate
for

susceptible
population
(in percent)

Observed
rate for
entire

population
(in percent)

50 1 0.96 0.1 0.06 0.57 0.53

60 1 0.88 0.1 -0.02 0.57 0.44

70 1 0.68 0.1 -0.22 0.57 0.24

80 1 0.25 0.1 -0.65 0.57 -0.18

Source: Computer calculations using multiple susceptibility model, described in text with

π ( ) .0 0 05=  and c
i x b xµ ( ) = 1

5 , with bi chosen such that 
0

75

c (x)dx =  0.5∫ µ1  and

0

75

c (x)dx =  0.333.∫ µ2

At all ages, progress is being made in reducing mortality from cancer 2 at a rate of 0.1
percent per year. However, the observed rate of progress in reducing cancer 2 is much less
than this and is negative at age 60 and subsequently. Note the magnitude of the observed
negative rate of progress at ages 70 and 80 is 2.2 and 6.5 times the magnitude of the actual
rate for susceptible individuals at these ages. The observed rate of progress in reducing
mortality from cancer 1 is also less than the actual rate. This is another manifestation of the
convergence and crossover of mortality trajectories discussed above: saving susceptible
individuals at younger ages reduces observed rates of progress in reducing mortality at older
ages. For both forms of cancer combined, the overall rate of progress among susceptible

( )π
π

π
µ µ( )

( )

( )
exp ( ) ( )x t t dtc c

x

= +
−
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1 2
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individuals is 0.57 percent per year at all ages, but the observed overall rate of progress is
considerably less at ages 60 and 70 and at age 80 it appears as it the overall cancer death rate
is increasing.

3.2 Multiple Cancers

The hypothesis that some individuals may be more susceptible than other individuals to
several different forms of cancer (or to cancer in general) seems to run counter to the widely
accepted view that, as Cairns [6] puts it, "each of the major cancers behaves almost as an
independent entity; with few exceptions, people who have been successfully treated for one
cancer are then neither more nor less likely in subsequent years to come down with a second,
different variety." Schoenberg [48] reviews the evidence on multiple cancers and presents a
detailed analysis of the Connecticut Tumor Registry. He concludes: "Results for
non-simultaneously diagnosed malignant tumors from Connecticut indicate that individuals
with one malignant neoplasm have 1.29 times the risk of developing a new independent
primary tumor compared to individuals who never had cancer (P < 0.01). However, the
increased risk of multiple primary tumors is highly selective on a site-specific basis". For
example, women with breast cancer had 1.9 times the risk of cancer of the corpus uteri and
0.5 times the risk of cancer of the pancreas; men with lung cancer had 6.5 times the risk of
cancer of the kidney and men with cancer of the colon had 0.5 times the risk of lung cancer.

To understand the relationship of statistics such as these to the heterogeneity models
discussed in this paper, consider the model shown in Figure 1g. There are two kinds of cancer
in the model and two kinds of individuals. One cohort of individuals is more susceptible to
both kinds of cancer than the other cohort. For simplicity it is assumed that the two cancers
have identical, independent incidence rates for each of the two groups. Death is ignored in the
model because the concern is with multiple cancers among those who survive to some
specified age.

Let r denote the relative risk of incidence of either cancer for the more susceptible
compared with the less susceptible group; we will call r the relative risk of cancer incidence.
Let R denote the relative risk of cancer 2 among those who have developed cancer 1 compared
with those who have not developed cancer 1; we will call R, which is essentially equivalent to
the statistic used by Schoenberg, the relative risk of cancer 2 prevalence. The question is: what
is the relationship of R to r? The answer, surprisingly, is that the value of R tells us very little
about the value of r; and that R can be fairly low (e.g., 1.29) when r is extremely large or even
infinite.

Let 0 1 2n (x), n (x), n (x) , and 12n (x)  denote the number of individuals in the less susceptible
cohort at age x who have no cancer, the first or the second cancer, or both, respectively, and use
the same notation with a prime to denote the numbers for the more susceptible cohort. It is not
difficult to show that for both groups:

and

i 0 0 0n (x)= n (0)n (x) - n (x)  , i = 1,2 {14}

12 0 0 0 0n (x)= n (0)+ n (x)- 2 n (0)n (x) . {15}



The value of 0n (x)  depends on the function chosen for the transition rate λ . If λ  is assumed
to be a power function

then

and

The value of R(x), which is the ratio of the probability of cancer 2 given cancer 1 to the
probability of cancer 2 given the absence of cancer 1, can then be calculated by:

Table 3 presents the value of R for various values of the relative risk of cancer incidence, r,
suffered by persons in the more susceptible group.

λ = bx   ,k {16}
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Table 3. The values of R, the relative risk of cancer 2 prevalence, at age 65, for various values
of r, the relative risk of cancer incidence, and, 0π  the proportion who are highly
susceptible.

0π r  R

0.5 ∞ 2.04

0.5 100.0 2.00

0.5 10.0 1.69

0.5 3.0 1.25

0.5 1.0 1.00

0.1 ∞ 10.35

0.9 ∞ 1.12

0.5 3.3 1.29

0.75 16.0 1.29

0.78 100.0 1.29

0.78 ∞ 1.29

Source: Calculations based on model described in text with k = 6 and b chosen such that

0

75
6bx dx =  0.1∫  for the more susceptible group. Using a value of k of 2 or 8 or a value of b a

hundred times lower or twice as high hardly alters the results.

As the table suggests, the value of R is essentially independent of the value of r when r is
100 or more. When such a large differential exists between the more and less susceptible
groups, R is approximately equal to the inverse of the proportion of the population at age zero
that is susceptible. Thus a value of R of about 2 is consistent with a model in which about half
the population is highly susceptible to both cancers. Even when r is considerably less than
100, the value of r tends to be much larger than the value of R. For instance, a value of R of
1.25 is consistent with a model in which half the population is three times more susceptible to
both kinds of cancer than the other half of the population; if R is 2, then the more susceptible
group could be a third of the total population with a relative risk of 10 or half of the total
population with a relative risk of 100 or more.

A simple example helps provide an explanation of the difference between the relative risk
of cancer incidence, r, and the relative risk of cancer 2 prevalence, R. Suppose half the
population is highly susceptible to cancer 1 and 2 and the other half is essentially immune.
More specifically, assume that the more susceptible group faces a risk of 2 percent of
developing either cancer by age 65 whereas the risk for the less susceptible group is a
thousand times less. If someone gets cancer 1 before age 65, that person is almost certainly a
member of the highly-susceptible group and thus has a two percent chance of developing
cancer 2 by age 65. Because the chance of either cancer is low, the fact that someone does not
have cancer 1 tells us very little about which group the person is in. Hence, since people



without cancer 1 have about a fifty percent chance of being susceptible, their chance of having
cancer 2 by age 65 is half of 2 percent. Thus, having cancer 1 only doubles the chance of
cancer 2, even though having cancer 1 is very strong evidence that a person is highly
susceptible and highly susceptible people face 1000 times the risk of cancer 1 or 2.

For some pairs of cancers, people having one cancer seem to be less likely to have the
second cancer than people without the first cancer [48]. This could imply that people highly
susceptible to the first cancer have low susceptibility to the second cancer. Alternatively,
however, it may be that people in one group are more susceptible to both kinds of cancer,
given that they have neither cancer but that getting the first cancer lowers the chances of
getting the second cancer, because the effects of treatment, of physiological or behavioral
changes, or whatever.

As an example, consider again the model in Figure 1g, but now suppose that the four
incidence rates, the λ ’s, on the bottom half of the diagram are less than the four λ ’s on the top
half. Specifically, assume that the incidence of either of the cancers among people with the other
cancer is some fraction of the incidence among people without the other cancer. Table 4 presents
some values of the relative risk of cancer 2 prevalence, R, corresponding to various values of this
fraction and various values of the relative risk of cancer incidence, r.

Table 4. The value of R, the relative risk of cancer 2 prevalence at age 65, for various values
of r, the relative risk of cancer incidence ′λ λ/ , the relative risk of incidence of
second cancer, and 0π , the proportion who are highly susceptible.

0π ′λ λ/  r  R

0.50 0.4 ∞ 0.82

0.50 0.2 ∞ 0.41

0.50 0.5 10 0.86

0.25 0.5  3 0.78

0.75 0.6 ∞ 0.81

Source: Computer calculations using numerical methods to approximate the model

described in the text, with k = 6 and b chosen such that 
0

75
6bx dx =  0.1∫  for the more

susceptible group.

The parameters used result in values of the relative risk of cancer 2 prevalence that are less
than one. These values, which might be interpreted as indicating that people who are more
susceptible to the first cancer are less susceptible to the second, were produced, however, by a
model in which part of the population is more susceptible to both cancers.

The model of multiple cancer presented in Figure 1g is highly simplified. Furthermore, the
evidence concerning multiple cancer must, as Schoenberg [48] discusses, be used with great
caution. Nonetheless, the model and the evidence are perhaps sufficient to draw the



conclusion that the current evidence about multiple cancer is not inconsistent with the
existence of substantial differences among individuals in their susceptibility to groups of
cancers and perhaps even to cancer in general.

3.3 Why is Cancer Mortality Increasing over Time?

As shown in Figure 6, the mortality rate from cancer among U.S. females aged 60-64 has
remained fairly stable since 1900, whereas total mortality has fallen to close to a third of its
1900 level and cardiovascular mortality rates have been cut more than 50 percent since 1950.
Roughly similar patterns hold at other ages and for age-standardized rates, for males as well as
females, although for males there is more of an increase in cancer rates, largely due to lung
cancer. Much attention has been devoted to trying to determine trends in rates of cancer
incidence and mortality, the causes of such trends, and the implications for policy [14, 26]. As
explained in this section, heterogeneity makes such efforts even more difficult than previously
recognized.

  Before discussing why, it is useful to consider two other pieces of evidence. Figure 4
displays the age-specific U.S. female mortality trajectories for cancer and for all causes of
death other than cancer for 1970 and for 1980. It is apparent that rapid progress has been made
against causes of death other than cancer. For cancer, on the other hand, there is evidence of
progress at younger ages and evidence of higher death rates at older ages.

If, instead of following a single country over time, a variety of countries are compared at
some point in time, a pattern emerges that may be similar in origin to the increasing relative
importance of cancer over time: the countries with the highest death rates from other causes
tend to have the lowest death rates from cancer. For instance, using age-adjusted death rates
for 1975 for 50 countries with widely varying rates ([50], Appendix Table I), the Spearman
correlation coefficient between the rate for malignant neoplasms and the rate for all other
causes of death is -0.27 for males and -0.39 for females. As in the case of temporal trends, it
looks from this kind of cross-sectional data as if progress against other causes of death is
associated with an increase in cancer mortality rates.

Hence, it may prove to be significant that observed cancer mortality rates for a population
may decrease slowly, stay roughly level, or even increase even though the risks of cancer for
the individuals that comprise the population are decreasing. There are three main mechanisms
in heterogeneous populations that can produce such results.

(i) The Effect of Convergence and Crossover

A reduction in cancer mortality at all ages will, in a heterogeneous population, produce a
mortality trajectory that converges toward and may cross the previous mortality trajectory. As
a result, the observed death rate from cancer will decline, at all ages and especially at
advanced ages, by less than the corresponding rate for individuals. At ages after the crossover,

the reduction in the individual rates µ  actually results in an increase in the observed rates µ .

Table 5 shows the trend in cancer mortality rates at various ages at the individual and
population level based on the prototypical susceptibility model. Although among susceptible
individuals cancer mortality rates are declining by 1 percent per year at all ages, the observed
rate at age 70 is declining by less than half a percent per year and the observed rate at age 80 is
increasing by more than half a percent per year.



Table 5. Annual rate of progress in reducing cancer death rates at various ages, for the
susceptible subpopulation and the entire population.

Annual rate of progress (in percent) in reducing cancer death rate:

Age

Actual rate for
susceptible
subpopulation
(in percent)

Observed rate for
entire population

(in percent)

50 1 0.96
60 1 0.83
70 1 0.44
80 1 -0.61

Source: Computer calculations using prototypical susceptibility model, described in text,

with π ( ) .0 0 25=  and c x bxµ ( ) = 6 , with b chosen such that 
0

75

c(x)=  0.8∫ µ .

(ii) The Effect of Compensating Cancers

Progress against one form of cancer may be offset by an observed rise in other forms for
which susceptible individuals face higher risks. As illustrated above in Table 2, even if
progress is being made against all forms of cancer, if the rates of progress differ for different
forms of cancer, it may appear as if certain cancers are growing in importance. The observed
death rate, at any age and especially at older ages, from all forms of cancer will, as a result,
decline more slowly than the actual death rate among susceptible individuals.

(iii) The Effect of Progress Against Other Causes

A similar effect will result if individuals who are susceptible to cancer are also more
susceptible to other forms of death, as in the prototypical frailty model. In this model, the
observed age-specific death rates from cancer and other causes are linked as described by
formulas {4} and {5}. The formulas imply that a proportional decrease in the death rates from
other causes among the frailer and more robust subcohorts may result in an increase in the
observed death rates from cancer, even though the death rates from cancer among susceptible
individuals remain the same. Indeed, even if the death rates from cancer among susceptible
individuals decrease somewhat, the observed death rates from cancer may increase.

The statistics in Table 6 provide an illustration.



Table 6. Annual rates of progress in reducing death rates at various ages for cancer and other
causes of death, for the frail and robust populations and for the entire population.

Annual rate of progress (in percent) in reducing death from:

Cancer Other causes

Age

Actual rate for
frail and robust
subpopulations

(in percent)

Observed rate
for entire

population
(in percent)

Actual rate for
frail and robust
subpopulations

(in percent)

Observed rate
for entire

population
(in percent)

50 0.25 0.18 1.0 0.99

60 0.25 0.04 1.0 0.97

70 0.25 -0.36 1.0 0.96

80 0.25 -0.38 1.0 0.98

Source: Computer calculations using prototypical frailty model, described in the text, with

π ( ) .0 0 25= , 0
0 10 0001µ ( ) . .x e x= , c x bxµ ( ) = 5  and b chosen such that 

0

75

c(x)dx =  0.8,∫ µ

and µ µ0 0(x)=  0.5 (x)./

On the individual level, mortality rates from cancer are being reduced, at all ages, by a
quarter of a percent per year and mortality rates from other causes are being reduced by one
percent per year. The observed rate of progress against cancer, however, is close to zero at age
60; at ages 70 and 80 it looks as if there is a substantial rate of increase in cancer mortality.
Because frail individuals are also at higher risk from other causes of death, the operation of
differential selection also results in an observed rate of progress against other causes of death
that is lower than the actual rate on the individual level, but the effect here is minor.

4. Discussion

Individuals differ in their chances of different causes of death: epidemiologists spend much of
their time trying to uncover the risk factors that underlie these differences. Yet nearly all
studies of competing causes of death assume that all individuals of the same age in the same
population group face the same risks and that these risks are independent of each other. The
first assumption is clearly invalid and, as we have illustrated in this article, the second
assumption is invalid for heterogeneous populations, except in some special circumstances.
Even if different causes of death are independent for individuals in some state (e.g., for frail
individuals), they will not, in general, be independent for the population as a whole.

We have illustrated the potential impact of heterogeneity and dependent competing risks
by using the various puzzles and paradoxes of cancer mortality to motivate the analysis. Our
goal has been insight and conceptual advance, not empirical analysis or statistical inference.
That work, clearly important, has been started elsewhere (especially by Manton and his
colleagues). It will undoubtedly grow in significance as more and more realistic models are
developed for particular disease contexts and as the paradigm shift continues toward
recognition of the significance of differential selection in epidemiology, demography,



actuarial mathematics, reliability engineering, and other population disciplines. Examples of
the application of heterogeneity modeling to phenomena as diverse as fertility, divorce, the
extinction of families of species, equipment failure, dental caries, accident proneness and the
discovery of new petroleum deposits are reviewed in Vaupel and Yashin [55, 56].

This paper began with a list of seven puzzles and paradoxes of cancer epidemiology. Its
findings can be summarized using the same list. The effects of differential selection in a
population in which individuals vary in their susceptibility to cancer in general, or to various
forms of cancer, or to various causes of death may partially account for:

• the leveling off and decline of cancer incidence and mortality rates with age,

• the fact that a greater proportion of deaths are from cancer around ages 50 or 60 than at
older ages,

• the greater variation among countries in incidence and mortality rates from various forms
of cancer than in incidence and mortality rates from cancer in general,

• the convergence and crossover of the age trajectories of cancer rates for two cohorts,
from different time periods, countries, histological types, etc.,

• the negative correlation among countries in the mortality rates from cancer vs. other
causes of death,

• the increase over time in mortality for some forms of cancer and decrease for other
forms, and

• the tendency for cancer incidence and mortality rates to somewhat increase, whereas
mortality rates from almost all other major causes of death, including heart disease and
cerebrovascular disease, are declining.

In addition, two other findings are worth highlighting.

First, a variety of different heterogeneity models can produce qualitatively similar mortality
patterns and trajectories. Simple susceptibility and frailty models that only distinguish two
kinds of individuals were sufficient to illustrate the points made in this paper. It seems likely,
though, that more elaborate models will fit empirical data better than such simple models.
Even if some heterogeneity models, e.g. the prototypical susceptibility model, can be ruled out
because of evidence, say, that few if any individuals are completely immune to cancer, other,
more elaborate models may still be plausible. Indeed, individuals differ from each other along
so many important risk factors that it seems incontrovertible that populations are
heterogeneous: the question is when does this heterogeneity have an important effect on
epidemiological statistics and, when it does, how should the heterogeneity be modeled?

Second, even substantial differences among individuals in their susceptibility to cancer or
to some form of cancer may not produce a noticeable impact on the observed age trajectory of
cancer mortality in a population. The impact of such differences, however, may significantly
alter patterns of cancer mortality over time or place. Therefore, the absence of strong
heterogeneity effects in some set of cancer statistics should not be assumed to exclude strong
effects in other sets of cancer statistics.

These various findings open up new hypotheses and new research directions. Even less is
known about cancer epidemiology than was previously thought, but more can be learned by
systematically considering the effects of differential selection in heterogeneous populations.
Some key facts that were assumed self-evident – such as the belief that little or no progress is



being made in reducing rates of overall cancer mortality – may still be correct, but that
remains to be established.









Figure 2a.

The observed force of mortality from cancer from age 20 to 85 produced by the
prototypical susceptibility model for 5 pairs of parameter values. See text for details.



Figure 2b.

The observed force of mortality from cancer 1 from age 20 to 85 produced by two-
cancer transition model for three levels of mortality from cancer 2. See text for details

of the model. The following parameters were used: ( )λ µ= =0 01 1
5. , c x bx  with b chosen

such that ( ) ( )µ µc cx dx x bx1
0

75

2
50 01∫ = =. ;  with b chosen such that ( )µcx

x

x dx
0
∫ = 0, 0.5 and

0.9, respectively, for the three curves, and ( )µ0
10 0001x e x= . . .



Figure 3a.

Age-specific incidence rates from cervical cancer for cohorts of Icelandic women
born in 1913, 1923, and 1933. Adopted from [18].



Figure 3b.

Age-specific incidence rates from age 20 to 85 produced by the prototypical
susceptibility model for three sets of parameter values. See text for details of model.
For the three curves from left to right π0 is 0.012, 0.02, and 0.022 and µ(x) = ax6,

where a is chosen such that 
0

t

∫ µ(x)dx = 1, 0.99, and 0.9 for t = 65, 70, and 75,

respectively.



Figure 4.

Death rates in 1980 relative to 1970 from cancer and other causes for U.S. women
from age 20 to 85.



Figure 5.

Annual death rates from cancer and cardiovascular diseases in 1980 for U.S. women
from age 20 to 85. The death rates from cancer among susceptibles were calculated
as described in the text, with π0, the proportion susceptible at the starting age (of 20)
equal to 0.25.



Figure 6.

Annual death rates from all causes, cardiovascular disease, and cancer from 1900 to
1980 for U.S. women aged 60 - 65.
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